linux/drivers/md/raid10.c
<<
>>
Prefs
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include "md.h"
  29#include "raid10.h"
  30#include "raid0.h"
  31#include "bitmap.h"
  32
  33/*
  34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  35 * The layout of data is defined by
  36 *    chunk_size
  37 *    raid_disks
  38 *    near_copies (stored in low byte of layout)
  39 *    far_copies (stored in second byte of layout)
  40 *    far_offset (stored in bit 16 of layout )
  41 *    use_far_sets (stored in bit 17 of layout )
  42 *
  43 * The data to be stored is divided into chunks using chunksize.  Each device
  44 * is divided into far_copies sections.   In each section, chunks are laid out
  45 * in a style similar to raid0, but near_copies copies of each chunk is stored
  46 * (each on a different drive).  The starting device for each section is offset
  47 * near_copies from the starting device of the previous section.  Thus there
  48 * are (near_copies * far_copies) of each chunk, and each is on a different
  49 * drive.  near_copies and far_copies must be at least one, and their product
  50 * is at most raid_disks.
  51 *
  52 * If far_offset is true, then the far_copies are handled a bit differently.
  53 * The copies are still in different stripes, but instead of being very far
  54 * apart on disk, there are adjacent stripes.
  55 *
  56 * The far and offset algorithms are handled slightly differently if
  57 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  58 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  59 * are still shifted by 'near_copies' devices, but this shifting stays confined
  60 * to the set rather than the entire array.  This is done to improve the number
  61 * of device combinations that can fail without causing the array to fail.
  62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  63 * on a device):
  64 *    A B C D    A B C D E
  65 *      ...         ...
  66 *    D A B C    E A B C D
  67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  68 *    [A B] [C D]    [A B] [C D E]
  69 *    |...| |...|    |...| | ... |
  70 *    [B A] [D C]    [B A] [E C D]
  71 */
  72
  73/*
  74 * Number of guaranteed r10bios in case of extreme VM load:
  75 */
  76#define NR_RAID10_BIOS 256
  77
  78/* when we get a read error on a read-only array, we redirect to another
  79 * device without failing the first device, or trying to over-write to
  80 * correct the read error.  To keep track of bad blocks on a per-bio
  81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  82 */
  83#define IO_BLOCKED ((struct bio *)1)
  84/* When we successfully write to a known bad-block, we need to remove the
  85 * bad-block marking which must be done from process context.  So we record
  86 * the success by setting devs[n].bio to IO_MADE_GOOD
  87 */
  88#define IO_MADE_GOOD ((struct bio *)2)
  89
  90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  91
  92/* When there are this many requests queued to be written by
  93 * the raid10 thread, we become 'congested' to provide back-pressure
  94 * for writeback.
  95 */
  96static int max_queued_requests = 1024;
  97
  98static void allow_barrier(struct r10conf *conf);
  99static void lower_barrier(struct r10conf *conf);
 100static int _enough(struct r10conf *conf, int previous, int ignore);
 101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 102                                int *skipped);
 103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 104static void end_reshape_write(struct bio *bio, int error);
 105static void end_reshape(struct r10conf *conf);
 106
 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 108{
 109        struct r10conf *conf = data;
 110        int size = offsetof(struct r10bio, devs[conf->copies]);
 111
 112        /* allocate a r10bio with room for raid_disks entries in the
 113         * bios array */
 114        return kzalloc(size, gfp_flags);
 115}
 116
 117static void r10bio_pool_free(void *r10_bio, void *data)
 118{
 119        kfree(r10_bio);
 120}
 121
 122/* Maximum size of each resync request */
 123#define RESYNC_BLOCK_SIZE (64*1024)
 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 125/* amount of memory to reserve for resync requests */
 126#define RESYNC_WINDOW (1024*1024)
 127/* maximum number of concurrent requests, memory permitting */
 128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 129
 130/*
 131 * When performing a resync, we need to read and compare, so
 132 * we need as many pages are there are copies.
 133 * When performing a recovery, we need 2 bios, one for read,
 134 * one for write (we recover only one drive per r10buf)
 135 *
 136 */
 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 138{
 139        struct r10conf *conf = data;
 140        struct page *page;
 141        struct r10bio *r10_bio;
 142        struct bio *bio;
 143        int i, j;
 144        int nalloc;
 145
 146        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 147        if (!r10_bio)
 148                return NULL;
 149
 150        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 151            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 152                nalloc = conf->copies; /* resync */
 153        else
 154                nalloc = 2; /* recovery */
 155
 156        /*
 157         * Allocate bios.
 158         */
 159        for (j = nalloc ; j-- ; ) {
 160                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 161                if (!bio)
 162                        goto out_free_bio;
 163                r10_bio->devs[j].bio = bio;
 164                if (!conf->have_replacement)
 165                        continue;
 166                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 167                if (!bio)
 168                        goto out_free_bio;
 169                r10_bio->devs[j].repl_bio = bio;
 170        }
 171        /*
 172         * Allocate RESYNC_PAGES data pages and attach them
 173         * where needed.
 174         */
 175        for (j = 0 ; j < nalloc; j++) {
 176                struct bio *rbio = r10_bio->devs[j].repl_bio;
 177                bio = r10_bio->devs[j].bio;
 178                for (i = 0; i < RESYNC_PAGES; i++) {
 179                        if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 180                                               &conf->mddev->recovery)) {
 181                                /* we can share bv_page's during recovery
 182                                 * and reshape */
 183                                struct bio *rbio = r10_bio->devs[0].bio;
 184                                page = rbio->bi_io_vec[i].bv_page;
 185                                get_page(page);
 186                        } else
 187                                page = alloc_page(gfp_flags);
 188                        if (unlikely(!page))
 189                                goto out_free_pages;
 190
 191                        bio->bi_io_vec[i].bv_page = page;
 192                        if (rbio)
 193                                rbio->bi_io_vec[i].bv_page = page;
 194                }
 195        }
 196
 197        return r10_bio;
 198
 199out_free_pages:
 200        for ( ; i > 0 ; i--)
 201                safe_put_page(bio->bi_io_vec[i-1].bv_page);
 202        while (j--)
 203                for (i = 0; i < RESYNC_PAGES ; i++)
 204                        safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 205        j = 0;
 206out_free_bio:
 207        for ( ; j < nalloc; j++) {
 208                if (r10_bio->devs[j].bio)
 209                        bio_put(r10_bio->devs[j].bio);
 210                if (r10_bio->devs[j].repl_bio)
 211                        bio_put(r10_bio->devs[j].repl_bio);
 212        }
 213        r10bio_pool_free(r10_bio, conf);
 214        return NULL;
 215}
 216
 217static void r10buf_pool_free(void *__r10_bio, void *data)
 218{
 219        int i;
 220        struct r10conf *conf = data;
 221        struct r10bio *r10bio = __r10_bio;
 222        int j;
 223
 224        for (j=0; j < conf->copies; j++) {
 225                struct bio *bio = r10bio->devs[j].bio;
 226                if (bio) {
 227                        for (i = 0; i < RESYNC_PAGES; i++) {
 228                                safe_put_page(bio->bi_io_vec[i].bv_page);
 229                                bio->bi_io_vec[i].bv_page = NULL;
 230                        }
 231                        bio_put(bio);
 232                }
 233                bio = r10bio->devs[j].repl_bio;
 234                if (bio)
 235                        bio_put(bio);
 236        }
 237        r10bio_pool_free(r10bio, conf);
 238}
 239
 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 241{
 242        int i;
 243
 244        for (i = 0; i < conf->copies; i++) {
 245                struct bio **bio = & r10_bio->devs[i].bio;
 246                if (!BIO_SPECIAL(*bio))
 247                        bio_put(*bio);
 248                *bio = NULL;
 249                bio = &r10_bio->devs[i].repl_bio;
 250                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 251                        bio_put(*bio);
 252                *bio = NULL;
 253        }
 254}
 255
 256static void free_r10bio(struct r10bio *r10_bio)
 257{
 258        struct r10conf *conf = r10_bio->mddev->private;
 259
 260        put_all_bios(conf, r10_bio);
 261        mempool_free(r10_bio, conf->r10bio_pool);
 262}
 263
 264static void put_buf(struct r10bio *r10_bio)
 265{
 266        struct r10conf *conf = r10_bio->mddev->private;
 267
 268        mempool_free(r10_bio, conf->r10buf_pool);
 269
 270        lower_barrier(conf);
 271}
 272
 273static void reschedule_retry(struct r10bio *r10_bio)
 274{
 275        unsigned long flags;
 276        struct mddev *mddev = r10_bio->mddev;
 277        struct r10conf *conf = mddev->private;
 278
 279        spin_lock_irqsave(&conf->device_lock, flags);
 280        list_add(&r10_bio->retry_list, &conf->retry_list);
 281        conf->nr_queued ++;
 282        spin_unlock_irqrestore(&conf->device_lock, flags);
 283
 284        /* wake up frozen array... */
 285        wake_up(&conf->wait_barrier);
 286
 287        md_wakeup_thread(mddev->thread);
 288}
 289
 290/*
 291 * raid_end_bio_io() is called when we have finished servicing a mirrored
 292 * operation and are ready to return a success/failure code to the buffer
 293 * cache layer.
 294 */
 295static void raid_end_bio_io(struct r10bio *r10_bio)
 296{
 297        struct bio *bio = r10_bio->master_bio;
 298        int done;
 299        struct r10conf *conf = r10_bio->mddev->private;
 300
 301        if (bio->bi_phys_segments) {
 302                unsigned long flags;
 303                spin_lock_irqsave(&conf->device_lock, flags);
 304                bio->bi_phys_segments--;
 305                done = (bio->bi_phys_segments == 0);
 306                spin_unlock_irqrestore(&conf->device_lock, flags);
 307        } else
 308                done = 1;
 309        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 310                clear_bit(BIO_UPTODATE, &bio->bi_flags);
 311        if (done) {
 312                bio_endio(bio, 0);
 313                /*
 314                 * Wake up any possible resync thread that waits for the device
 315                 * to go idle.
 316                 */
 317                allow_barrier(conf);
 318        }
 319        free_r10bio(r10_bio);
 320}
 321
 322/*
 323 * Update disk head position estimator based on IRQ completion info.
 324 */
 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 326{
 327        struct r10conf *conf = r10_bio->mddev->private;
 328
 329        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 330                r10_bio->devs[slot].addr + (r10_bio->sectors);
 331}
 332
 333/*
 334 * Find the disk number which triggered given bio
 335 */
 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 337                         struct bio *bio, int *slotp, int *replp)
 338{
 339        int slot;
 340        int repl = 0;
 341
 342        for (slot = 0; slot < conf->copies; slot++) {
 343                if (r10_bio->devs[slot].bio == bio)
 344                        break;
 345                if (r10_bio->devs[slot].repl_bio == bio) {
 346                        repl = 1;
 347                        break;
 348                }
 349        }
 350
 351        BUG_ON(slot == conf->copies);
 352        update_head_pos(slot, r10_bio);
 353
 354        if (slotp)
 355                *slotp = slot;
 356        if (replp)
 357                *replp = repl;
 358        return r10_bio->devs[slot].devnum;
 359}
 360
 361static void raid10_end_read_request(struct bio *bio, int error)
 362{
 363        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 364        struct r10bio *r10_bio = bio->bi_private;
 365        int slot, dev;
 366        struct md_rdev *rdev;
 367        struct r10conf *conf = r10_bio->mddev->private;
 368
 369
 370        slot = r10_bio->read_slot;
 371        dev = r10_bio->devs[slot].devnum;
 372        rdev = r10_bio->devs[slot].rdev;
 373        /*
 374         * this branch is our 'one mirror IO has finished' event handler:
 375         */
 376        update_head_pos(slot, r10_bio);
 377
 378        if (uptodate) {
 379                /*
 380                 * Set R10BIO_Uptodate in our master bio, so that
 381                 * we will return a good error code to the higher
 382                 * levels even if IO on some other mirrored buffer fails.
 383                 *
 384                 * The 'master' represents the composite IO operation to
 385                 * user-side. So if something waits for IO, then it will
 386                 * wait for the 'master' bio.
 387                 */
 388                set_bit(R10BIO_Uptodate, &r10_bio->state);
 389        } else {
 390                /* If all other devices that store this block have
 391                 * failed, we want to return the error upwards rather
 392                 * than fail the last device.  Here we redefine
 393                 * "uptodate" to mean "Don't want to retry"
 394                 */
 395                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 396                             rdev->raid_disk))
 397                        uptodate = 1;
 398        }
 399        if (uptodate) {
 400                raid_end_bio_io(r10_bio);
 401                rdev_dec_pending(rdev, conf->mddev);
 402        } else {
 403                /*
 404                 * oops, read error - keep the refcount on the rdev
 405                 */
 406                char b[BDEVNAME_SIZE];
 407                printk_ratelimited(KERN_ERR
 408                                   "md/raid10:%s: %s: rescheduling sector %llu\n",
 409                                   mdname(conf->mddev),
 410                                   bdevname(rdev->bdev, b),
 411                                   (unsigned long long)r10_bio->sector);
 412                set_bit(R10BIO_ReadError, &r10_bio->state);
 413                reschedule_retry(r10_bio);
 414        }
 415}
 416
 417static void close_write(struct r10bio *r10_bio)
 418{
 419        /* clear the bitmap if all writes complete successfully */
 420        bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 421                        r10_bio->sectors,
 422                        !test_bit(R10BIO_Degraded, &r10_bio->state),
 423                        0);
 424        md_write_end(r10_bio->mddev);
 425}
 426
 427static void one_write_done(struct r10bio *r10_bio)
 428{
 429        if (atomic_dec_and_test(&r10_bio->remaining)) {
 430                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 431                        reschedule_retry(r10_bio);
 432                else {
 433                        close_write(r10_bio);
 434                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 435                                reschedule_retry(r10_bio);
 436                        else
 437                                raid_end_bio_io(r10_bio);
 438                }
 439        }
 440}
 441
 442static void raid10_end_write_request(struct bio *bio, int error)
 443{
 444        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 445        struct r10bio *r10_bio = bio->bi_private;
 446        int dev;
 447        int dec_rdev = 1;
 448        struct r10conf *conf = r10_bio->mddev->private;
 449        int slot, repl;
 450        struct md_rdev *rdev = NULL;
 451
 452        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 453
 454        if (repl)
 455                rdev = conf->mirrors[dev].replacement;
 456        if (!rdev) {
 457                smp_rmb();
 458                repl = 0;
 459                rdev = conf->mirrors[dev].rdev;
 460        }
 461        /*
 462         * this branch is our 'one mirror IO has finished' event handler:
 463         */
 464        if (!uptodate) {
 465                if (repl)
 466                        /* Never record new bad blocks to replacement,
 467                         * just fail it.
 468                         */
 469                        md_error(rdev->mddev, rdev);
 470                else {
 471                        set_bit(WriteErrorSeen, &rdev->flags);
 472                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 473                                set_bit(MD_RECOVERY_NEEDED,
 474                                        &rdev->mddev->recovery);
 475                        set_bit(R10BIO_WriteError, &r10_bio->state);
 476                        dec_rdev = 0;
 477                }
 478        } else {
 479                /*
 480                 * Set R10BIO_Uptodate in our master bio, so that
 481                 * we will return a good error code for to the higher
 482                 * levels even if IO on some other mirrored buffer fails.
 483                 *
 484                 * The 'master' represents the composite IO operation to
 485                 * user-side. So if something waits for IO, then it will
 486                 * wait for the 'master' bio.
 487                 */
 488                sector_t first_bad;
 489                int bad_sectors;
 490
 491                /*
 492                 * Do not set R10BIO_Uptodate if the current device is
 493                 * rebuilding or Faulty. This is because we cannot use
 494                 * such device for properly reading the data back (we could
 495                 * potentially use it, if the current write would have felt
 496                 * before rdev->recovery_offset, but for simplicity we don't
 497                 * check this here.
 498                 */
 499                if (test_bit(In_sync, &rdev->flags) &&
 500                    !test_bit(Faulty, &rdev->flags))
 501                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 502
 503                /* Maybe we can clear some bad blocks. */
 504                if (is_badblock(rdev,
 505                                r10_bio->devs[slot].addr,
 506                                r10_bio->sectors,
 507                                &first_bad, &bad_sectors)) {
 508                        bio_put(bio);
 509                        if (repl)
 510                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 511                        else
 512                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 513                        dec_rdev = 0;
 514                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 515                }
 516        }
 517
 518        /*
 519         *
 520         * Let's see if all mirrored write operations have finished
 521         * already.
 522         */
 523        one_write_done(r10_bio);
 524        if (dec_rdev)
 525                rdev_dec_pending(rdev, conf->mddev);
 526}
 527
 528/*
 529 * RAID10 layout manager
 530 * As well as the chunksize and raid_disks count, there are two
 531 * parameters: near_copies and far_copies.
 532 * near_copies * far_copies must be <= raid_disks.
 533 * Normally one of these will be 1.
 534 * If both are 1, we get raid0.
 535 * If near_copies == raid_disks, we get raid1.
 536 *
 537 * Chunks are laid out in raid0 style with near_copies copies of the
 538 * first chunk, followed by near_copies copies of the next chunk and
 539 * so on.
 540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 541 * as described above, we start again with a device offset of near_copies.
 542 * So we effectively have another copy of the whole array further down all
 543 * the drives, but with blocks on different drives.
 544 * With this layout, and block is never stored twice on the one device.
 545 *
 546 * raid10_find_phys finds the sector offset of a given virtual sector
 547 * on each device that it is on.
 548 *
 549 * raid10_find_virt does the reverse mapping, from a device and a
 550 * sector offset to a virtual address
 551 */
 552
 553static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 554{
 555        int n,f;
 556        sector_t sector;
 557        sector_t chunk;
 558        sector_t stripe;
 559        int dev;
 560        int slot = 0;
 561        int last_far_set_start, last_far_set_size;
 562
 563        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 564        last_far_set_start *= geo->far_set_size;
 565
 566        last_far_set_size = geo->far_set_size;
 567        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 568
 569        /* now calculate first sector/dev */
 570        chunk = r10bio->sector >> geo->chunk_shift;
 571        sector = r10bio->sector & geo->chunk_mask;
 572
 573        chunk *= geo->near_copies;
 574        stripe = chunk;
 575        dev = sector_div(stripe, geo->raid_disks);
 576        if (geo->far_offset)
 577                stripe *= geo->far_copies;
 578
 579        sector += stripe << geo->chunk_shift;
 580
 581        /* and calculate all the others */
 582        for (n = 0; n < geo->near_copies; n++) {
 583                int d = dev;
 584                int set;
 585                sector_t s = sector;
 586                r10bio->devs[slot].devnum = d;
 587                r10bio->devs[slot].addr = s;
 588                slot++;
 589
 590                for (f = 1; f < geo->far_copies; f++) {
 591                        set = d / geo->far_set_size;
 592                        d += geo->near_copies;
 593
 594                        if ((geo->raid_disks % geo->far_set_size) &&
 595                            (d > last_far_set_start)) {
 596                                d -= last_far_set_start;
 597                                d %= last_far_set_size;
 598                                d += last_far_set_start;
 599                        } else {
 600                                d %= geo->far_set_size;
 601                                d += geo->far_set_size * set;
 602                        }
 603                        s += geo->stride;
 604                        r10bio->devs[slot].devnum = d;
 605                        r10bio->devs[slot].addr = s;
 606                        slot++;
 607                }
 608                dev++;
 609                if (dev >= geo->raid_disks) {
 610                        dev = 0;
 611                        sector += (geo->chunk_mask + 1);
 612                }
 613        }
 614}
 615
 616static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 617{
 618        struct geom *geo = &conf->geo;
 619
 620        if (conf->reshape_progress != MaxSector &&
 621            ((r10bio->sector >= conf->reshape_progress) !=
 622             conf->mddev->reshape_backwards)) {
 623                set_bit(R10BIO_Previous, &r10bio->state);
 624                geo = &conf->prev;
 625        } else
 626                clear_bit(R10BIO_Previous, &r10bio->state);
 627
 628        __raid10_find_phys(geo, r10bio);
 629}
 630
 631static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 632{
 633        sector_t offset, chunk, vchunk;
 634        /* Never use conf->prev as this is only called during resync
 635         * or recovery, so reshape isn't happening
 636         */
 637        struct geom *geo = &conf->geo;
 638        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 639        int far_set_size = geo->far_set_size;
 640        int last_far_set_start;
 641
 642        if (geo->raid_disks % geo->far_set_size) {
 643                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 644                last_far_set_start *= geo->far_set_size;
 645
 646                if (dev >= last_far_set_start) {
 647                        far_set_size = geo->far_set_size;
 648                        far_set_size += (geo->raid_disks % geo->far_set_size);
 649                        far_set_start = last_far_set_start;
 650                }
 651        }
 652
 653        offset = sector & geo->chunk_mask;
 654        if (geo->far_offset) {
 655                int fc;
 656                chunk = sector >> geo->chunk_shift;
 657                fc = sector_div(chunk, geo->far_copies);
 658                dev -= fc * geo->near_copies;
 659                if (dev < far_set_start)
 660                        dev += far_set_size;
 661        } else {
 662                while (sector >= geo->stride) {
 663                        sector -= geo->stride;
 664                        if (dev < (geo->near_copies + far_set_start))
 665                                dev += far_set_size - geo->near_copies;
 666                        else
 667                                dev -= geo->near_copies;
 668                }
 669                chunk = sector >> geo->chunk_shift;
 670        }
 671        vchunk = chunk * geo->raid_disks + dev;
 672        sector_div(vchunk, geo->near_copies);
 673        return (vchunk << geo->chunk_shift) + offset;
 674}
 675
 676/**
 677 *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 678 *      @q: request queue
 679 *      @bvm: properties of new bio
 680 *      @biovec: the request that could be merged to it.
