linux/drivers/base/memory.c
<<
>>
Prefs
   1/*
   2 * Memory subsystem support
   3 *
   4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
   5 *            Dave Hansen <haveblue@us.ibm.com>
   6 *
   7 * This file provides the necessary infrastructure to represent
   8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
   9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
  10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/topology.h>
  16#include <linux/capability.h>
  17#include <linux/device.h>
  18#include <linux/memory.h>
  19#include <linux/memory_hotplug.h>
  20#include <linux/mm.h>
  21#include <linux/mutex.h>
  22#include <linux/stat.h>
  23#include <linux/slab.h>
  24
  25#include <linux/atomic.h>
  26#include <asm/uaccess.h>
  27
  28static DEFINE_MUTEX(mem_sysfs_mutex);
  29
  30#define MEMORY_CLASS_NAME       "memory"
  31
  32#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
  33
  34static int sections_per_block;
  35
  36static inline int base_memory_block_id(int section_nr)
  37{
  38        return section_nr / sections_per_block;
  39}
  40
  41static int memory_subsys_online(struct device *dev);
  42static int memory_subsys_offline(struct device *dev);
  43
  44static struct bus_type memory_subsys = {
  45        .name = MEMORY_CLASS_NAME,
  46        .dev_name = MEMORY_CLASS_NAME,
  47        .online = memory_subsys_online,
  48        .offline = memory_subsys_offline,
  49};
  50
  51static BLOCKING_NOTIFIER_HEAD(memory_chain);
  52
  53int register_memory_notifier(struct notifier_block *nb)
  54{
  55        return blocking_notifier_chain_register(&memory_chain, nb);
  56}
  57EXPORT_SYMBOL(register_memory_notifier);
  58
  59void unregister_memory_notifier(struct notifier_block *nb)
  60{
  61        blocking_notifier_chain_unregister(&memory_chain, nb);
  62}
  63EXPORT_SYMBOL(unregister_memory_notifier);
  64
  65static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
  66
  67int register_memory_isolate_notifier(struct notifier_block *nb)
  68{
  69        return atomic_notifier_chain_register(&memory_isolate_chain, nb);
  70}
  71EXPORT_SYMBOL(register_memory_isolate_notifier);
  72
  73void unregister_memory_isolate_notifier(struct notifier_block *nb)
  74{
  75        atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
  76}
  77EXPORT_SYMBOL(unregister_memory_isolate_notifier);
  78
  79static void memory_block_release(struct device *dev)
  80{
  81        struct memory_block *mem = to_memory_block(dev);
  82
  83        kfree(mem);
  84}
  85
  86unsigned long __weak memory_block_size_bytes(void)
  87{
  88        return MIN_MEMORY_BLOCK_SIZE;
  89}
  90
  91static unsigned long get_memory_block_size(void)
  92{
  93        unsigned long block_sz;
  94
  95        block_sz = memory_block_size_bytes();
  96
  97        /* Validate blk_sz is a power of 2 and not less than section size */
  98        if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
  99                WARN_ON(1);
 100                block_sz = MIN_MEMORY_BLOCK_SIZE;
 101        }
 102
 103        return block_sz;
 104}
 105
 106/*
 107 * use this as the physical section index that this memsection
 108 * uses.
 109 */
 110
 111static ssize_t show_mem_start_phys_index(struct device *dev,
 112                        struct device_attribute *attr, char *buf)
 113{
 114        struct memory_block *mem = to_memory_block(dev);
 115        unsigned long phys_index;
 116
 117        phys_index = mem->start_section_nr / sections_per_block;
 118        return sprintf(buf, "%08lx\n", phys_index);
 119}
 120
 121static ssize_t show_mem_end_phys_index(struct device *dev,
 122                        struct device_attribute *attr, char *buf)
 123{
 124        struct memory_block *mem = to_memory_block(dev);
 125        unsigned long phys_index;
 126
 127        phys_index = mem->end_section_nr / sections_per_block;
 128        return sprintf(buf, "%08lx\n", phys_index);
 129}
 130
 131/*
 132 * Show whether the section of memory is likely to be hot-removable
 133 */
 134static ssize_t show_mem_removable(struct device *dev,
 135                        struct device_attribute *attr, char *buf)
 136{
 137        unsigned long i, pfn;
 138        int ret = 1;
 139        struct memory_block *mem = to_memory_block(dev);
 140
 141        for (i = 0; i < sections_per_block; i++) {
 142                if (!present_section_nr(mem->start_section_nr + i))
 143                        continue;
 144                pfn = section_nr_to_pfn(mem->start_section_nr + i);
 145                ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
 146        }
 147
 148        return sprintf(buf, "%d\n", ret);
 149}
 150
 151/*
 152 * online, offline, going offline, etc.
