linux/drivers/md/raid5.c
<<
>>
Prefs
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *         Copyright (C) 1999, 2000 Ingo Molnar
   5 *         Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->seq_write is the number of the last batch successfully written.
  31 * conf->seq_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is seq_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
  50#include <linux/module.h>
  51#include <linux/async.h>
  52#include <linux/seq_file.h>
  53#include <linux/cpu.h>
  54#include <linux/slab.h>
  55#include <linux/ratelimit.h>
  56#include <linux/nodemask.h>
  57#include <trace/events/block.h>
  58
  59#include "md.h"
  60#include "raid5.h"
  61#include "raid0.h"
  62#include "bitmap.h"
  63
  64#define cpu_to_group(cpu) cpu_to_node(cpu)
  65#define ANY_GROUP NUMA_NO_NODE
  66
  67static struct workqueue_struct *raid5_wq;
  68/*
  69 * Stripe cache
  70 */
  71
  72#define NR_STRIPES              256
  73#define STRIPE_SIZE             PAGE_SIZE
  74#define STRIPE_SHIFT            (PAGE_SHIFT - 9)
  75#define STRIPE_SECTORS          (STRIPE_SIZE>>9)
  76#define IO_THRESHOLD            1
  77#define BYPASS_THRESHOLD        1
  78#define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
  79#define HASH_MASK               (NR_HASH - 1)
  80#define MAX_STRIPE_BATCH        8
  81
  82static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  83{
  84        int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  85        return &conf->stripe_hashtbl[hash];
  86}
  87
  88static inline int stripe_hash_locks_hash(sector_t sect)
  89{
  90        return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
  91}
  92
  93static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  94{
  95        spin_lock_irq(conf->hash_locks + hash);
  96        spin_lock(&conf->device_lock);
  97}
  98
  99static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
 100{
 101        spin_unlock(&conf->device_lock);
 102        spin_unlock_irq(conf->hash_locks + hash);
 103}
 104
 105static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
 106{
 107        int i;
 108        local_irq_disable();
 109        spin_lock(conf->hash_locks);
 110        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
 111                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
 112        spin_lock(&conf->device_lock);
 113}
 114
 115static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 116{
 117        int i;
 118        spin_unlock(&conf->device_lock);
 119        for (i = NR_STRIPE_HASH_LOCKS; i; i--)
 120                spin_unlock(conf->hash_locks + i - 1);
 121        local_irq_enable();
 122}
 123
 124/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 125 * order without overlap.  There may be several bio's per stripe+device, and
 126 * a bio could span several devices.
 127 * When walking this list for a particular stripe+device, we must never proceed
 128 * beyond a bio that extends past this device, as the next bio might no longer
 129 * be valid.
 130 * This function is used to determine the 'next' bio in the list, given the sector
 131 * of the current stripe+device
 132 */
 133static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
 134{
 135        int sectors = bio_sectors(bio);
 136        if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
 137                return bio->bi_next;
 138        else
 139                return NULL;
 140}
 141
 142/*
 143 * We maintain a biased count of active stripes in the bottom 16 bits of
 144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
 145 */
 146static inline int raid5_bi_processed_stripes(struct bio *bio)
 147{
 148        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 149        return (atomic_read(segments) >> 16) & 0xffff;
 150}
 151
 152static inline int raid5_dec_bi_active_stripes(struct bio *bio)
 153{
 154        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 155        return atomic_sub_return(1, segments) & 0xffff;
 156}
 157
 158static inline void raid5_inc_bi_active_stripes(struct bio *bio)
 159{
 160        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 161        atomic_inc(segments);
 162}
 163
 164static inline void raid5_set_bi_processed_stripes(struct bio *bio,
 165        unsigned int cnt)
 166{
 167        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 168        int old, new;
 169
 170        do {
 171                old = atomic_read(segments);
 172                new = (old & 0xffff) | (cnt << 16);
 173        } while (atomic_cmpxchg(segments, old, new) != old);
 174}
 175
 176static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
 177{
 178        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 179        atomic_set(segments, cnt);
 180}
 181
 182/* Find first data disk in a raid6 stripe */
 183static inline int raid6_d0(struct stripe_head *sh)
 184{
 185        if (sh->ddf_layout)
 186                /* ddf always start from first device */
 187                return 0;
 188        /* md starts just after Q block */
 189        if (sh->qd_idx == sh->disks - 1)
 190                return 0;
 191        else
 192                return sh->qd_idx + 1;
 193}
 194static inline int raid6_next_disk(int disk, int raid_disks)
 195{
 196        disk++;
 197        return (disk < raid_disks) ? disk : 0;
 198}
 199
 200/* When walking through the disks in a raid5, starting at raid6_d0,
 201 * We need to map each disk to a 'slot', where the data disks are slot
 202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 203 * is raid_disks-1.  This help does that mapping.
 204 */
 205static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 206                             int *count, int syndrome_disks)
 207{
 208        int slot = *count;
 209
 210        if (sh->ddf_layout)
 211                (*count)++;
 212        if (idx == sh->pd_idx)
 213                return syndrome_disks;
 214        if (idx == sh->qd_idx)
 215                return syndrome_disks + 1;
 216        if (!sh->ddf_layout)
 217                (*count)++;
 218        return slot;
 219}
 220
 221static void return_io(struct bio *return_bi)
 222{
 223        struct bio *bi = return_bi;
 224        while (bi) {
 225
 226                return_bi = bi->bi_next;
 227                bi->bi_next = NULL;
 228                bi->bi_iter.bi_size = 0;
 229                trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
 230                                         bi, 0);
 231                bio_endio(bi, 0);
 232                bi = return_bi;
 233        }
 234}
 235
 236static void print_raid5_conf (struct r5conf *conf);
 237
 238static int stripe_operations_active(struct stripe_head *sh)
 239{
 240        return sh->check_state || sh->reconstruct_state ||
 241               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 242               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 243}
 244
 245static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 246{
 247        struct r5conf *conf = sh->raid_conf;
 248        struct r5worker_group *group;
 249        int thread_cnt;
 250        int i, cpu = sh->cpu;
 251
 252        if (!cpu_online(cpu)) {
 253                cpu = cpumask_any(cpu_online_mask);
 254                sh->cpu = cpu;
 255        }
 256
 257        if (list_empty(&sh->lru)) {
 258                struct r5worker_group *group;
 259                group = conf->worker_groups + cpu_to_group(cpu);
 260                list_add_tail(&sh->lru, &group->handle_list);
 261                group->stripes_cnt++;
 262                sh->group = group;
 263        }
 264
 265        if (conf->worker_cnt_per_group == 0) {
 266                md_wakeup_thread(conf->mddev->thread);
 267                return;
 268        }
 269
 270        group = conf->worker_groups + cpu_to_group(sh->cpu);
 271
 272        group->workers[0].working = true;
 273        /* at least one worker should run to avoid race */
 274        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 275
 276        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 277        /* wakeup more workers */
 278        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 279                if (group->workers[i].working == false) {
 280                        group->workers[i].working = true;
 281                        queue_work_on(sh->cpu, raid5_wq,
 282                                      &group->workers[i].work);
 283                        thread_cnt--;
 284                }
 285        }
 286}
 287
 288static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 289                              struct list_head *temp_inactive_list)
 290{
 291        BUG_ON(!list_empty(&sh->lru));
 292        BUG_ON(atomic_read(&conf->active_stripes)==0);
 293        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 294                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 295                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 296                        list_add_tail(&sh->lru, &conf->delayed_list);
 297                else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 298                           sh->bm_seq - conf->seq_write > 0)
 299                        list_add_tail(&sh->lru, &conf->bitmap_list);
 300                else {
 301                        clear_bit(STRIPE_DELAYED, &sh->state);
 302                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 303                        if (conf->worker_cnt_per_group == 0) {
 304                                list_add_tail(&sh->lru, &conf->handle_list);
 305                        } else {
 306                                raid5_wakeup_stripe_thread(sh);
 307                                return;
 308                        }
 309                }
 310                md_wakeup_thread(conf->mddev->thread);
 311        } else {
 312                BUG_ON(stripe_operations_active(sh));
 313                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 314                        if (atomic_dec_return(&conf->preread_active_stripes)
 315                            < IO_THRESHOLD)
 316                                md_wakeup_thread(conf->mddev->thread);
 317                atomic_dec(&conf->active_stripes);
 318                if (!test_bit(STRIPE_EXPANDING, &sh->state))
 319                        list_add_tail(&sh->lru, temp_inactive_list);
 320        }
 321}
 322
 323static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 324                             struct list_head *temp_inactive_list)
 325{
 326        if (atomic_dec_and_test(&sh->count))
 327                do_release_stripe(conf, sh, temp_inactive_list);
 328}
 329
 330/*
 331 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 332 *
 333 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 334 * given time. Adding stripes only takes device lock, while deleting stripes
 335 * only takes hash lock.