 681 *
 682 *      Return amount of bytes we can accept at this offset
 683 *      This requires checking for end-of-chunk if near_copies != raid_disks,
 684 *      and for subordinate merge_bvec_fns if merge_check_needed.
 685 */
 686static int raid10_mergeable_bvec(struct request_queue *q,
 687                                 struct bvec_merge_data *bvm,
 688                                 struct bio_vec *biovec)
 689{
 690        struct mddev *mddev = q->queuedata;
 691        struct r10conf *conf = mddev->private;
 692        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 693        int max;
 694        unsigned int chunk_sectors;
 695        unsigned int bio_sectors = bvm->bi_size >> 9;
 696        struct geom *geo = &conf->geo;
 697
 698        chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
 699        if (conf->reshape_progress != MaxSector &&
 700            ((sector >= conf->reshape_progress) !=
 701             conf->mddev->reshape_backwards))
 702                geo = &conf->prev;
 703
 704        if (geo->near_copies < geo->raid_disks) {
 705                max = (chunk_sectors - ((sector & (chunk_sectors - 1))
 706                                        + bio_sectors)) << 9;
 707                if (max < 0)
 708                        /* bio_add cannot handle a negative return */
 709                        max = 0;
 710                if (max <= biovec->bv_len && bio_sectors == 0)
 711                        return biovec->bv_len;
 712        } else
 713                max = biovec->bv_len;
 714
 715        if (mddev->merge_check_needed) {
 716                struct {
 717                        struct r10bio r10_bio;
 718                        struct r10dev devs[conf->copies];
 719                } on_stack;
 720                struct r10bio *r10_bio = &on_stack.r10_bio;
 721                int s;
 722                if (conf->reshape_progress != MaxSector) {
 723                        /* Cannot give any guidance during reshape */
 724                        if (max <= biovec->bv_len && bio_sectors == 0)
 725                                return biovec->bv_len;
 726                        return 0;
 727                }
 728                r10_bio->sector = sector;
 729                raid10_find_phys(conf, r10_bio);
 730                rcu_read_lock();
 731                for (s = 0; s < conf->copies; s++) {
 732                        int disk = r10_bio->devs[s].devnum;
 733                        struct md_rdev *rdev = rcu_dereference(
 734                                conf->mirrors[disk].rdev);
 735                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 736                                struct request_queue *q =
 737                                        bdev_get_queue(rdev->bdev);
 738                                if (q->merge_bvec_fn) {
 739                                        bvm->bi_sector = r10_bio->devs[s].addr
 740                                                + rdev->data_offset;
 741                                        bvm->bi_bdev = rdev->bdev;
 742                                        max = min(max, q->merge_bvec_fn(
 743                                                          q, bvm, biovec));
 744                                }
 745                        }
 746                        rdev = rcu_dereference(conf->mirrors[disk].replacement);
 747                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 748                                struct request_queue *q =
 749                                        bdev_get_queue(rdev->bdev);
 750                                if (q->merge_bvec_fn) {
 751                                        bvm->bi_sector = r10_bio->devs[s].addr
 752                                                + rdev->data_offset;
 753                                        bvm->bi_bdev = rdev->bdev;
 754                                        max = min(max, q->merge_bvec_fn(
 755                                                          q, bvm, biovec));
 756                                }
 757                        }
 758                }
 759                rcu_read_unlock();
 760        }
 761        return max;
 762}
 763
 764/*
 765 * This routine returns the disk from which the requested read should
 766 * be done. There is a per-array 'next expected sequential IO' sector
 767 * number - if this matches on the next IO then we use the last disk.
 768 * There is also a per-disk 'last know head position' sector that is
 769 * maintained from IRQ contexts, both the normal and the resync IO
 770 * completion handlers update this position correctly. If there is no
 771 * perfect sequential match then we pick the disk whose head is closest.
 772 *
 773 * If there are 2 mirrors in the same 2 devices, performance degrades
 774 * because position is mirror, not device based.
 775 *
 776 * The rdev for the device selected will have nr_pending incremented.
 777 */
 778
 779/*
 780 * FIXME: possibly should rethink readbalancing and do it differently
 781 * depending on near_copies / far_copies geometry.
 782 */
 783static struct md_rdev *read_balance(struct r10conf *conf,
 784                                    struct r10bio *r10_bio,
 785                                    int *max_sectors)
 786{
 787        const sector_t this_sector = r10_bio->sector;
 788        int disk, slot;
 789        int sectors = r10_bio->sectors;
 790        int best_good_sectors;
 791        sector_t new_distance, best_dist;
 792        struct md_rdev *best_rdev, *rdev = NULL;
 793        int do_balance;
 794        int best_slot;
 795        struct geom *geo = &conf->geo;
 796
 797        raid10_find_phys(conf, r10_bio);
 798        rcu_read_lock();
 799retry:
 800        sectors = r10_bio->sectors;
 801        best_slot = -1;
 802        best_rdev = NULL;
 803        best_dist = MaxSector;
 804        best_good_sectors = 0;
 805        do_balance = 1;
 806        /*
 807         * Check if we can balance. We can balance on the whole
 808         * device if no resync is going on (recovery is ok), or below
 809         * the resync window. We take the first readable disk when
 810         * above the resync window.
 811         */
 812        if (conf->mddev->recovery_cp < MaxSector
 813            && (this_sector + sectors >= conf->next_resync))
 814                do_balance = 0;
 815
 816        for (slot = 0; slot < conf->copies ; slot++) {
 817                sector_t first_bad;
 818                int bad_sectors;
 819                sector_t dev_sector;
 820
 821                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 822                        continue;
 823                disk = r10_bio->devs[slot].devnum;
 824                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 825                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 826                    test_bit(Unmerged, &rdev->flags) ||
 827                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 828                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 829                if (rdev == NULL ||
 830                    test_bit(Faulty, &rdev->flags) ||
 831                    test_bit(Unmerged, &rdev->flags))
 832                        continue;
 833                if (!test_bit(In_sync, &rdev->flags) &&
 834                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 835                        continue;
 836
 837                dev_sector = r10_bio->devs[slot].addr;
 838                if (is_badblock(rdev, dev_sector, sectors,
 839                                &first_bad, &bad_sectors)) {
 840                        if (best_dist < MaxSector)
 841                                /* Already have a better slot */
 842                                continue;
 843                        if (first_bad <= dev_sector) {
 844                                /* Cannot read here.  If this is the
 845                                 * 'primary' device, then we must not read
 846                                 * beyond 'bad_sectors' from another device.
 847                                 */
 848                                bad_sectors -= (dev_sector - first_bad);
 849                                if (!do_balance && sectors > bad_sectors)
 850                                        sectors = bad_sectors;
 851                                if (best_good_sectors > sectors)
 852                                        best_good_sectors = sectors;
 853                        } else {
 854                                sector_t good_sectors =
 855                                        first_bad - dev_sector;
 856                                if (good_sectors > best_good_sectors) {
 857                                        best_good_sectors = good_sectors;
 858                                        best_slot = slot;
 859                                        best_rdev = rdev;
 860                                }
 861                                if (!do_balance)
 862                                        /* Must read from here */
 863                                        break;
 864                        }
 865                        continue;
 866                } else
 867                        best_good_sectors = sectors;
 868
 869                if (!do_balance)
 870                        break;
 871
 872                /* This optimisation is debatable, and completely destroys
 873                 * sequential read speed for 'far copies' arrays.  So only
 874                 * keep it for 'near' arrays, and review those later.
 875                 */
 876                if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 877                        break;
 878
 879                /* for far > 1 always use the lowest address */
 880                if (geo->far_copies > 1)
 881                        new_distance = r10_bio->devs[slot].addr;
 882                else
 883                        new_distance = abs(r10_bio->devs[slot].addr -
 884                                           conf->mirrors[disk].head_position);
 885                if (new_distance < best_dist) {
 886                        best_dist = new_distance;
 887                        best_slot = slot;
 888                        best_rdev = rdev;
 889                }
 890        }
 891        if (slot >= conf->copies) {
 892                slot = best_slot;
 893                rdev = best_rdev;
 894        }
 895
 896        if (slot >= 0) {
 897                atomic_inc(&rdev->nr_pending);
 898                if (test_bit(Faulty, &rdev->flags)) {
 899                        /* Cannot risk returning a device that failed
 900                         * before we inc'ed nr_pending
 901                         */
 902                        rdev_dec_pending(rdev, conf->mddev);
 903                        goto retry;
 904                }
 905                r10_bio->read_slot = slot;
 906        } else
 907                rdev = NULL;
 908        rcu_read_unlock();
 909        *max_sectors = best_good_sectors;
 910
 911        return rdev;
 912}
 913
 914int md_raid10_congested(struct mddev *mddev, int bits)
 915{
 916        struct r10conf *conf = mddev->private;
 917        int i, ret = 0;
 918
 919        if ((bits & (1 << BDI_async_congested)) &&
 920            conf->pending_count >= max_queued_requests)
 921                return 1;
 922
 923        rcu_read_lock();
 924        for (i = 0;
 925             (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 926                     && ret == 0;
 927             i++) {
 928                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 929                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 930                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 931
 932                        ret |= bdi_congested(&q->backing_dev_info, bits);
 933                }
 934        }
 935        rcu_read_unlock();
 936        return ret;
 937}
 938EXPORT_SYMBOL_GPL(md_raid10_congested);
 939
 940static int raid10_congested(void *data, int bits)
 941{
 942        struct mddev *mddev = data;
 943
 944        return mddev_congested(mddev, bits) ||
 945                md_raid10_congested(mddev, bits);
 946}
 947
 948static void flush_pending_writes(struct r10conf *conf)
 949{
 950        /* Any writes that have been queued but are awaiting
 951         * bitmap updates get flushed here.
 952         */
 953        spin_lock_irq(&conf->device_lock);
 954
 955        if (conf->pending_bio_list.head) {
 956                struct bio *bio;
 957                bio = bio_list_get(&conf->pending_bio_list);
 958                conf->pending_count = 0;
 959                spin_unlock_irq(&conf->device_lock);
 960                /* flush any pending bitmap writes to disk
 961                 * before proceeding w/ I/O */
 962                bitmap_unplug(conf->mddev->bitmap);
 963                wake_up(&conf->wait_barrier);
 964
 965                while (bio) { /* submit pending writes */
 966                        struct bio *next = bio->bi_next;
 967                        bio->bi_next = NULL;
 968                        if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 969                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 970                                /* Just ignore it */
 971                                bio_endio(bio, 0);
 972                        else
 973                                generic_make_request(bio);
 974                        bio = next;
 975                }
 976        } else
 977                spin_unlock_irq(&conf->device_lock);
 978}
 979
 980/* Barriers....
 981 * Sometimes we need to suspend IO while we do something else,
 982 * either some resync/recovery, or reconfigure the array.
 983 * To do this we raise a 'barrier'.
 984 * The 'barrier' is a counter that can be raised multiple times
 985 * to count how many activities are happening which preclude
 986 * normal IO.
 987 * We can only raise the barrier if there is no pending IO.
 988 * i.e. if nr_pending == 0.
 989 * We choose only to raise the barrier if no-one is waiting for the
 990 * barrier to go down.  This means that as soon as an IO request
 991 * is ready, no other operations which require a barrier will start
 992 * until the IO request has had a chance.
 993 *
 994 * So: regular IO calls 'wait_barrier'.  When that returns there
 995 *    is no backgroup IO happening,  It must arrange to call
 996 *    allow_barrier when it has finished its IO.
 997 * backgroup IO calls must call raise_barrier.  Once that returns
 998 *    there is no normal IO happeing.  It must arrange to call
 999 *    lower_barrier when the particular background IO completes.
1000 */
1001
1002static void raise_barrier(struct r10conf *conf, int force)
1003{
1004        BUG_ON(force && !conf->barrier);
1005        spin_lock_irq(&conf->resync_lock);
1006
1007        /* Wait until no block IO is waiting (unless 'force') */
1008        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009                            conf->resync_lock);
1010
1011        /* block any new IO from starting */
1012        conf->barrier++;
1013
1014        /* Now wait for all pending IO to complete */
1015        wait_event_lock_irq(conf->wait_barrier,
1016                            !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017                            conf->resync_lock);
1018
1019        spin_unlock_irq(&conf->resync_lock);
1020}
1021
1022static void lower_barrier(struct r10conf *conf)
1023{
1024        unsigned long flags;
1025        spin_lock_irqsave(&conf->resync_lock, flags);
1026        conf->barrier--;
1027        spin_unlock_irqrestore(&conf->resync_lock, flags);
1028        wake_up(&conf->wait_barrier);
1029}
1030
1031static void wait_barrier(struct r10conf *conf)
1032{
1033        spin_lock_irq(&conf->resync_lock);
1034        if (conf->barrier) {
1035                conf->nr_waiting++;
1036                /* Wait for the barrier to drop.
1037                 * However if there are already pending
1038                 * requests (preventing the barrier from
1039                 * rising completely), and the
1040                 * pre-process bio queue isn't empty,
1041                 * then don't wait, as we need to empty
1042                 * that queue to get the nr_pending
1043                 * count down.
1044                 */
1045                wait_event_lock_irq(conf->wait_barrier,
1046                                    !conf->barrier ||
1047                                    (conf->nr_pending &&
1048                                     current->bio_list &&
1049                                     !bio_list_empty(current->bio_list)),
1050                                    conf->resync_lock);
1051                conf->nr_waiting--;
1052        }
1053        conf->nr_pending++;
1054        spin_unlock_irq(&conf->resync_lock);
1055}
1056
1057static void allow_barrier(struct r10conf *conf)
1058{
1059        unsigned long flags;
1060        spin_lock_irqsave(&conf->resync_lock, flags);
1061        conf->nr_pending--;
1062        spin_unlock_irqrestore(&conf->resync_lock, flags);
1063        wake_up(&conf->wait_barrier);
1064}
1065
1066static void freeze_array(struct r10conf *conf, int extra)
1067{
1068        /* stop syncio and normal IO and wait for everything to
1069         * go quiet.
1070         * We increment barrier and nr_waiting, and then
1071         * wait until nr_pending match nr_queued+extra
1072         * This is called in the context of one normal IO request
1073         * that has failed. Thus any sync request that might be pending
1074         * will be blocked by nr_pending, and we need to wait for
1075         * pending IO requests to complete or be queued for re-try.
1076         * Thus the number queued (nr_queued) plus this request (extra)
1077         * must match the number of pending IOs (nr_pending) before
1078         * we continue.
1079         */
1080        spin_lock_irq(&conf->resync_lock);
1081        conf->barrier++;
1082        conf->nr_waiting++;
1083        wait_event_lock_irq_cmd(conf->wait_barrier,
1084                                conf->nr_pending == conf->nr_queued+extra,
1085                                conf->resync_lock,
1086                                flush_pending_writes(conf));
1087
1088        spin_unlock_irq(&conf->resync_lock);
1089}
1090
1091static void unfreeze_array(struct r10conf *conf)
1092{
1093        /* reverse the effect of the freeze */
1094        spin_lock_irq(&conf->resync_lock);
1095        conf->barrier--;
1096        conf->nr_waiting--;
1097        wake_up(&conf->wait_barrier);
1098        spin_unlock_irq(&conf->resync_lock);
1099}
1100
1101static sector_t choose_data_offset(struct r10bio *r10_bio,
1102                                   struct md_rdev *rdev)
1103{
1104        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105            test_bit(R10BIO_Previous, &r10_bio->state))
1106                return rdev->data_offset;
1107        else
1108                return rdev->new_data_offset;
1109}
1110
1111struct raid10_plug_cb {
1112        struct blk_plug_cb      cb;
1113        struct bio_list         pending;
1114        int                     pending_cnt;
1115};
1116
1117static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118{
1119        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120                                                   cb);
1121        struct mddev *mddev = plug->cb.data;
1122        struct r10conf *conf = mddev->private;
1123        struct bio *bio;
1124
1125        if (from_schedule || current->bio_list) {
1126                spin_lock_irq(&conf->device_lock);
1127                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128                conf->pending_count += plug->pending_cnt;
1129                spin_unlock_irq(&conf->device_lock);
1130                wake_up(&conf->wait_barrier);
1131                md_wakeup_thread(mddev->thread);
1132                kfree(plug);
1133                return;
1134        }
1135
1136        /* we aren't scheduling, so we can do the write-out directly. */
1137        bio = bio_list_get(&plug->pending);
1138        bitmap_unplug(mddev->bitmap);
1139        wake_up(&conf->wait_barrier);
1140
1141        while (bio) { /* submit pending writes */
1142                struct bio *next = bio->bi_next;
1143                bio->bi_next = NULL;
1144                if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146                        /* Just ignore it */
1147                        bio_endio(bio, 0);
1148                else
1149                        generic_make_request(bio);
1150                bio = next;
1151        }
1152        kfree(plug);
1153}
1154
1155static void __make_request(struct mddev *mddev, struct bio *bio)
1156{
1157        struct r10conf *conf = mddev->private;
1158        struct r10bio *r10_bio;
1159        struct bio *read_bio;
1160        int i;
1161        const int rw = bio_data_dir(bio);
1162        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1163        const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1164        const unsigned long do_discard = (bio->bi_rw
1165                                          & (REQ_DISCARD | REQ_SECURE));
1166        const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1167        unsigned long flags;
1168        struct md_rdev *blocked_rdev;
1169        struct blk_plug_cb *cb;
1170        struct raid10_plug_cb *plug = NULL;
1171        int sectors_handled;
1172        int max_sectors;
1173        int sectors;
1174
1175        sectors = bio_sectors(bio);
1176        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177            bio->bi_iter.bi_sector < conf->reshape_progress &&
1178            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179                /* IO spans the reshape position.  Need to wait for
1180                 * reshape to pass
1181                 */
1182                allow_barrier(conf);
1183                wait_event(conf->wait_barrier,
1184                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1185                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1186                           sectors);
1187                wait_barrier(conf);
1188        }
1189        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1190            bio_data_dir(bio) == WRITE &&
1191            (mddev->reshape_backwards
1192             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1193                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1194             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1195                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1196                /* Need to update reshape_position in metadata */
1197                mddev->reshape_position = conf->reshape_progress;
1198                set_bit(MD_CHANGE_DEVS, &mddev->flags);
1199                set_bit(MD_CHANGE_PENDING, &mddev->flags);
1200                md_wakeup_thread(mddev->thread);
1201                wait_event(mddev->sb_wait,
1202                           !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1203
1204                conf->reshape_safe = mddev->reshape_position;
1205        }
1206
1207        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1208
1209        r10_bio->master_bio = bio;
1210        r10_bio->sectors = sectors;
1211
1212        r10_bio->mddev = mddev;
1213        r10_bio->sector = bio->bi_iter.bi_sector;
1214        r10_bio->state = 0;
1215
1216        /* We might need to issue multiple reads to different
1217         * devices if there are bad blocks around, so we keep
1218         * track of the number of reads in bio->bi_phys_segments.
