linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/bio.h>
  16#include <linux/blkdev.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/crypto.h>
  20#include <linux/workqueue.h>
  21#include <linux/backing-dev.h>
  22#include <linux/percpu.h>
  23#include <linux/atomic.h>
  24#include <linux/scatterlist.h>
  25#include <asm/page.h>
  26#include <asm/unaligned.h>
  27#include <crypto/hash.h>
  28#include <crypto/md5.h>
  29#include <crypto/algapi.h>
  30
  31#include <linux/device-mapper.h>
  32
  33#define DM_MSG_PREFIX "crypt"
  34
  35/*
  36 * context holding the current state of a multi-part conversion
  37 */
  38struct convert_context {
  39        struct completion restart;
  40        struct bio *bio_in;
  41        struct bio *bio_out;
  42        struct bvec_iter iter_in;
  43        struct bvec_iter iter_out;
  44        sector_t cc_sector;
  45        atomic_t cc_pending;
  46};
  47
  48/*
  49 * per bio private data
  50 */
  51struct dm_crypt_io {
  52        struct crypt_config *cc;
  53        struct bio *base_bio;
  54        struct work_struct work;
  55
  56        struct convert_context ctx;
  57
  58        atomic_t io_pending;
  59        int error;
  60        sector_t sector;
  61        struct dm_crypt_io *base_io;
  62};
  63
  64struct dm_crypt_request {
  65        struct convert_context *ctx;
  66        struct scatterlist sg_in;
  67        struct scatterlist sg_out;
  68        sector_t iv_sector;
  69};
  70
  71struct crypt_config;
  72
  73struct crypt_iv_operations {
  74        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  75                   const char *opts);
  76        void (*dtr)(struct crypt_config *cc);
  77        int (*init)(struct crypt_config *cc);
  78        int (*wipe)(struct crypt_config *cc);
  79        int (*generator)(struct crypt_config *cc, u8 *iv,
  80                         struct dm_crypt_request *dmreq);
  81        int (*post)(struct crypt_config *cc, u8 *iv,
  82                    struct dm_crypt_request *dmreq);
  83};
  84
  85struct iv_essiv_private {
  86        struct crypto_hash *hash_tfm;
  87        u8 *salt;
  88};
  89
  90struct iv_benbi_private {
  91        int shift;
  92};
  93
  94#define LMK_SEED_SIZE 64 /* hash + 0 */
  95struct iv_lmk_private {
  96        struct crypto_shash *hash_tfm;
  97        u8 *seed;
  98};
  99
 100#define TCW_WHITENING_SIZE 16
 101struct iv_tcw_private {
 102        struct crypto_shash *crc32_tfm;
 103        u8 *iv_seed;
 104        u8 *whitening;
 105};
 106
 107/*
 108 * Crypt: maps a linear range of a block device
 109 * and encrypts / decrypts at the same time.
 110 */
 111enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
 112
 113/*
 114 * Duplicated per-CPU state for cipher.
 115 */
 116struct crypt_cpu {
 117        struct ablkcipher_request *req;
 118};
 119
 120/*
 121 * The fields in here must be read only after initialization,
 122 * changing state should be in crypt_cpu.
 123 */
 124struct crypt_config {
 125        struct dm_dev *dev;
 126        sector_t start;
 127
 128        /*
 129         * pool for per bio private data, crypto requests and
 130         * encryption requeusts/buffer pages
 131         */
 132        mempool_t *io_pool;
 133        mempool_t *req_pool;
 134        mempool_t *page_pool;
 135        struct bio_set *bs;
 136
 137        struct workqueue_struct *io_queue;
 138        struct workqueue_struct *crypt_queue;
 139
 140        char *cipher;
 141        char *cipher_string;
 142
 143        struct crypt_iv_operations *iv_gen_ops;
 144        union {
 145                struct iv_essiv_private essiv;
 146                struct iv_benbi_private benbi;
 147                struct iv_lmk_private lmk;
 148                struct iv_tcw_private tcw;
 149        } iv_gen_private;
 150        sector_t iv_offset;
 151        unsigned int iv_size;
 152
 153        /*
 154         * Duplicated per cpu state. Access through
 155         * per_cpu_ptr() only.
 156         */
 157        struct crypt_cpu __percpu *cpu;
 158
 159        /* ESSIV: struct crypto_cipher *essiv_tfm */
 160        void *iv_private;
 161        struct crypto_ablkcipher **tfms;
 162        unsigned tfms_count;
 163
 164        /*
 165         * Layout of each crypto request:
 166         *
 167         *   struct ablkcipher_request
 168         *      context
 169         *      padding
 170         *   struct dm_crypt_request
 171         *      padding
 172         *   IV
 173         *
 174         * The padding is added so that dm_crypt_request and the IV are
 175         * correctly aligned.
 176         */
 177        unsigned int dmreq_start;
 178
 179        unsigned long flags;
 180        unsigned int key_size;
 181        unsigned int key_parts;      /* independent parts in key buffer */
 182        unsigned int key_extra_size; /* additional keys length */
 183        u8 key[0];
 184};
 185
 186#define MIN_IOS        16
 187#define MIN_POOL_PAGES 32
 188
 189static struct kmem_cache *_crypt_io_pool;
 190
 191static void clone_init(struct dm_crypt_io *, struct bio *);
 192static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 193static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 194
 195static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
 196{
 197        return this_cpu_ptr(cc->cpu);
 198}
 199
 200/*
 201 * Use this to access cipher attributes that are the same for each CPU.
 202 */
 203static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
 204{
 205        return cc->tfms[0];
 206}
 207
 208/*
 209 * Different IV generation algorithms:
 210 *
 211 * plain: the initial vector is the 32-bit little-endian version of the sector
 212 *        number, padded with zeros if necessary.
 213 *
 214 * plain64: the initial vector is the 64-bit little-endian version of the sector
 215 *        number, padded with zeros if necessary.
 216 *
 217 * essiv: "encrypted sector|salt initial vector", the sector number is
 218 *        encrypted with the bulk cipher using a salt as key. The salt
 219 *        should be derived from the bulk cipher's key via hashing.
 220 *
 221 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 222 *        (needed for LRW-32-AES and possible other narrow block modes)
 223 *
 224 * null: the initial vector is always zero.  Provides compatibility with
 225 *       obsolete loop_fish2 devices.  Do not use for new devices.
 226 *
 227 * lmk:  Compatible implementation of the block chaining mode used
 228 *       by the Loop-AES block device encryption system
 229 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 230 *       It operates on full 512 byte sectors and uses CBC
 231 *       with an IV derived from the sector number, the data and
 232 *       optionally extra IV seed.
 233 *       This means that after decryption the first block
 234 *       of sector must be tweaked according to decrypted data.
 235 *       Loop-AES can use three encryption schemes:
 236 *         version 1: is plain aes-cbc mode
 237 *         version 2: uses 64 multikey scheme with lmk IV generator
 238 *         version 3: the same as version 2 with additional IV seed
 239 *                   (it uses 65 keys, last key is used as IV seed)
 240 *
 241 * tcw:  Compatible implementation of the block chaining mode used
 242 *       by the TrueCrypt device encryption system (prior to version 4.1).
 243 *       For more info see: http://www.truecrypt.org
 244 *       It operates on full 512 byte sectors and uses CBC
 245 *       with an IV derived from initial key and the sector number.