 336 */
 337static void release_inactive_stripe_list(struct r5conf *conf,
 338                                         struct list_head *temp_inactive_list,
 339                                         int hash)
 340{
 341        int size;
 342        bool do_wakeup = false;
 343        unsigned long flags;
 344
 345        if (hash == NR_STRIPE_HASH_LOCKS) {
 346                size = NR_STRIPE_HASH_LOCKS;
 347                hash = NR_STRIPE_HASH_LOCKS - 1;
 348        } else
 349                size = 1;
 350        while (size) {
 351                struct list_head *list = &temp_inactive_list[size - 1];
 352
 353                /*
 354                 * We don't hold any lock here yet, get_active_stripe() might
 355                 * remove stripes from the list
 356                 */
 357                if (!list_empty_careful(list)) {
 358                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 359                        if (list_empty(conf->inactive_list + hash) &&
 360                            !list_empty(list))
 361                                atomic_dec(&conf->empty_inactive_list_nr);
 362                        list_splice_tail_init(list, conf->inactive_list + hash);
 363                        do_wakeup = true;
 364                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 365                }
 366                size--;
 367                hash--;
 368        }
 369
 370        if (do_wakeup) {
 371                wake_up(&conf->wait_for_stripe);
 372                if (conf->retry_read_aligned)
 373                        md_wakeup_thread(conf->mddev->thread);
 374        }
 375}
 376
 377/* should hold conf->device_lock already */
 378static int release_stripe_list(struct r5conf *conf,
 379                               struct list_head *temp_inactive_list)
 380{
 381        struct stripe_head *sh;
 382        int count = 0;
 383        struct llist_node *head;
 384
 385        head = llist_del_all(&conf->released_stripes);
 386        head = llist_reverse_order(head);
 387        while (head) {
 388                int hash;
 389
 390                sh = llist_entry(head, struct stripe_head, release_list);
 391                head = llist_next(head);
 392                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 393                smp_mb();
 394                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 395                /*
 396                 * Don't worry the bit is set here, because if the bit is set
 397                 * again, the count is always > 1. This is true for
 398                 * STRIPE_ON_UNPLUG_LIST bit too.
 399                 */
 400                hash = sh->hash_lock_index;
 401                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 402                count++;
 403        }
 404
 405        return count;
 406}
 407
 408static void release_stripe(struct stripe_head *sh)
 409{
 410        struct r5conf *conf = sh->raid_conf;
 411        unsigned long flags;
 412        struct list_head list;
 413        int hash;
 414        bool wakeup;
 415
 416        if (unlikely(!conf->mddev->thread) ||
 417                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 418                goto slow_path;
 419        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 420        if (wakeup)
 421                md_wakeup_thread(conf->mddev->thread);
 422        return;
 423slow_path:
 424        local_irq_save(flags);
 425        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 426        if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
 427                INIT_LIST_HEAD(&list);
 428                hash = sh->hash_lock_index;
 429                do_release_stripe(conf, sh, &list);
 430                spin_unlock(&conf->device_lock);
 431                release_inactive_stripe_list(conf, &list, hash);
 432        }
 433        local_irq_restore(flags);
 434}
 435
 436static inline void remove_hash(struct stripe_head *sh)
 437{
 438        pr_debug("remove_hash(), stripe %llu\n",
 439                (unsigned long long)sh->sector);
 440
 441        hlist_del_init(&sh->hash);
 442}
 443
 444static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 445{
 446        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 447
 448        pr_debug("insert_hash(), stripe %llu\n",
 449                (unsigned long long)sh->sector);
 450
 451        hlist_add_head(&sh->hash, hp);
 452}
 453
 454
 455/* find an idle stripe, make sure it is unhashed, and return it. */
 456static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 457{
 458        struct stripe_head *sh = NULL;
 459        struct list_head *first;
 460
 461        if (list_empty(conf->inactive_list + hash))
 462                goto out;
 463        first = (conf->inactive_list + hash)->next;
 464        sh = list_entry(first, struct stripe_head, lru);
 465        list_del_init(first);
 466        remove_hash(sh);
 467        atomic_inc(&conf->active_stripes);
 468        BUG_ON(hash != sh->hash_lock_index);
 469        if (list_empty(conf->inactive_list + hash))
 470                atomic_inc(&conf->empty_inactive_list_nr);
 471out:
 472        return sh;
 473}
 474
 475static void shrink_buffers(struct stripe_head *sh)
 476{
 477        struct page *p;
 478        int i;
 479        int num = sh->raid_conf->pool_size;
 480
 481        for (i = 0; i < num ; i++) {
 482                p = sh->dev[i].page;
 483                if (!p)
 484                        continue;
 485                sh->dev[i].page = NULL;
 486                put_page(p);
 487        }
 488}
 489
 490static int grow_buffers(struct stripe_head *sh)
 491{
 492        int i;
 493        int num = sh->raid_conf->pool_size;
 494
 495        for (i = 0; i < num; i++) {
 496                struct page *page;
 497
 498                if (!(page = alloc_page(GFP_KERNEL))) {
 499                        return 1;
 500                }
 501                sh->dev[i].page = page;
 502        }
 503        return 0;
 504}
 505
 506static void raid5_build_block(struct stripe_head *sh, int i, int previous);
 507static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 508                            struct stripe_head *sh);
 509
 510static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 511{
 512        struct r5conf *conf = sh->raid_conf;
 513        int i, seq;
 514
 515        BUG_ON(atomic_read(&sh->count) != 0);
 516        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 517        BUG_ON(stripe_operations_active(sh));
 518
 519        pr_debug("init_stripe called, stripe %llu\n",
 520                (unsigned long long)sh->sector);
 521
 522        remove_hash(sh);
 523retry:
 524        seq = read_seqcount_begin(&conf->gen_lock);
 525        sh->generation = conf->generation - previous;
 526        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 527        sh->sector = sector;
 528        stripe_set_idx(sector, conf, previous, sh);
 529        sh->state = 0;
 530
 531
 532        for (i = sh->disks; i--; ) {
 533                struct r5dev *dev = &sh->dev[i];
 534
 535                if (dev->toread || dev->read || dev->towrite || dev->written ||
 536                    test_bit(R5_LOCKED, &dev->flags)) {
 537                        printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
 538                               (unsigned long long)sh->sector, i, dev->toread,
 539                               dev->read, dev->towrite, dev->written,
 540                               test_bit(R5_LOCKED, &dev->flags));
 541                        WARN_ON(1);
 542                }
 543                dev->flags = 0;
 544                raid5_build_block(sh, i, previous);
 545        }
 546        if (read_seqcount_retry(&conf->gen_lock, seq))
 547                goto retry;
 548        insert_hash(conf, sh);
 549        sh->cpu = smp_processor_id();
 550}
 551
 552static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 553                                         short generation)
 554{
 555        struct stripe_head *sh;
 556
 557        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 558        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 559                if (sh->sector == sector && sh->generation == generation)
 560                        return sh;
 561        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 562        return NULL;
 563}
 564
 565/*
 566 * Need to check if array has failed when deciding whether to:
 567 *  - start an array
 568 *  - remove non-faulty devices
 569 *  - add a spare
 570 *  - allow a reshape
 571 * This determination is simple when no reshape is happening.
 572 * However if there is a reshape, we need to carefully check
 573 * both the before and after sections.
 574 * This is because some failed devices may only affect one
 575 * of the two sections, and some non-in_sync devices may
 576 * be insync in the section most affected by failed devices.
 577 */
 578static int calc_degraded(struct r5conf *conf)
 579{
 580        int degraded, degraded2;
 581        int i;
 582
 583        rcu_read_lock();
 584        degraded = 0;
 585        for (i = 0; i < conf->previous_raid_disks; i++) {
 586                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 587                if (rdev && test_bit(Faulty, &rdev->flags))
 588                        rdev = rcu_dereference(conf->disks[i].replacement);
 589                if (!rdev || test_bit(Faulty, &rdev->flags))
 590                        degraded++;
 591                else if (test_bit(In_sync, &rdev->flags))
 592                        ;
 593                else
 594                        /* not in-sync or faulty.
 595                         * If the reshape increases the number of devices,
 596                         * this is being recovered by the reshape, so
 597                         * this 'previous' section is not in_sync.
 598                         * If the number of devices is being reduced however,
 599                         * the device can only be part of the array if
 600                         * we are reverting a reshape, so this section will
 601                         * be in-sync.
 602                         */
 603                        if (conf->raid_disks >= conf->previous_raid_disks)
 604                                degraded++;
 605        }
 606        rcu_read_unlock();
 607        if (conf->raid_disks == conf->previous_raid_disks)
 608                return degraded;
 609        rcu_read_lock();
 610        degraded2 = 0;
 611        for (i = 0; i < conf->raid_disks; i++) {
 612                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 613                if (rdev && test_bit(Faulty, &rdev->flags))
 614                        rdev = rcu_dereference(conf->disks[i].replacement);
 615                if (!rdev || test_bit(Faulty, &rdev->flags))
 616                        degraded2++;
 617                else if (test_bit(In_sync, &rdev->flags))
 618                        ;
 619                else
 620                        /* not in-sync or faulty.
 621                         * If reshape increases the number of devices, this
 622                         * section has already been recovered, else it
 623                         * almost certainly hasn't.