 153 */
 154static ssize_t show_mem_state(struct device *dev,
 155                        struct device_attribute *attr, char *buf)
 156{
 157        struct memory_block *mem = to_memory_block(dev);
 158        ssize_t len = 0;
 159
 160        /*
 161         * We can probably put these states in a nice little array
 162         * so that they're not open-coded
 163         */
 164        switch (mem->state) {
 165                case MEM_ONLINE:
 166                        len = sprintf(buf, "online\n");
 167                        break;
 168                case MEM_OFFLINE:
 169                        len = sprintf(buf, "offline\n");
 170                        break;
 171                case MEM_GOING_OFFLINE:
 172                        len = sprintf(buf, "going-offline\n");
 173                        break;
 174                default:
 175                        len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
 176                                        mem->state);
 177                        WARN_ON(1);
 178                        break;
 179        }
 180
 181        return len;
 182}
 183
 184int memory_notify(unsigned long val, void *v)
 185{
 186        return blocking_notifier_call_chain(&memory_chain, val, v);
 187}
 188
 189int memory_isolate_notify(unsigned long val, void *v)
 190{
 191        return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
 192}
 193
 194/*
 195 * The probe routines leave the pages reserved, just as the bootmem code does.
 196 * Make sure they're still that way.
 197 */
 198static bool pages_correctly_reserved(unsigned long start_pfn)
 199{
 200        int i, j;
 201        struct page *page;
 202        unsigned long pfn = start_pfn;
 203
 204        /*
 205         * memmap between sections is not contiguous except with
 206         * SPARSEMEM_VMEMMAP. We lookup the page once per section
 207         * and assume memmap is contiguous within each section
 208         */
 209        for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
 210                if (WARN_ON_ONCE(!pfn_valid(pfn)))
 211                        return false;
 212                page = pfn_to_page(pfn);
 213
 214                for (j = 0; j < PAGES_PER_SECTION; j++) {
 215                        if (PageReserved(page + j))
 216                                continue;
 217
 218                        printk(KERN_WARNING "section number %ld page number %d "
 219                                "not reserved, was it already online?\n",
 220                                pfn_to_section_nr(pfn), j);
 221
 222                        return false;
 223                }
 224        }
 225
 226        return true;
 227}
 228
 229/*
 230 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 231 * OK to have direct references to sparsemem variables in here.
 232 */
 233static int
 234memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
 235{
 236        unsigned long start_pfn;
 237        unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 238        struct page *first_page;
 239        int ret;
 240
 241        first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
 242        start_pfn = page_to_pfn(first_page);
 243
 244        switch (action) {
 245                case MEM_ONLINE:
 246                        if (!pages_correctly_reserved(start_pfn))
 247                                return -EBUSY;
 248
 249                        ret = online_pages(start_pfn, nr_pages, online_type);
 250                        break;
 251                case MEM_OFFLINE:
 252                        ret = offline_pages(start_pfn, nr_pages);
 253                        break;
 254                default:
 255                        WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
 256                             "%ld\n", __func__, phys_index, action, action);
 257                        ret = -EINVAL;
 258        }
 259
 260        return ret;
 261}
 262
 263static int memory_block_change_state(struct memory_block *mem,
 264                unsigned long to_state, unsigned long from_state_req)
 265{
 266        int ret = 0;
 267
 268        if (mem->state != from_state_req)
 269                return -EINVAL;
 270
 271        if (to_state == MEM_OFFLINE)
 272                mem->state = MEM_GOING_OFFLINE;
 273
 274        ret = memory_block_action(mem->start_section_nr, to_state,
 275                                mem->online_type);
 276
 277        mem->state = ret ? from_state_req : to_state;
 278
 279        return ret;
 280}
 281
 282/* The device lock serializes operations on memory_subsys_[online|offline] */
 283static int memory_subsys_online(struct device *dev)
 284{
 285        struct memory_block *mem = to_memory_block(dev);
 286        int ret;
 287
 288        if (mem->state == MEM_ONLINE)
 289                return 0;
 290
 291        /*
 292         * If we are called from store_mem_state(), online_type will be
 293         * set >= 0 Otherwise we were called from the device online
 294         * attribute and need to set the online_type.