1219         * If this is 0, there is only one r10_bio and no locking
1220         * will be needed when the request completes.  If it is
1221         * non-zero, then it is the number of not-completed requests.
1222         */
1223        bio->bi_phys_segments = 0;
1224        clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1225
1226        if (rw == READ) {
1227                /*
1228                 * read balancing logic:
1229                 */
1230                struct md_rdev *rdev;
1231                int slot;
1232
1233read_again:
1234                rdev = read_balance(conf, r10_bio, &max_sectors);
1235                if (!rdev) {
1236                        raid_end_bio_io(r10_bio);
1237                        return;
1238                }
1239                slot = r10_bio->read_slot;
1240
1241                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1242                bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1243                         max_sectors);
1244
1245                r10_bio->devs[slot].bio = read_bio;
1246                r10_bio->devs[slot].rdev = rdev;
1247
1248                read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1249                        choose_data_offset(r10_bio, rdev);
1250                read_bio->bi_bdev = rdev->bdev;
1251                read_bio->bi_end_io = raid10_end_read_request;
1252                read_bio->bi_rw = READ | do_sync;
1253                read_bio->bi_private = r10_bio;
1254
1255                if (max_sectors < r10_bio->sectors) {
1256                        /* Could not read all from this device, so we will
1257                         * need another r10_bio.
1258                         */
1259                        sectors_handled = (r10_bio->sector + max_sectors
1260                                           - bio->bi_iter.bi_sector);
1261                        r10_bio->sectors = max_sectors;
1262                        spin_lock_irq(&conf->device_lock);
1263                        if (bio->bi_phys_segments == 0)
1264                                bio->bi_phys_segments = 2;
1265                        else
1266                                bio->bi_phys_segments++;
1267                        spin_unlock_irq(&conf->device_lock);
1268                        /* Cannot call generic_make_request directly
1269                         * as that will be queued in __generic_make_request
1270                         * and subsequent mempool_alloc might block
1271                         * waiting for it.  so hand bio over to raid10d.
1272                         */
1273                        reschedule_retry(r10_bio);
1274
1275                        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1276
1277                        r10_bio->master_bio = bio;
1278                        r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1279                        r10_bio->state = 0;
1280                        r10_bio->mddev = mddev;
1281                        r10_bio->sector = bio->bi_iter.bi_sector +
1282                                sectors_handled;
1283                        goto read_again;
1284                } else
1285                        generic_make_request(read_bio);
1286                return;
1287        }
1288
1289        /*
1290         * WRITE:
1291         */
1292        if (conf->pending_count >= max_queued_requests) {
1293                md_wakeup_thread(mddev->thread);
1294                wait_event(conf->wait_barrier,
1295                           conf->pending_count < max_queued_requests);
1296        }
1297        /* first select target devices under rcu_lock and
1298         * inc refcount on their rdev.  Record them by setting
1299         * bios[x] to bio
1300         * If there are known/acknowledged bad blocks on any device
1301         * on which we have seen a write error, we want to avoid
1302         * writing to those blocks.  This potentially requires several
1303         * writes to write around the bad blocks.  Each set of writes
1304         * gets its own r10_bio with a set of bios attached.  The number
1305         * of r10_bios is recored in bio->bi_phys_segments just as with
1306         * the read case.
1307         */
1308
1309        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1310        raid10_find_phys(conf, r10_bio);
1311retry_write:
1312        blocked_rdev = NULL;
1313        rcu_read_lock();
1314        max_sectors = r10_bio->sectors;
1315
1316        for (i = 0;  i < conf->copies; i++) {
1317                int d = r10_bio->devs[i].devnum;
1318                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1319                struct md_rdev *rrdev = rcu_dereference(
1320                        conf->mirrors[d].replacement);
1321                if (rdev == rrdev)
1322                        rrdev = NULL;
1323                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1324                        atomic_inc(&rdev->nr_pending);
1325                        blocked_rdev = rdev;
1326                        break;
1327                }
1328                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1329                        atomic_inc(&rrdev->nr_pending);
1330                        blocked_rdev = rrdev;
1331                        break;
1332                }
1333                if (rdev && (test_bit(Faulty, &rdev->flags)
1334                             || test_bit(Unmerged, &rdev->flags)))
1335                        rdev = NULL;
1336                if (rrdev && (test_bit(Faulty, &rrdev->flags)
1337                              || test_bit(Unmerged, &rrdev->flags)))
1338                        rrdev = NULL;
1339
1340                r10_bio->devs[i].bio = NULL;
1341                r10_bio->devs[i].repl_bio = NULL;
1342
1343                if (!rdev && !rrdev) {
1344                        set_bit(R10BIO_Degraded, &r10_bio->state);
1345                        continue;
1346                }
1347                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1348                        sector_t first_bad;
1349                        sector_t dev_sector = r10_bio->devs[i].addr;
1350                        int bad_sectors;
1351                        int is_bad;
1352
1353                        is_bad = is_badblock(rdev, dev_sector,
1354                                             max_sectors,
1355                                             &first_bad, &bad_sectors);
1356                        if (is_bad < 0) {
1357                                /* Mustn't write here until the bad block
1358                                 * is acknowledged
1359                                 */
1360                                atomic_inc(&rdev->nr_pending);
1361                                set_bit(BlockedBadBlocks, &rdev->flags);
1362                                blocked_rdev = rdev;
1363                                break;
1364                        }
1365                        if (is_bad && first_bad <= dev_sector) {
1366                                /* Cannot write here at all */
1367                                bad_sectors -= (dev_sector - first_bad);
1368                                if (bad_sectors < max_sectors)
1369                                        /* Mustn't write more than bad_sectors
1370                                         * to other devices yet
1371                                         */
1372                                        max_sectors = bad_sectors;
1373                                /* We don't set R10BIO_Degraded as that
1374                                 * only applies if the disk is missing,
1375                                 * so it might be re-added, and we want to
1376                                 * know to recover this chunk.
1377                                 * In this case the device is here, and the
1378                                 * fact that this chunk is not in-sync is
1379                                 * recorded in the bad block log.
1380                                 */
1381                                continue;
1382                        }
1383                        if (is_bad) {
1384                                int good_sectors = first_bad - dev_sector;
1385                                if (good_sectors < max_sectors)
1386                                        max_sectors = good_sectors;
1387                        }
1388                }
1389                if (rdev) {
1390                        r10_bio->devs[i].bio = bio;
1391                        atomic_inc(&rdev->nr_pending);
1392                }
1393                if (rrdev) {
1394                        r10_bio->devs[i].repl_bio = bio;
1395                        atomic_inc(&rrdev->nr_pending);
1396                }
1397        }
1398        rcu_read_unlock();
1399
1400        if (unlikely(blocked_rdev)) {
1401                /* Have to wait for this device to get unblocked, then retry */
1402                int j;
1403                int d;
1404
1405                for (j = 0; j < i; j++) {
1406                        if (r10_bio->devs[j].bio) {
1407                                d = r10_bio->devs[j].devnum;
1408                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1409                        }
1410                        if (r10_bio->devs[j].repl_bio) {
1411                                struct md_rdev *rdev;
1412                                d = r10_bio->devs[j].devnum;
1413                                rdev = conf->mirrors[d].replacement;
1414                                if (!rdev) {
1415                                        /* Race with remove_disk */
1416                                        smp_mb();
1417                                        rdev = conf->mirrors[d].rdev;
1418                                }
1419                                rdev_dec_pending(rdev, mddev);
1420                        }
1421                }
1422                allow_barrier(conf);
1423                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1424                wait_barrier(conf);
1425                goto retry_write;
1426        }
1427
1428        if (max_sectors < r10_bio->sectors) {
1429                /* We are splitting this into multiple parts, so
1430                 * we need to prepare for allocating another r10_bio.
1431                 */
1432                r10_bio->sectors = max_sectors;
1433                spin_lock_irq(&conf->device_lock);
1434                if (bio->bi_phys_segments == 0)
1435                        bio->bi_phys_segments = 2;
1436                else
1437                        bio->bi_phys_segments++;
1438                spin_unlock_irq(&conf->device_lock);
1439        }
1440        sectors_handled = r10_bio->sector + max_sectors -
1441                bio->bi_iter.bi_sector;
1442
1443        atomic_set(&r10_bio->remaining, 1);
1444        bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1445
1446        for (i = 0; i < conf->copies; i++) {
1447                struct bio *mbio;
1448                int d = r10_bio->devs[i].devnum;
1449                if (r10_bio->devs[i].bio) {
1450                        struct md_rdev *rdev = conf->mirrors[d].rdev;
1451                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1452                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1453                                 max_sectors);
1454                        r10_bio->devs[i].bio = mbio;
1455
1456                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1457                                           choose_data_offset(r10_bio,
1458                                                              rdev));
1459                        mbio->bi_bdev = rdev->bdev;
1460                        mbio->bi_end_io = raid10_end_write_request;
1461                        mbio->bi_rw =
1462                                WRITE | do_sync | do_fua | do_discard | do_same;
1463                        mbio->bi_private = r10_bio;
1464
1465                        atomic_inc(&r10_bio->remaining);
1466
1467                        cb = blk_check_plugged(raid10_unplug, mddev,
1468                                               sizeof(*plug));
1469                        if (cb)
1470                                plug = container_of(cb, struct raid10_plug_cb,
1471                                                    cb);
1472                        else
1473                                plug = NULL;
1474                        spin_lock_irqsave(&conf->device_lock, flags);
1475                        if (plug) {
1476                                bio_list_add(&plug->pending, mbio);
1477                                plug->pending_cnt++;
1478                        } else {
1479                                bio_list_add(&conf->pending_bio_list, mbio);
1480                                conf->pending_count++;
1481                        }
1482                        spin_unlock_irqrestore(&conf->device_lock, flags);
1483                        if (!plug)
1484                                md_wakeup_thread(mddev->thread);
1485                }
1486
1487                if (r10_bio->devs[i].repl_bio) {
1488                        struct md_rdev *rdev = conf->mirrors[d].replacement;
1489                        if (rdev == NULL) {
1490                                /* Replacement just got moved to main 'rdev' */
1491                                smp_mb();
1492                                rdev = conf->mirrors[d].rdev;
1493                        }
1494                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1495                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1496                                 max_sectors);
1497                        r10_bio->devs[i].repl_bio = mbio;
1498
1499                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1500                                           choose_data_offset(
1501                                                   r10_bio, rdev));
1502                        mbio->bi_bdev = rdev->bdev;
1503                        mbio->bi_end_io = raid10_end_write_request;
1504                        mbio->bi_rw =
1505                                WRITE | do_sync | do_fua | do_discard | do_same;
1506                        mbio->bi_private = r10_bio;
1507
1508                        atomic_inc(&r10_bio->remaining);
1509                        spin_lock_irqsave(&conf->device_lock, flags);
1510                        bio_list_add(&conf->pending_bio_list, mbio);
1511                        conf->pending_count++;
1512                        spin_unlock_irqrestore(&conf->device_lock, flags);
1513                        if (!mddev_check_plugged(mddev))
1514                                md_wakeup_thread(mddev->thread);
1515                }
1516        }
1517
1518        /* Don't remove the bias on 'remaining' (one_write_done) until
1519         * after checking if we need to go around again.
1520         */
1521
1522        if (sectors_handled < bio_sectors(bio)) {
1523                one_write_done(r10_bio);
1524                /* We need another r10_bio.  It has already been counted
1525                 * in bio->bi_phys_segments.
1526                 */
1527                r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1528
1529                r10_bio->master_bio = bio;
1530                r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1531
1532                r10_bio->mddev = mddev;
1533                r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1534                r10_bio->state = 0;
1535                goto retry_write;
1536        }
1537        one_write_done(r10_bio);
1538}
1539
1540static void make_request(struct mddev *mddev, struct bio *bio)
1541{
1542        struct r10conf *conf = mddev->private;
1543        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1544        int chunk_sects = chunk_mask + 1;
1545
1546        struct bio *split;
1547
1548        if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1549                md_flush_request(mddev, bio);
1550                return;
1551        }
1552
1553        md_write_start(mddev, bio);
1554
1555        /*
1556         * Register the new request and wait if the reconstruction
1557         * thread has put up a bar for new requests.
1558         * Continue immediately if no resync is active currently.
1559         */
1560        wait_barrier(conf);
1561
1562        do {
1563
1564                /*
1565                 * If this request crosses a chunk boundary, we need to split
1566                 * it.
1567                 */
1568                if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1569                             bio_sectors(bio) > chunk_sects
1570                             && (conf->geo.near_copies < conf->geo.raid_disks
1571                                 || conf->prev.near_copies <
1572                                 conf->prev.raid_disks))) {
1573                        split = bio_split(bio, chunk_sects -
1574                                          (bio->bi_iter.bi_sector &
1575                                           (chunk_sects - 1)),
1576                                          GFP_NOIO, fs_bio_set);
1577                        bio_chain(split, bio);
1578                } else {
1579                        split = bio;
1580                }
1581
1582                __make_request(mddev, split);
1583        } while (split != bio);
1584
1585        /* In case raid10d snuck in to freeze_array */
1586        wake_up(&conf->wait_barrier);
1587}
1588
1589static void status(struct seq_file *seq, struct mddev *mddev)
1590{
1591        struct r10conf *conf = mddev->private;
1592        int i;
1593
1594        if (conf->geo.near_copies < conf->geo.raid_disks)
1595                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1596        if (conf->geo.near_copies > 1)
1597                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1598        if (conf->geo.far_copies > 1) {
1599                if (conf->geo.far_offset)
1600                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1601                else
1602                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1603        }
1604        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1605                                        conf->geo.raid_disks - mddev->degraded);
1606        for (i = 0; i < conf->geo.raid_disks; i++)
1607                seq_printf(seq, "%s",
1608                              conf->mirrors[i].rdev &&
1609                              test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1610        seq_printf(seq, "]");
1611}
1612
1613/* check if there are enough drives for
1614 * every block to appear on atleast one.
1615 * Don't consider the device numbered 'ignore'
1616 * as we might be about to remove it.
1617 */
1618static int _enough(struct r10conf *conf, int previous, int ignore)
1619{
1620        int first = 0;
1621        int has_enough = 0;
1622        int disks, ncopies;
1623        if (previous) {
1624                disks = conf->prev.raid_disks;
1625                ncopies = conf->prev.near_copies;
1626        } else {
1627                disks = conf->geo.raid_disks;
1628                ncopies = conf->geo.near_copies;
1629        }
1630
1631        rcu_read_lock();
1632        do {
1633                int n = conf->copies;
1634                int cnt = 0;
1635                int this = first;
1636                while (n--) {
1637                        struct md_rdev *rdev;
1638                        if (this != ignore &&
1639                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1640                            test_bit(In_sync, &rdev->flags))
1641                                cnt++;
1642                        this = (this+1) % disks;
1643                }
1644                if (cnt == 0)
1645                        goto out;
1646                first = (first + ncopies) % disks;
1647        } while (first != 0);
1648        has_enough = 1;
1649out:
1650        rcu_read_unlock();
1651        return has_enough;
1652}
1653
1654static int enough(struct r10conf *conf, int ignore)
1655{
1656        /* when calling 'enough', both 'prev' and 'geo' must
1657         * be stable.
1658         * This is ensured if ->reconfig_mutex or ->device_lock
1659         * is held.
1660         */
1661        return _enough(conf, 0, ignore) &&
1662                _enough(conf, 1, ignore);
1663}
1664
1665static void error(struct mddev *mddev, struct md_rdev *rdev)
1666{
1667        char b[BDEVNAME_SIZE];
1668        struct r10conf *conf = mddev->private;
1669        unsigned long flags;
1670
1671        /*
1672         * If it is not operational, then we have already marked it as dead
1673         * else if it is the last working disks, ignore the error, let the
1674         * next level up know.
1675         * else mark the drive as failed
1676         */
1677        spin_lock_irqsave(&conf->device_lock, flags);
1678        if (test_bit(In_sync, &rdev->flags)
1679            && !enough(conf, rdev->raid_disk)) {
1680                /*
1681                 * Don't fail the drive, just return an IO error.
1682                 */
1683                spin_unlock_irqrestore(&conf->device_lock, flags);
1684                return;
1685        }
1686        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1687                mddev->degraded++;
1688                        /*
1689                 * if recovery is running, make sure it aborts.
1690                 */
1691                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1692        }
1693        set_bit(Blocked, &rdev->flags);
1694        set_bit(Faulty, &rdev->flags);
1695        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1696        spin_unlock_irqrestore(&conf->device_lock, flags);
1697        printk(KERN_ALERT
1698               "md/raid10:%s: Disk failure on %s, disabling device.\n"
1699               "md/raid10:%s: Operation continuing on %d devices.\n",
1700               mdname(mddev), bdevname(rdev->bdev, b),
1701               mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1702}
1703
1704static void print_conf(struct r10conf *conf)
1705{
1706        int i;
1707        struct raid10_info *tmp;
1708
1709        printk(KERN_DEBUG "RAID10 conf printout:\n");
1710        if (!conf) {
1711                printk(KERN_DEBUG "(!conf)\n");
1712                return;
1713        }
1714        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1715                conf->geo.raid_disks);
1716
1717        for (i = 0; i < conf->geo.raid_disks; i++) {
1718                char b[BDEVNAME_SIZE];
1719                tmp = conf->mirrors + i;
1720                if (tmp->rdev)
1721                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1722                                i, !test_bit(In_sync, &tmp->rdev->flags),
1723                                !test_bit(Faulty, &tmp->rdev->flags),
1724                                bdevname(tmp->rdev->bdev,b));
1725        }
1726}
1727
1728static void close_sync(struct r10conf *conf)
1729{
1730        wait_barrier(conf);
1731        allow_barrier(conf);
1732
1733        mempool_destroy(conf->r10buf_pool);
1734        conf->r10buf_pool = NULL;
1735}
1736
1737static int raid10_spare_active(struct mddev *mddev)
1738{
1739        int i;
1740        struct r10conf *conf = mddev->private;
1741        struct raid10_info *tmp;
1742        int count = 0;
1743        unsigned long flags;
1744
1745        /*
1746         * Find all non-in_sync disks within the RAID10 configuration
1747         * and mark them in_sync
1748         */
1749        for (i = 0; i < conf->geo.raid_disks; i++) {
1750                tmp = conf->mirrors + i;
1751                if (tmp->replacement
1752                    && tmp->replacement->recovery_offset == MaxSector
1753                    && !test_bit(Faulty, &tmp->replacement->flags)
1754                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1755                        /* Replacement has just become active */
1756                        if (!tmp->rdev
1757                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1758                                count++;
1759                        if (tmp->rdev) {
1760                                /* Replaced device not technically faulty,
1761                                 * but we need to be sure it gets removed
1762                                 * and never re-added.