 624                         */
 625                        if (conf->raid_disks <= conf->previous_raid_disks)
 626                                degraded2++;
 627        }
 628        rcu_read_unlock();
 629        if (degraded2 > degraded)
 630                return degraded2;
 631        return degraded;
 632}
 633
 634static int has_failed(struct r5conf *conf)
 635{
 636        int degraded;
 637
 638        if (conf->mddev->reshape_position == MaxSector)
 639                return conf->mddev->degraded > conf->max_degraded;
 640
 641        degraded = calc_degraded(conf);
 642        if (degraded > conf->max_degraded)
 643                return 1;
 644        return 0;
 645}
 646
 647static struct stripe_head *
 648get_active_stripe(struct r5conf *conf, sector_t sector,
 649                  int previous, int noblock, int noquiesce)
 650{
 651        struct stripe_head *sh;
 652        int hash = stripe_hash_locks_hash(sector);
 653
 654        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 655
 656        spin_lock_irq(conf->hash_locks + hash);
 657
 658        do {
 659                wait_event_lock_irq(conf->wait_for_stripe,
 660                                    conf->quiesce == 0 || noquiesce,
 661                                    *(conf->hash_locks + hash));
 662                sh = __find_stripe(conf, sector, conf->generation - previous);
 663                if (!sh) {
 664                        if (!conf->inactive_blocked)
 665                                sh = get_free_stripe(conf, hash);
 666                        if (noblock && sh == NULL)
 667                                break;
 668                        if (!sh) {
 669                                conf->inactive_blocked = 1;
 670                                wait_event_lock_irq(
 671                                        conf->wait_for_stripe,
 672                                        !list_empty(conf->inactive_list + hash) &&
 673                                        (atomic_read(&conf->active_stripes)
 674                                         < (conf->max_nr_stripes * 3 / 4)
 675                                         || !conf->inactive_blocked),
 676                                        *(conf->hash_locks + hash));
 677                                conf->inactive_blocked = 0;
 678                        } else {
 679                                init_stripe(sh, sector, previous);
 680                                atomic_inc(&sh->count);
 681                        }
 682                } else {
 683                        spin_lock(&conf->device_lock);
 684                        if (atomic_read(&sh->count)) {
 685                                BUG_ON(!list_empty(&sh->lru)
 686                                    && !test_bit(STRIPE_EXPANDING, &sh->state)
 687                                    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
 688                                        );
 689                        } else {
 690                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 691                                        atomic_inc(&conf->active_stripes);
 692                                BUG_ON(list_empty(&sh->lru) &&
 693                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 694                                list_del_init(&sh->lru);
 695                                if (sh->group) {
 696                                        sh->group->stripes_cnt--;
 697                                        sh->group = NULL;
 698                                }
 699                        }
 700                        atomic_inc(&sh->count);
 701                        spin_unlock(&conf->device_lock);
 702                }
 703        } while (sh == NULL);
 704
 705        spin_unlock_irq(conf->hash_locks + hash);
 706        return sh;
 707}
 708
 709/* Determine if 'data_offset' or 'new_data_offset' should be used
 710 * in this stripe_head.
 711 */
 712static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 713{
 714        sector_t progress = conf->reshape_progress;
 715        /* Need a memory barrier to make sure we see the value
 716         * of conf->generation, or ->data_offset that was set before
 717         * reshape_progress was updated.
 718         */
 719        smp_rmb();
 720        if (progress == MaxSector)
 721                return 0;
 722        if (sh->generation == conf->generation - 1)
 723                return 0;
 724        /* We are in a reshape, and this is a new-generation stripe,
 725         * so use new_data_offset.
 726         */
 727        return 1;
 728}
 729
 730static void
 731raid5_end_read_request(struct bio *bi, int error);
 732static void
 733raid5_end_write_request(struct bio *bi, int error);
 734
 735static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 736{
 737        struct r5conf *conf = sh->raid_conf;
 738        int i, disks = sh->disks;
 739
 740        might_sleep();
 741
 742        for (i = disks; i--; ) {
 743                int rw;
 744                int replace_only = 0;
 745                struct bio *bi, *rbi;
 746                struct md_rdev *rdev, *rrdev = NULL;
 747                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 748                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
 749                                rw = WRITE_FUA;
 750                        else
 751                                rw = WRITE;
 752                        if (test_bit(R5_Discard, &sh->dev[i].flags))
 753                                rw |= REQ_DISCARD;
 754                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
 755                        rw = READ;
 756                else if (test_and_clear_bit(R5_WantReplace,
 757                                            &sh->dev[i].flags)) {
 758                        rw = WRITE;
 759                        replace_only = 1;
 760                } else
 761                        continue;
 762                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
 763                        rw |= REQ_SYNC;
 764
 765                bi = &sh->dev[i].req;
 766                rbi = &sh->dev[i].rreq; /* For writing to replacement */
 767
 768                rcu_read_lock();
 769                rrdev = rcu_dereference(conf->disks[i].replacement);
 770                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
 771                rdev = rcu_dereference(conf->disks[i].rdev);
 772                if (!rdev) {
 773                        rdev = rrdev;
 774                        rrdev = NULL;
 775                }
 776                if (rw & WRITE) {
 777                        if (replace_only)
 778                                rdev = NULL;
 779                        if (rdev == rrdev)
 780                                /* We raced and saw duplicates */
 781                                rrdev = NULL;
 782                } else {
 783                        if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
 784                                rdev = rrdev;
 785                        rrdev = NULL;
 786                }
 787
 788                if (rdev && test_bit(Faulty, &rdev->flags))
 789                        rdev = NULL;
 790                if (rdev)
 791                        atomic_inc(&rdev->nr_pending);
 792                if (rrdev && test_bit(Faulty, &rrdev->flags))
 793                        rrdev = NULL;
 794                if (rrdev)
 795                        atomic_inc(&rrdev->nr_pending);
 796                rcu_read_unlock();
 797
 798                /* We have already checked bad blocks for reads.  Now
 799                 * need to check for writes.  We never accept write errors
 800                 * on the replacement, so we don't to check rrdev.
 801                 */
 802                while ((rw & WRITE) && rdev &&
 803                       test_bit(WriteErrorSeen, &rdev->flags)) {
 804                        sector_t first_bad;
 805                        int bad_sectors;
 806                        int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
 807                                              &first_bad, &bad_sectors);
 808                        if (!bad)
 809                                break;
 810
 811                        if (bad < 0) {
 812                                set_bit(BlockedBadBlocks, &rdev->flags);
 813                                if (!conf->mddev->external &&
 814                                    conf->mddev->flags) {
 815                                        /* It is very unlikely, but we might
 816                                         * still need to write out the
 817                                         * bad block log - better give it
 818                                         * a chance*/
 819                                        md_check_recovery(conf->mddev);
 820                                }
 821                                /*
 822                                 * Because md_wait_for_blocked_rdev
 823                                 * will dec nr_pending, we must
 824                                 * increment it first.
 825                                 */
 826                                atomic_inc(&rdev->nr_pending);
 827                                md_wait_for_blocked_rdev(rdev, conf->mddev);
 828                        } else {
 829                                /* Acknowledged bad block - skip the write */
 830                                rdev_dec_pending(rdev, conf->mddev);
 831                                rdev = NULL;
 832                        }
 833                }
 834
 835                if (rdev) {
 836                        if (s->syncing || s->expanding || s->expanded
 837                            || s->replacing)
 838                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
 839
 840                        set_bit(STRIPE_IO_STARTED, &sh->state);
 841
 842                        bio_reset(bi);
 843                        bi->bi_bdev = rdev->bdev;
 844                        bi->bi_rw = rw;
 845                        bi->bi_end_io = (rw & WRITE)
 846                                ? raid5_end_write_request
 847                                : raid5_end_read_request;
 848                        bi->bi_private = sh;
 849
 850                        pr_debug("%s: for %llu schedule op %ld on disc %d\n",
 851                                __func__, (unsigned long long)sh->sector,
 852                                bi->bi_rw, i);
 853                        atomic_inc(&sh->count);
 854                        if (use_new_offset(conf, sh))
 855                                bi->bi_iter.bi_sector = (sh->sector
 856                                                 + rdev->new_data_offset);
 857                        else
 858                                bi->bi_iter.bi_sector = (sh->sector
 859                                                 + rdev->data_offset);
 860                        if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
 861                                bi->bi_rw |= REQ_NOMERGE;
 862
 863                        bi->bi_vcnt = 1;
 864                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
 865                        bi->bi_io_vec[0].bv_offset = 0;
 866                        bi->bi_iter.bi_size = STRIPE_SIZE;
 867                        /*
 868                         * If this is discard request, set bi_vcnt 0. We don't
 869                         * want to confuse SCSI because SCSI will replace payload
 870                         */
 871                        if (rw & REQ_DISCARD)