 295         */
 296        if (mem->online_type < 0)
 297                mem->online_type = ONLINE_KEEP;
 298
 299        ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
 300
 301        /* clear online_type */
 302        mem->online_type = -1;
 303
 304        return ret;
 305}
 306
 307static int memory_subsys_offline(struct device *dev)
 308{
 309        struct memory_block *mem = to_memory_block(dev);
 310
 311        if (mem->state == MEM_OFFLINE)
 312                return 0;
 313
 314        return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
 315}
 316
 317static ssize_t
 318store_mem_state(struct device *dev,
 319                struct device_attribute *attr, const char *buf, size_t count)
 320{
 321        struct memory_block *mem = to_memory_block(dev);
 322        int ret, online_type;
 323
 324        ret = lock_device_hotplug_sysfs();
 325        if (ret)
 326                return ret;
 327
 328        if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
 329                online_type = ONLINE_KERNEL;
 330        else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
 331                online_type = ONLINE_MOVABLE;
 332        else if (!strncmp(buf, "online", min_t(int, count, 6)))
 333                online_type = ONLINE_KEEP;
 334        else if (!strncmp(buf, "offline", min_t(int, count, 7)))
 335                online_type = -1;
 336        else {
 337                ret = -EINVAL;
 338                goto err;
 339        }
 340
 341        switch (online_type) {
 342        case ONLINE_KERNEL:
 343        case ONLINE_MOVABLE:
 344        case ONLINE_KEEP:
 345                /*
 346                 * mem->online_type is not protected so there can be a
 347                 * race here.  However, when racing online, the first
 348                 * will succeed and the second will just return as the
 349                 * block will already be online.  The online type
 350                 * could be either one, but that is expected.
 351                 */
 352                mem->online_type = online_type;
 353                ret = device_online(&mem->dev);
 354                break;
 355        case -1:
 356                ret = device_offline(&mem->dev);
 357                break;
 358        default:
 359                ret = -EINVAL; /* should never happen */
 360        }
 361
 362err:
 363        unlock_device_hotplug();
 364
 365        if (ret)
 366                return ret;
 367        return count;
 368}
 369
 370/*
 371 * phys_device is a bad name for this.  What I really want
 372 * is a way to differentiate between memory ranges that
 373 * are part of physical devices that constitute
 374 * a complete removable unit or fru.
 375 * i.e. do these ranges belong to the same physical device,
 376 * s.t. if I offline all of these sections I can then
 377 * remove the physical device?
 378 */
 379static ssize_t show_phys_device(struct device *dev,
 380                                struct device_attribute *attr, char *buf)
 381{
 382        struct memory_block *mem = to_memory_block(dev);
 383        return sprintf(buf, "%d\n", mem->phys_device);
 384}
 385
 386static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
 387static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
 388static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
 389static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
 390static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
 391
 392/*
 393 * Block size attribute stuff
 394 */
 395static ssize_t
 396print_block_size(struct device *dev, struct device_attribute *attr,
 397                 char *buf)
 398{
 399        return sprintf(buf, "%lx\n", get_memory_block_size());
 400}
 401
 402static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
 403
 404/*
 405 * Some architectures will have custom drivers to do this, and
 406 * will not need to do it from userspace.  The fake hot-add code
 407 * as well as ppc64 will do all of their discovery in userspace
 408 * and will require this interface.