 246 *       In addition, whitening value is applied on every sector, whitening
 247 *       is calculated from initial key, sector number and mixed using CRC32.
 248 *       Note that this encryption scheme is vulnerable to watermarking attacks
 249 *       and should be used for old compatible containers access only.
 250 *
 251 * plumb: unimplemented, see:
 252 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 253 */
 254
 255static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 256                              struct dm_crypt_request *dmreq)
 257{
 258        memset(iv, 0, cc->iv_size);
 259        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 260
 261        return 0;
 262}
 263
 264static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 265                                struct dm_crypt_request *dmreq)
 266{
 267        memset(iv, 0, cc->iv_size);
 268        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 269
 270        return 0;
 271}
 272
 273/* Initialise ESSIV - compute salt but no local memory allocations */
 274static int crypt_iv_essiv_init(struct crypt_config *cc)
 275{
 276        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 277        struct hash_desc desc;
 278        struct scatterlist sg;
 279        struct crypto_cipher *essiv_tfm;
 280        int err;
 281
 282        sg_init_one(&sg, cc->key, cc->key_size);
 283        desc.tfm = essiv->hash_tfm;
 284        desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 285
 286        err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
 287        if (err)
 288                return err;
 289
 290        essiv_tfm = cc->iv_private;
 291
 292        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 293                            crypto_hash_digestsize(essiv->hash_tfm));
 294        if (err)
 295                return err;
 296
 297        return 0;
 298}
 299
 300/* Wipe salt and reset key derived from volume key */
 301static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 302{
 303        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 304        unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
 305        struct crypto_cipher *essiv_tfm;
 306        int r, err = 0;
 307
 308        memset(essiv->salt, 0, salt_size);
 309
 310        essiv_tfm = cc->iv_private;
 311        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 312        if (r)
 313                err = r;
 314
 315        return err;
 316}
 317
 318/* Set up per cpu cipher state */
 319static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 320                                             struct dm_target *ti,
 321                                             u8 *salt, unsigned saltsize)
 322{
 323        struct crypto_cipher *essiv_tfm;
 324        int err;
 325
 326        /* Setup the essiv_tfm with the given salt */
 327        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 328        if (IS_ERR(essiv_tfm)) {
 329                ti->error = "Error allocating crypto tfm for ESSIV";
 330                return essiv_tfm;
 331        }
 332
 333        if (crypto_cipher_blocksize(essiv_tfm) !=
 334            crypto_ablkcipher_ivsize(any_tfm(cc))) {
 335                ti->error = "Block size of ESSIV cipher does "
 336                            "not match IV size of block cipher";
 337                crypto_free_cipher(essiv_tfm);
 338                return ERR_PTR(-EINVAL);
 339        }
 340
 341        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 342        if (err) {
 343                ti->error = "Failed to set key for ESSIV cipher";
 344                crypto_free_cipher(essiv_tfm);
 345                return ERR_PTR(err);
 346        }
 347
 348        return essiv_tfm;
 349}
 350
 351static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 352{
 353        struct crypto_cipher *essiv_tfm;
 354        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 355
 356        crypto_free_hash(essiv->hash_tfm);
 357        essiv->hash_tfm = NULL;
 358
 359        kzfree(essiv->salt);
 360        essiv->salt = NULL;
 361
 362        essiv_tfm = cc->iv_private;
 363
 364        if (essiv_tfm)
 365                crypto_free_cipher(essiv_tfm);
 366
 367        cc->iv_private = NULL;
 368}
 369
 370static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 371                              const char *opts)
 372{
 373        struct crypto_cipher *essiv_tfm = NULL;
 374        struct crypto_hash *hash_tfm = NULL;
 375        u8 *salt = NULL;
 376        int err;
 377
 378        if (!opts) {
 379                ti->error = "Digest algorithm missing for ESSIV mode";
 380                return -EINVAL;
 381        }
 382
 383        /* Allocate hash algorithm */
 384        hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 385        if (IS_ERR(hash_tfm)) {
 386                ti->error = "Error initializing ESSIV hash";
 387                err = PTR_ERR(hash_tfm);
 388                goto bad;
 389        }
 390
 391        salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
 392        if (!salt) {
 393                ti->error = "Error kmallocing salt storage in ESSIV";
 394                err = -ENOMEM;
 395                goto bad;
 396        }
 397
 398        cc->iv_gen_private.essiv.salt = salt;
 399        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 400
 401        essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 402                                crypto_hash_digestsize(hash_tfm));
 403        if (IS_ERR(essiv_tfm)) {
 404                crypt_iv_essiv_dtr(cc);
 405                return PTR_ERR(essiv_tfm);
 406        }
 407        cc->iv_private = essiv_tfm;
 408
 409        return 0;
 410
 411bad:
 412        if (hash_tfm && !IS_ERR(hash_tfm))
 413                crypto_free_hash(hash_tfm);
 414        kfree(salt);
 415        return err;
 416}
 417
 418static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 419                              struct dm_crypt_request *dmreq)
 420{
 421        struct crypto_cipher *essiv_tfm = cc->iv_private;
 422
 423        memset(iv, 0, cc->iv_size);
 424        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 425        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 426
 427        return 0;
 428}
 429
 430static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 431                              const char *opts)
 432{
 433        unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
 434        int log = ilog2(bs);
 435
 436        /* we need to calculate how far we must shift the sector count
 437         * to get the cipher block count, we use this shift in _gen */
 438
 439        if (1 << log != bs) {
 440                ti->error = "cypher blocksize is not a power of 2";
 441                return -EINVAL;
 442        }
 443
 444        if (log > 9) {
 445                ti->error = "cypher blocksize is > 512";
 446                return -EINVAL;
 447        }
 448
 449        cc->iv_gen_private.benbi.shift = 9 - log;
 450
 451        return 0;
 452}
 453
 454static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 455{
 456}
 457
 458static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 459                              struct dm_crypt_request *dmreq)
 460{
 461        __be64 val;
 462
 463        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 464
 465        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 466        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 467
 468        return 0;
 469}
 470
 471static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 472                             struct dm_crypt_request *dmreq)
 473{
 474        memset(iv, 0, cc->iv_size);
 475
 476        return 0;
 477}
 478
 479static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 480{
 481        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 482
 483        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 484                crypto_free_shash(lmk->hash_tfm);
 485        lmk->hash_tfm = NULL;
 486
 487        kzfree(lmk->seed);
 488        lmk->seed = NULL;
 489}
 490
 491static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 492                            const char *opts)
 493{
 494        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 495
 496        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 497        if (IS_ERR(lmk->hash_tfm)) {
 498                ti->error = "Error initializing LMK hash";
 499                return PTR_ERR(lmk->hash_tfm);
 500        }
 501
 502        /* No seed in LMK version 2 */
 503        if (cc->key_parts == cc->tfms_count) {
 504                lmk->seed = NULL;
 505                return 0;
 506        }
 507
 508        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 509        if (!lmk->seed) {
 510                crypt_iv_lmk_dtr(cc);
 511                ti->error = "Error kmallocing seed storage in LMK";
 512                return -ENOMEM;
 513        }
 514
 515        return 0;
 516}
 517
 518static int crypt_iv_lmk_init(struct crypt_config *cc)
 519{
 520        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 521        int subkey_size = cc->key_size / cc->key_parts;
 522
 523        /* LMK seed is on the position of LMK_KEYS + 1 key */