 872                                bi->bi_vcnt = 0;
 873                        if (rrdev)
 874                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
 875
 876                        if (conf->mddev->gendisk)
 877                                trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
 878                                                      bi, disk_devt(conf->mddev->gendisk),
 879                                                      sh->dev[i].sector);
 880                        generic_make_request(bi);
 881                }
 882                if (rrdev) {
 883                        if (s->syncing || s->expanding || s->expanded
 884                            || s->replacing)
 885                                md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
 886
 887                        set_bit(STRIPE_IO_STARTED, &sh->state);
 888
 889                        bio_reset(rbi);
 890                        rbi->bi_bdev = rrdev->bdev;
 891                        rbi->bi_rw = rw;
 892                        BUG_ON(!(rw & WRITE));
 893                        rbi->bi_end_io = raid5_end_write_request;
 894                        rbi->bi_private = sh;
 895
 896                        pr_debug("%s: for %llu schedule op %ld on "
 897                                 "replacement disc %d\n",
 898                                __func__, (unsigned long long)sh->sector,
 899                                rbi->bi_rw, i);
 900                        atomic_inc(&sh->count);
 901                        if (use_new_offset(conf, sh))
 902                                rbi->bi_iter.bi_sector = (sh->sector
 903                                                  + rrdev->new_data_offset);
 904                        else
 905                                rbi->bi_iter.bi_sector = (sh->sector
 906                                                  + rrdev->data_offset);
 907                        rbi->bi_vcnt = 1;
 908                        rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
 909                        rbi->bi_io_vec[0].bv_offset = 0;
 910                        rbi->bi_iter.bi_size = STRIPE_SIZE;
 911                        /*
 912                         * If this is discard request, set bi_vcnt 0. We don't
 913                         * want to confuse SCSI because SCSI will replace payload
 914                         */
 915                        if (rw & REQ_DISCARD)
 916                                rbi->bi_vcnt = 0;
 917                        if (conf->mddev->gendisk)
 918                                trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
 919                                                      rbi, disk_devt(conf->mddev->gendisk),
 920                                                      sh->dev[i].sector);
 921                        generic_make_request(rbi);
 922                }
 923                if (!rdev && !rrdev) {
 924                        if (rw & WRITE)
 925                                set_bit(STRIPE_DEGRADED, &sh->state);
 926                        pr_debug("skip op %ld on disc %d for sector %llu\n",
 927                                bi->bi_rw, i, (unsigned long long)sh->sector);
 928                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
 929                        set_bit(STRIPE_HANDLE, &sh->state);
 930                }
 931        }
 932}
 933
 934static struct dma_async_tx_descriptor *
 935async_copy_data(int frombio, struct bio *bio, struct page *page,
 936        sector_t sector, struct dma_async_tx_descriptor *tx)
 937{
 938        struct bio_vec bvl;
 939        struct bvec_iter iter;
 940        struct page *bio_page;
 941        int page_offset;
 942        struct async_submit_ctl submit;
 943        enum async_tx_flags flags = 0;
 944
 945        if (bio->bi_iter.bi_sector >= sector)
 946                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
 947        else
 948                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
 949
 950        if (frombio)
 951                flags |= ASYNC_TX_FENCE;
 952        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
 953
 954        bio_for_each_segment(bvl, bio, iter) {
 955                int len = bvl.bv_len;
 956                int clen;
 957                int b_offset = 0;
 958
 959                if (page_offset < 0) {
 960                        b_offset = -page_offset;
 961                        page_offset += b_offset;
 962                        len -= b_offset;
 963                }
 964
 965                if (len > 0 && page_offset + len > STRIPE_SIZE)
 966                        clen = STRIPE_SIZE - page_offset;
 967                else
 968                        clen = len;
 969
 970                if (clen > 0) {
 971                        b_offset += bvl.bv_offset;
 972                        bio_page = bvl.bv_page;
 973                        if (frombio)
 974                                tx = async_memcpy(page, bio_page, page_offset,
 975                                                  b_offset, clen, &submit);
 976                        else
 977                                tx = async_memcpy(bio_page, page, b_offset,
 978                                                  page_offset, clen, &submit);
 979                }
 980                /* chain the operations */
 981                submit.depend_tx = tx;
 982
 983                if (clen < len) /* hit end of page */
 984                        break;
 985                page_offset +=  len;
 986        }
 987
 988        return tx;
 989}
 990
 991static void ops_complete_biofill(void *stripe_head_ref)
 992{
 993        struct stripe_head *sh = stripe_head_ref;
 994        struct bio *return_bi = NULL;
 995        int i;
 996
 997        pr_debug("%s: stripe %llu\n", __func__,
 998                (unsigned long long)sh->sector);
 999
1000        /* clear completed biofills */
1001        for (i = sh->disks; i--; ) {
1002                struct r5dev *dev = &sh->dev[i];
1003
1004                /* acknowledge completion of a biofill operation */
1005                /* and check if we need to reply to a read request,
1006                 * new R5_Wantfill requests are held off until
1007                 * !STRIPE_BIOFILL_RUN
1008                 */
1009                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1010                        struct bio *rbi, *rbi2;
1011
1012                        BUG_ON(!dev->read);
1013                        rbi = dev->read;
1014                        dev->read = NULL;
1015                        while (rbi && rbi->bi_iter.bi_sector <
1016                                dev->sector + STRIPE_SECTORS) {
1017                                rbi2 = r5_next_bio(rbi, dev->sector);
1018                                if (!raid5_dec_bi_active_stripes(rbi)) {
1019                                        rbi->bi_next = return_bi;
1020                                        return_bi = rbi;
1021                                }
1022                                rbi = rbi2;
1023                        }
1024                }
1025        }
1026        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1027
1028        return_io(return_bi);
1029
1030        set_bit(STRIPE_HANDLE, &sh->state);
1031        release_stripe(sh);
1032}
1033
1034static void ops_run_biofill(struct stripe_head *sh)
1035{
1036        struct dma_async_tx_descriptor *tx = NULL;
1037        struct async_submit_ctl submit;
1038        int i;
1039
1040        pr_debug("%s: stripe %llu\n", __func__,
1041                (unsigned long long)sh->sector);
1042
1043        for (i = sh->disks; i--; ) {
1044                struct r5dev *dev = &sh->dev[i];
1045                if (test_bit(R5_Wantfill, &dev->flags)) {
1046                        struct bio *rbi;
1047                        spin_lock_irq(&sh->stripe_lock);
1048                        dev->read = rbi = dev->toread;
1049                        dev->toread = NULL;
1050                        spin_unlock_irq(&sh->stripe_lock);
1051                        while (rbi && rbi->bi_iter.bi_sector <
1052                                dev->sector + STRIPE_SECTORS) {
1053                                tx = async_copy_data(0, rbi, dev->page,
1054                                        dev->sector, tx);
1055                                rbi = r5_next_bio(rbi, dev->sector);
1056                        }
1057                }
1058        }
1059
1060        atomic_inc(&sh->count);
1061        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1062        async_trigger_callback(&submit);
1063}
1064
1065static void mark_target_uptodate(struct stripe_head *sh, int target)
1066{
1067        struct r5dev *tgt;
1068
1069        if (target < 0)
1070                return;
1071
1072        tgt = &sh->dev[target];
1073        set_bit(R5_UPTODATE, &tgt->flags);
1074        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1075        clear_bit(R5_Wantcompute, &tgt->flags);
1076}
1077
1078static void ops_complete_compute(void *stripe_head_ref)
1079{
1080        struct stripe_head *sh = stripe_head_ref;
1081
1082        pr_debug("%s: stripe %llu\n", __func__,
1083                (unsigned long long)sh->sector);
1084
1085        /* mark the computed target(s) as uptodate */
1086        mark_target_uptodate(sh, sh->ops.target);
1087        mark_target_uptodate(sh, sh->ops.target2);
1088
1089        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1090        if (sh->check_state == check_state_compute_run)
1091                sh->check_state = check_state_compute_result;
1092        set_bit(STRIPE_HANDLE, &sh->state);
1093        release_stripe(sh);
1094}
1095
1096/* return a pointer to the address conversion region of the scribble buffer */
1097static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1098                                 struct raid5_percpu *percpu)
1099{
1100        return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1101}
1102
1103static struct dma_async_tx_descriptor *
1104ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1105{
1106        int disks = sh->disks;
1107        struct page **xor_srcs = percpu->scribble;
1108        int target = sh->ops.target;
1109        struct r5dev *tgt = &sh->dev[target];
1110        struct page *xor_dest = tgt->page;
1111        int count = 0;
1112        struct dma_async_tx_descriptor *tx;
1113        struct async_submit_ctl submit;
1114        int i;
1115
1116        pr_debug("%s: stripe %llu block: %d\n",
1117                __func__, (unsigned long long)sh->sector, target);
1118        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1119
1120        for (i = disks; i--; )
1121                if (i != target)
1122                        xor_srcs[count++] = sh->dev[i].page;
1123
1124        atomic_inc(&sh->count);
1125
1126        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1127                          ops_complete_compute, sh, to_addr_conv(sh, percpu));
1128        if (unlikely(count == 1))
1129                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1130        else
1131                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1132
1133        return tx;
1134}
1135
1136/* set_syndrome_sources - populate source buffers for gen_syndrome
1137 * @srcs - (struct page *) array of size sh->disks
1138 * @sh - stripe_head to parse
1139 *
1140 * Populates srcs in proper layout order for the stripe and returns the
1141 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1142 * destination buffer is recorded in srcs[count] and the Q destination
1143 * is recorded in srcs[count+1]].