 409 */
 410#ifdef CONFIG_ARCH_MEMORY_PROBE
 411static ssize_t
 412memory_probe_store(struct device *dev, struct device_attribute *attr,
 413                   const char *buf, size_t count)
 414{
 415        u64 phys_addr;
 416        int nid;
 417        int i, ret;
 418        unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
 419
 420        phys_addr = simple_strtoull(buf, NULL, 0);
 421
 422        if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
 423                return -EINVAL;
 424
 425        for (i = 0; i < sections_per_block; i++) {
 426                nid = memory_add_physaddr_to_nid(phys_addr);
 427                ret = add_memory(nid, phys_addr,
 428                                 PAGES_PER_SECTION << PAGE_SHIFT);
 429                if (ret)
 430                        goto out;
 431
 432                phys_addr += MIN_MEMORY_BLOCK_SIZE;
 433        }
 434
 435        ret = count;
 436out:
 437        return ret;
 438}
 439
 440static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
 441#endif
 442
 443#ifdef CONFIG_MEMORY_FAILURE
 444/*
 445 * Support for offlining pages of memory
 446 */
 447
 448/* Soft offline a page */
 449static ssize_t
 450store_soft_offline_page(struct device *dev,
 451                        struct device_attribute *attr,
 452                        const char *buf, size_t count)
 453{
 454        int ret;
 455        u64 pfn;
 456        if (!capable(CAP_SYS_ADMIN))
 457                return -EPERM;
 458        if (kstrtoull(buf, 0, &pfn) < 0)
 459                return -EINVAL;
 460        pfn >>= PAGE_SHIFT;
 461        if (!pfn_valid(pfn))
 462                return -ENXIO;
 463        ret = soft_offline_page(pfn_to_page(pfn), 0);
 464        return ret == 0 ? count : ret;
 465}
 466
 467/* Forcibly offline a page, including killing processes. */
 468static ssize_t
 469store_hard_offline_page(struct device *dev,
 470                        struct device_attribute *attr,
 471                        const char *buf, size_t count)
 472{
 473        int ret;
 474        u64 pfn;
 475        if (!capable(CAP_SYS_ADMIN))
 476                return -EPERM;
 477        if (kstrtoull(buf, 0, &pfn) < 0)
 478                return -EINVAL;
 479        pfn >>= PAGE_SHIFT;
 480        ret = memory_failure(pfn, 0, 0);
 481        return ret ? ret : count;
 482}
 483
 484static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
 485static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
 486#endif
 487
 488/*
 489 * Note that phys_device is optional.  It is here to allow for
 490 * differentiation between which *physical* devices each
 491 * section belongs to...
 492 */
 493int __weak arch_get_memory_phys_device(unsigned long start_pfn)
 494{
 495        return 0;
 496}
 497
 498/*
 499 * A reference for the returned object is held and the reference for the
 500 * hinted object is released.
 501 */
 502struct memory_block *find_memory_block_hinted(struct mem_section *section,
 503                                              struct memory_block *hint)
 504{
 505        int block_id = base_memory_block_id(__section_nr(section));
 506        struct device *hintdev = hint ? &hint->dev : NULL;
 507        struct device *dev;
 508
 509        dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
 510        if (hint)
 511                put_device(&hint->dev);
 512        if (!dev)
 513                return NULL;
 514        return to_memory_block(dev);
 515}
 516
 517/*
 518 * For now, we have a linear search to go find the appropriate
 519 * memory_block corresponding to a particular phys_index. If
 520 * this gets to be a real problem, we can always use a radix
 521 * tree or something here.
 522 *
 523 * This could be made generic for all device subsystems.
 524 */
 525struct memory_block *find_memory_block(struct mem_section *section)
 526{
 527        return find_memory_block_hinted(section, NULL);
 528}
 529
 530static struct attribute *memory_memblk_attrs[] = {
 531        &dev_attr_phys_index.attr,
 532        &dev_attr_end_phys_index.attr,
 533        &dev_attr_state.attr,
 534        &dev_attr_phys_device.attr,
 535        &dev_attr_removable.attr,
 536        NULL
 537};
 538
 539static struct attribute_group memory_memblk_attr_group = {
 540        .attrs = memory_memblk_attrs,
 541};
 542
 543static const struct attribute_group *memory_memblk_attr_groups[] = {
 544        &memory_memblk_attr_group,
 545        NULL,
 546};
 547
 548/*
 549 * register_memory - Setup a sysfs device for a memory block
 550 */
 551static
 552int register_memory(struct memory_block *memory)
 553{
 554        memory->dev.bus = &memory_subsys;
 555        memory->dev.id = memory->start_section_nr / sections_per_block;
 556        memory->dev.release = memory_block_release;
 557        memory->dev.groups = memory_memblk_attr_groups;
 558        memory->dev.offline = memory->state == MEM_OFFLINE;
 559
 560        return device_register(&memory->dev);
 561}
 562
 563static int init_memory_block(struct memory_block **memory,
 564                             struct mem_section *section, unsigned long state)
 565{
 566        struct memory_block *mem;
 567        unsigned long start_pfn;
 568        int scn_nr;
 569        int ret = 0;
 570
 571        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 572        if (!mem)
 573                return -ENOMEM;
 574
 575        scn_nr = __section_nr(section);
 576        mem->start_section_nr =
 577                        base_memory_block_id(scn_nr) * sections_per_block;
 578        mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
 579        mem->state = state;
 580        mem->section_count++;
 581        start_pfn = section_nr_to_pfn(mem->start_section_nr);
 582        mem->phys_device = arch_get_memory_phys_device(start_pfn);
 583
 584        ret = register_memory(mem);
 585
 586        *memory = mem;
 587        return ret;
 588}
 589
 590static int add_memory_block(int base_section_nr)
 591{
 592        struct memory_block *mem;
 593        int i, ret, section_count = 0, section_nr;
 594
 595        for (i = base_section_nr;
 596             (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
 597             i++) {
 598                if (!present_section_nr(i))
 599                        continue;
 600                if (section_count == 0)
 601                        section_nr = i;
 602                section_count++;
 603        }
 604
 605        if (section_count == 0)
 606                return 0;
 607        ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
 608        if (ret)
 609                return ret;
 610        mem->section_count = section_count;
 611        return 0;
 612}
 613
 614
 615/*
 616 * need an interface for the VM to add new memory regions,
 617 * but without onlining it.