 524        if (lmk->seed)
 525                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 526                       crypto_shash_digestsize(lmk->hash_tfm));
 527
 528        return 0;
 529}
 530
 531static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 532{
 533        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 534
 535        if (lmk->seed)
 536                memset(lmk->seed, 0, LMK_SEED_SIZE);
 537
 538        return 0;
 539}
 540
 541static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 542                            struct dm_crypt_request *dmreq,
 543                            u8 *data)
 544{
 545        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 546        struct {
 547                struct shash_desc desc;
 548                char ctx[crypto_shash_descsize(lmk->hash_tfm)];
 549        } sdesc;
 550        struct md5_state md5state;
 551        __le32 buf[4];
 552        int i, r;
 553
 554        sdesc.desc.tfm = lmk->hash_tfm;
 555        sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 556
 557        r = crypto_shash_init(&sdesc.desc);
 558        if (r)
 559                return r;
 560
 561        if (lmk->seed) {
 562                r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
 563                if (r)
 564                        return r;
 565        }
 566
 567        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 568        r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
 569        if (r)
 570                return r;
 571
 572        /* Sector is cropped to 56 bits here */
 573        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 574        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 575        buf[2] = cpu_to_le32(4024);
 576        buf[3] = 0;
 577        r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
 578        if (r)
 579                return r;
 580
 581        /* No MD5 padding here */
 582        r = crypto_shash_export(&sdesc.desc, &md5state);
 583        if (r)
 584                return r;
 585
 586        for (i = 0; i < MD5_HASH_WORDS; i++)
 587                __cpu_to_le32s(&md5state.hash[i]);
 588        memcpy(iv, &md5state.hash, cc->iv_size);
 589
 590        return 0;
 591}
 592
 593static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 594                            struct dm_crypt_request *dmreq)
 595{
 596        u8 *src;
 597        int r = 0;
 598
 599        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 600                src = kmap_atomic(sg_page(&dmreq->sg_in));
 601                r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 602                kunmap_atomic(src);
 603        } else
 604                memset(iv, 0, cc->iv_size);
 605
 606        return r;
 607}
 608
 609static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 610                             struct dm_crypt_request *dmreq)
 611{
 612        u8 *dst;
 613        int r;
 614
 615        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 616                return 0;
 617
 618        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 619        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 620
 621        /* Tweak the first block of plaintext sector */
 622        if (!r)
 623                crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 624
 625        kunmap_atomic(dst);
 626        return r;
 627}
 628
 629static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 630{
 631        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 632
 633        kzfree(tcw->iv_seed);
 634        tcw->iv_seed = NULL;
 635        kzfree(tcw->whitening);
 636        tcw->whitening = NULL;
 637
 638        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 639                crypto_free_shash(tcw->crc32_tfm);
 640        tcw->crc32_tfm = NULL;
 641}
 642
 643static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 644                            const char *opts)
 645{
 646        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 647
 648        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 649                ti->error = "Wrong key size for TCW";
 650                return -EINVAL;
 651        }
 652
 653        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 654        if (IS_ERR(tcw->crc32_tfm)) {
 655                ti->error = "Error initializing CRC32 in TCW";
 656                return PTR_ERR(tcw->crc32_tfm);
 657        }
 658
 659        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 660        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 661        if (!tcw->iv_seed || !tcw->whitening) {
 662                crypt_iv_tcw_dtr(cc);
 663                ti->error = "Error allocating seed storage in TCW";
 664                return -ENOMEM;
 665        }
 666
 667        return 0;
 668}
 669
 670static int crypt_iv_tcw_init(struct crypt_config *cc)
 671{
 672        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 673        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 674
 675        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 676        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 677               TCW_WHITENING_SIZE);
 678
 679        return 0;
 680}
 681
 682static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 683{
 684        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 685
 686        memset(tcw->iv_seed, 0, cc->iv_size);
 687        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 688
 689        return 0;
 690}
 691
 692static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 693                                  struct dm_crypt_request *dmreq,
 694                                  u8 *data)
 695{
 696        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 697        u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 698        u8 buf[TCW_WHITENING_SIZE];
 699        struct {
 700                struct shash_desc desc;
 701                char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
 702        } sdesc;
 703        int i, r;
 704
 705        /* xor whitening with sector number */
 706        memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 707        crypto_xor(buf, (u8 *)&sector, 8);
 708        crypto_xor(&buf[8], (u8 *)&sector, 8);
 709
 710        /* calculate crc32 for every 32bit part and xor it */
 711        sdesc.desc.tfm = tcw->crc32_tfm;
 712        sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 713        for (i = 0; i < 4; i++) {
 714                r = crypto_shash_init(&sdesc.desc);
 715                if (r)
 716                        goto out;
 717                r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
 718                if (r)
 719                        goto out;
 720                r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
 721                if (r)
 722                        goto out;
 723        }
 724        crypto_xor(&buf[0], &buf[12], 4);
 725        crypto_xor(&buf[4], &buf[8], 4);
 726
 727        /* apply whitening (8 bytes) to whole sector */
 728        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 729                crypto_xor(data + i * 8, buf, 8);
 730out:
 731        memset(buf, 0, sizeof(buf));
 732        return r;
 733}
 734
 735static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 736                            struct dm_crypt_request *dmreq)
 737{
 738        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 739        u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 740        u8 *src;
 741        int r = 0;
 742
 743        /* Remove whitening from ciphertext */
 744        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 745                src = kmap_atomic(sg_page(&dmreq->sg_in));
 746                r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 747                kunmap_atomic(src);
 748        }
 749
 750        /* Calculate IV */
 751        memcpy(iv, tcw->iv_seed, cc->iv_size);
 752        crypto_xor(iv, (u8 *)&sector, 8);
 753        if (cc->iv_size > 8)
 754                crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 755
 756        return r;
 757}
 758
 759static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 760                             struct dm_crypt_request *dmreq)
 761{
 762        u8 *dst;
 763        int r;
 764
 765        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 766                return 0;
 767
 768        /* Apply whitening on ciphertext */
 769        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 770        r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 771        kunmap_atomic(dst);
 772
 773        return r;
 774}
 775
 776static struct crypt_iv_operations crypt_iv_plain_ops = {
 777        .generator = crypt_iv_plain_gen
 778};
 779
 780static struct crypt_iv_operations crypt_iv_plain64_ops = {
 781        .generator = crypt_iv_plain64_gen
 782};
 783
 784static struct crypt_iv_operations crypt_iv_essiv_ops = {
 785        .ctr       = crypt_iv_essiv_ctr,
 786        .dtr       = crypt_iv_essiv_dtr,
 787        .init      = crypt_iv_essiv_init,
 788        .wipe      = crypt_iv_essiv_wipe,
 789        .generator = crypt_iv_essiv_gen
 790};
 791
 792static struct crypt_iv_operations crypt_iv_benbi_ops = {