1144 */
1145static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1146{
1147        int disks = sh->disks;
1148        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1149        int d0_idx = raid6_d0(sh);
1150        int count;
1151        int i;
1152
1153        for (i = 0; i < disks; i++)
1154                srcs[i] = NULL;
1155
1156        count = 0;
1157        i = d0_idx;
1158        do {
1159                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1160
1161                srcs[slot] = sh->dev[i].page;
1162                i = raid6_next_disk(i, disks);
1163        } while (i != d0_idx);
1164
1165        return syndrome_disks;
1166}
1167
1168static struct dma_async_tx_descriptor *
1169ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1170{
1171        int disks = sh->disks;
1172        struct page **blocks = percpu->scribble;
1173        int target;
1174        int qd_idx = sh->qd_idx;
1175        struct dma_async_tx_descriptor *tx;
1176        struct async_submit_ctl submit;
1177        struct r5dev *tgt;
1178        struct page *dest;
1179        int i;
1180        int count;
1181
1182        if (sh->ops.target < 0)
1183                target = sh->ops.target2;
1184        else if (sh->ops.target2 < 0)
1185                target = sh->ops.target;
1186        else
1187                /* we should only have one valid target */
1188                BUG();
1189        BUG_ON(target < 0);
1190        pr_debug("%s: stripe %llu block: %d\n",
1191                __func__, (unsigned long long)sh->sector, target);
1192
1193        tgt = &sh->dev[target];
1194        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1195        dest = tgt->page;
1196
1197        atomic_inc(&sh->count);
1198
1199        if (target == qd_idx) {
1200                count = set_syndrome_sources(blocks, sh);
1201                blocks[count] = NULL; /* regenerating p is not necessary */
1202                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1203                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1204                                  ops_complete_compute, sh,
1205                                  to_addr_conv(sh, percpu));
1206                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1207        } else {
1208                /* Compute any data- or p-drive using XOR */
1209                count = 0;
1210                for (i = disks; i-- ; ) {
1211                        if (i == target || i == qd_idx)
1212                                continue;
1213                        blocks[count++] = sh->dev[i].page;
1214                }
1215
1216                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1217                                  NULL, ops_complete_compute, sh,
1218                                  to_addr_conv(sh, percpu));
1219                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1220        }
1221
1222        return tx;
1223}
1224
1225static struct dma_async_tx_descriptor *
1226ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1227{
1228        int i, count, disks = sh->disks;
1229        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1230        int d0_idx = raid6_d0(sh);
1231        int faila = -1, failb = -1;
1232        int target = sh->ops.target;
1233        int target2 = sh->ops.target2;
1234        struct r5dev *tgt = &sh->dev[target];
1235        struct r5dev *tgt2 = &sh->dev[target2];
1236        struct dma_async_tx_descriptor *tx;
1237        struct page **blocks = percpu->scribble;
1238        struct async_submit_ctl submit;
1239
1240        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1241                 __func__, (unsigned long long)sh->sector, target, target2);
1242        BUG_ON(target < 0 || target2 < 0);
1243        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1245
1246        /* we need to open-code set_syndrome_sources to handle the
1247         * slot number conversion for 'faila' and 'failb'
1248         */
1249        for (i = 0; i < disks ; i++)
1250                blocks[i] = NULL;
1251        count = 0;
1252        i = d0_idx;
1253        do {
1254                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1255
1256                blocks[slot] = sh->dev[i].page;
1257
1258                if (i == target)
1259                        faila = slot;
1260                if (i == target2)
1261                        failb = slot;
1262                i = raid6_next_disk(i, disks);
1263        } while (i != d0_idx);
1264
1265        BUG_ON(faila == failb);
1266        if (failb < faila)
1267                swap(faila, failb);
1268        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1269                 __func__, (unsigned long long)sh->sector, faila, failb);
1270
1271        atomic_inc(&sh->count);
1272
1273        if (failb == syndrome_disks+1) {
1274                /* Q disk is one of the missing disks */
1275                if (faila == syndrome_disks) {
1276                        /* Missing P+Q, just recompute */
1277                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1278                                          ops_complete_compute, sh,
1279                                          to_addr_conv(sh, percpu));
1280                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1281                                                  STRIPE_SIZE, &submit);
1282                } else {
1283                        struct page *dest;
1284                        int data_target;
1285                        int qd_idx = sh->qd_idx;
1286
1287                        /* Missing D+Q: recompute D from P, then recompute Q */
1288                        if (target == qd_idx)
1289                                data_target = target2;
1290                        else
1291                                data_target = target;
1292
1293                        count = 0;
1294                        for (i = disks; i-- ; ) {
1295                                if (i == data_target || i == qd_idx)
1296                                        continue;
1297                                blocks[count++] = sh->dev[i].page;
1298                        }
1299                        dest = sh->dev[data_target].page;
1300                        init_async_submit(&submit,
1301                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1302                                          NULL, NULL, NULL,
1303                                          to_addr_conv(sh, percpu));
1304                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1305                                       &submit);
1306
1307                        count = set_syndrome_sources(blocks, sh);
1308                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1309                                          ops_complete_compute, sh,
1310                                          to_addr_conv(sh, percpu));
1311                        return async_gen_syndrome(blocks, 0, count+2,
1312                                                  STRIPE_SIZE, &submit);
1313                }
1314        } else {
1315                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1316                                  ops_complete_compute, sh,
1317                                  to_addr_conv(sh, percpu));
1318                if (failb == syndrome_disks) {
1319                        /* We're missing D+P. */
1320                        return async_raid6_datap_recov(syndrome_disks+2,
1321                                                       STRIPE_SIZE, faila,
1322                                                       blocks, &submit);
1323                } else {
1324                        /* We're missing D+D. */
1325                        return async_raid6_2data_recov(syndrome_disks+2,
1326                                                       STRIPE_SIZE, faila, failb,
1327                                                       blocks, &submit);
1328                }
1329        }
1330}
1331
1332
1333static void ops_complete_prexor(void *stripe_head_ref)
1334{
1335        struct stripe_head *sh = stripe_head_ref;
1336
1337        pr_debug("%s: stripe %llu\n", __func__,
1338                (unsigned long long)sh->sector);
1339}
1340
1341static struct dma_async_tx_descriptor *
1342ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1343               struct dma_async_tx_descriptor *tx)
1344{
1345        int disks = sh->disks;
1346        struct page **xor_srcs = percpu->scribble;
1347        int count = 0, pd_idx = sh->pd_idx, i;
1348        struct async_submit_ctl submit;
1349
1350        /* existing parity data subtracted */
1351        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1352
1353        pr_debug("%s: stripe %llu\n", __func__,
1354                (unsigned long long)sh->sector);
1355
1356        for (i = disks; i--; ) {
1357                struct r5dev *dev = &sh->dev[i];
1358                /* Only process blocks that are known to be uptodate */
1359                if (test_bit(R5_Wantdrain, &dev->flags))
1360                        xor_srcs[count++] = dev->page;
1361        }
1362
1363        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1364                          ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1365        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1366
1367        return tx;
1368}
1369
1370static struct dma_async_tx_descriptor *
1371ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1372{
1373        int disks = sh->disks;
1374        int i;
1375
1376        pr_debug("%s: stripe %llu\n", __func__,
1377                (unsigned long long)sh->sector);
1378
1379        for (i = disks; i--; ) {
1380                struct r5dev *dev = &sh->dev[i];
1381                struct bio *chosen;
1382
1383                if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1384                        struct bio *wbi;
1385
1386                        spin_lock_irq(&sh->stripe_lock);
1387                        chosen = dev->towrite;
1388                        dev->towrite = NULL;
1389                        BUG_ON(dev->written);
1390                        wbi = dev->written = chosen;
1391                        spin_unlock_irq(&sh->stripe_lock);
1392
1393                        while (wbi && wbi->bi_iter.bi_sector <
1394                                dev->sector + STRIPE_SECTORS) {
1395                                if (wbi->bi_rw & REQ_FUA)
1396                                        set_bit(R5_WantFUA, &dev->flags);
1397                                if (wbi->bi_rw & REQ_SYNC)
1398                                        set_bit(R5_SyncIO, &dev->flags);
1399                                if (wbi->bi_rw & REQ_DISCARD)
1400                                        set_bit(R5_Discard, &dev->flags);
1401                                else
1402                                        tx = async_copy_data(1, wbi, dev->page,
1403                                                dev->sector, tx);
1404                                wbi = r5_next_bio(wbi, dev->sector);
1405                        }
1406                }
1407        }
1408
1409        return tx;
1410}
1411
1412static void ops_complete_reconstruct(void *stripe_head_ref)
1413{
1414        struct stripe_head *sh = stripe_head_ref;
1415        int disks = sh->disks;
1416        int pd_idx = sh->pd_idx;
1417        int qd_idx = sh->qd_idx;
1418        int i;
1419        bool fua = false, sync = false, discard = false;
1420
1421        pr_debug("%s: stripe %llu\n", __func__,
1422                (unsigned long long)sh->sector);
1423
1424        for (i = disks; i--; ) {
1425                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1426                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1427                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1428        }
1429
1430        for (i = disks; i--; ) {
1431                struct r5dev *dev = &sh->dev[i];
1432
1433                if (dev->written || i == pd_idx || i == qd_idx) {
1434                        if (!discard)
1435                                set_bit(R5_UPTODATE, &dev->flags);
1436                        if (fua)
1437                                set_bit(R5_WantFUA, &dev->flags);
1438                        if (sync)
1439                                set_bit(R5_SyncIO, &dev->flags);
1440                }
1441        }
1442
1443        if (sh->reconstruct_state == reconstruct_state_drain_run)
1444                sh->reconstruct_state = reconstruct_state_drain_result;
1445        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1446                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1447        else {
1448                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1449                sh->reconstruct_state = reconstruct_state_result;
1450        }
1451
1452        set_bit(STRIPE_HANDLE, &sh->state);
1453        release_stripe(sh);