 618 */
 619int register_new_memory(int nid, struct mem_section *section)
 620{
 621        int ret = 0;
 622        struct memory_block *mem;
 623
 624        mutex_lock(&mem_sysfs_mutex);
 625
 626        mem = find_memory_block(section);
 627        if (mem) {
 628                mem->section_count++;
 629                put_device(&mem->dev);
 630        } else {
 631                ret = init_memory_block(&mem, section, MEM_OFFLINE);
 632                if (ret)
 633                        goto out;
 634        }
 635
 636        if (mem->section_count == sections_per_block)
 637                ret = register_mem_sect_under_node(mem, nid);
 638out:
 639        mutex_unlock(&mem_sysfs_mutex);
 640        return ret;
 641}
 642
 643#ifdef CONFIG_MEMORY_HOTREMOVE
 644static void
 645unregister_memory(struct memory_block *memory)
 646{
 647        BUG_ON(memory->dev.bus != &memory_subsys);
 648
 649        /* drop the ref. we got in remove_memory_block() */
 650        put_device(&memory->dev);
 651        device_unregister(&memory->dev);
 652}
 653
 654static int remove_memory_block(unsigned long node_id,
 655                               struct mem_section *section, int phys_device)
 656{
 657        struct memory_block *mem;
 658
 659        mutex_lock(&mem_sysfs_mutex);
 660        mem = find_memory_block(section);
 661        unregister_mem_sect_under_nodes(mem, __section_nr(section));
 662
 663        mem->section_count--;
 664        if (mem->section_count == 0)
 665                unregister_memory(mem);
 666        else
 667                put_device(&mem->dev);
 668
 669        mutex_unlock(&mem_sysfs_mutex);
 670        return 0;
 671}
 672
 673int unregister_memory_section(struct mem_section *section)
 674{
 675        if (!present_section(section))
 676                return -EINVAL;
 677
 678        return remove_memory_block(0, section, 0);
 679}
 680#endif /* CONFIG_MEMORY_HOTREMOVE */
 681
 682/* return true if the memory block is offlined, otherwise, return false */
 683bool is_memblock_offlined(struct memory_block *mem)
 684{
 685        return mem->state == MEM_OFFLINE;
 686}
 687
 688static struct attribute *memory_root_attrs[] = {
 689#ifdef CONFIG_ARCH_MEMORY_PROBE
 690        &dev_attr_probe.attr,
 691#endif
 692
 693#ifdef CONFIG_MEMORY_FAILURE
 694        &dev_attr_soft_offline_page.attr,
 695        &dev_attr_hard_offline_page.attr,
 696#endif
 697
 698        &dev_attr_block_size_bytes.attr,
 699        NULL
 700};
 701
 702static struct attribute_group memory_root_attr_group = {
 703        .attrs = memory_root_attrs,
 704};
 705
 706static const struct attribute_group *memory_root_attr_groups[] = {
 707        &memory_root_attr_group,
 708        NULL,
 709};
 710
 711/*
 712 * Initialize the sysfs support for memory devices...
 713 */
 714int __init memory_dev_init(void)
 715{
 716        unsigned int i;
 717        int ret;
 718        int err;
 719        unsigned long block_sz;
 720
 721        ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
 722        if (ret)
 723                goto out;
 724
 725        block_sz = get_memory_block_size();
 726        sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
 727
 728        /*
 729         * Create entries for memory sections that were found
 730         * during boot and have been initialized
 731         */
 732        mutex_lock(&mem_sysfs_mutex);
 733        for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
 734                err = add_memory_block(i);
 735                if (!ret)
 736                        ret = err;
 737        }
 738        mutex_unlock(&mem_sysfs_mutex);
 739
 740out:
 741        if (ret)
 742                printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
 743        return ret;
 744}
 745