 793        .ctr       = crypt_iv_benbi_ctr,
 794        .dtr       = crypt_iv_benbi_dtr,
 795        .generator = crypt_iv_benbi_gen
 796};
 797
 798static struct crypt_iv_operations crypt_iv_null_ops = {
 799        .generator = crypt_iv_null_gen
 800};
 801
 802static struct crypt_iv_operations crypt_iv_lmk_ops = {
 803        .ctr       = crypt_iv_lmk_ctr,
 804        .dtr       = crypt_iv_lmk_dtr,
 805        .init      = crypt_iv_lmk_init,
 806        .wipe      = crypt_iv_lmk_wipe,
 807        .generator = crypt_iv_lmk_gen,
 808        .post      = crypt_iv_lmk_post
 809};
 810
 811static struct crypt_iv_operations crypt_iv_tcw_ops = {
 812        .ctr       = crypt_iv_tcw_ctr,
 813        .dtr       = crypt_iv_tcw_dtr,
 814        .init      = crypt_iv_tcw_init,
 815        .wipe      = crypt_iv_tcw_wipe,
 816        .generator = crypt_iv_tcw_gen,
 817        .post      = crypt_iv_tcw_post
 818};
 819
 820static void crypt_convert_init(struct crypt_config *cc,
 821                               struct convert_context *ctx,
 822                               struct bio *bio_out, struct bio *bio_in,
 823                               sector_t sector)
 824{
 825        ctx->bio_in = bio_in;
 826        ctx->bio_out = bio_out;
 827        if (bio_in)
 828                ctx->iter_in = bio_in->bi_iter;
 829        if (bio_out)
 830                ctx->iter_out = bio_out->bi_iter;
 831        ctx->cc_sector = sector + cc->iv_offset;
 832        init_completion(&ctx->restart);
 833}
 834
 835static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 836                                             struct ablkcipher_request *req)
 837{
 838        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 839}
 840
 841static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 842                                               struct dm_crypt_request *dmreq)
 843{
 844        return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 845}
 846
 847static u8 *iv_of_dmreq(struct crypt_config *cc,
 848                       struct dm_crypt_request *dmreq)
 849{
 850        return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 851                crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
 852}
 853
 854static int crypt_convert_block(struct crypt_config *cc,
 855                               struct convert_context *ctx,
 856                               struct ablkcipher_request *req)
 857{
 858        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 859        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 860        struct dm_crypt_request *dmreq;
 861        u8 *iv;
 862        int r;
 863
 864        dmreq = dmreq_of_req(cc, req);
 865        iv = iv_of_dmreq(cc, dmreq);
 866
 867        dmreq->iv_sector = ctx->cc_sector;
 868        dmreq->ctx = ctx;
 869        sg_init_table(&dmreq->sg_in, 1);
 870        sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
 871                    bv_in.bv_offset);
 872
 873        sg_init_table(&dmreq->sg_out, 1);
 874        sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
 875                    bv_out.bv_offset);
 876
 877        bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
 878        bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
 879
 880        if (cc->iv_gen_ops) {
 881                r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 882                if (r < 0)
 883                        return r;
 884        }
 885
 886        ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 887                                     1 << SECTOR_SHIFT, iv);
 888
 889        if (bio_data_dir(ctx->bio_in) == WRITE)
 890                r = crypto_ablkcipher_encrypt(req);
 891        else
 892                r = crypto_ablkcipher_decrypt(req);
 893
 894        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 895                r = cc->iv_gen_ops->post(cc, iv, dmreq);
 896
 897        return r;
 898}
 899
 900static void kcryptd_async_done(struct crypto_async_request *async_req,
 901                               int error);
 902
 903static void crypt_alloc_req(struct crypt_config *cc,
 904                            struct convert_context *ctx)
 905{
 906        struct crypt_cpu *this_cc = this_crypt_config(cc);
 907        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 908
 909        if (!this_cc->req)
 910                this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 911
 912        ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
 913        ablkcipher_request_set_callback(this_cc->req,
 914            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 915            kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
 916}
 917
 918/*
 919 * Encrypt / decrypt data from one bio to another one (can be the same one)
 920 */
 921static int crypt_convert(struct crypt_config *cc,
 922                         struct convert_context *ctx)
 923{
 924        struct crypt_cpu *this_cc = this_crypt_config(cc);
 925        int r;
 926
 927        atomic_set(&ctx->cc_pending, 1);
 928
 929        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 930
 931                crypt_alloc_req(cc, ctx);
 932
 933                atomic_inc(&ctx->cc_pending);
 934
 935                r = crypt_convert_block(cc, ctx, this_cc->req);
 936
 937                switch (r) {
 938                /* async */
 939                case -EBUSY:
 940                        wait_for_completion(&ctx->restart);
 941                        reinit_completion(&ctx->restart);
 942                        /* fall through*/
 943                case -EINPROGRESS:
 944                        this_cc->req = NULL;
 945                        ctx->cc_sector++;
 946                        continue;
 947
 948                /* sync */
 949                case 0:
 950                        atomic_dec(&ctx->cc_pending);
 951                        ctx->cc_sector++;
 952                        cond_resched();
 953                        continue;
 954
 955                /* error */
 956                default:
 957                        atomic_dec(&ctx->cc_pending);
 958                        return r;
 959                }
 960        }
 961
 962        return 0;
 963}
 964
 965/*
 966 * Generate a new unfragmented bio with the given size
 967 * This should never violate the device limitations
 968 * May return a smaller bio when running out of pages, indicated by
 969 * *out_of_pages set to 1.
 970 */
 971static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
 972                                      unsigned *out_of_pages)
 973{
 974        struct crypt_config *cc = io->cc;
 975        struct bio *clone;
 976        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 977        gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
 978        unsigned i, len;
 979        struct page *page;
 980
 981        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
 982        if (!clone)
 983                return NULL;
 984
 985        clone_init(io, clone);
 986        *out_of_pages = 0;
 987
 988        for (i = 0; i < nr_iovecs; i++) {
 989                page = mempool_alloc(cc->page_pool, gfp_mask);
 990                if (!page) {
 991                        *out_of_pages = 1;
 992                        break;
 993                }
 994
 995                /*
 996                 * If additional pages cannot be allocated without waiting,
 997                 * return a partially-allocated bio.  The caller will then try
 998                 * to allocate more bios while submitting this partial bio.
 999                 */
1000                gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
1001
1002                len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
1003
1004                if (!bio_add_page(clone, page, len, 0)) {
1005                        mempool_free(page, cc->page_pool);
1006                        break;
1007                }
1008
1009                size -= len;
1010        }
1011
1012        if (!clone->bi_iter.bi_size) {
1013                bio_put(clone);
1014                return NULL;
1015        }
1016
1017        return clone;
1018}
1019
1020static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1021{
1022        unsigned int i;
1023        struct bio_vec *bv;
1024
1025        bio_for_each_segment_all(bv, clone, i) {
1026                BUG_ON(!bv->bv_page);
1027                mempool_free(bv->bv_page, cc->page_pool);
1028                bv->bv_page = NULL;
1029        }
1030}
1031
1032static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
1033                                          struct bio *bio, sector_t sector)
1034{
1035        struct dm_crypt_io *io;
1036
1037        io = mempool_alloc(cc->io_pool, GFP_NOIO);
1038        io->cc = cc;
1039        io->base_bio = bio;
1040        io->sector = sector;
1041        io->error = 0;
1042        io->base_io = NULL;
1043        atomic_set(&io->io_pending, 0);
1044
1045        return io;
1046}
1047
1048static void crypt_inc_pending(struct dm_crypt_io *io)
1049{
1050        atomic_inc(&io->io_pending);
1051}
1052
1053/*
1054 * One of the bios was finished. Check for completion of
1055 * the whole request and correctly clean up the buffer.