1454}
1455
1456static void
1457ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1458                     struct dma_async_tx_descriptor *tx)
1459{
1460        int disks = sh->disks;
1461        struct page **xor_srcs = percpu->scribble;
1462        struct async_submit_ctl submit;
1463        int count = 0, pd_idx = sh->pd_idx, i;
1464        struct page *xor_dest;
1465        int prexor = 0;
1466        unsigned long flags;
1467
1468        pr_debug("%s: stripe %llu\n", __func__,
1469                (unsigned long long)sh->sector);
1470
1471        for (i = 0; i < sh->disks; i++) {
1472                if (pd_idx == i)
1473                        continue;
1474                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1475                        break;
1476        }
1477        if (i >= sh->disks) {
1478                atomic_inc(&sh->count);
1479                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1480                ops_complete_reconstruct(sh);
1481                return;
1482        }
1483        /* check if prexor is active which means only process blocks
1484         * that are part of a read-modify-write (written)
1485         */
1486        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1487                prexor = 1;
1488                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1489                for (i = disks; i--; ) {
1490                        struct r5dev *dev = &sh->dev[i];
1491                        if (dev->written)
1492                                xor_srcs[count++] = dev->page;
1493                }
1494        } else {
1495                xor_dest = sh->dev[pd_idx].page;
1496                for (i = disks; i--; ) {
1497                        struct r5dev *dev = &sh->dev[i];
1498                        if (i != pd_idx)
1499                                xor_srcs[count++] = dev->page;
1500                }
1501        }
1502
1503        /* 1/ if we prexor'd then the dest is reused as a source
1504         * 2/ if we did not prexor then we are redoing the parity
1505         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1506         * for the synchronous xor case
1507         */
1508        flags = ASYNC_TX_ACK |
1509                (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1510
1511        atomic_inc(&sh->count);
1512
1513        init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1514                          to_addr_conv(sh, percpu));
1515        if (unlikely(count == 1))
1516                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1517        else
1518                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1519}
1520
1521static void
1522ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1523                     struct dma_async_tx_descriptor *tx)
1524{
1525        struct async_submit_ctl submit;
1526        struct page **blocks = percpu->scribble;
1527        int count, i;
1528
1529        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1530
1531        for (i = 0; i < sh->disks; i++) {
1532                if (sh->pd_idx == i || sh->qd_idx == i)
1533                        continue;
1534                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1535                        break;
1536        }
1537        if (i >= sh->disks) {
1538                atomic_inc(&sh->count);
1539                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1540                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1541                ops_complete_reconstruct(sh);
1542                return;
1543        }
1544
1545        count = set_syndrome_sources(blocks, sh);
1546
1547        atomic_inc(&sh->count);
1548
1549        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1550                          sh, to_addr_conv(sh, percpu));
1551        async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1552}
1553
1554static void ops_complete_check(void *stripe_head_ref)
1555{
1556        struct stripe_head *sh = stripe_head_ref;
1557
1558        pr_debug("%s: stripe %llu\n", __func__,
1559                (unsigned long long)sh->sector);
1560
1561        sh->check_state = check_state_check_result;
1562        set_bit(STRIPE_HANDLE, &sh->state);
1563        release_stripe(sh);
1564}
1565
1566static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1567{
1568        int disks = sh->disks;
1569        int pd_idx = sh->pd_idx;
1570        int qd_idx = sh->qd_idx;
1571        struct page *xor_dest;
1572        struct page **xor_srcs = percpu->scribble;
1573        struct dma_async_tx_descriptor *tx;
1574        struct async_submit_ctl submit;
1575        int count;
1576        int i;
1577
1578        pr_debug("%s: stripe %llu\n", __func__,
1579                (unsigned long long)sh->sector);
1580
1581        count = 0;
1582        xor_dest = sh->dev[pd_idx].page;
1583        xor_srcs[count++] = xor_dest;
1584        for (i = disks; i--; ) {
1585                if (i == pd_idx || i == qd_idx)
1586                        continue;
1587                xor_srcs[count++] = sh->dev[i].page;
1588        }
1589
1590        init_async_submit(&submit, 0, NULL, NULL, NULL,
1591                          to_addr_conv(sh, percpu));
1592        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1593                           &sh->ops.zero_sum_result, &submit);
1594
1595        atomic_inc(&sh->count);
1596        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1597        tx = async_trigger_callback(&submit);
1598}
1599
1600static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1601{
1602        struct page **srcs = percpu->scribble;
1603        struct async_submit_ctl submit;
1604        int count;
1605
1606        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1607                (unsigned long long)sh->sector, checkp);
1608
1609        count = set_syndrome_sources(srcs, sh);
1610        if (!checkp)
1611                srcs[count] = NULL;
1612
1613        atomic_inc(&sh->count);
1614        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1615                          sh, to_addr_conv(sh, percpu));
1616        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1617                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1618}
1619
1620static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1621{
1622        int overlap_clear = 0, i, disks = sh->disks;
1623        struct dma_async_tx_descriptor *tx = NULL;
1624        struct r5conf *conf = sh->raid_conf;
1625        int level = conf->level;
1626        struct raid5_percpu *percpu;
1627        unsigned long cpu;
1628
1629        cpu = get_cpu();
1630        percpu = per_cpu_ptr(conf->percpu, cpu);
1631        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1632                ops_run_biofill(sh);
1633                overlap_clear++;
1634        }
1635
1636        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1637                if (level < 6)
1638                        tx = ops_run_compute5(sh, percpu);
1639                else {
1640                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
1641                                tx = ops_run_compute6_1(sh, percpu);
1642                        else
1643                                tx = ops_run_compute6_2(sh, percpu);
1644                }
1645                /* terminate the chain if reconstruct is not set to be run */
1646                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1647                        async_tx_ack(tx);
1648        }
1649
1650        if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1651                tx = ops_run_prexor(sh, percpu, tx);
1652
1653        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1654                tx = ops_run_biodrain(sh, tx);
1655                overlap_clear++;
1656        }
1657
1658        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1659                if (level < 6)
1660                        ops_run_reconstruct5(sh, percpu, tx);
1661                else
1662                        ops_run_reconstruct6(sh, percpu, tx);
1663        }
1664
1665        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1666                if (sh->check_state == check_state_run)
1667                        ops_run_check_p(sh, percpu);
1668                else if (sh->check_state == check_state_run_q)
1669                        ops_run_check_pq(sh, percpu, 0);
1670                else if (sh->check_state == check_state_run_pq)
1671                        ops_run_check_pq(sh, percpu, 1);
1672                else
1673                        BUG();
1674        }
1675
1676        if (overlap_clear)
1677                for (i = disks; i--; ) {
1678                        struct r5dev *dev = &sh->dev[i];
1679                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
1680                                wake_up(&sh->raid_conf->wait_for_overlap);
1681                }
1682        put_cpu();
1683}
1684
1685static int grow_one_stripe(struct r5conf *conf, int hash)
1686{
1687        struct stripe_head *sh;
1688        sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1689        if (!sh)
1690                return 0;
1691
1692        sh->raid_conf = conf;
1693
1694        spin_lock_init(&sh->stripe_lock);
1695
1696        if (grow_buffers(sh)) {
1697                shrink_buffers(sh);
1698                kmem_cache_free(conf->slab_cache, sh);
1699                return 0;
1700        }
1701        sh->hash_lock_index = hash;
1702        /* we just created an active stripe so... */
1703        atomic_set(&sh->count, 1);
1704        atomic_inc(&conf->active_stripes);
1705        INIT_LIST_HEAD(&sh->lru);
1706        release_stripe(sh);
1707        return 1;
1708}
1709
1710static int grow_stripes(struct r5conf *conf, int num)
1711{
1712        struct kmem_cache *sc;
1713        int devs = max(conf->raid_disks, conf->previous_raid_disks);
1714        int hash;
1715
1716        if (conf->mddev->gendisk)
1717                sprintf(conf->cache_name[0],
1718                        "raid%d-%s", conf->level, mdname(conf->mddev));
1719        else
1720                sprintf(conf->cache_name[0],
1721                        "raid%d-%p", conf->level, conf->mddev);
1722        sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1723
1724        conf->active_name = 0;
1725        sc = kmem_cache_create(conf->cache_name[conf->active_name],
1726                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1727                               0, 0, NULL);
1728        if (!sc)
1729                return 1;
1730        conf->slab_cache = sc;
1731        conf->pool_size = devs;
1732        hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1733        while (num--) {
1734                if (!grow_one_stripe(conf, hash))
1735                        return 1;
1736                conf->max_nr_stripes++;
1737                hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1738        }
1739        return 0;
1740}
1741
1742/**
1743 * scribble_len - return the required size of the scribble region
1744 * @num - total number of disks in the array
1745 *
1746 * The size must be enough to contain:
1747 * 1/ a struct page pointer for each device in the array +2
1748 * 2/ room to convert each entry in (1) to its corresponding dma
1749 *    (dma_map_page()) or page (page_address()) address.
1750 *
1751 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1752 * calculate over all devices (not just the data blocks), using zeros in place
1753 * of the P and Q blocks.
1754 */
1755static size_t scribble_len(int num)
1756{
1757        size_t len;
1758
1759        len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1760
1761        return len;
1762}
1763
1764static int resize_stripes(struct r5conf *conf, int newsize)
1765{
1766        /* Make all the stripes able to hold 'newsize' devices.
1767         * New slots in each stripe get 'page' set to a new page.
1768         *
1769         * This happens in stages:
1770         * 1/ create a new kmem_cache and allocate the required number of
1771         *    stripe_heads.
1772         * 2/ gather all the old stripe_heads and transfer the pages across
1773         *    to the new stripe_heads.  This will have the side effect of
1774         *    freezing the array as once all stripe_heads have been collected,
1775         *    no IO will be possible.  Old stripe heads are freed once their
1776         *    pages have been transferred over, and the old kmem_cache is
1777         *    freed when all stripes are done.
1778         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1779         *    we simple return a failre status - no need to clean anything up.
1780         * 4/ allocate new pages for the new slots in the new stripe_heads.
1781         *    If this fails, we don't bother trying the shrink the
1782         *    stripe_heads down again, we just leave them as they are.