1763                                 */
1764                                set_bit(Faulty, &tmp->rdev->flags);
1765                                sysfs_notify_dirent_safe(
1766                                        tmp->rdev->sysfs_state);
1767                        }
1768                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1769                } else if (tmp->rdev
1770                           && tmp->rdev->recovery_offset == MaxSector
1771                           && !test_bit(Faulty, &tmp->rdev->flags)
1772                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1773                        count++;
1774                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1775                }
1776        }
1777        spin_lock_irqsave(&conf->device_lock, flags);
1778        mddev->degraded -= count;
1779        spin_unlock_irqrestore(&conf->device_lock, flags);
1780
1781        print_conf(conf);
1782        return count;
1783}
1784
1785
1786static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1787{
1788        struct r10conf *conf = mddev->private;
1789        int err = -EEXIST;
1790        int mirror;
1791        int first = 0;
1792        int last = conf->geo.raid_disks - 1;
1793        struct request_queue *q = bdev_get_queue(rdev->bdev);
1794
1795        if (mddev->recovery_cp < MaxSector)
1796                /* only hot-add to in-sync arrays, as recovery is
1797                 * very different from resync
1798                 */
1799                return -EBUSY;
1800        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1801                return -EINVAL;
1802
1803        if (rdev->raid_disk >= 0)
1804                first = last = rdev->raid_disk;
1805
1806        if (q->merge_bvec_fn) {
1807                set_bit(Unmerged, &rdev->flags);
1808                mddev->merge_check_needed = 1;
1809        }
1810
1811        if (rdev->saved_raid_disk >= first &&
1812            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1813                mirror = rdev->saved_raid_disk;
1814        else
1815                mirror = first;
1816        for ( ; mirror <= last ; mirror++) {
1817                struct raid10_info *p = &conf->mirrors[mirror];
1818                if (p->recovery_disabled == mddev->recovery_disabled)
1819                        continue;
1820                if (p->rdev) {
1821                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1822                            p->replacement != NULL)
1823                                continue;
1824                        clear_bit(In_sync, &rdev->flags);
1825                        set_bit(Replacement, &rdev->flags);
1826                        rdev->raid_disk = mirror;
1827                        err = 0;
1828                        if (mddev->gendisk)
1829                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1830                                                  rdev->data_offset << 9);
1831                        conf->fullsync = 1;
1832                        rcu_assign_pointer(p->replacement, rdev);
1833                        break;
1834                }
1835
1836                if (mddev->gendisk)
1837                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1838                                          rdev->data_offset << 9);
1839
1840                p->head_position = 0;
1841                p->recovery_disabled = mddev->recovery_disabled - 1;
1842                rdev->raid_disk = mirror;
1843                err = 0;
1844                if (rdev->saved_raid_disk != mirror)
1845                        conf->fullsync = 1;
1846                rcu_assign_pointer(p->rdev, rdev);
1847                break;
1848        }
1849        if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1850                /* Some requests might not have seen this new
1851                 * merge_bvec_fn.  We must wait for them to complete
1852                 * before merging the device fully.
1853                 * First we make sure any code which has tested
1854                 * our function has submitted the request, then
1855                 * we wait for all outstanding requests to complete.
1856                 */
1857                synchronize_sched();
1858                freeze_array(conf, 0);
1859                unfreeze_array(conf);
1860                clear_bit(Unmerged, &rdev->flags);
1861        }
1862        md_integrity_add_rdev(rdev, mddev);
1863        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1864                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1865
1866        print_conf(conf);
1867        return err;
1868}
1869
1870static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1871{
1872        struct r10conf *conf = mddev->private;
1873        int err = 0;
1874        int number = rdev->raid_disk;
1875        struct md_rdev **rdevp;
1876        struct raid10_info *p = conf->mirrors + number;
1877
1878        print_conf(conf);
1879        if (rdev == p->rdev)
1880                rdevp = &p->rdev;
1881        else if (rdev == p->replacement)
1882                rdevp = &p->replacement;
1883        else
1884                return 0;
1885
1886        if (test_bit(In_sync, &rdev->flags) ||
1887            atomic_read(&rdev->nr_pending)) {
1888                err = -EBUSY;
1889                goto abort;
1890        }
1891        /* Only remove faulty devices if recovery
1892         * is not possible.
1893         */
1894        if (!test_bit(Faulty, &rdev->flags) &&
1895            mddev->recovery_disabled != p->recovery_disabled &&
1896            (!p->replacement || p->replacement == rdev) &&
1897            number < conf->geo.raid_disks &&
1898            enough(conf, -1)) {
1899                err = -EBUSY;
1900                goto abort;
1901        }
1902        *rdevp = NULL;
1903        synchronize_rcu();
1904        if (atomic_read(&rdev->nr_pending)) {
1905                /* lost the race, try later */
1906                err = -EBUSY;
1907                *rdevp = rdev;
1908                goto abort;
1909        } else if (p->replacement) {
1910                /* We must have just cleared 'rdev' */
1911                p->rdev = p->replacement;
1912                clear_bit(Replacement, &p->replacement->flags);
1913                smp_mb(); /* Make sure other CPUs may see both as identical
1914                           * but will never see neither -- if they are careful.
1915                           */
1916                p->replacement = NULL;
1917                clear_bit(WantReplacement, &rdev->flags);
1918        } else
1919                /* We might have just remove the Replacement as faulty
1920                 * Clear the flag just in case
1921                 */
1922                clear_bit(WantReplacement, &rdev->flags);
1923
1924        err = md_integrity_register(mddev);
1925
1926abort:
1927
1928        print_conf(conf);
1929        return err;
1930}
1931
1932
1933static void end_sync_read(struct bio *bio, int error)
1934{
1935        struct r10bio *r10_bio = bio->bi_private;
1936        struct r10conf *conf = r10_bio->mddev->private;
1937        int d;
1938
1939        if (bio == r10_bio->master_bio) {
1940                /* this is a reshape read */
1941                d = r10_bio->read_slot; /* really the read dev */
1942        } else
1943                d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1944
1945        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1946                set_bit(R10BIO_Uptodate, &r10_bio->state);
1947        else
1948                /* The write handler will notice the lack of
1949                 * R10BIO_Uptodate and record any errors etc
1950                 */
1951                atomic_add(r10_bio->sectors,
1952                           &conf->mirrors[d].rdev->corrected_errors);
1953
1954        /* for reconstruct, we always reschedule after a read.
1955         * for resync, only after all reads
1956         */
1957        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1958        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1959            atomic_dec_and_test(&r10_bio->remaining)) {
1960                /* we have read all the blocks,
1961                 * do the comparison in process context in raid10d
1962                 */
1963                reschedule_retry(r10_bio);
1964        }
1965}
1966
1967static void end_sync_request(struct r10bio *r10_bio)
1968{
1969        struct mddev *mddev = r10_bio->mddev;
1970
1971        while (atomic_dec_and_test(&r10_bio->remaining)) {
1972                if (r10_bio->master_bio == NULL) {
1973                        /* the primary of several recovery bios */
1974                        sector_t s = r10_bio->sectors;
1975                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976                            test_bit(R10BIO_WriteError, &r10_bio->state))
1977                                reschedule_retry(r10_bio);
1978                        else
1979                                put_buf(r10_bio);
1980                        md_done_sync(mddev, s, 1);
1981                        break;
1982                } else {
1983                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1984                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1985                            test_bit(R10BIO_WriteError, &r10_bio->state))
1986                                reschedule_retry(r10_bio);
1987                        else
1988                                put_buf(r10_bio);
1989                        r10_bio = r10_bio2;
1990                }
1991        }
1992}
1993
1994static void end_sync_write(struct bio *bio, int error)
1995{
1996        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1997        struct r10bio *r10_bio = bio->bi_private;
1998        struct mddev *mddev = r10_bio->mddev;
1999        struct r10conf *conf = mddev->private;
2000        int d;
2001        sector_t first_bad;
2002        int bad_sectors;
2003        int slot;
2004        int repl;
2005        struct md_rdev *rdev = NULL;
2006
2007        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2008        if (repl)
2009                rdev = conf->mirrors[d].replacement;
2010        else
2011                rdev = conf->mirrors[d].rdev;
2012
2013        if (!uptodate) {
2014                if (repl)
2015                        md_error(mddev, rdev);
2016                else {
2017                        set_bit(WriteErrorSeen, &rdev->flags);
2018                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2019                                set_bit(MD_RECOVERY_NEEDED,
2020                                        &rdev->mddev->recovery);
2021                        set_bit(R10BIO_WriteError, &r10_bio->state);
2022                }
2023        } else if (is_badblock(rdev,
2024                             r10_bio->devs[slot].addr,
2025                             r10_bio->sectors,
2026                             &first_bad, &bad_sectors))
2027                set_bit(R10BIO_MadeGood, &r10_bio->state);
2028
2029        rdev_dec_pending(rdev, mddev);
2030
2031        end_sync_request(r10_bio);
2032}
2033
2034/*
2035 * Note: sync and recover and handled very differently for raid10
2036 * This code is for resync.
2037 * For resync, we read through virtual addresses and read all blocks.
2038 * If there is any error, we schedule a write.  The lowest numbered
2039 * drive is authoritative.
2040 * However requests come for physical address, so we need to map.
2041 * For every physical address there are raid_disks/copies virtual addresses,
2042 * which is always are least one, but is not necessarly an integer.
2043 * This means that a physical address can span multiple chunks, so we may
2044 * have to submit multiple io requests for a single sync request.
2045 */
2046/*
2047 * We check if all blocks are in-sync and only write to blocks that
2048 * aren't in sync
2049 */
2050static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2051{
2052        struct r10conf *conf = mddev->private;
2053        int i, first;
2054        struct bio *tbio, *fbio;
2055        int vcnt;
2056
2057        atomic_set(&r10_bio->remaining, 1);
2058
2059        /* find the first device with a block */
2060        for (i=0; i<conf->copies; i++)
2061                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2062                        break;
2063
2064        if (i == conf->copies)
2065                goto done;
2066
2067        first = i;
2068        fbio = r10_bio->devs[i].bio;
2069
2070        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2071        /* now find blocks with errors */
2072        for (i=0 ; i < conf->copies ; i++) {
2073                int  j, d;
2074
2075                tbio = r10_bio->devs[i].bio;
2076
2077                if (tbio->bi_end_io != end_sync_read)
2078                        continue;
2079                if (i == first)
2080                        continue;
2081                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2082                        /* We know that the bi_io_vec layout is the same for
2083                         * both 'first' and 'i', so we just compare them.
2084                         * All vec entries are PAGE_SIZE;
2085                         */
2086                        int sectors = r10_bio->sectors;
2087                        for (j = 0; j < vcnt; j++) {
2088                                int len = PAGE_SIZE;
2089                                if (sectors < (len / 512))
2090                                        len = sectors * 512;
2091                                if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2092                                           page_address(tbio->bi_io_vec[j].bv_page),
2093                                           len))
2094                                        break;
2095                                sectors -= len/512;
2096                        }
2097                        if (j == vcnt)
2098                                continue;
2099                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2100                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2101                                /* Don't fix anything. */
2102                                continue;
2103                }
2104                /* Ok, we need to write this bio, either to correct an
2105                 * inconsistency or to correct an unreadable block.
2106                 * First we need to fixup bv_offset, bv_len and
2107                 * bi_vecs, as the read request might have corrupted these
2108                 */
2109                bio_reset(tbio);
2110
2111                tbio->bi_vcnt = vcnt;
2112                tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2113                tbio->bi_rw = WRITE;
2114                tbio->bi_private = r10_bio;
2115                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2116
2117                for (j=0; j < vcnt ; j++) {
2118                        tbio->bi_io_vec[j].bv_offset = 0;
2119                        tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2120
2121                        memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2122                               page_address(fbio->bi_io_vec[j].bv_page),
2123                               PAGE_SIZE);
2124                }
2125                tbio->bi_end_io = end_sync_write;
2126
2127                d = r10_bio->devs[i].devnum;
2128                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2129                atomic_inc(&r10_bio->remaining);
2130                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2131
2132                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2133                tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2134                generic_make_request(tbio);
2135        }
2136
2137        /* Now write out to any replacement devices
2138         * that are active
2139         */
2140        for (i = 0; i < conf->copies; i++) {
2141                int j, d;
2142
2143                tbio = r10_bio->devs[i].repl_bio;
2144                if (!tbio || !tbio->bi_end_io)
2145                        continue;
2146                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2147                    && r10_bio->devs[i].bio != fbio)
2148                        for (j = 0; j < vcnt; j++)
2149                                memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2150                                       page_address(fbio->bi_io_vec[j].bv_page),
2151                                       PAGE_SIZE);
2152                d = r10_bio->devs[i].devnum;
2153                atomic_inc(&r10_bio->remaining);
2154                md_sync_acct(conf->mirrors[d].replacement->bdev,
2155                             bio_sectors(tbio));
2156                generic_make_request(tbio);
2157        }
2158
2159done:
2160        if (atomic_dec_and_test(&r10_bio->remaining)) {
2161                md_done_sync(mddev, r10_bio->sectors, 1);
2162                put_buf(r10_bio);
2163        }
2164}
2165
2166/*
2167 * Now for the recovery code.
2168 * Recovery happens across physical sectors.
2169 * We recover all non-is_sync drives by finding the virtual address of
2170 * each, and then choose a working drive that also has that virt address.
2171 * There is a separate r10_bio for each non-in_sync drive.
2172 * Only the first two slots are in use. The first for reading,
2173 * The second for writing.
2174 *
2175 */
2176static void fix_recovery_read_error(struct r10bio *r10_bio)
2177{
2178        /* We got a read error during recovery.
2179         * We repeat the read in smaller page-sized sections.
2180         * If a read succeeds, write it to the new device or record
2181         * a bad block if we cannot.
2182         * If a read fails, record a bad block on both old and
2183         * new devices.
2184         */
2185        struct mddev *mddev = r10_bio->mddev;
2186        struct r10conf *conf = mddev->private;
2187        struct bio *bio = r10_bio->devs[0].bio;
2188        sector_t sect = 0;
2189        int sectors = r10_bio->sectors;
2190        int idx = 0;
2191        int dr = r10_bio->devs[0].devnum;
2192        int dw = r10_bio->devs[1].devnum;
2193
2194        while (sectors) {
2195                int s = sectors;
2196                struct md_rdev *rdev;
2197                sector_t addr;
2198                int ok;
2199
2200                if (s > (PAGE_SIZE>>9))
2201                        s = PAGE_SIZE >> 9;
2202
2203                rdev = conf->mirrors[dr].rdev;
2204                addr = r10_bio->devs[0].addr + sect,
2205                ok = sync_page_io(rdev,
2206                                  addr,
2207                                  s << 9,
2208                                  bio->bi_io_vec[idx].bv_page,
2209                                  READ, false);
2210                if (ok) {
2211                        rdev = conf->mirrors[dw].rdev;
2212                        addr = r10_bio->devs[1].addr + sect;
2213                        ok = sync_page_io(rdev,
2214                                          addr,
2215                                          s << 9,
2216                                          bio->bi_io_vec[idx].bv_page,
2217                                          WRITE, false);
2218                        if (!ok) {
2219                                set_bit(WriteErrorSeen, &rdev->flags);
2220                                if (!test_and_set_bit(WantReplacement,
2221                                                      &rdev->flags))
2222                                        set_bit(MD_RECOVERY_NEEDED,
2223                                                &rdev->mddev->recovery);
2224                        }
2225                }
2226                if (!ok) {
2227                        /* We don't worry if we cannot set a bad block -
2228                         * it really is bad so there is no loss in not
2229                         * recording it yet
2230                         */
2231                        rdev_set_badblocks(rdev, addr, s, 0);
2232
2233                        if (rdev != conf->mirrors[dw].rdev) {
2234                                /* need bad block on destination too */
2235                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2236                                addr = r10_bio->devs[1].addr + sect;
2237                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2238                                if (!ok) {
2239                                        /* just abort the recovery */
2240                                        printk(KERN_NOTICE
2241                                               "md/raid10:%s: recovery aborted"
2242                                               " due to read error\n",
2243                                               mdname(mddev));
2244
2245                                        conf->mirrors[dw].recovery_disabled
2246                                                = mddev->recovery_disabled;
2247                                        set_bit(MD_RECOVERY_INTR,
2248                                                &mddev->recovery);
2249                                        break;
2250                                }
2251                        }
2252                }
2253
2254                sectors -= s;
2255                sect += s;
2256                idx++;
2257        }
2258}
2259
2260static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2261{
2262        struct r10conf *conf = mddev->private;
2263        int d;
2264        struct bio *wbio, *wbio2;
2265
2266        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2267                fix_recovery_read_error(r10_bio);
2268                end_sync_request(r10_bio);
2269                return;
2270        }
2271
2272        /*
2273         * share the pages with the first bio
2274         * and submit the write request
2275         */
2276        d = r10_bio->devs[1].devnum;
2277        wbio = r10_bio->devs[1].bio;
2278        wbio2 = r10_bio->devs[1].repl_bio;
2279        /* Need to test wbio2->bi_end_io before we call
2280         * generic_make_request as if the former is NULL,
2281         * the latter is free to free wbio2.
2282         */
2283        if (wbio2 && !wbio2->bi_end_io)
2284                wbio2 = NULL;
2285        if (wbio->bi_end_io) {
2286                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2287                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2288                generic_make_request(wbio);
2289        }
2290        if (wbio2) {
2291                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2292                md_sync_acct(conf->mirrors[d].replacement->bdev,
2293                             bio_sectors(wbio2));
2294                generic_make_request(wbio2);
2295        }
2296}
2297
2298
2299/*
2300 * Used by fix_read_error() to decay the per rdev read_errors.
2301 * We halve the read error count for every hour that has elapsed
2302 * since the last recorded read error.
2303 *
2304 */
2305static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2306{
2307        struct timespec cur_time_mon;
2308        unsigned long hours_since_last;
2309        unsigned int read_errors = atomic_read(&rdev->read_errors);
2310
2311        ktime_get_ts(&cur_time_mon);
2312
2313        if (rdev->last_read_error.tv_sec == 0 &&
2314            rdev->last_read_error.tv_nsec == 0) {
2315                /* first time we've seen a read error */
2316                rdev->last_read_error = cur_time_mon;
2317                return;
2318        }
2319
2320        hours_since_last = (cur_time_mon.tv_sec -
2321                            rdev->last_read_error.tv_sec) / 3600;
2322
2323        rdev->last_read_error = cur_time_mon;
2324
2325        /*
2326         * if hours_since_last is > the number of bits in read_errors
2327         * just set read errors to 0. We do this to avoid
2328         * overflowing the shift of read_errors by hours_since_last.
2329         */
2330        if (hours_since_last >= 8 * sizeof(read_errors))
2331                atomic_set(&rdev->read_errors, 0);
2332        else
2333                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2334}
2335
2336static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2337                            int sectors, struct page *page, int rw)
2338{
2339        sector_t first_bad;
2340        int bad_sectors;
2341
2342        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2343            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2344                return -1;
2345        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2346                /* success */
2347                return 1;
2348        if (rw == WRITE) {
2349                set_bit(WriteErrorSeen, &rdev->flags);
2350                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2351                        set_bit(MD_RECOVERY_NEEDED,
2352                                &rdev->mddev->recovery);
2353        }
2354        /* need to record an error - either for the block or the device */
2355        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2356                md_error(rdev->mddev, rdev);
2357        return 0;
2358}
2359
2360/*
2361 * This is a kernel thread which:
2362 *
2363 *      1.      Retries failed read operations on working mirrors.
2364 *      2.      Updates the raid superblock when problems encounter.
2365 *      3.      Performs writes following reads for array synchronising.
2366 */
2367
2368static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2369{
2370        int sect = 0; /* Offset from r10_bio->sector */
2371        int sectors = r10_bio->sectors;
2372        struct md_rdev*rdev;
2373        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2374        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2375
2376        /* still own a reference to this rdev, so it cannot
2377         * have been cleared recently.
2378         */
2379        rdev = conf->mirrors[d].rdev;
2380
2381        if (test_bit(Faulty, &rdev->flags))
2382                /* drive has already been failed, just ignore any
2383                   more fix_read_error() attempts */
2384                return;
2385
2386        check_decay_read_errors(mddev, rdev);
2387        atomic_inc(&rdev->read_errors);
2388        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2389                char b[BDEVNAME_SIZE];
2390                bdevname(rdev->bdev, b);
2391
2392                printk(KERN_NOTICE
2393                       "md/raid10:%s: %s: Raid device exceeded "
2394                       "read_error threshold [cur %d:max %d]\n",
2395                       mdname(mddev), b,
2396                       atomic_read(&rdev->read_errors), max_read_errors);
2397                printk(KERN_NOTICE
2398                       "md/raid10:%s: %s: Failing raid device\n",
2399                       mdname(mddev), b);
2400                md_error(mddev, conf->mirrors[d].rdev);
2401                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2402                return;
2403        }
2404
2405        while(sectors) {
2406                int s = sectors;
2407                int sl = r10_bio->read_slot;
2408                int success = 0;
2409                int start;
2410
2411                if (s > (PAGE_SIZE>>9))
2412                        s = PAGE_SIZE >> 9;
2413
2414                rcu_read_lock();
2415                do {
2416                        sector_t first_bad;
2417                        int bad_sectors;
2418
2419                        d = r10_bio->devs[sl].devnum;
2420                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2421                        if (rdev &&
2422                            !test_bit(Unmerged, &rdev->flags) &&
2423                            test_bit(In_sync, &rdev->flags) &&
2424                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2425                                        &first_bad, &bad_sectors) == 0) {
2426                                atomic_inc(&rdev->nr_pending);
2427                                rcu_read_unlock();
2428                                success = sync_page_io(rdev,
2429                                                       r10_bio->devs[sl].addr +
2430                                                       sect,
2431                                                       s<<9,
2432                                                       conf->tmppage, READ, false);
2433                                rdev_dec_pending(rdev, mddev);
2434                                rcu_read_lock();
2435                                if (success)
2436                                        break;
2437                        }
2438                        sl++;
2439                        if (sl == conf->copies)
2440                                sl = 0;
2441                } while (!success && sl != r10_bio->read_slot);
2442                rcu_read_unlock();
2443
2444                if (!success) {
2445                        /* Cannot read from anywhere, just mark the block
2446                         * as bad on the first device to discourage future
2447                         * reads.