1056 * If base_io is set, wait for the last fragment to complete.
1057 */
1058static void crypt_dec_pending(struct dm_crypt_io *io)
1059{
1060        struct crypt_config *cc = io->cc;
1061        struct bio *base_bio = io->base_bio;
1062        struct dm_crypt_io *base_io = io->base_io;
1063        int error = io->error;
1064
1065        if (!atomic_dec_and_test(&io->io_pending))
1066                return;
1067
1068        mempool_free(io, cc->io_pool);
1069
1070        if (likely(!base_io))
1071                bio_endio(base_bio, error);
1072        else {
1073                if (error && !base_io->error)
1074                        base_io->error = error;
1075                crypt_dec_pending(base_io);
1076        }
1077}
1078
1079/*
1080 * kcryptd/kcryptd_io:
1081 *
1082 * Needed because it would be very unwise to do decryption in an
1083 * interrupt context.
1084 *
1085 * kcryptd performs the actual encryption or decryption.
1086 *
1087 * kcryptd_io performs the IO submission.
1088 *
1089 * They must be separated as otherwise the final stages could be
1090 * starved by new requests which can block in the first stages due
1091 * to memory allocation.
1092 *
1093 * The work is done per CPU global for all dm-crypt instances.
1094 * They should not depend on each other and do not block.
1095 */
1096static void crypt_endio(struct bio *clone, int error)
1097{
1098        struct dm_crypt_io *io = clone->bi_private;
1099        struct crypt_config *cc = io->cc;
1100        unsigned rw = bio_data_dir(clone);
1101
1102        if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1103                error = -EIO;
1104
1105        /*
1106         * free the processed pages
1107         */
1108        if (rw == WRITE)
1109                crypt_free_buffer_pages(cc, clone);
1110
1111        bio_put(clone);
1112
1113        if (rw == READ && !error) {
1114                kcryptd_queue_crypt(io);
1115                return;
1116        }
1117
1118        if (unlikely(error))
1119                io->error = error;
1120
1121        crypt_dec_pending(io);
1122}
1123
1124static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1125{
1126        struct crypt_config *cc = io->cc;
1127
1128        clone->bi_private = io;
1129        clone->bi_end_io  = crypt_endio;
1130        clone->bi_bdev    = cc->dev->bdev;
1131        clone->bi_rw      = io->base_bio->bi_rw;
1132}
1133
1134static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1135{
1136        struct crypt_config *cc = io->cc;
1137        struct bio *base_bio = io->base_bio;
1138        struct bio *clone;
1139
1140        /*
1141         * The block layer might modify the bvec array, so always
1142         * copy the required bvecs because we need the original
1143         * one in order to decrypt the whole bio data *afterwards*.
1144         */
1145        clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1146        if (!clone)
1147                return 1;
1148
1149        crypt_inc_pending(io);
1150
1151        clone_init(io, clone);
1152        clone->bi_iter.bi_sector = cc->start + io->sector;
1153
1154        generic_make_request(clone);
1155        return 0;
1156}
1157
1158static void kcryptd_io_write(struct dm_crypt_io *io)
1159{
1160        struct bio *clone = io->ctx.bio_out;
1161        generic_make_request(clone);
1162}
1163
1164static void kcryptd_io(struct work_struct *work)
1165{
1166        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1167
1168        if (bio_data_dir(io->base_bio) == READ) {
1169                crypt_inc_pending(io);
1170                if (kcryptd_io_read(io, GFP_NOIO))
1171                        io->error = -ENOMEM;
1172                crypt_dec_pending(io);
1173        } else
1174                kcryptd_io_write(io);
1175}
1176
1177static void kcryptd_queue_io(struct dm_crypt_io *io)
1178{
1179        struct crypt_config *cc = io->cc;
1180
1181        INIT_WORK(&io->work, kcryptd_io);
1182        queue_work(cc->io_queue, &io->work);
1183}
1184
1185static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1186{
1187        struct bio *clone = io->ctx.bio_out;
1188        struct crypt_config *cc = io->cc;
1189
1190        if (unlikely(io->error < 0)) {
1191                crypt_free_buffer_pages(cc, clone);
1192                bio_put(clone);
1193                crypt_dec_pending(io);
1194                return;
1195        }
1196
1197        /* crypt_convert should have filled the clone bio */
1198        BUG_ON(io->ctx.iter_out.bi_size);
1199
1200        clone->bi_iter.bi_sector = cc->start + io->sector;
1201
1202        if (async)
1203                kcryptd_queue_io(io);
1204        else
1205                generic_make_request(clone);
1206}
1207
1208static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1209{
1210        struct crypt_config *cc = io->cc;
1211        struct bio *clone;
1212        struct dm_crypt_io *new_io;
1213        int crypt_finished;
1214        unsigned out_of_pages = 0;
1215        unsigned remaining = io->base_bio->bi_iter.bi_size;
1216        sector_t sector = io->sector;
1217        int r;
1218
1219        /*
1220         * Prevent io from disappearing until this function completes.
1221         */
1222        crypt_inc_pending(io);
1223        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1224
1225        /*
1226         * The allocated buffers can be smaller than the whole bio,
1227         * so repeat the whole process until all the data can be handled.
1228         */
1229        while (remaining) {
1230                clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1231                if (unlikely(!clone)) {
1232                        io->error = -ENOMEM;
1233                        break;
1234                }
1235
1236                io->ctx.bio_out = clone;
1237                io->ctx.iter_out = clone->bi_iter;
1238
1239                remaining -= clone->bi_iter.bi_size;
1240                sector += bio_sectors(clone);
1241
1242                crypt_inc_pending(io);
1243
1244                r = crypt_convert(cc, &io->ctx);
1245                if (r < 0)
1246                        io->error = -EIO;
1247
1248                crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1249
1250                /* Encryption was already finished, submit io now */
1251                if (crypt_finished) {
1252                        kcryptd_crypt_write_io_submit(io, 0);
1253
1254                        /*
1255                         * If there was an error, do not try next fragments.
1256                         * For async, error is processed in async handler.
1257                         */
1258                        if (unlikely(r < 0))
1259                                break;
1260
1261                        io->sector = sector;
1262                }
1263
1264                /*
1265                 * Out of memory -> run queues
1266                 * But don't wait if split was due to the io size restriction
1267                 */
1268                if (unlikely(out_of_pages))
1269                        congestion_wait(BLK_RW_ASYNC, HZ/100);
1270
1271                /*
1272                 * With async crypto it is unsafe to share the crypto context
1273                 * between fragments, so switch to a new dm_crypt_io structure.
1274                 */
1275                if (unlikely(!crypt_finished && remaining)) {
1276                        new_io = crypt_io_alloc(io->cc, io->base_bio,
1277                                                sector);
1278                        crypt_inc_pending(new_io);
1279                        crypt_convert_init(cc, &new_io->ctx, NULL,
1280                                           io->base_bio, sector);
1281                        new_io->ctx.iter_in = io->ctx.iter_in;
1282
1283                        /*
1284                         * Fragments after the first use the base_io
1285                         * pending count.