1783         *    As each stripe_head is processed the new one is released into
1784         *    active service.
1785         *
1786         * Once step2 is started, we cannot afford to wait for a write,
1787         * so we use GFP_NOIO allocations.
1788         */
1789        struct stripe_head *osh, *nsh;
1790        LIST_HEAD(newstripes);
1791        struct disk_info *ndisks;
1792        unsigned long cpu;
1793        int err;
1794        struct kmem_cache *sc;
1795        int i;
1796        int hash, cnt;
1797
1798        if (newsize <= conf->pool_size)
1799                return 0; /* never bother to shrink */
1800
1801        err = md_allow_write(conf->mddev);
1802        if (err)
1803                return err;
1804
1805        /* Step 1 */
1806        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1807                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1808                               0, 0, NULL);
1809        if (!sc)
1810                return -ENOMEM;
1811
1812        for (i = conf->max_nr_stripes; i; i--) {
1813                nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1814                if (!nsh)
1815                        break;
1816
1817                nsh->raid_conf = conf;
1818                spin_lock_init(&nsh->stripe_lock);
1819
1820                list_add(&nsh->lru, &newstripes);
1821        }
1822        if (i) {
1823                /* didn't get enough, give up */
1824                while (!list_empty(&newstripes)) {
1825                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
1826                        list_del(&nsh->lru);
1827                        kmem_cache_free(sc, nsh);
1828                }
1829                kmem_cache_destroy(sc);
1830                return -ENOMEM;
1831        }
1832        /* Step 2 - Must use GFP_NOIO now.
1833         * OK, we have enough stripes, start collecting inactive
1834         * stripes and copying them over
1835         */
1836        hash = 0;
1837        cnt = 0;
1838        list_for_each_entry(nsh, &newstripes, lru) {
1839                lock_device_hash_lock(conf, hash);
1840                wait_event_cmd(conf->wait_for_stripe,
1841                                    !list_empty(conf->inactive_list + hash),
1842                                    unlock_device_hash_lock(conf, hash),
1843                                    lock_device_hash_lock(conf, hash));
1844                osh = get_free_stripe(conf, hash);
1845                unlock_device_hash_lock(conf, hash);
1846                atomic_set(&nsh->count, 1);
1847                for(i=0; i<conf->pool_size; i++)
1848                        nsh->dev[i].page = osh->dev[i].page;
1849                for( ; i<newsize; i++)
1850                        nsh->dev[i].page = NULL;
1851                nsh->hash_lock_index = hash;
1852                kmem_cache_free(conf->slab_cache, osh);
1853                cnt++;
1854                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1855                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1856                        hash++;
1857                        cnt = 0;
1858                }
1859        }
1860        kmem_cache_destroy(conf->slab_cache);
1861
1862        /* Step 3.
1863         * At this point, we are holding all the stripes so the array
1864         * is completely stalled, so now is a good time to resize
1865         * conf->disks and the scribble region
1866         */
1867        ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1868        if (ndisks) {
1869                for (i=0; i<conf->raid_disks; i++)
1870                        ndisks[i] = conf->disks[i];
1871                kfree(conf->disks);
1872                conf->disks = ndisks;
1873        } else
1874                err = -ENOMEM;
1875
1876        get_online_cpus();
1877        conf->scribble_len = scribble_len(newsize);
1878        for_each_present_cpu(cpu) {
1879                struct raid5_percpu *percpu;
1880                void *scribble;
1881
1882                percpu = per_cpu_ptr(conf->percpu, cpu);
1883                scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1884
1885                if (scribble) {
1886                        kfree(percpu->scribble);
1887                        percpu->scribble = scribble;
1888                } else {
1889                        err = -ENOMEM;
1890                        break;
1891                }
1892        }
1893        put_online_cpus();
1894
1895        /* Step 4, return new stripes to service */
1896        while(!list_empty(&newstripes)) {
1897                nsh = list_entry(newstripes.next, struct stripe_head, lru);
1898                list_del_init(&nsh->lru);
1899
1900                for (i=conf->raid_disks; i < newsize; i++)
1901                        if (nsh->dev[i].page == NULL) {
1902                                struct page *p = alloc_page(GFP_NOIO);
1903                                nsh->dev[i].page = p;
1904                                if (!p)
1905                                        err = -ENOMEM;
1906                        }
1907                release_stripe(nsh);
1908        }
1909        /* critical section pass, GFP_NOIO no longer needed */
1910
1911        conf->slab_cache = sc;
1912        conf->active_name = 1-conf->active_name;
1913        conf->pool_size = newsize;
1914        return err;
1915}
1916
1917static int drop_one_stripe(struct r5conf *conf, int hash)
1918{
1919        struct stripe_head *sh;
1920
1921        spin_lock_irq(conf->hash_locks + hash);
1922        sh = get_free_stripe(conf, hash);
1923        spin_unlock_irq(conf->hash_locks + hash);
1924        if (!sh)
1925                return 0;
1926        BUG_ON(atomic_read(&sh->count));
1927        shrink_buffers(sh);
1928        kmem_cache_free(conf->slab_cache, sh);
1929        atomic_dec(&conf->active_stripes);
1930        return 1;
1931}
1932
1933static void shrink_stripes(struct r5conf *conf)
1934{
1935        int hash;
1936        for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1937                while (drop_one_stripe(conf, hash))
1938                        ;
1939
1940        if (conf->slab_cache)
1941                kmem_cache_destroy(conf->slab_cache);
1942        conf->slab_cache = NULL;
1943}
1944
1945static void raid5_end_read_request(struct bio * bi, int error)
1946{
1947        struct stripe_head *sh = bi->bi_private;
1948        struct r5conf *conf = sh->raid_conf;
1949        int disks = sh->disks, i;
1950        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1951        char b[BDEVNAME_SIZE];
1952        struct md_rdev *rdev = NULL;
1953        sector_t s;
1954
1955        for (i=0 ; i<disks; i++)
1956                if (bi == &sh->dev[i].req)
1957                        break;
1958
1959        pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1960                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1961                uptodate);
1962        if (i == disks) {
1963                BUG();
1964                return;
1965        }
1966        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1967                /* If replacement finished while this request was outstanding,
1968                 * 'replacement' might be NULL already.
1969                 * In that case it moved down to 'rdev'.
1970                 * rdev is not removed until all requests are finished.
1971                 */
1972                rdev = conf->disks[i].replacement;
1973        if (!rdev)
1974                rdev = conf->disks[i].rdev;
1975
1976        if (use_new_offset(conf, sh))
1977                s = sh->sector + rdev->new_data_offset;
1978        else
1979                s = sh->sector + rdev->data_offset;
1980        if (uptodate) {
1981                set_bit(R5_UPTODATE, &sh->dev[i].flags);
1982                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1983                        /* Note that this cannot happen on a
1984                         * replacement device.  We just fail those on
1985                         * any error
1986                         */
1987                        printk_ratelimited(
1988                                KERN_INFO
1989                                "md/raid:%s: read error corrected"
1990                                " (%lu sectors at %llu on %s)\n",
1991                                mdname(conf->mddev), STRIPE_SECTORS,
1992                                (unsigned long long)s,
1993                                bdevname(rdev->bdev, b));
1994                        atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1995                        clear_bit(R5_ReadError, &sh->dev[i].flags);
1996                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
1997                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1998                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1999
2000                if (atomic_read(&rdev->read_errors))
2001                        atomic_set(&rdev->read_errors, 0);
2002        } else {
2003                const char *bdn = bdevname(rdev->bdev, b);
2004                int retry = 0;
2005                int set_bad = 0;
2006
2007                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2008                atomic_inc(&rdev->read_errors);
2009                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2010                        printk_ratelimited(
2011                                KERN_WARNING
2012                                "md/raid:%s: read error on replacement device "
2013                                "(sector %llu on %s).\n",
2014                                mdname(conf->mddev),
2015                                (unsigned long long)s,
2016                                bdn);
2017                else if (conf->mddev->degraded >= conf->max_degraded) {
2018                        set_bad = 1;
2019                        printk_ratelimited(
2020                                KERN_WARNING
2021                                "md/raid:%s: read error not correctable "
2022                                "(sector %llu on %s).\n",
2023                                mdname(conf->mddev),
2024                                (unsigned long long)s,
2025                                bdn);
2026                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2027                        /* Oh, no!!! */
2028                        set_bad = 1;
2029                        printk_ratelimited(
2030                                KERN_WARNING
2031                                "md/raid:%s: read error NOT corrected!! "
2032                                "(sector %llu on %s).\n",
2033                                mdname(conf->mddev),
2034                                (unsigned long long)s,
2035                                bdn);
2036                } else if (atomic_read(&rdev->read_errors)
2037                         > conf->max_nr_stripes)
2038                        printk(KERN_WARNING
2039                               "md/raid:%s: Too many read errors, failing device %s.\n",
2040                               mdname(conf->mddev), bdn);
2041                else
2042                        retry = 1;
2043                if (set_bad && test_bit(In_sync, &rdev->flags)
2044                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2045                        retry = 1;
2046                if (retry)
2047                        if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2048                                set_bit(R5_ReadError, &sh->dev[i].flags);
2049                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2050                        } else
2051                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2052                else {
2053                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2054                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2055                        if (!(set_bad
2056                              && test_bit(In_sync, &rdev->flags)
2057                              && rdev_set_badblocks(
2058                                      rdev, sh->sector, STRIPE_SECTORS, 0)))
2059                                md_error(conf->mddev, rdev);
2060                }
2061        }
2062        rdev_dec_pending(rdev, conf->mddev);
2063        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2064        set_bit(STRIPE_HANDLE, &sh->state);
2065        release_stripe(sh);
2066}
2067
2068static void raid5_end_write_request(struct bio *bi, int error)
2069{
2070        struct stripe_head *sh = bi->bi_private;
2071        struct r5conf *conf = sh->raid_conf;
2072        int disks = sh->disks, i;
2073        struct md_rdev *uninitialized_var(rdev);
2074        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2075        sector_t first_bad;
2076        int bad_sectors;
2077        int replacement = 0;
2078
2079        for (i = 0 ; i < disks; i++) {
2080                if (bi == &sh->dev[i].req) {
2081                        rdev = conf->disks[i].rdev;
2082                        break;
2083                }
2084                if (bi == &sh->dev[i].rreq) {
2085                        rdev = conf->disks[i].replacement;
2086                        if (rdev)
2087                                replacement = 1;
2088                        else
2089                                /* rdev was removed and 'replacement'
2090                                 * replaced it.  rdev is not removed
2091                                 * until all requests are finished.