2448                         */
2449                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2450                        rdev = conf->mirrors[dn].rdev;
2451
2452                        if (!rdev_set_badblocks(
2453                                    rdev,
2454                                    r10_bio->devs[r10_bio->read_slot].addr
2455                                    + sect,
2456                                    s, 0)) {
2457                                md_error(mddev, rdev);
2458                                r10_bio->devs[r10_bio->read_slot].bio
2459                                        = IO_BLOCKED;
2460                        }
2461                        break;
2462                }
2463
2464                start = sl;
2465                /* write it back and re-read */
2466                rcu_read_lock();
2467                while (sl != r10_bio->read_slot) {
2468                        char b[BDEVNAME_SIZE];
2469
2470                        if (sl==0)
2471                                sl = conf->copies;
2472                        sl--;
2473                        d = r10_bio->devs[sl].devnum;
2474                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2475                        if (!rdev ||
2476                            test_bit(Unmerged, &rdev->flags) ||
2477                            !test_bit(In_sync, &rdev->flags))
2478                                continue;
2479
2480                        atomic_inc(&rdev->nr_pending);
2481                        rcu_read_unlock();
2482                        if (r10_sync_page_io(rdev,
2483                                             r10_bio->devs[sl].addr +
2484                                             sect,
2485                                             s, conf->tmppage, WRITE)
2486                            == 0) {
2487                                /* Well, this device is dead */
2488                                printk(KERN_NOTICE
2489                                       "md/raid10:%s: read correction "
2490                                       "write failed"
2491                                       " (%d sectors at %llu on %s)\n",
2492                                       mdname(mddev), s,
2493                                       (unsigned long long)(
2494                                               sect +
2495                                               choose_data_offset(r10_bio,
2496                                                                  rdev)),
2497                                       bdevname(rdev->bdev, b));
2498                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2499                                       "drive\n",
2500                                       mdname(mddev),
2501                                       bdevname(rdev->bdev, b));
2502                        }
2503                        rdev_dec_pending(rdev, mddev);
2504                        rcu_read_lock();
2505                }
2506                sl = start;
2507                while (sl != r10_bio->read_slot) {
2508                        char b[BDEVNAME_SIZE];
2509
2510                        if (sl==0)
2511                                sl = conf->copies;
2512                        sl--;
2513                        d = r10_bio->devs[sl].devnum;
2514                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2515                        if (!rdev ||
2516                            !test_bit(In_sync, &rdev->flags))
2517                                continue;
2518
2519                        atomic_inc(&rdev->nr_pending);
2520                        rcu_read_unlock();
2521                        switch (r10_sync_page_io(rdev,
2522                                             r10_bio->devs[sl].addr +
2523                                             sect,
2524                                             s, conf->tmppage,
2525                                                 READ)) {
2526                        case 0:
2527                                /* Well, this device is dead */
2528                                printk(KERN_NOTICE
2529                                       "md/raid10:%s: unable to read back "
2530                                       "corrected sectors"
2531                                       " (%d sectors at %llu on %s)\n",
2532                                       mdname(mddev), s,
2533                                       (unsigned long long)(
2534                                               sect +
2535                                               choose_data_offset(r10_bio, rdev)),
2536                                       bdevname(rdev->bdev, b));
2537                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2538                                       "drive\n",
2539                                       mdname(mddev),
2540                                       bdevname(rdev->bdev, b));
2541                                break;
2542                        case 1:
2543                                printk(KERN_INFO
2544                                       "md/raid10:%s: read error corrected"
2545                                       " (%d sectors at %llu on %s)\n",
2546                                       mdname(mddev), s,
2547                                       (unsigned long long)(
2548                                               sect +
2549                                               choose_data_offset(r10_bio, rdev)),
2550                                       bdevname(rdev->bdev, b));
2551                                atomic_add(s, &rdev->corrected_errors);
2552                        }
2553
2554                        rdev_dec_pending(rdev, mddev);
2555                        rcu_read_lock();
2556                }
2557                rcu_read_unlock();
2558
2559                sectors -= s;
2560                sect += s;
2561        }
2562}
2563
2564static int narrow_write_error(struct r10bio *r10_bio, int i)
2565{
2566        struct bio *bio = r10_bio->master_bio;
2567        struct mddev *mddev = r10_bio->mddev;
2568        struct r10conf *conf = mddev->private;
2569        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2570        /* bio has the data to be written to slot 'i' where
2571         * we just recently had a write error.
2572         * We repeatedly clone the bio and trim down to one block,
2573         * then try the write.  Where the write fails we record
2574         * a bad block.
2575         * It is conceivable that the bio doesn't exactly align with
2576         * blocks.  We must handle this.
2577         *
2578         * We currently own a reference to the rdev.
2579         */
2580
2581        int block_sectors;
2582        sector_t sector;
2583        int sectors;
2584        int sect_to_write = r10_bio->sectors;
2585        int ok = 1;
2586
2587        if (rdev->badblocks.shift < 0)
2588                return 0;
2589
2590        block_sectors = 1 << rdev->badblocks.shift;
2591        sector = r10_bio->sector;
2592        sectors = ((r10_bio->sector + block_sectors)
2593                   & ~(sector_t)(block_sectors - 1))
2594                - sector;
2595
2596        while (sect_to_write) {
2597                struct bio *wbio;
2598                if (sectors > sect_to_write)
2599                        sectors = sect_to_write;
2600                /* Write at 'sector' for 'sectors' */
2601                wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2602                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2603                wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2604                                   choose_data_offset(r10_bio, rdev) +
2605                                   (sector - r10_bio->sector));
2606                wbio->bi_bdev = rdev->bdev;
2607                if (submit_bio_wait(WRITE, wbio) == 0)
2608                        /* Failure! */
2609                        ok = rdev_set_badblocks(rdev, sector,
2610                                                sectors, 0)
2611                                && ok;
2612
2613                bio_put(wbio);
2614                sect_to_write -= sectors;
2615                sector += sectors;
2616                sectors = block_sectors;
2617        }
2618        return ok;
2619}
2620
2621static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2622{
2623        int slot = r10_bio->read_slot;
2624        struct bio *bio;
2625        struct r10conf *conf = mddev->private;
2626        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2627        char b[BDEVNAME_SIZE];
2628        unsigned long do_sync;
2629        int max_sectors;
2630
2631        /* we got a read error. Maybe the drive is bad.  Maybe just
2632         * the block and we can fix it.
2633         * We freeze all other IO, and try reading the block from
2634         * other devices.  When we find one, we re-write
2635         * and check it that fixes the read error.
2636         * This is all done synchronously while the array is
2637         * frozen.
2638         */
2639        bio = r10_bio->devs[slot].bio;
2640        bdevname(bio->bi_bdev, b);
2641        bio_put(bio);
2642        r10_bio->devs[slot].bio = NULL;
2643
2644        if (mddev->ro == 0) {
2645                freeze_array(conf, 1);
2646                fix_read_error(conf, mddev, r10_bio);
2647                unfreeze_array(conf);
2648        } else
2649                r10_bio->devs[slot].bio = IO_BLOCKED;
2650
2651        rdev_dec_pending(rdev, mddev);
2652
2653read_more:
2654        rdev = read_balance(conf, r10_bio, &max_sectors);
2655        if (rdev == NULL) {
2656                printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2657                       " read error for block %llu\n",
2658                       mdname(mddev), b,
2659                       (unsigned long long)r10_bio->sector);
2660                raid_end_bio_io(r10_bio);
2661                return;
2662        }
2663
2664        do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2665        slot = r10_bio->read_slot;
2666        printk_ratelimited(
2667                KERN_ERR
2668                "md/raid10:%s: %s: redirecting "
2669                "sector %llu to another mirror\n",
2670                mdname(mddev),
2671                bdevname(rdev->bdev, b),
2672                (unsigned long long)r10_bio->sector);
2673        bio = bio_clone_mddev(r10_bio->master_bio,
2674                              GFP_NOIO, mddev);
2675        bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2676        r10_bio->devs[slot].bio = bio;
2677        r10_bio->devs[slot].rdev = rdev;
2678        bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2679                + choose_data_offset(r10_bio, rdev);
2680        bio->bi_bdev = rdev->bdev;
2681        bio->bi_rw = READ | do_sync;
2682        bio->bi_private = r10_bio;
2683        bio->bi_end_io = raid10_end_read_request;
2684        if (max_sectors < r10_bio->sectors) {
2685                /* Drat - have to split this up more */
2686                struct bio *mbio = r10_bio->master_bio;
2687                int sectors_handled =
2688                        r10_bio->sector + max_sectors
2689                        - mbio->bi_iter.bi_sector;
2690                r10_bio->sectors = max_sectors;
2691                spin_lock_irq(&conf->device_lock);
2692                if (mbio->bi_phys_segments == 0)
2693                        mbio->bi_phys_segments = 2;
2694                else
2695                        mbio->bi_phys_segments++;
2696                spin_unlock_irq(&conf->device_lock);
2697                generic_make_request(bio);
2698
2699                r10_bio = mempool_alloc(conf->r10bio_pool,
2700                                        GFP_NOIO);
2701                r10_bio->master_bio = mbio;
2702                r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2703                r10_bio->state = 0;
2704                set_bit(R10BIO_ReadError,
2705                        &r10_bio->state);
2706                r10_bio->mddev = mddev;
2707                r10_bio->sector = mbio->bi_iter.bi_sector
2708                        + sectors_handled;
2709
2710                goto read_more;
2711        } else
2712                generic_make_request(bio);
2713}
2714
2715static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2716{
2717        /* Some sort of write request has finished and it
2718         * succeeded in writing where we thought there was a
2719         * bad block.  So forget the bad block.
2720         * Or possibly if failed and we need to record
2721         * a bad block.
2722         */
2723        int m;
2724        struct md_rdev *rdev;
2725
2726        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2727            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2728                for (m = 0; m < conf->copies; m++) {
2729                        int dev = r10_bio->devs[m].devnum;
2730                        rdev = conf->mirrors[dev].rdev;
2731                        if (r10_bio->devs[m].bio == NULL)
2732                                continue;
2733                        if (test_bit(BIO_UPTODATE,
2734                                     &r10_bio->devs[m].bio->bi_flags)) {
2735                                rdev_clear_badblocks(
2736                                        rdev,
2737                                        r10_bio->devs[m].addr,
2738                                        r10_bio->sectors, 0);
2739                        } else {
2740                                if (!rdev_set_badblocks(
2741                                            rdev,
2742                                            r10_bio->devs[m].addr,
2743                                            r10_bio->sectors, 0))
2744                                        md_error(conf->mddev, rdev);
2745                        }
2746                        rdev = conf->mirrors[dev].replacement;
2747                        if (r10_bio->devs[m].repl_bio == NULL)
2748                                continue;
2749                        if (test_bit(BIO_UPTODATE,
2750                                     &r10_bio->devs[m].repl_bio->bi_flags)) {
2751                                rdev_clear_badblocks(
2752                                        rdev,
2753                                        r10_bio->devs[m].addr,
2754                                        r10_bio->sectors, 0);
2755                        } else {
2756                                if (!rdev_set_badblocks(
2757                                            rdev,
2758                                            r10_bio->devs[m].addr,
2759                                            r10_bio->sectors, 0))
2760                                        md_error(conf->mddev, rdev);
2761                        }
2762                }
2763                put_buf(r10_bio);
2764        } else {
2765                for (m = 0; m < conf->copies; m++) {
2766                        int dev = r10_bio->devs[m].devnum;
2767                        struct bio *bio = r10_bio->devs[m].bio;
2768                        rdev = conf->mirrors[dev].rdev;
2769                        if (bio == IO_MADE_GOOD) {
2770                                rdev_clear_badblocks(
2771                                        rdev,
2772                                        r10_bio->devs[m].addr,
2773                                        r10_bio->sectors, 0);
2774                                rdev_dec_pending(rdev, conf->mddev);
2775                        } else if (bio != NULL &&
2776                                   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2777                                if (!narrow_write_error(r10_bio, m)) {
2778                                        md_error(conf->mddev, rdev);
2779                                        set_bit(R10BIO_Degraded,
2780                                                &r10_bio->state);
2781                                }
2782                                rdev_dec_pending(rdev, conf->mddev);
2783                        }
2784                        bio = r10_bio->devs[m].repl_bio;
2785                        rdev = conf->mirrors[dev].replacement;
2786                        if (rdev && bio == IO_MADE_GOOD) {
2787                                rdev_clear_badblocks(
2788                                        rdev,
2789                                        r10_bio->devs[m].addr,
2790                                        r10_bio->sectors, 0);
2791                                rdev_dec_pending(rdev, conf->mddev);
2792                        }
2793                }
2794                if (test_bit(R10BIO_WriteError,
2795                             &r10_bio->state))
2796                        close_write(r10_bio);
2797                raid_end_bio_io(r10_bio);
2798        }
2799}
2800
2801static void raid10d(struct md_thread *thread)
2802{
2803        struct mddev *mddev = thread->mddev;
2804        struct r10bio *r10_bio;
2805        unsigned long flags;
2806        struct r10conf *conf = mddev->private;
2807        struct list_head *head = &conf->retry_list;
2808        struct blk_plug plug;
2809
2810        md_check_recovery(mddev);
2811
2812        blk_start_plug(&plug);
2813        for (;;) {
2814
2815                flush_pending_writes(conf);
2816
2817                spin_lock_irqsave(&conf->device_lock, flags);
2818                if (list_empty(head)) {
2819                        spin_unlock_irqrestore(&conf->device_lock, flags);
2820                        break;
2821                }
2822                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2823                list_del(head->prev);
2824                conf->nr_queued--;
2825                spin_unlock_irqrestore(&conf->device_lock, flags);
2826
2827                mddev = r10_bio->mddev;
2828                conf = mddev->private;
2829                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2830                    test_bit(R10BIO_WriteError, &r10_bio->state))
2831                        handle_write_completed(conf, r10_bio);
2832                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2833                        reshape_request_write(mddev, r10_bio);
2834                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2835                        sync_request_write(mddev, r10_bio);
2836                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2837                        recovery_request_write(mddev, r10_bio);
2838                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2839                        handle_read_error(mddev, r10_bio);
2840                else {
2841                        /* just a partial read to be scheduled from a
2842                         * separate context
2843                         */
2844                        int slot = r10_bio->read_slot;
2845                        generic_make_request(r10_bio->devs[slot].bio);
2846                }
2847
2848                cond_resched();
2849                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2850                        md_check_recovery(mddev);
2851        }
2852        blk_finish_plug(&plug);
2853}
2854
2855
2856static int init_resync(struct r10conf *conf)
2857{
2858        int buffs;
2859        int i;
2860
2861        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2862        BUG_ON(conf->r10buf_pool);
2863        conf->have_replacement = 0;
2864        for (i = 0; i < conf->geo.raid_disks; i++)
2865                if (conf->mirrors[i].replacement)
2866                        conf->have_replacement = 1;
2867        conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2868        if (!conf->r10buf_pool)
2869                return -ENOMEM;
2870        conf->next_resync = 0;
2871        return 0;
2872}
2873
2874/*
2875 * perform a "sync" on one "block"
2876 *
2877 * We need to make sure that no normal I/O request - particularly write
2878 * requests - conflict with active sync requests.
2879 *
2880 * This is achieved by tracking pending requests and a 'barrier' concept
2881 * that can be installed to exclude normal IO requests.
2882 *
2883 * Resync and recovery are handled very differently.
2884 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2885 *
2886 * For resync, we iterate over virtual addresses, read all copies,
2887 * and update if there are differences.  If only one copy is live,
2888 * skip it.
2889 * For recovery, we iterate over physical addresses, read a good
2890 * value for each non-in_sync drive, and over-write.
2891 *
2892 * So, for recovery we may have several outstanding complex requests for a
2893 * given address, one for each out-of-sync device.  We model this by allocating
2894 * a number of r10_bio structures, one for each out-of-sync device.
2895 * As we setup these structures, we collect all bio's together into a list
2896 * which we then process collectively to add pages, and then process again
2897 * to pass to generic_make_request.
2898 *
2899 * The r10_bio structures are linked using a borrowed master_bio pointer.
2900 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2901 * has its remaining count decremented to 0, the whole complex operation
2902 * is complete.
2903 *
2904 */
2905
2906static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2907                             int *skipped, int go_faster)
2908{
2909        struct r10conf *conf = mddev->private;
2910        struct r10bio *r10_bio;
2911        struct bio *biolist = NULL, *bio;
2912        sector_t max_sector, nr_sectors;
2913        int i;
2914        int max_sync;
2915        sector_t sync_blocks;
2916        sector_t sectors_skipped = 0;
2917        int chunks_skipped = 0;
2918        sector_t chunk_mask = conf->geo.chunk_mask;
2919
2920        if (!conf->r10buf_pool)
2921                if (init_resync(conf))
2922                        return 0;
2923
2924        /*
2925         * Allow skipping a full rebuild for incremental assembly
2926         * of a clean array, like RAID1 does.
2927         */
2928        if (mddev->bitmap == NULL &&
2929            mddev->recovery_cp == MaxSector &&
2930            mddev->reshape_position == MaxSector &&
2931            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2932            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2933            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2934            conf->fullsync == 0) {
2935                *skipped = 1;
2936                return mddev->dev_sectors - sector_nr;
2937        }
2938
2939 skipped:
2940        max_sector = mddev->dev_sectors;
2941        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2942            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2943                max_sector = mddev->resync_max_sectors;
2944        if (sector_nr >= max_sector) {
2945                /* If we aborted, we need to abort the
2946                 * sync on the 'current' bitmap chucks (there can
2947                 * be several when recovering multiple devices).
2948                 * as we may have started syncing it but not finished.
2949                 * We can find the current address in
2950                 * mddev->curr_resync, but for recovery,
2951                 * we need to convert that to several
2952                 * virtual addresses.
2953                 */
2954                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2955                        end_reshape(conf);
2956                        return 0;
2957                }
2958
2959                if (mddev->curr_resync < max_sector) { /* aborted */
2960                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2961                                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2962                                                &sync_blocks, 1);
2963                        else for (i = 0; i < conf->geo.raid_disks; i++) {
2964                                sector_t sect =
2965                                        raid10_find_virt(conf, mddev->curr_resync, i);
2966                                bitmap_end_sync(mddev->bitmap, sect,
2967                                                &sync_blocks, 1);
2968                        }
2969                } else {
2970                        /* completed sync */
2971                        if ((!mddev->bitmap || conf->fullsync)
2972                            && conf->have_replacement
2973                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2974                                /* Completed a full sync so the replacements
2975                                 * are now fully recovered.
2976                                 */
2977                                for (i = 0; i < conf->geo.raid_disks; i++)
2978                                        if (conf->mirrors[i].replacement)
2979                                                conf->mirrors[i].replacement
2980                                                        ->recovery_offset
2981                                                        = MaxSector;
2982                        }
2983                        conf->fullsync = 0;
2984                }
2985                bitmap_close_sync(mddev->bitmap);
2986                close_sync(conf);
2987                *skipped = 1;
2988                return sectors_skipped;
2989        }
2990
2991        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2992                return reshape_request(mddev, sector_nr, skipped);
2993
2994        if (chunks_skipped >= conf->geo.raid_disks) {
2995                /* if there has been nothing to do on any drive,
2996                 * then there is nothing to do at all..