1286                         */
1287                        if (!io->base_io)
1288                                new_io->base_io = io;
1289                        else {
1290                                new_io->base_io = io->base_io;
1291                                crypt_inc_pending(io->base_io);
1292                                crypt_dec_pending(io);
1293                        }
1294
1295                        io = new_io;
1296                }
1297        }
1298
1299        crypt_dec_pending(io);
1300}
1301
1302static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1303{
1304        crypt_dec_pending(io);
1305}
1306
1307static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1308{
1309        struct crypt_config *cc = io->cc;
1310        int r = 0;
1311
1312        crypt_inc_pending(io);
1313
1314        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1315                           io->sector);
1316
1317        r = crypt_convert(cc, &io->ctx);
1318        if (r < 0)
1319                io->error = -EIO;
1320
1321        if (atomic_dec_and_test(&io->ctx.cc_pending))
1322                kcryptd_crypt_read_done(io);
1323
1324        crypt_dec_pending(io);
1325}
1326
1327static void kcryptd_async_done(struct crypto_async_request *async_req,
1328                               int error)
1329{
1330        struct dm_crypt_request *dmreq = async_req->data;
1331        struct convert_context *ctx = dmreq->ctx;
1332        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1333        struct crypt_config *cc = io->cc;
1334
1335        if (error == -EINPROGRESS) {
1336                complete(&ctx->restart);
1337                return;
1338        }
1339
1340        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1341                error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1342
1343        if (error < 0)
1344                io->error = -EIO;
1345
1346        mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1347
1348        if (!atomic_dec_and_test(&ctx->cc_pending))
1349                return;
1350
1351        if (bio_data_dir(io->base_bio) == READ)
1352                kcryptd_crypt_read_done(io);
1353        else
1354                kcryptd_crypt_write_io_submit(io, 1);
1355}
1356
1357static void kcryptd_crypt(struct work_struct *work)
1358{
1359        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1360
1361        if (bio_data_dir(io->base_bio) == READ)
1362                kcryptd_crypt_read_convert(io);
1363        else
1364                kcryptd_crypt_write_convert(io);
1365}
1366
1367static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1368{
1369        struct crypt_config *cc = io->cc;
1370
1371        INIT_WORK(&io->work, kcryptd_crypt);
1372        queue_work(cc->crypt_queue, &io->work);
1373}
1374
1375/*
1376 * Decode key from its hex representation
1377 */
1378static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1379{
1380        char buffer[3];
1381        unsigned int i;
1382
1383        buffer[2] = '\0';
1384
1385        for (i = 0; i < size; i++) {
1386                buffer[0] = *hex++;
1387                buffer[1] = *hex++;
1388
1389                if (kstrtou8(buffer, 16, &key[i]))
1390                        return -EINVAL;
1391        }
1392
1393        if (*hex != '\0')
1394                return -EINVAL;
1395
1396        return 0;
1397}
1398
1399static void crypt_free_tfms(struct crypt_config *cc)
1400{
1401        unsigned i;
1402
1403        if (!cc->tfms)
1404                return;
1405
1406        for (i = 0; i < cc->tfms_count; i++)
1407                if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1408                        crypto_free_ablkcipher(cc->tfms[i]);
1409                        cc->tfms[i] = NULL;
1410                }
1411
1412        kfree(cc->tfms);
1413        cc->tfms = NULL;
1414}
1415
1416static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1417{
1418        unsigned i;
1419        int err;
1420
1421        cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1422                           GFP_KERNEL);
1423        if (!cc->tfms)
1424                return -ENOMEM;
1425
1426        for (i = 0; i < cc->tfms_count; i++) {
1427                cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1428                if (IS_ERR(cc->tfms[i])) {
1429                        err = PTR_ERR(cc->tfms[i]);
1430                        crypt_free_tfms(cc);
1431                        return err;
1432                }
1433        }
1434
1435        return 0;
1436}
1437
1438static int crypt_setkey_allcpus(struct crypt_config *cc)
1439{
1440        unsigned subkey_size;
1441        int err = 0, i, r;
1442
1443        /* Ignore extra keys (which are used for IV etc) */
1444        subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1445
1446        for (i = 0; i < cc->tfms_count; i++) {
1447                r = crypto_ablkcipher_setkey(cc->tfms[i],
1448                                             cc->key + (i * subkey_size),
1449                                             subkey_size);
1450                if (r)
1451                        err = r;
1452        }
1453
1454        return err;
1455}
1456
1457static int crypt_set_key(struct crypt_config *cc, char *key)
1458{
1459        int r = -EINVAL;
1460        int key_string_len = strlen(key);
1461
1462        /* The key size may not be changed. */
1463        if (cc->key_size != (key_string_len >> 1))
1464                goto out;
1465
1466        /* Hyphen (which gives a key_size of zero) means there is no key. */
1467        if (!cc->key_size && strcmp(key, "-"))
1468                goto out;
1469
1470        if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1471                goto out;
1472
1473        set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1474
1475        r = crypt_setkey_allcpus(cc);
1476
1477out:
1478        /* Hex key string not needed after here, so wipe it. */
1479        memset(key, '0', key_string_len);
1480
1481        return r;
1482}
1483
1484static int crypt_wipe_key(struct crypt_config *cc)
1485{
1486        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1487        memset(&cc->key, 0, cc->key_size * sizeof(u8));
1488
1489        return crypt_setkey_allcpus(cc);
1490}
1491
1492static void crypt_dtr(struct dm_target *ti)
1493{
1494        struct crypt_config *cc = ti->private;
1495        struct crypt_cpu *cpu_cc;
1496        int cpu;
1497
1498        ti->private = NULL;
1499
1500        if (!cc)
1501                return;
1502
1503        if (cc->io_queue)
1504                destroy_workqueue(cc->io_queue);
1505        if (cc->crypt_queue)
1506                destroy_workqueue(cc->crypt_queue);
1507
1508        if (cc->cpu)
1509                for_each_possible_cpu(cpu) {
1510                        cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1511                        if (cpu_cc->req)
1512                                mempool_free(cpu_cc->req, cc->req_pool);
1513                }
1514
1515        crypt_free_tfms(cc);
1516
1517        if (cc->bs)
1518                bioset_free(cc->bs);
1519
1520        if (cc->page_pool)
1521                mempool_destroy(cc->page_pool);
1522        if (cc->req_pool)
1523                mempool_destroy(cc->req_pool);
1524        if (cc->io_pool)
1525                mempool_destroy(cc->io_pool);
1526
1527        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1528                cc->iv_gen_ops->dtr(cc);
1529
1530        if (cc->dev)
1531                dm_put_device(ti, cc->dev);
1532
1533        if (cc->cpu)
1534                free_percpu(cc->cpu);
1535
1536        kzfree(cc->cipher);
1537        kzfree(cc->cipher_string);
1538
1539        /* Must zero key material before freeing */
1540        kzfree(cc);
1541}
1542
1543static int crypt_ctr_cipher(struct dm_target *ti,
1544                            char *cipher_in, char *key)
1545{
1546        struct crypt_config *cc = ti->private;
1547        char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1548        char *cipher_api = NULL;
1549        int ret = -EINVAL;
1550        char dummy;
1551
1552        /* Convert to crypto api definition? */
1553        if (strchr(cipher_in, '(')) {
1554                ti->error = "Bad cipher specification";
1555                return -EINVAL;
1556        }
1557
1558        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1559        if (!cc->cipher_string)
1560                goto bad_mem;
1561
1562        /*
1563         * Legacy dm-crypt cipher specification
1564         * cipher[:keycount]-mode-iv:ivopts
1565         */
1566        tmp = cipher_in;
1567        keycount = strsep(&tmp, "-");
1568        cipher = strsep(&keycount, ":");
1569
1570        if (!keycount)
1571                cc->tfms_count = 1;
1572        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1573                 !is_power_of_2(cc->tfms_count)) {
1574                ti->error = "Bad cipher key count specification";
1575                return -EINVAL;
1576        }
1577        cc->key_parts = cc->tfms_count;
1578        cc->key_extra_size = 0;
1579
1580        cc->cipher = kstrdup(cipher, GFP_KERNEL);
1581        if (!cc->cipher)
1582                goto bad_mem;
1583
1584        chainmode = strsep(&tmp, "-");
1585        ivopts = strsep(&tmp, "-");
1586        ivmode = strsep(&ivopts, ":");
1587
1588        if (tmp)
1589                DMWARN("Ignoring unexpected additional cipher options");
1590
1591        cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
1592                                 __alignof__(struct crypt_cpu));
1593        if (!cc->cpu) {
1594                ti->error = "Cannot allocate per cpu state";
1595                goto bad_mem;
1596        }
1597
1598        /*
1599         * For compatibility with the original dm-crypt mapping format, if
1600         * only the cipher name is supplied, use cbc-plain.
1601         */
1602        if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1603                chainmode = "cbc";
1604                ivmode = "plain";
1605        }
1606
1607        if (strcmp(chainmode, "ecb") && !ivmode) {
1608                ti->error = "IV mechanism required";
1609                return -EINVAL;
1610        }
1611
1612        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1613        if (!cipher_api)
1614                goto bad_mem;
1615
1616        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1617                       "%s(%s)", chainmode, cipher);
1618        if (ret < 0) {
1619                kfree(cipher_api);
1620                goto bad_mem;
1621        }
1622
1623        /* Allocate cipher */
1624        ret = crypt_alloc_tfms(cc, cipher_api);
1625        if (ret < 0) {
1626                ti->error = "Error allocating crypto tfm";
1627                goto bad;
1628        }
1629
1630        /* Initialize IV */
1631        cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1632        if (cc->iv_size)
1633                /* at least a 64 bit sector number should fit in our buffer */
1634                cc->iv_size = max(cc->iv_size,
1635                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1636        else if (ivmode) {
1637                DMWARN("Selected cipher does not support IVs");
1638                ivmode = NULL;
1639        }
1640
1641        /* Choose ivmode, see comments at iv code. */
1642        if (ivmode == NULL)
1643                cc->iv_gen_ops = NULL;
1644        else if (strcmp(ivmode, "plain") == 0)
1645                cc->iv_gen_ops = &crypt_iv_plain_ops;
1646        else if (strcmp(ivmode, "plain64") == 0)
1647                cc->iv_gen_ops = &crypt_iv_plain64_ops;
1648        else if (strcmp(ivmode, "essiv") == 0)
1649                cc->iv_gen_ops = &crypt_iv_essiv_ops;
1650        else if (strcmp(ivmode, "benbi") == 0)
1651                cc->iv_gen_ops = &crypt_iv_benbi_ops;
1652        else if (strcmp(ivmode, "null") == 0)
1653                cc->iv_gen_ops = &crypt_iv_null_ops;
1654        else if (strcmp(ivmode, "lmk") == 0) {
1655                cc->iv_gen_ops = &crypt_iv_lmk_ops;
1656                /*
1657                 * Version 2 and 3 is recognised according
1658                 * to length of provided multi-key string.
1659                 * If present (version 3), last key is used as IV seed.
1660                 * All keys (including IV seed) are always the same size.
1661                 */
1662                if (cc->key_size % cc->key_parts) {
1663                        cc->key_parts++;
1664                        cc->key_extra_size = cc->key_size / cc->key_parts;
1665                }
1666        } else if (strcmp(ivmode, "tcw") == 0) {
1667                cc->iv_gen_ops = &crypt_iv_tcw_ops;
1668                cc->key_parts += 2; /* IV + whitening */
1669                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1670        } else {
1671                ret = -EINVAL;
1672                ti->error = "Invalid IV mode";
1673                goto bad;
1674        }
1675
1676        /* Initialize and set key */
1677        ret = crypt_set_key(cc, key);
1678        if (ret < 0) {
1679                ti->error = "Error decoding and setting key";
1680                goto bad;
1681        }
1682
1683        /* Allocate IV */
1684        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1685                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1686                if (ret < 0) {
1687                        ti->error = "Error creating IV";
1688                        goto bad;
1689                }
1690        }
1691
1692        /* Initialize IV (set keys for ESSIV etc) */
1693        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1694                ret = cc->iv_gen_ops->init(cc);
1695                if (ret < 0) {
1696                        ti->error = "Error initialising IV";
1697                        goto bad;
1698                }
1699        }
1700
1701        ret = 0;
1702bad:
1703        kfree(cipher_api);
1704        return ret;
1705
1706bad_mem:
1707        ti->error = "Cannot allocate cipher strings";
1708        return -ENOMEM;
1709}
1710
1711/*
1712 * Construct an encryption mapping:
1713 * <cipher> <key> <iv_offset> <dev_path> <start>
1714 */
1715static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1716{
1717        struct crypt_config *cc;
1718        unsigned int key_size, opt_params;
1719        unsigned long long tmpll;
1720        int ret;
1721        struct dm_arg_set as;
1722        const char *opt_string;
1723        char dummy;
1724
1725        static struct dm_arg _args[] = {
1726                {0, 1, "Invalid number of feature args"},
1727        };
1728
1729        if (argc < 5) {
1730                ti->error = "Not enough arguments";
1731                return -EINVAL;
1732        }
1733
1734        key_size = strlen(argv[1]) >> 1;
1735
1736        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1737        if (!cc) {
1738                ti->error = "Cannot allocate encryption context";
1739                return -ENOMEM;
1740        }
1741        cc->key_size = key_size;
1742
1743        ti->private = cc;
1744        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1745        if (ret < 0)
1746                goto bad;
1747
1748        ret = -ENOMEM;
1749        cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1750        if (!cc->io_pool) {
1751                ti->error = "Cannot allocate crypt io mempool";
1752                goto bad;
1753        }
1754
1755        cc->dmreq_start = sizeof(struct ablkcipher_request);
1756        cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1757        cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1758        cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1759                           ~(crypto_tfm_ctx_alignment() - 1);
1760
1761        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1762                        sizeof(struct dm_crypt_request) + cc->iv_size);
1763        if (!cc->req_pool) {
1764                ti->error = "Cannot allocate crypt request mempool";
1765                goto bad;
1766        }
1767
1768        cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1769        if (!cc->page_pool) {
1770                ti->error = "Cannot allocate page mempool";
1771                goto bad;
1772        }
1773
1774        cc->bs = bioset_create(MIN_IOS, 0);
1775        if (!cc->bs) {
1776                ti->error = "Cannot allocate crypt bioset";
1777                goto bad;
1778        }
1779
1780        ret = -EINVAL;
1781        if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1782                ti->error = "Invalid iv_offset sector";
1783                goto bad;
1784        }
1785        cc->iv_offset = tmpll;
1786
1787        if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1788                ti->error = "Device lookup failed";
1789                goto bad;
1790        }
1791
1792        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1793                ti->error = "Invalid device sector";
1794                goto bad;
1795        }
1796        cc->start = tmpll;
1797
1798        argv += 5;
1799        argc -= 5;
1800
1801        /* Optional parameters */
1802        if (argc) {
1803                as.argc = argc;
1804                as.argv = argv;
1805
1806                ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1807                if (ret)
1808                        goto bad;
1809
1810                opt_string = dm_shift_arg(&as);
1811