2997                 */
2998                *skipped = 1;
2999                return (max_sector - sector_nr) + sectors_skipped;
3000        }
3001
3002        if (max_sector > mddev->resync_max)
3003                max_sector = mddev->resync_max; /* Don't do IO beyond here */
3004
3005        /* make sure whole request will fit in a chunk - if chunks
3006         * are meaningful
3007         */
3008        if (conf->geo.near_copies < conf->geo.raid_disks &&
3009            max_sector > (sector_nr | chunk_mask))
3010                max_sector = (sector_nr | chunk_mask) + 1;
3011        /*
3012         * If there is non-resync activity waiting for us then
3013         * put in a delay to throttle resync.
3014         */
3015        if (!go_faster && conf->nr_waiting)
3016                msleep_interruptible(1000);
3017
3018        /* Again, very different code for resync and recovery.
3019         * Both must result in an r10bio with a list of bios that
3020         * have bi_end_io, bi_sector, bi_bdev set,
3021         * and bi_private set to the r10bio.
3022         * For recovery, we may actually create several r10bios
3023         * with 2 bios in each, that correspond to the bios in the main one.
3024         * In this case, the subordinate r10bios link back through a
3025         * borrowed master_bio pointer, and the counter in the master
3026         * includes a ref from each subordinate.
3027         */
3028        /* First, we decide what to do and set ->bi_end_io
3029         * To end_sync_read if we want to read, and
3030         * end_sync_write if we will want to write.
3031         */
3032
3033        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3034        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3035                /* recovery... the complicated one */
3036                int j;
3037                r10_bio = NULL;
3038
3039                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3040                        int still_degraded;
3041                        struct r10bio *rb2;
3042                        sector_t sect;
3043                        int must_sync;
3044                        int any_working;
3045                        struct raid10_info *mirror = &conf->mirrors[i];
3046
3047                        if ((mirror->rdev == NULL ||
3048                             test_bit(In_sync, &mirror->rdev->flags))
3049                            &&
3050                            (mirror->replacement == NULL ||
3051                             test_bit(Faulty,
3052                                      &mirror->replacement->flags)))
3053                                continue;
3054
3055                        still_degraded = 0;
3056                        /* want to reconstruct this device */
3057                        rb2 = r10_bio;
3058                        sect = raid10_find_virt(conf, sector_nr, i);
3059                        if (sect >= mddev->resync_max_sectors) {
3060                                /* last stripe is not complete - don't
3061                                 * try to recover this sector.
3062                                 */
3063                                continue;
3064                        }
3065                        /* Unless we are doing a full sync, or a replacement
3066                         * we only need to recover the block if it is set in
3067                         * the bitmap
3068                         */
3069                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3070                                                      &sync_blocks, 1);
3071                        if (sync_blocks < max_sync)
3072                                max_sync = sync_blocks;
3073                        if (!must_sync &&
3074                            mirror->replacement == NULL &&
3075                            !conf->fullsync) {
3076                                /* yep, skip the sync_blocks here, but don't assume
3077                                 * that there will never be anything to do here
3078                                 */
3079                                chunks_skipped = -1;
3080                                continue;
3081                        }
3082
3083                        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3084                        raise_barrier(conf, rb2 != NULL);
3085                        atomic_set(&r10_bio->remaining, 0);
3086
3087                        r10_bio->master_bio = (struct bio*)rb2;
3088                        if (rb2)
3089                                atomic_inc(&rb2->remaining);
3090                        r10_bio->mddev = mddev;
3091                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3092                        r10_bio->sector = sect;
3093
3094                        raid10_find_phys(conf, r10_bio);
3095
3096                        /* Need to check if the array will still be
3097                         * degraded
3098                         */
3099                        for (j = 0; j < conf->geo.raid_disks; j++)
3100                                if (conf->mirrors[j].rdev == NULL ||
3101                                    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3102                                        still_degraded = 1;
3103                                        break;
3104                                }
3105
3106                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3107                                                      &sync_blocks, still_degraded);
3108
3109                        any_working = 0;
3110                        for (j=0; j<conf->copies;j++) {
3111                                int k;
3112                                int d = r10_bio->devs[j].devnum;
3113                                sector_t from_addr, to_addr;
3114                                struct md_rdev *rdev;
3115                                sector_t sector, first_bad;
3116                                int bad_sectors;
3117                                if (!conf->mirrors[d].rdev ||
3118                                    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3119                                        continue;
3120                                /* This is where we read from */
3121                                any_working = 1;
3122                                rdev = conf->mirrors[d].rdev;
3123                                sector = r10_bio->devs[j].addr;
3124
3125                                if (is_badblock(rdev, sector, max_sync,
3126                                                &first_bad, &bad_sectors)) {
3127                                        if (first_bad > sector)
3128                                                max_sync = first_bad - sector;
3129                                        else {
3130                                                bad_sectors -= (sector
3131                                                                - first_bad);
3132                                                if (max_sync > bad_sectors)
3133                                                        max_sync = bad_sectors;
3134                                                continue;
3135                                        }
3136                                }
3137                                bio = r10_bio->devs[0].bio;
3138                                bio_reset(bio);
3139                                bio->bi_next = biolist;
3140                                biolist = bio;
3141                                bio->bi_private = r10_bio;
3142                                bio->bi_end_io = end_sync_read;
3143                                bio->bi_rw = READ;
3144                                from_addr = r10_bio->devs[j].addr;
3145                                bio->bi_iter.bi_sector = from_addr +
3146                                        rdev->data_offset;
3147                                bio->bi_bdev = rdev->bdev;
3148                                atomic_inc(&rdev->nr_pending);
3149                                /* and we write to 'i' (if not in_sync) */
3150
3151                                for (k=0; k<conf->copies; k++)
3152                                        if (r10_bio->devs[k].devnum == i)
3153                                                break;
3154                                BUG_ON(k == conf->copies);
3155                                to_addr = r10_bio->devs[k].addr;
3156                                r10_bio->devs[0].devnum = d;
3157                                r10_bio->devs[0].addr = from_addr;
3158                                r10_bio->devs[1].devnum = i;
3159                                r10_bio->devs[1].addr = to_addr;
3160
3161                                rdev = mirror->rdev;
3162                                if (!test_bit(In_sync, &rdev->flags)) {
3163                                        bio = r10_bio->devs[1].bio;
3164                                        bio_reset(bio);
3165                                        bio->bi_next = biolist;
3166                                        biolist = bio;
3167                                        bio->bi_private = r10_bio;
3168                                        bio->bi_end_io = end_sync_write;
3169                                        bio->bi_rw = WRITE;
3170                                        bio->bi_iter.bi_sector = to_addr
3171                                                + rdev->data_offset;
3172                                        bio->bi_bdev = rdev->bdev;
3173                                        atomic_inc(&r10_bio->remaining);
3174                                } else
3175                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3176
3177                                /* and maybe write to replacement */
3178                                bio = r10_bio->devs[1].repl_bio;
3179                                if (bio)
3180                                        bio->bi_end_io = NULL;
3181                                rdev = mirror->replacement;
3182                                /* Note: if rdev != NULL, then bio
3183                                 * cannot be NULL as r10buf_pool_alloc will
3184                                 * have allocated it.
3185                                 * So the second test here is pointless.
3186                                 * But it keeps semantic-checkers happy, and
3187                                 * this comment keeps human reviewers
3188                                 * happy.
3189                                 */
3190                                if (rdev == NULL || bio == NULL ||
3191                                    test_bit(Faulty, &rdev->flags))
3192                                        break;
3193                                bio_reset(bio);
3194                                bio->bi_next = biolist;
3195                                biolist = bio;
3196                                bio->bi_private = r10_bio;
3197                                bio->bi_end_io = end_sync_write;
3198                                bio->bi_rw = WRITE;
3199                                bio->bi_iter.bi_sector = to_addr +
3200                                        rdev->data_offset;
3201                                bio->bi_bdev = rdev->bdev;
3202                                atomic_inc(&r10_bio->remaining);
3203                                break;
3204                        }
3205                        if (j == conf->copies) {
3206                                /* Cannot recover, so abort the recovery or
3207                                 * record a bad block */
3208                                if (any_working) {
3209                                        /* problem is that there are bad blocks
3210                                         * on other device(s)
3211                                         */
3212                                        int k;
3213                                        for (k = 0; k < conf->copies; k++)
3214                                                if (r10_bio->devs[k].devnum == i)
3215                                                        break;
3216                                        if (!test_bit(In_sync,
3217                                                      &mirror->rdev->flags)
3218                                            && !rdev_set_badblocks(
3219                                                    mirror->rdev,
3220                                                    r10_bio->devs[k].addr,
3221                                                    max_sync, 0))
3222                                                any_working = 0;
3223                                        if (mirror->replacement &&
3224                                            !rdev_set_badblocks(
3225                                                    mirror->replacement,
3226                                                    r10_bio->devs[k].addr,
3227                                                    max_sync, 0))
3228                                                any_working = 0;
3229                                }
3230                                if (!any_working)  {
3231                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3232                                                              &mddev->recovery))
3233                                                printk(KERN_INFO "md/raid10:%s: insufficient "
3234                                                       "working devices for recovery.\n",
3235                                                       mdname(mddev));
3236                                        mirror->recovery_disabled
3237                                                = mddev->recovery_disabled;
3238                                }
3239                                put_buf(r10_bio);
3240                                if (rb2)
3241                                        atomic_dec(&rb2->remaining);
3242                                r10_bio = rb2;
3243                                break;
3244                        }
3245                }
3246                if (biolist == NULL) {
3247                        while (r10_bio) {
3248                                struct r10bio *rb2 = r10_bio;
3249                                r10_bio = (struct r10bio*) rb2->master_bio;
3250                                rb2->master_bio = NULL;
3251                                put_buf(rb2);
3252                        }
3253                        goto giveup;
3254                }
3255        } else {
3256                /* resync. Schedule a read for every block at this virt offset */
3257                int count = 0;
3258
3259                bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3260
3261                if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3262                                       &sync_blocks, mddev->degraded) &&
3263                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3264                                                 &mddev->recovery)) {
3265                        /* We can skip this block */
3266                        *skipped = 1;
3267                        return sync_blocks + sectors_skipped;
3268                }
3269                if (sync_blocks < max_sync)
3270                        max_sync = sync_blocks;
3271                r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3272
3273                r10_bio->mddev = mddev;
3274                atomic_set(&r10_bio->remaining, 0);
3275                raise_barrier(conf, 0);
3276                conf->next_resync = sector_nr;
3277
3278                r10_bio->master_bio = NULL;
3279                r10_bio->sector = sector_nr;
3280                set_bit(R10BIO_IsSync, &r10_bio->state);
3281                raid10_find_phys(conf, r10_bio);
3282                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3283
3284                for (i = 0; i < conf->copies; i++) {
3285                        int d = r10_bio->devs[i].devnum;
3286                        sector_t first_bad, sector;
3287                        int bad_sectors;
3288
3289                        if (r10_bio->devs[i].repl_bio)
3290                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3291
3292                        bio = r10_bio->devs[i].bio;
3293                        bio_reset(bio);
3294                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
3295                        if (conf->mirrors[d].rdev == NULL ||
3296                            test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3297                                continue;
3298                        sector = r10_bio->devs[i].addr;
3299                        if (is_badblock(conf->mirrors[d].rdev,
3300                                        sector, max_sync,
3301                                        &first_bad, &bad_sectors)) {
3302                                if (first_bad > sector)
3303                                        max_sync = first_bad - sector;
3304                                else {
3305                                        bad_sectors -= (sector - first_bad);
3306                                        if (max_sync > bad_sectors)
3307                                                max_sync = bad_sectors;
3308                                        continue;
3309                                }
3310                        }
3311                        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3312                        atomic_inc(&r10_bio->remaining);
3313                        bio->bi_next = biolist;
3314                        biolist = bio;
3315                        bio->bi_private = r10_bio;
3316                        bio->bi_end_io = end_sync_read;
3317                        bio->bi_rw = READ;
3318                        bio->bi_iter.bi_sector = sector +
3319                                conf->mirrors[d].rdev->data_offset;
3320                        bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3321                        count++;
3322
3323                        if (conf->mirrors[d].replacement == NULL ||
3324                            test_bit(Faulty,
3325                                     &conf->mirrors[d].replacement->flags))
3326                                continue;
3327
3328                        /* Need to set up for writing to the replacement */
3329                        bio = r10_bio->devs[i].repl_bio;
3330                        bio_reset(bio);
3331                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
3332
3333                        sector = r10_bio->devs[i].addr;
3334                        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3335                        bio->bi_next = biolist;
3336                        biolist = bio;
3337                        bio->bi_private = r10_bio;
3338                        bio->bi_end_io = end_sync_write;
3339                        bio->bi_rw = WRITE;
3340                        bio->bi_iter.bi_sector = sector +
3341                                conf->mirrors[d].replacement->data_offset;
3342                        bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3343                        count++;
3344                }
3345
3346                if (count < 2) {
3347                        for (i=0; i<conf->copies; i++) {
3348                                int d = r10_bio->devs[i].devnum;
3349                                if (r10_bio->devs[i].bio->bi_end_io)
3350                                        rdev_dec_pending(conf->mirrors[d].rdev,
3351                                                         mddev);
3352                                if (r10_bio->devs[i].repl_bio &&
3353                                    r10_bio->devs[i].repl_bio->bi_end_io)
3354                                        rdev_dec_pending(
3355                                                conf->mirrors[d].replacement,
3356                                                mddev);
3357                        }
3358                        put_buf(r10_bio);
3359                        biolist = NULL;
3360                        goto giveup;
3361                }
3362        }
3363
3364        nr_sectors = 0;
3365        if (sector_nr + max_sync < max_sector)
3366                max_sector = sector_nr + max_sync;
3367        do {
3368                struct page *page;
3369                int len = PAGE_SIZE;
3370                if (sector_nr + (len>>9) > max_sector)
3371                        len = (max_sector - sector_nr) << 9;
3372                if (len == 0)
3373                        break;
3374                for (bio= biolist ; bio ; bio=bio->bi_next) {
3375                        struct bio *bio2;
3376                        page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3377                        if (bio_add_page(bio, page, len, 0))
3378                                continue;
3379
3380                        /* stop here */
3381                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3382                        for (bio2 = biolist;
3383                             bio2 && bio2 != bio;
3384                             bio2 = bio2->bi_next) {
3385                                /* remove last page from this bio */
3386                                bio2->bi_vcnt--;
3387                                bio2->bi_iter.bi_size -= len;
3388                                bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3389                        }
3390                        goto bio_full;
3391                }
3392                nr_sectors += len>>9;
3393                sector_nr += len>>9;
3394        } while (biolist->bi_vcnt < RESYNC_PAGES);
3395 bio_full:
3396        r10_bio->sectors = nr_sectors;
3397
3398        while (biolist) {
3399                bio = biolist;
3400                biolist = biolist->bi_next;
3401
3402                bio->bi_next = NULL;
3403                r10_bio = bio->bi_private;
3404                r10_bio->sectors = nr_sectors;
3405
3406                if (bio->bi_end_io == end_sync_read) {
3407                        md_sync_acct(bio->bi_bdev, nr_sectors);
3408                        set_bit(BIO_UPTODATE, &bio->bi_flags);
3409                        generic_make_request(bio);
3410                }
3411        }
3412
3413        if (sectors_skipped)
3414                /* pretend they weren't skipped, it makes
3415                 * no important difference in this case
3416                 */
3417                md_done_sync(mddev, sectors_skipped, 1);
3418
3419        return sectors_skipped + nr_sectors;
3420 giveup:
3421        /* There is nowhere to write, so all non-sync
3422         * drives must be failed or in resync, all drives
3423         * have a bad block, so try the next chunk...
3424         */
3425        if (sector_nr + max_sync < max_sector)
3426                max_sector = sector_nr + max_sync;
3427
3428        sectors_skipped += (max_sector - sector_nr);
3429        chunks_skipped ++;
3430        sector_nr = max_sector;
3431        goto skipped;
3432}
3433
3434static sector_t
3435raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3436{
3437        sector_t size;
3438        struct r10conf *conf = mddev->private;
3439
3440        if (!raid_disks)
3441                raid_disks = min(conf->geo.raid_disks,
3442                                 conf->prev.raid_disks);
3443        if (!sectors)
3444                sectors = conf->dev_sectors;
3445
3446        size = sectors >> conf->geo.chunk_shift;
3447        sector_div(size, conf->geo.far_copies);
3448        size = size * raid_disks;
3449        sector_div(size, conf->geo.near_copies);
3450
3451        return size << conf->geo.chunk_shift;
3452}
3453
3454static void calc_sectors(struct r10conf *conf, sector_t size)
3455{
3456        /* Calculate the number of sectors-per-device that will
3457         * actually be used, and set conf->dev_sectors and
3458         * conf->stride
3459         */
3460
3461        size = size >> conf->geo.chunk_shift;
3462        sector_div(size, conf->geo.far_copies);
3463        size = size * conf->geo.raid_disks;
3464        sector_div(size, conf->geo.near_copies);
3465        /* 'size' is now the number of chunks in the array */
3466        /* calculate "used chunks per device" */
3467        size = size * conf->copies;
3468
3469        /* We need to round up when dividing by raid_disks to
3470         * get the stride size.
3471         */
3472        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3473
3474        conf->dev_sectors = size << conf->geo.chunk_shift;
3475
3476        if (conf->geo.far_offset)
3477                conf->geo.stride = 1 << conf->geo.chunk_shift;
3478        else {
3479                sector_div(size, conf->geo.far_copies);
3480                conf->geo.stride = size << conf->geo.chunk_shift;
3481        }
3482}
3483
3484enum geo_type {geo_new, geo_old, geo_start};
3485static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3486{
3487        int nc, fc, fo;
3488        int layout, chunk, disks;
3489        switch (new) {
3490        case geo_old:
3491                layout = mddev->layout;
3492                chunk = mddev->chunk_sectors;
3493                disks = mddev->raid_disks - mddev->delta_disks;
3494                break;
3495        case geo_new:
3496                layout = mddev->new_layout;
3497                chunk = mddev->new_chunk_sectors;
3498                disks = mddev->raid_disks;
3499                break;
3500        default: /* avoid 'may be unused' warnings */
3501        case geo_start: /* new when starting reshape - raid_disks not
3502                         * updated yet. */
3503                layout = mddev->new_layout;
3504                chunk = mddev->new_chunk_sectors;
3505                disks = mddev->raid_disks + mddev->delta_disks;
3506                break;
3507        }
3508        if (layout >> 18)
3509                return -1;
3510        if (chunk < (PAGE_SIZE >> 9) ||
3511            !is_power_of_2(chunk))
3512                return -2;
3513        nc = layout & 255;
3514        fc = (layout >> 8) & 255;
3515        fo = layout & (1<<16);
3516        geo->raid_disks = disks;
3517        geo->near_copies = nc;
3518        geo->far_copies = fc;
3519        geo->far_offset = fo;
3520        geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3521        geo->chunk_mask = chunk - 1;
3522        geo->chunk_shift = ffz(~chunk);
3523        return nc*fc;
3524}
3525
3526static struct r10conf *setup_conf(struct mddev *mddev)
3527{
3528        struct r10conf *conf = NULL;
3529        int err = -EINVAL;
3530        struct geom geo;
3531        int copies;
3532
3533        copies = setup_geo(&geo, mddev, geo_new);
3534
3535        if (copies == -2) {
3536                printk(KERN_ERR "md/raid10:%s: chunk size must be "
3537                       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3538                       mdname(mddev), PAGE_SIZE);
3539                goto out;
3540        }
3541
3542        if (copies < 2 || copies > mddev->raid_disks) {
3543                printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3544                       mdname(mddev), mddev->new_layout);
3545                goto out;
3546        }
3547
3548        err = -ENOMEM;
3549        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3550        if (!conf)
3551                goto out;
3552
3553        /* FIXME calc properly */
3554        conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3555                                                            max(0,-mddev->delta_disks)),
3556                                GFP_KERNEL);
3557        if (!conf->mirrors)
3558                goto out;
3559
3560        conf->tmppage = alloc_page(GFP_KERNEL);
3561        if (!conf->tmppage)
3562                goto out;
3563
3564        conf->geo = geo;
3565        conf->copies = copies;
3566        conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3567                                           r10bio_pool_free, conf);
3568        if (!conf->r10bio_pool)
3569                goto out;
3570
3571        calc_sectors(conf, mddev->dev_sectors);
3572        if (mddev->reshape_position == MaxSector) {
3573                conf->prev = conf->geo;
3574                conf->reshape_progress = MaxSector;
3575        } else {
3576                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3577                        err = -EINVAL;
3578                        goto out;
3579                }
3580                conf->reshape_progress = mddev->reshape_position;
3581                if (conf->prev.far_offset)
3582                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3583                else
3584                        /* far_copies must be 1 */
3585                        conf->prev.stride = conf->dev_sectors;
3586        }
3587        spin_lock_init(&conf->device_lock);
3588        INIT_LIST_HEAD(&conf->retry_list);
3589
3590        spin_lock_init(&conf->resync_lock);
3591        init_waitqueue_head(&conf->wait_barrier);
3592
3593        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3594        if (!conf->thread)
3595                goto out;
3596
3597        conf->mddev = mddev;
3598        return conf;
3599
3600 out:
3601        if (err == -ENOMEM)
3602                printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3603                       mdname(mddev));
3604        if (conf) {
3605                if (conf->r10bio_pool)
3606                        mempool_destroy(conf->r10bio_pool);
3607                kfree(conf->mirrors);
3608                safe_put_page(conf->tmppage);
3609                kfree(conf);
3610        }
3611        return ERR_PTR(err);
3612}
3613
3614static int run(struct mddev *mddev)
3615{
3616        struct r10conf *conf;
3617        int i, disk_idx, chunk_size;
3618        struct raid10_info *disk;
3619        struct md_rdev *rdev;
3620        sector_t size;
3621        sector_t min_offset_diff = 0;
3622        int first = 1;
3623        bool discard_supported = false;
3624
3625        if (mddev->private == NULL) {
3626                conf = setup_conf(mddev);
3627                if (IS_ERR(conf))
3628                        return PTR_ERR(conf);
3629                mddev->private = conf;
3630        }
3631        conf = mddev->private;
3632        if (!conf)
3633                goto out;
3634
3635        mddev->thread = conf->thread;
3636        conf->thread = NULL;
3637
3638        chunk_size = mddev->chunk_sectors << 9;
3639        if (mddev->queue) {
3640                blk_queue_max_discard_sectors(mddev->queue,
3641                                              mddev->chunk_sectors);
3642                blk_queue_max_write_same_sectors(mddev->queue, 0);
3643                blk_queue_io_min(mddev->queue, chunk_size);
3644                if (conf->geo.raid_disks % conf->geo.near_copies)
3645                        blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3646                else
3647                        blk_queue_io_opt(mddev->queue, chunk_size *
3648                                         (conf->geo.raid_disks / conf->geo.near_copies));
3649        }
3650
3651        rdev_for_each(rdev, mddev) {
3652                long long diff;
3653                struct request_queue *q;
3654
3655                disk_idx = rdev->raid_disk;
3656                if (disk_idx < 0)
3657                        continue;
3658                if (disk_idx >= conf->geo.raid_disks &&
3659                    disk_idx >= conf->prev.raid_disks)
3660                        continue;
3661                disk = conf->mirrors + disk_idx;
3662
3663                if (test_bit(Replacement, &rdev->flags)) {
3664                        if (disk->replacement)
3665                                goto out_free_conf;
3666                        disk->replacement = rdev;
3667                } else {
3668                        if (disk->rdev)
3669                                goto out_free_conf;
3670                        disk->rdev = rdev;
3671                }
3672                q = bdev_get_queue(rdev->bdev);
3673                if (q->merge_bvec_fn)
3674                        mddev->merge_check_needed = 1;
3675                diff = (rdev->new_data_offset - rdev->data_offset);
3676                if (!mddev->reshape_backwards)
3677                        diff = -diff;
3678                if (diff < 0)
3679                        diff = 0;
3680                if (first || diff < min_offset_diff)
3681                        min_offset_diff = diff;
3682
3683                if (mddev->gendisk)
3684                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3685                                          rdev->data_offset << 9);
3686
3687                disk->head_position = 0;
3688
3689                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3690                        discard_supported = true;
3691        }
3692
3693        if (mddev->queue) {
3694                if (discard_supported)
3695                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3696                                                mddev->queue);
3697                else
3698                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3699                                                  mddev->queue);
3700        }
3701        /* need to check that every block has at least one working mirror */
3702        if (!enough(conf, -1)) {
3703                printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3704                       mdname(mddev));
3705                goto out_free_conf;
3706        }
3707
3708        if (conf->reshape_progress != MaxSector) {
3709                /* must ensure that shape change is supported */
3710                if (conf->geo.far_copies != 1 &&
3711                    conf->geo.far_offset == 0)
3712                        goto out_free_conf;
3713                if (conf->prev.far_copies != 1 &&
3714                    conf->prev.far_offset == 0)
3715                        goto out_free_conf;
3716        }
3717
3718        mddev->degraded = 0;
3719        for (i = 0;
3720             i < conf->geo.raid_disks
3721                     || i < conf->prev.raid_disks;
3722             i++) {
3723
3724                disk = conf->mirrors + i;
3725
3726                if (!disk->rdev && disk->replacement) {
3727                        /* The replacement is all we have - use it */
3728                        disk->rdev = disk->replacement;
3729                        disk->replacement = NULL;
3730                        clear_bit(Replacement, &disk->rdev->flags);
3731                }
3732
3733                if (!disk->rdev ||
3734                    !test_bit(In_sync, &disk->rdev->flags)) {
3735                        disk->head_position = 0;
3736                        mddev->degraded++;
3737                        if (disk->rdev &&
3738                            disk->rdev->saved_raid_disk < 0)
3739                                conf->fullsync = 1;
3740                }
3741                disk->recovery_disabled = mddev->recovery_disabled - 1;
3742        }
3743
3744        if (mddev->recovery_cp != MaxSector)
3745                printk(KERN_NOTICE "md/raid10:%s: not clean"
3746                       " -- starting background reconstruction\n",
3747                       mdname(mddev));
3748        printk(KERN_INFO
3749                "md/raid10:%s: active with %d out of %d devices\n",
3750                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3751                conf->geo.raid_disks);
3752        /*
3753         * Ok, everything is just fine now
3754         */
3755        mddev->dev_sectors = conf->dev_sectors;
3756        size = raid10_size(mddev, 0, 0);
3757        md_set_array_sectors(mddev, size);
3758        mddev->resync_max_sectors = size;
3759
3760        if (mddev->queue) {
3761                int stripe = conf->geo.raid_disks *
3762                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3763                mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3764                mddev->queue->backing_dev_info.congested_data = mddev;
3765
3766                /* Calculate max read-ahead size.
3767                 * We need to readahead at least twice a whole stripe....
3768                 * maybe...
3769                 */
3770                stripe /= conf->geo.near_copies;
3771                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3772                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3773                blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3774        }
3775
3776
3777        if (md_integrity_register(mddev))
3778                goto out_free_conf;
3779
3780        if (conf->reshape_progress != MaxSector) {
3781                unsigned long before_length, after_length;
3782
3783                before_length = ((1 << conf->prev.chunk_shift) *
3784                                 conf->prev.far_copies);
3785                after_length = ((1 << conf->geo.chunk_shift) *
3786                                conf->geo.far_copies);
3787
3788                if (max(before_length, after_length) > min_offset_diff) {
3789                        /* This cannot work */
3790                        printk("md/raid10: offset difference not enough to continue reshape\n");
3791                        goto out_free_conf;
3792                }
3793                conf->offset_diff = min_offset_diff;
3794
3795                conf->reshape_safe = conf->reshape_progress;
3796                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3797                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3798                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3799                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3800                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3801                                                        "reshape");
3802        }
3803
3804        return 0;
3805
3806out_free_conf:
3807        md_unregister_thread(&mddev->thread);
3808        if (conf->r10bio_pool)
3809                mempool_destroy(conf->r10bio_pool);
3810        safe_put_page(conf->tmppage);
3811        kfree(conf->mirrors);
3812        kfree(conf);
3813        mddev->private = NULL;
3814out:
3815        return -EIO;
3816}
3817
3818static int stop(struct mddev *mddev)
3819{
3820        struct r10conf *conf = mddev->private;
3821
3822        raise_barrier(conf, 0);
3823        lower_barrier(conf);
3824
3825        md_unregister_thread(&mddev->thread);
3826        if (mddev->queue)
3827                /* the unplug fn references 'conf'*/
3828                blk_sync_queue(mddev->queue);
3829
3830        if (conf->r10bio_pool)
3831                mempool_destroy(conf->r10bio_pool);
3832        safe_put_page(conf->tmppage);
3833        kfree(conf->mirrors);
3834        kfree(conf);
3835        mddev->private = NULL;
3836        return 0;
3837}
3838
3839static void raid10_quiesce(struct mddev *mddev, int state)
3840{
3841        struct r10conf *conf = mddev->private;
3842
3843        switch(state) {
3844        case 1:
3845                raise_barrier(conf, 0);
3846                break;
3847        case 0:
3848                lower_barrier(conf);
3849                break;
3850        }
3851}
3852
3853static int raid10_resize(struct mddev *mddev, sector_t sectors)
3854{
3855        /* Resize of 'far' arrays is not supported.
3856         * For 'near' and 'offset' arrays we can set the
3857         * number of sectors used to be an appropriate multiple
3858         * of the chunk size.
3859         * For 'offset', this is far_copies*chunksize.
3860         * For 'near' the multiplier is the LCM of
3861         * near_copies and raid_disks.
3862         * So if far_copies > 1 && !far_offset, fail.
3863         * Else find LCM(raid_disks, near_copy)*far_copies and
3864         * multiply by chunk_size.  Then round to this number.
3865         * This is mostly done by raid10_size()
3866         */
3867        struct r10conf *conf = mddev->private;
3868        sector_t oldsize, size;
3869
3870        if (mddev->reshape_position != MaxSector)
3871                return -EBUSY;
3872
3873        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3874                return -EINVAL;
3875
3876        oldsize = raid10_size(mddev, 0, 0);
3877        size = raid10_size(mddev, sectors, 0);
3878        if (mddev->external_size &&
3879            mddev->array_sectors > size)
3880                return -EINVAL;
3881        if (mddev->bitmap) {
3882                int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3883                if (ret)
3884                        return ret;
3885        }
3886        md_set_array_sectors(mddev, size);
3887        set_capacity(mddev->gendisk, mddev->array_sectors);
3888        revalidate_disk(mddev->gendisk);
3889        if (sectors > mddev->dev_sectors &&
3890            mddev->recovery_cp > oldsize) {
3891                mddev->recovery_cp = oldsize;
3892                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3893        }
3894        calc_sectors(conf, sectors);
3895        mddev->dev_sectors = conf->dev_sectors;
3896        mddev->resync_max_sectors = size;
3897        return 0;
3898}
3899
3900static void *raid10_takeover_raid0(struct mddev *mddev)
3901{
3902        struct md_rdev *rdev;
3903        struct r10conf *conf;
3904
3905        if (mddev->degraded > 0) {
3906                printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3907                       mdname(mddev));
3908                return ERR_PTR(-EINVAL);
3909        }
3910
3911        /* Set new parameters */
3912        mddev->new_level = 10;
3913        /* new layout: far_copies = 1, near_copies = 2 */
3914        mddev->new_layout = (1<<8) + 2;
3915        mddev->new_chunk_sectors = mddev->chunk_sectors;
3916        mddev->delta_disks = mddev->raid_disks;
3917        mddev->raid_disks *= 2;
3918        /* make sure it will be not marked as dirty */
3919        mddev->recovery_cp = MaxSector;
3920
3921        conf = setup_conf(mddev);
3922        if (!IS_ERR(conf)) {
3923                rdev_for_each(rdev, mddev)
3924                        if (rdev->raid_disk >= 0)
3925                                rdev->new_raid_disk = rdev->raid_disk * 2;
3926                conf->barrier = 1;
3927        }
3928
3929        return conf;
3930}
3931
3932static void *raid10_takeover(struct mddev *mddev)
3933{
3934        struct r0conf *raid0_conf;
3935
3936        /* raid10 can take over:
3937         *  raid0 - providing it has only two drives
3938         */
3939        if (mddev->level == 0) {
3940                /* for raid0 takeover only one zone is supported */
3941                raid0_conf = mddev->private;
3942                if (raid0_conf->nr_strip_zones > 1) {
3943                        printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3944                               " with more than one zone.\n",
3945                               mdname(mddev));
3946                        return ERR_PTR(-EINVAL);
3947                }
3948                return raid10_takeover_raid0(mddev);
3949        }
3950        return ERR_PTR(-EINVAL);
3951}
3952
3953static int raid10_check_reshape(struct mddev *mddev)
3954{
3955        /* Called when there is a request to change
3956         * - layout (to ->new_layout)
3957         * - chunk size (to ->new_chunk_sectors)
3958         * - raid_disks (by delta_disks)
3959         * or when trying to restart a reshape that was ongoing.
3960         *
3961         * We need to validate the request and possibly allocate
3962         * space if that might be an issue later.
3963         *
3964         * Currently we reject any reshape of a 'far' mode array,
3965         * allow chunk size to change if new is generally acceptable,
3966         * allow raid_disks to increase, and allow
3967         * a switch between 'near' mode and 'offset' mode.
3968         */
3969        struct r10conf *conf = mddev->private;
3970        struct geom geo;
3971
3972        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3973                return -EINVAL;
3974
3975        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3976                /* mustn't change number of copies */
3977                return -EINVAL;
3978        if (geo.far_copies > 1 && !geo.far_offset)
3979                /* Cannot switch to 'far' mode */
3980                return -EINVAL;
3981
3982        if (mddev->array_sectors & geo.chunk_mask)
3983                        /* not factor of array size */
3984                        return -EINVAL;
3985
3986        if (!enough(conf, -1))
3987                return -EINVAL;
3988
3989        kfree(conf->mirrors_new);
3990        conf->mirrors_new = NULL;
3991        if (mddev->delta_disks > 0) {
3992                /* allocate new 'mirrors' list */
3993                conf->mirrors_new = kzalloc(
3994                        sizeof(struct raid10_info)
3995                        *(mddev->raid_disks +
3996                          mddev->delta_disks),
3997                        GFP_KERNEL);
3998                if (!conf->mirrors_new)
3999                        return -ENOMEM;
4000        }
4001        return 0;
4002}
4003
4004/*
4005 * Need to check if array has failed when deciding whether to:
4006 *  - start an array
4007 *  - remove non-faulty devices
4008 *  - add a spare
4009 *  - allow a reshape
4010 * This determination is simple when no reshape is happening.
4011 * However if there is a reshape, we need to carefully check
4012 * both the before and after sections.
4013 * This is because some failed devices may only affect one
4014 * of the two sections, and some non-in_sync devices may
4015 * be insync in the section most affected by failed devices.
4016 */
4017static int calc_degraded(struct r10conf *conf)
4018{
4019        int degraded, degraded2;
4020        int i;
4021
4022        rcu_read_lock();
4023        degraded = 0;
4024        /* 'prev' section first */
4025        for (i = 0; i < conf->prev.raid_disks; i++) {
4026                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4027                if (!rdev || test_bit(Faulty, &rdev->flags))
4028                        degraded++;
4029                else if (!test_bit(In_sync, &rdev->flags))
4030                        /* When we can reduce the number of devices in
4031                         * an array, this might not contribute to
4032                         * 'degraded'.  It does now.
4033                         */
4034                        degraded++;
4035        }
4036        rcu_read_unlock();
4037        if (conf->geo.raid_disks == conf->prev.raid_disks)
4038                return degraded;
4039        rcu_read_lock();
4040        degraded2 = 0;
4041        for (i = 0; i < conf->geo.raid_disks; i++) {
4042                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4043                if (!rdev || test_bit(Faulty, &rdev->flags))
4044                        degraded2++;
4045                else if (!test_bit(In_sync, &rdev->flags)) {
4046                        /* If reshape is increasing the number of devices,
4047                         * this section has already been recovered, so
4048                         * it doesn't contribute to degraded.
4049                         * else it does.
4050                         */
4051                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4052                                degraded2++;
4053                }
4054        }
4055        rcu_read_unlock();
4056        if (degraded2 > degraded)
4057                return degraded2;
4058        return degraded;
4059}
4060
4061static int raid10_start_reshape(struct mddev *mddev)
4062{
4063        /* A 'reshape' has been requested. This commits
4064         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4065         * This also checks if there are enough spares and adds them
4066         * to the array.
4067         * We currently require enough spares to make the final
4068         * array non-degraded.  We also require that the difference
4069         * between old and new data_offset - on each device - is
4070         * enough that we never risk over-writing.
4071         */
4072
4073        unsigned long before_length, after_length;
4074        sector_t min_offset_diff = 0;
4075        int first = 1;
4076        struct geom new;
4077        struct r10conf *conf = mddev->private;
4078        struct md_rdev *rdev;
4079        int spares = 0;
4080        int ret;
4081
4082        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4083                return -EBUSY;
4084
4085        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4086                return -EINVAL;
4087
4088        before_length = ((1 << conf->prev.chunk_shift) *
4089                         conf->prev.far_copies);
4090        after_length = ((1 << conf->geo.chunk_shift) *
4091                        conf->geo.far_copies);
4092
4093        rdev_for_each(rdev, mddev) {
4094                if (!test_bit(In_sync, &rdev->flags)
4095                    && !test_bit(Faulty, &rdev->flags))
4096                        spares++;
4097                if (rdev->raid_disk >= 0) {
4098                        long long diff = (rdev->new_data_offset
4099                                          - rdev->data_offset);
4100                        if (!mddev->reshape_backwards)
4101                                diff = -diff;
4102                        if (diff < 0)
4103                                diff = 0;
4104                        if (first || diff < min_offset_diff)
4105                                min_offset_diff = diff;
4106                }
4107        }
4108
4109        if (max(before_length, after_length) > min_offset_diff)
4110                return -EINVAL;
4111
4112        if (spares < mddev->delta_disks)
4113                return -EINVAL;
4114
4115        conf->offset_diff = min_offset_diff;
4116        spin_lock_irq(&conf->device_lock);
4117        if (conf->mirrors_new) {
4118                memcpy(conf->mirrors_new, conf->mirrors,
4119                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4120                smp_mb();
4121                kfree(conf->mirrors_old); /* FIXME and elsewhere */
4122                conf->mirrors_old = conf->mirrors;
4123                conf->mirrors = conf->mirrors_new;
4124                conf->mirrors_new = NULL;
4125        }
4126        setup_geo(&conf->geo, mddev, geo_start);
4127        smp_mb();
4128        if (mddev->reshape_backwards) {
4129                sector_t size = raid10_size(mddev, 0, 0);
4130                if (size < mddev->array_sectors) {
4131                        spin_unlock_irq(&conf->device_lock);
4132                        printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4133                               mdname(mddev));
4134                        return -EINVAL;
4135                }
4136                mddev->resync_max_sectors = size;
4137                conf->reshape_progress = size;
4138        } else
4139                conf->reshape_progress = 0;
4140        spin_unlock_irq(&conf->device_lock);
4141
4142        if (mddev->delta_disks && mddev->bitmap) {
4143                ret = bitmap_resize(mddev->bitmap,
4144                                    raid10_size(mddev, 0,
4145                                                conf->geo.raid_disks),
4146                                    0, 0);
4147                if (ret)
4148                        goto abort;
4149        }
4150        if (mddev->delta_disks > 0) {
4151                rdev_for_each(rdev, mddev)
4152                        if (rdev->raid_disk < 0 &&
4153                            !test_bit(Faulty, &rdev->flags)) {
4154                                if (raid10_add_disk(mddev, rdev) == 0) {
4155                                        if (rdev->raid_disk >=
4156                                            conf->prev.raid_disks)
4157                                                set_bit(In_sync, &rdev->flags);
4158                                        else
4159                                                rdev->recovery_offset = 0;
4160
4161                                        if (sysfs_link_rdev(mddev, rdev))
4162                                                /* Failure here  is OK */;
4163                                }
4164                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4165                                   && !test_bit(Faulty, &rdev->flags)) {
4166                                /* This is a spare that was manually added */
4167                                set_bit(In_sync, &rdev->flags);
4168                        }
4169        }
4170        /* When a reshape changes the number of devices,
4171         * ->degraded is measured against the larger of the
4172         * pre and  post numbers.