1812                if (opt_params == 1 && opt_string &&
1813                    !strcasecmp(opt_string, "allow_discards"))
1814                        ti->num_discard_bios = 1;
1815                else if (opt_params) {
1816                        ret = -EINVAL;
1817                        ti->error = "Invalid feature arguments";
1818                        goto bad;
1819                }
1820        }
1821
1822        ret = -ENOMEM;
1823        cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1824        if (!cc->io_queue) {
1825                ti->error = "Couldn't create kcryptd io queue";
1826                goto bad;
1827        }
1828
1829        cc->crypt_queue = alloc_workqueue("kcryptd",
1830                                          WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1831        if (!cc->crypt_queue) {
1832                ti->error = "Couldn't create kcryptd queue";
1833                goto bad;
1834        }
1835
1836        ti->num_flush_bios = 1;
1837        ti->discard_zeroes_data_unsupported = true;
1838
1839        return 0;
1840
1841bad:
1842        crypt_dtr(ti);
1843        return ret;
1844}
1845
1846static int crypt_map(struct dm_target *ti, struct bio *bio)
1847{
1848        struct dm_crypt_io *io;
1849        struct crypt_config *cc = ti->private;
1850
1851        /*
1852         * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1853         * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1854         * - for REQ_DISCARD caller must use flush if IO ordering matters
1855         */
1856        if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1857                bio->bi_bdev = cc->dev->bdev;
1858                if (bio_sectors(bio))
1859                        bio->bi_iter.bi_sector = cc->start +
1860                                dm_target_offset(ti, bio->bi_iter.bi_sector);
1861                return DM_MAPIO_REMAPPED;
1862        }
1863
1864        io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1865
1866        if (bio_data_dir(io->base_bio) == READ) {
1867                if (kcryptd_io_read(io, GFP_NOWAIT))
1868                        kcryptd_queue_io(io);
1869        } else
1870                kcryptd_queue_crypt(io);
1871
1872        return DM_MAPIO_SUBMITTED;
1873}
1874
1875static void crypt_status(struct dm_target *ti, status_type_t type,
1876                         unsigned status_flags, char *result, unsigned maxlen)
1877{
1878        struct crypt_config *cc = ti->private;
1879        unsigned i, sz = 0;
1880
1881        switch (type) {
1882        case STATUSTYPE_INFO:
1883                result[0] = '\0';
1884                break;
1885
1886        case STATUSTYPE_TABLE:
1887                DMEMIT("%s ", cc->cipher_string);
1888
1889                if (cc->key_size > 0)
1890                        for (i = 0; i < cc->key_size; i++)
1891                                DMEMIT("%02x", cc->key[i]);
1892                else
1893                        DMEMIT("-");
1894
1895                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1896                                cc->dev->name, (unsigned long long)cc->start);
1897
1898                if (ti->num_discard_bios)
1899                        DMEMIT(" 1 allow_discards");
1900
1901                break;
1902        }
1903}
1904
1905static void crypt_postsuspend(struct dm_target *ti)
1906{
1907        struct crypt_config *cc = ti->private;
1908
1909        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1910}
1911
1912static int crypt_preresume(struct dm_target *ti)
1913{
1914        struct crypt_config *cc = ti->private;
1915
1916        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1917                DMERR("aborting resume - crypt key is not set.");
1918                return -EAGAIN;
1919        }
1920
1921        return 0;
1922}
1923
1924static void crypt_resume(struct dm_target *ti)
1925{
1926        struct crypt_config *cc = ti->private;
1927
1928        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1929}
1930
1931/* Message interface
1932 *      key set <key>
1933 *      key wipe
1934 */
1935static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1936{
1937        struct crypt_config *cc = ti->private;
1938        int ret = -EINVAL;
1939
1940        if (argc < 2)
1941                goto error;
1942
1943        if (!strcasecmp(argv[0], "key")) {
1944                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1945                        DMWARN("not suspended during key manipulation.");
1946                        return -EINVAL;
1947                }
1948                if (argc == 3 && !strcasecmp(argv[1], "set")) {
1949                        ret = crypt_set_key(cc, argv[2]);
1950                        if (ret)
1951                                return ret;
1952                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1953                                ret = cc->iv_gen_ops->init(cc);
1954                        return ret;
1955                }
1956                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1957                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1958                                ret = cc->iv_gen_ops->wipe(cc);
1959                                if (ret)
1960                                        return ret;
1961                        }
1962                        return crypt_wipe_key(cc);
1963                }
1964        }
1965
1966error:
1967        DMWARN("unrecognised message received.");
1968        return -EINVAL;
1969}
1970
1971static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1972                       struct bio_vec *biovec, int max_size)
1973{
1974        struct crypt_config *cc = ti->private;
1975        struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1976
1977        if (!q->merge_bvec_fn)
1978                return max_size;
1979
1980        bvm->bi_bdev = cc->dev->bdev;
1981        bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1982
1983        return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1984}
1985
1986static int crypt_iterate_devices(struct dm_target *ti,
1987                                 iterate_devices_callout_fn fn, void *data)
1988{
1989        struct crypt_config *cc = ti->private;
1990
1991        return fn(ti, cc->dev, cc->start, ti->len, data);
1992}
1993
1994static struct target_type crypt_target = {
1995        .name   = "crypt",
1996        .version = {1, 13, 0},
1997        .module = THIS_MODULE,
1998        .ctr    = crypt_ctr,
1999        .dtr    = crypt_dtr,
2000        .map    = crypt_map,
2001        .status = crypt_status,
2002        .postsuspend = crypt_postsuspend,
2003        .preresume = crypt_preresume,
2004        .resume = crypt_resume,
2005        .message = crypt_message,
2006        .merge  = crypt_merge,
2007        .iterate_devices = crypt_iterate_devices,
2008};
2009
2010static int __init dm_crypt_init(void)
2011{
2012        int r;
2013
2014        _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
2015        if (!_crypt_io_pool)
2016                return -ENOMEM;
2017
2018        r = dm_register_target(&crypt_target);
2019        if (r < 0) {
2020                DMERR("register failed %d", r);
2021                kmem_cache_destroy(_crypt_io_pool);
2022        }
2023
2024        return r;
2025}
2026
2027static void __exit dm_crypt_exit(void)
2028{
2029        dm_unregister_target(&crypt_target);
2030        kmem_cache_destroy(_crypt_io_pool);
2031}
2032
2033module_init(dm_crypt_init);
2034module_exit(dm_crypt_exit);
2035
2036MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
2037MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2038MODULE_LICENSE("GPL");
2039