4173         */
4174        spin_lock_irq(&conf->device_lock);
4175        mddev->degraded = calc_degraded(conf);
4176        spin_unlock_irq(&conf->device_lock);
4177        mddev->raid_disks = conf->geo.raid_disks;
4178        mddev->reshape_position = conf->reshape_progress;
4179        set_bit(MD_CHANGE_DEVS, &mddev->flags);
4180
4181        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4182        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4183        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4184        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4185
4186        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4187                                                "reshape");
4188        if (!mddev->sync_thread) {
4189                ret = -EAGAIN;
4190                goto abort;
4191        }
4192        conf->reshape_checkpoint = jiffies;
4193        md_wakeup_thread(mddev->sync_thread);
4194        md_new_event(mddev);
4195        return 0;
4196
4197abort:
4198        mddev->recovery = 0;
4199        spin_lock_irq(&conf->device_lock);
4200        conf->geo = conf->prev;
4201        mddev->raid_disks = conf->geo.raid_disks;
4202        rdev_for_each(rdev, mddev)
4203                rdev->new_data_offset = rdev->data_offset;
4204        smp_wmb();
4205        conf->reshape_progress = MaxSector;
4206        mddev->reshape_position = MaxSector;
4207        spin_unlock_irq(&conf->device_lock);
4208        return ret;
4209}
4210
4211/* Calculate the last device-address that could contain
4212 * any block from the chunk that includes the array-address 's'
4213 * and report the next address.
4214 * i.e. the address returned will be chunk-aligned and after
4215 * any data that is in the chunk containing 's'.
4216 */
4217static sector_t last_dev_address(sector_t s, struct geom *geo)
4218{
4219        s = (s | geo->chunk_mask) + 1;
4220        s >>= geo->chunk_shift;
4221        s *= geo->near_copies;
4222        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4223        s *= geo->far_copies;
4224        s <<= geo->chunk_shift;
4225        return s;
4226}
4227
4228/* Calculate the first device-address that could contain
4229 * any block from the chunk that includes the array-address 's'.
4230 * This too will be the start of a chunk
4231 */
4232static sector_t first_dev_address(sector_t s, struct geom *geo)
4233{
4234        s >>= geo->chunk_shift;
4235        s *= geo->near_copies;
4236        sector_div(s, geo->raid_disks);
4237        s *= geo->far_copies;
4238        s <<= geo->chunk_shift;
4239        return s;
4240}
4241
4242static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4243                                int *skipped)
4244{
4245        /* We simply copy at most one chunk (smallest of old and new)
4246         * at a time, possibly less if that exceeds RESYNC_PAGES,
4247         * or we hit a bad block or something.
4248         * This might mean we pause for normal IO in the middle of
4249         * a chunk, but that is not a problem was mddev->reshape_position
4250         * can record any location.
4251         *
4252         * If we will want to write to a location that isn't
4253         * yet recorded as 'safe' (i.e. in metadata on disk) then
4254         * we need to flush all reshape requests and update the metadata.
4255         *
4256         * When reshaping forwards (e.g. to more devices), we interpret
4257         * 'safe' as the earliest block which might not have been copied
4258         * down yet.  We divide this by previous stripe size and multiply
4259         * by previous stripe length to get lowest device offset that we
4260         * cannot write to yet.
4261         * We interpret 'sector_nr' as an address that we want to write to.
4262         * From this we use last_device_address() to find where we might
4263         * write to, and first_device_address on the  'safe' position.
4264         * If this 'next' write position is after the 'safe' position,
4265         * we must update the metadata to increase the 'safe' position.
4266         *
4267         * When reshaping backwards, we round in the opposite direction
4268         * and perform the reverse test:  next write position must not be
4269         * less than current safe position.
4270         *
4271         * In all this the minimum difference in data offsets
4272         * (conf->offset_diff - always positive) allows a bit of slack,
4273         * so next can be after 'safe', but not by more than offset_disk
4274         *
4275         * We need to prepare all the bios here before we start any IO
4276         * to ensure the size we choose is acceptable to all devices.
4277         * The means one for each copy for write-out and an extra one for
4278         * read-in.
4279         * We store the read-in bio in ->master_bio and the others in
4280         * ->devs[x].bio and ->devs[x].repl_bio.
4281         */
4282        struct r10conf *conf = mddev->private;
4283        struct r10bio *r10_bio;
4284        sector_t next, safe, last;
4285        int max_sectors;
4286        int nr_sectors;
4287        int s;
4288        struct md_rdev *rdev;
4289        int need_flush = 0;
4290        struct bio *blist;
4291        struct bio *bio, *read_bio;
4292        int sectors_done = 0;
4293
4294        if (sector_nr == 0) {
4295                /* If restarting in the middle, skip the initial sectors */
4296                if (mddev->reshape_backwards &&
4297                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4298                        sector_nr = (raid10_size(mddev, 0, 0)
4299                                     - conf->reshape_progress);
4300                } else if (!mddev->reshape_backwards &&
4301                           conf->reshape_progress > 0)
4302                        sector_nr = conf->reshape_progress;
4303                if (sector_nr) {
4304                        mddev->curr_resync_completed = sector_nr;
4305                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4306                        *skipped = 1;
4307                        return sector_nr;
4308                }
4309        }
4310
4311        /* We don't use sector_nr to track where we are up to
4312         * as that doesn't work well for ->reshape_backwards.
4313         * So just use ->reshape_progress.
4314         */
4315        if (mddev->reshape_backwards) {
4316                /* 'next' is the earliest device address that we might
4317                 * write to for this chunk in the new layout
4318                 */
4319                next = first_dev_address(conf->reshape_progress - 1,
4320                                         &conf->geo);
4321
4322                /* 'safe' is the last device address that we might read from
4323                 * in the old layout after a restart
4324                 */
4325                safe = last_dev_address(conf->reshape_safe - 1,
4326                                        &conf->prev);
4327
4328                if (next + conf->offset_diff < safe)
4329                        need_flush = 1;
4330
4331                last = conf->reshape_progress - 1;
4332                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4333                                               & conf->prev.chunk_mask);
4334                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4335                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4336        } else {
4337                /* 'next' is after the last device address that we
4338                 * might write to for this chunk in the new layout
4339                 */
4340                next = last_dev_address(conf->reshape_progress, &conf->geo);
4341
4342                /* 'safe' is the earliest device address that we might
4343                 * read from in the old layout after a restart
4344                 */
4345                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4346
4347                /* Need to update metadata if 'next' might be beyond 'safe'
4348                 * as that would possibly corrupt data
4349                 */
4350                if (next > safe + conf->offset_diff)
4351                        need_flush = 1;
4352
4353                sector_nr = conf->reshape_progress;
4354                last  = sector_nr | (conf->geo.chunk_mask
4355                                     & conf->prev.chunk_mask);
4356
4357                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4358                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4359        }
4360
4361        if (need_flush ||
4362            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4363                /* Need to update reshape_position in metadata */
4364                wait_barrier(conf);
4365                mddev->reshape_position = conf->reshape_progress;
4366                if (mddev->reshape_backwards)
4367                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4368                                - conf->reshape_progress;
4369                else
4370                        mddev->curr_resync_completed = conf->reshape_progress;
4371                conf->reshape_checkpoint = jiffies;
4372                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4373                md_wakeup_thread(mddev->thread);
4374                wait_event(mddev->sb_wait, mddev->flags == 0 ||
4375                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4376                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4377                        allow_barrier(conf);
4378                        return sectors_done;
4379                }
4380                conf->reshape_safe = mddev->reshape_position;
4381                allow_barrier(conf);
4382        }
4383
4384read_more:
4385        /* Now schedule reads for blocks from sector_nr to last */
4386        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4387        raise_barrier(conf, sectors_done != 0);
4388        atomic_set(&r10_bio->remaining, 0);
4389        r10_bio->mddev = mddev;
4390        r10_bio->sector = sector_nr;
4391        set_bit(R10BIO_IsReshape, &r10_bio->state);
4392        r10_bio->sectors = last - sector_nr + 1;
4393        rdev = read_balance(conf, r10_bio, &max_sectors);
4394        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4395
4396        if (!rdev) {
4397                /* Cannot read from here, so need to record bad blocks
4398                 * on all the target devices.
4399                 */
4400                // FIXME
4401                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4402                return sectors_done;
4403        }
4404
4405        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4406
4407        read_bio->bi_bdev = rdev->bdev;
4408        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4409                               + rdev->data_offset);
4410        read_bio->bi_private = r10_bio;
4411        read_bio->bi_end_io = end_sync_read;
4412        read_bio->bi_rw = READ;
4413        read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4414        read_bio->bi_flags |= 1 << BIO_UPTODATE;
4415        read_bio->bi_vcnt = 0;
4416        read_bio->bi_iter.bi_size = 0;
4417        r10_bio->master_bio = read_bio;
4418        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4419
4420        /* Now find the locations in the new layout */
4421        __raid10_find_phys(&conf->geo, r10_bio);
4422
4423        blist = read_bio;
4424        read_bio->bi_next = NULL;
4425
4426        for (s = 0; s < conf->copies*2; s++) {
4427                struct bio *b;
4428                int d = r10_bio->devs[s/2].devnum;
4429                struct md_rdev *rdev2;
4430                if (s&1) {
4431                        rdev2 = conf->mirrors[d].replacement;
4432                        b = r10_bio->devs[s/2].repl_bio;
4433                } else {
4434                        rdev2 = conf->mirrors[d].rdev;
4435                        b = r10_bio->devs[s/2].bio;
4436                }
4437                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4438                        continue;
4439
4440                bio_reset(b);
4441                b->bi_bdev = rdev2->bdev;
4442                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4443                        rdev2->new_data_offset;
4444                b->bi_private = r10_bio;
4445                b->bi_end_io = end_reshape_write;
4446                b->bi_rw = WRITE;
4447                b->bi_next = blist;
4448                blist = b;
4449        }
4450
4451        /* Now add as many pages as possible to all of these bios. */
4452
4453        nr_sectors = 0;
4454        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4455                struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4456                int len = (max_sectors - s) << 9;
4457                if (len > PAGE_SIZE)
4458                        len = PAGE_SIZE;
4459                for (bio = blist; bio ; bio = bio->bi_next) {
4460                        struct bio *bio2;
4461                        if (bio_add_page(bio, page, len, 0))
4462                                continue;
4463
4464                        /* Didn't fit, must stop */
4465                        for (bio2 = blist;
4466                             bio2 && bio2 != bio;
4467                             bio2 = bio2->bi_next) {
4468                                /* Remove last page from this bio */
4469                                bio2->bi_vcnt--;
4470                                bio2->bi_iter.bi_size -= len;
4471                                bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4472                        }
4473                        goto bio_full;
4474                }
4475                sector_nr += len >> 9;
4476                nr_sectors += len >> 9;
4477        }
4478bio_full:
4479        r10_bio->sectors = nr_sectors;
4480
4481        /* Now submit the read */
4482        md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4483        atomic_inc(&r10_bio->remaining);
4484        read_bio->bi_next = NULL;
4485        generic_make_request(read_bio);
4486        sector_nr += nr_sectors;
4487        sectors_done += nr_sectors;
4488        if (sector_nr <= last)
4489                goto read_more;
4490
4491        /* Now that we have done the whole section we can
4492         * update reshape_progress
4493         */
4494        if (mddev->reshape_backwards)
4495                conf->reshape_progress -= sectors_done;
4496        else
4497                conf->reshape_progress += sectors_done;
4498
4499        return sectors_done;
4500}
4501
4502static void end_reshape_request(struct r10bio *r10_bio);
4503static int handle_reshape_read_error(struct mddev *mddev,
4504                                     struct r10bio *r10_bio);
4505static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4506{
4507        /* Reshape read completed.  Hopefully we have a block
4508         * to write out.
4509         * If we got a read error then we do sync 1-page reads from
4510         * elsewhere until we find the data - or give up.
4511         */
4512        struct r10conf *conf = mddev->private;
4513        int s;
4514
4515        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4516                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4517                        /* Reshape has been aborted */
4518                        md_done_sync(mddev, r10_bio->sectors, 0);
4519                        return;
4520                }
4521
4522        /* We definitely have the data in the pages, schedule the
4523         * writes.
4524         */
4525        atomic_set(&r10_bio->remaining, 1);
4526        for (s = 0; s < conf->copies*2; s++) {
4527                struct bio *b;
4528                int d = r10_bio->devs[s/2].devnum;
4529                struct md_rdev *rdev;
4530                if (s&1) {
4531                        rdev = conf->mirrors[d].replacement;
4532                        b = r10_bio->devs[s/2].repl_bio;
4533                } else {
4534                        rdev = conf->mirrors[d].rdev;
4535                        b = r10_bio->devs[s/2].bio;
4536                }
4537                if (!rdev || test_bit(Faulty, &rdev->flags))
4538                        continue;
4539                atomic_inc(&rdev->nr_pending);
4540                md_sync_acct(b->bi_bdev, r10_bio->sectors);
4541                atomic_inc(&r10_bio->remaining);
4542                b->bi_next = NULL;
4543                generic_make_request(b);
4544        }
4545        end_reshape_request(r10_bio);
4546}
4547
4548static void end_reshape(struct r10conf *conf)
4549{
4550        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4551                return;
4552
4553        spin_lock_irq(&conf->device_lock);
4554        conf->prev = conf->geo;
4555        md_finish_reshape(conf->mddev);
4556        smp_wmb();
4557        conf->reshape_progress = MaxSector;
4558        spin_unlock_irq(&conf->device_lock);
4559
4560        /* read-ahead size must cover two whole stripes, which is
4561         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4562         */
4563        if (conf->mddev->queue) {
4564                int stripe = conf->geo.raid_disks *
4565                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4566                stripe /= conf->geo.near_copies;
4567                if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4568                        conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4569        }
4570        conf->fullsync = 0;
4571}
4572
4573
4574static int handle_reshape_read_error(struct mddev *mddev,
4575                                     struct r10bio *r10_bio)
4576{
4577        /* Use sync reads to get the blocks from somewhere else */
4578        int sectors = r10_bio->sectors;
4579        struct r10conf *conf = mddev->private;
4580        struct {
4581                struct r10bio r10_bio;
4582                struct r10dev devs[conf->copies];
4583        } on_stack;
4584        struct r10bio *r10b = &on_stack.r10_bio;
4585        int slot = 0;
4586        int idx = 0;
4587        struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4588
4589        r10b->sector = r10_bio->sector;
4590        __raid10_find_phys(&conf->prev, r10b);
4591
4592        while (sectors) {
4593                int s = sectors;
4594                int success = 0;
4595                int first_slot = slot;
4596
4597                if (s > (PAGE_SIZE >> 9))
4598                        s = PAGE_SIZE >> 9;
4599
4600                while (!success) {
4601                        int d = r10b->devs[slot].devnum;
4602                        struct md_rdev *rdev = conf->mirrors[d].rdev;
4603                        sector_t addr;
4604                        if (rdev == NULL ||
4605                            test_bit(Faulty, &rdev->flags) ||
4606                            !test_bit(In_sync, &rdev->flags))
4607                                goto failed;
4608
4609                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4610                        success = sync_page_io(rdev,
4611                                               addr,
4612                                               s << 9,
4613                                               bvec[idx].bv_page,
4614                                               READ, false);
4615                        if (success)
4616                                break;
4617                failed:
4618                        slot++;
4619                        if (slot >= conf->copies)
4620                                slot = 0;
4621                        if (slot == first_slot)
4622                                break;
4623                }
4624                if (!success) {
4625                        /* couldn't read this block, must give up */
4626                        set_bit(MD_RECOVERY_INTR,
4627                                &mddev->recovery);
4628                        return -EIO;
4629                }
4630                sectors -= s;
4631                idx++;
4632        }
4633        return 0;
4634}
4635
4636static void end_reshape_write(struct bio *bio, int error)
4637{
4638        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4639        struct r10bio *r10_bio = bio->bi_private;
4640        struct mddev *mddev = r10_bio->mddev;
4641        struct r10conf *conf = mddev->private;
4642        int d;
4643        int slot;
4644        int repl;
4645        struct md_rdev *rdev = NULL;
4646
4647        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4648        if (repl)
4649                rdev = conf->mirrors[d].replacement;
4650        if (!rdev) {
4651                smp_mb();
4652                rdev = conf->mirrors[d].rdev;
4653        }
4654
4655        if (!uptodate) {
4656                /* FIXME should record badblock */
4657                md_error(mddev, rdev);
4658        }
4659
4660        rdev_dec_pending(rdev, mddev);
4661        end_reshape_request(r10_bio);
4662}
4663
4664static void end_reshape_request(struct r10bio *r10_bio)
4665{
4666        if (!atomic_dec_and_test(&r10_bio->remaining))
4667                return;
4668        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4669        bio_put(r10_bio->master_bio);
4670        put_buf(r10_bio);
4671}
4672
4673static void raid10_finish_reshape(struct mddev *mddev)
4674{
4675        struct r10conf *conf = mddev->private;
4676
4677        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4678                return;
4679
4680        if (mddev->delta_disks > 0) {
4681                sector_t size = raid10_size(mddev, 0, 0);
4682                md_set_array_sectors(mddev, size);
4683                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4684                        mddev->recovery_cp = mddev->resync_max_sectors;
4685                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4686                }
4687                mddev->resync_max_sectors = size;
4688                set_capacity(mddev->gendisk, mddev->array_sectors);
4689                revalidate_disk(mddev->gendisk);
4690        } else {
4691                int d;
4692                for (d = conf->geo.raid_disks ;
4693                     d < conf->geo.raid_disks - mddev->delta_disks;
4694                     d++) {
4695                        struct md_rdev *rdev = conf->mirrors[d].rdev;
4696                        if (rdev)
4697                                clear_bit(In_sync, &rdev->flags);
4698                        rdev = conf->mirrors[d].replacement;
4699                        if (rdev)
4700                                clear_bit(In_sync, &rdev->flags);
4701                }
4702        }
4703        mddev->layout = mddev->new_layout;
4704        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4705        mddev->reshape_position = MaxSector;
4706        mddev->delta_disks = 0;
4707        mddev->reshape_backwards = 0;
4708}
4709
4710static struct md_personality raid10_personality =
4711{
4712        .name           = "raid10",
4713        .level          = 10,
4714        .owner          = THIS_MODULE,
4715        .make_request   = make_request,
4716        .run            = run,
4717        .stop           = stop,
4718        .status         = status,
4719        .error_handler  = error,
4720        .hot_add_disk   = raid10_add_disk,
4721        .hot_remove_disk= raid10_remove_disk,
4722        .spare_active   = raid10_spare_active,
4723        .sync_request   = sync_request,
4724        .quiesce        = raid10_quiesce,
4725        .size           = raid10_size,
4726        .resize         = raid10_resize,
4727        .takeover       = raid10_takeover,
4728        .check_reshape  = raid10_check_reshape,
4729        .start_reshape  = raid10_start_reshape,
4730        .finish_reshape = raid10_finish_reshape,
4731};
4732
4733static int __init raid_init(void)
4734{
4735        return register_md_personality(&raid10_personality);
4736}
4737
4738static void raid_exit(void)
4739{
4740        unregister_md_personality(&raid10_personality);
4741}
4742
4743module_init(raid_init);
4744module_exit(raid_exit);
4745MODULE_LICENSE("GPL");
4746MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4747MODULE_ALIAS("md-personality-9"); /* RAID10 */
4748MODULE_ALIAS("md-raid10");
4749MODULE_ALIAS("md-level-10");
4750
4751module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4752