2092                                 */
2093                                rdev = conf->disks[i].rdev;
2094                        break;
2095                }
2096        }
2097        pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2098                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2099                uptodate);
2100        if (i == disks) {
2101                BUG();
2102                return;
2103        }
2104
2105        if (replacement) {
2106                if (!uptodate)
2107                        md_error(conf->mddev, rdev);
2108                else if (is_badblock(rdev, sh->sector,
2109                                     STRIPE_SECTORS,
2110                                     &first_bad, &bad_sectors))
2111                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2112        } else {
2113                if (!uptodate) {
2114                        set_bit(STRIPE_DEGRADED, &sh->state);
2115                        set_bit(WriteErrorSeen, &rdev->flags);
2116                        set_bit(R5_WriteError, &sh->dev[i].flags);
2117                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2118                                set_bit(MD_RECOVERY_NEEDED,
2119                                        &rdev->mddev->recovery);
2120                } else if (is_badblock(rdev, sh->sector,
2121                                       STRIPE_SECTORS,
2122                                       &first_bad, &bad_sectors)) {
2123                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2124                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2125                                /* That was a successful write so make
2126                                 * sure it looks like we already did
2127                                 * a re-write.
2128                                 */
2129                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2130                }
2131        }
2132        rdev_dec_pending(rdev, conf->mddev);
2133
2134        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2135                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2136        set_bit(STRIPE_HANDLE, &sh->state);
2137        release_stripe(sh);
2138}
2139
2140static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2141        
2142static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2143{
2144        struct r5dev *dev = &sh->dev[i];
2145
2146        bio_init(&dev->req);
2147        dev->req.bi_io_vec = &dev->vec;
2148        dev->req.bi_vcnt++;
2149        dev->req.bi_max_vecs++;
2150        dev->req.bi_private = sh;
2151        dev->vec.bv_page = dev->page;
2152
2153        bio_init(&dev->rreq);
2154        dev->rreq.bi_io_vec = &dev->rvec;
2155        dev->rreq.bi_vcnt++;
2156        dev->rreq.bi_max_vecs++;
2157        dev->rreq.bi_private = sh;
2158        dev->rvec.bv_page = dev->page;
2159
2160        dev->flags = 0;
2161        dev->sector = compute_blocknr(sh, i, previous);
2162}
2163
2164static void error(struct mddev *mddev, struct md_rdev *rdev)
2165{
2166        char b[BDEVNAME_SIZE];
2167        struct r5conf *conf = mddev->private;
2168        unsigned long flags;
2169        pr_debug("raid456: error called\n");
2170
2171        spin_lock_irqsave(&conf->device_lock, flags);
2172        clear_bit(In_sync, &rdev->flags);
2173        mddev->degraded = calc_degraded(conf);
2174        spin_unlock_irqrestore(&conf->device_lock, flags);
2175        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2176
2177        set_bit(Blocked, &rdev->flags);
2178        set_bit(Faulty, &rdev->flags);
2179        set_bit(MD_CHANGE_DEVS, &mddev->flags);
2180        printk(KERN_ALERT
2181               "md/raid:%s: Disk failure on %s, disabling device.\n"
2182               "md/raid:%s: Operation continuing on %d devices.\n",
2183               mdname(mddev),
2184               bdevname(rdev->bdev, b),
2185               mdname(mddev),
2186               conf->raid_disks - mddev->degraded);
2187}
2188
2189/*
2190 * Input: a 'big' sector number,
2191 * Output: index of the data and parity disk, and the sector # in them.
2192 */
2193static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2194                                     int previous, int *dd_idx,
2195                                     struct stripe_head *sh)
2196{
2197        sector_t stripe, stripe2;
2198        sector_t chunk_number;
2199        unsigned int chunk_offset;
2200        int pd_idx, qd_idx;
2201        int ddf_layout = 0;
2202        sector_t new_sector;
2203        int algorithm = previous ? conf->prev_algo
2204                                 : conf->algorithm;
2205        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2206                                         : conf->chunk_sectors;
2207        int raid_disks = previous ? conf->previous_raid_disks
2208                                  : conf->raid_disks;
2209        int data_disks = raid_disks - conf->max_degraded;
2210
2211        /* First compute the information on this sector */
2212
2213        /*
2214         * Compute the chunk number and the sector offset inside the chunk
2215         */
2216        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2217        chunk_number = r_sector;
2218
2219        /*
2220         * Compute the stripe number
2221         */
2222        stripe = chunk_number;
2223        *dd_idx = sector_div(stripe, data_disks);
2224        stripe2 = stripe;
2225        /*
2226         * Select the parity disk based on the user selected algorithm.
2227         */
2228        pd_idx = qd_idx = -1;
2229        switch(conf->level) {
2230        case 4:
2231                pd_idx = data_disks;
2232                break;
2233        case 5:
2234                switch (algorithm) {
2235                case ALGORITHM_LEFT_ASYMMETRIC:
2236                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2237                        if (*dd_idx >= pd_idx)
2238                                (*dd_idx)++;
2239                        break;
2240                case ALGORITHM_RIGHT_ASYMMETRIC:
2241                        pd_idx = sector_div(stripe2, raid_disks);
2242                        if (*dd_idx >= pd_idx)
2243                                (*dd_idx)++;
2244                        break;
2245                case ALGORITHM_LEFT_SYMMETRIC:
2246                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2247                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2248                        break;
2249                case ALGORITHM_RIGHT_SYMMETRIC:
2250                        pd_idx = sector_div(stripe2, raid_disks);
2251                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2252                        break;
2253                case ALGORITHM_PARITY_0:
2254                        pd_idx = 0;
2255                        (*dd_idx)++;
2256                        break;
2257                case ALGORITHM_PARITY_N:
2258                        pd_idx = data_disks;
2259                        break;
2260                default:
2261                        BUG();
2262                }
2263                break;
2264        case 6:
2265
2266                switch (algorithm) {
2267                case ALGORITHM_LEFT_ASYMMETRIC:
2268                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2269                        qd_idx = pd_idx + 1;
2270                        if (pd_idx == raid_disks-1) {
2271                                (*dd_idx)++;    /* Q D D D P */
2272                                qd_idx = 0;
2273                        } else if (*dd_idx >= pd_idx)
2274                                (*dd_idx) += 2; /* D D P Q D */
2275                        break;
2276                case ALGORITHM_RIGHT_ASYMMETRIC:
2277                        pd_idx = sector_div(stripe2, raid_disks);
2278                        qd_idx = pd_idx + 1;
2279                        if (pd_idx == raid_disks-1) {
2280                                (*dd_idx)++;    /* Q D D D P */
2281                                qd_idx = 0;
2282                        } else if (*dd_idx >= pd_idx)
2283                                (*dd_idx) += 2; /* D D P Q D */
2284                        break;
2285                case ALGORITHM_LEFT_SYMMETRIC:
2286                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2287                        qd_idx = (pd_idx + 1) % raid_disks;
2288                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2289                        break;
2290                case ALGORITHM_RIGHT_SYMMETRIC:
2291                        pd_idx = sector_div(stripe2, raid_disks);
2292                        qd_idx = (pd_idx + 1) % raid_disks;
2293                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2294                        break;
2295
2296                case ALGORITHM_PARITY_0:
2297                        pd_idx = 0;
2298                        qd_idx = 1;
2299                        (*dd_idx) += 2;
2300                        break;
2301                case ALGORITHM_PARITY_N:
2302                        pd_idx = data_disks;
2303                        qd_idx = data_disks + 1;
2304                        break;
2305
2306                case ALGORITHM_ROTATING_ZERO_RESTART:
2307                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
2308                         * of blocks for computing Q is different.
2309                         */
2310                        pd_idx = sector_div(stripe2, raid_disks);
2311                        qd_idx = pd_idx + 1;
2312                        if (pd_idx == raid_disks-1) {
2313                                (*dd_idx)++;    /* Q D D D P */
2314                                qd_idx = 0;
2315                        } else if (*dd_idx >= pd_idx)
2316                                (*dd_idx) += 2; /* D D P Q D */
2317                        ddf_layout = 1;
2318                        break;
2319
2320                case ALGORITHM_ROTATING_N_RESTART:
2321                        /* Same a left_asymmetric, by first stripe is
2322                         * D D D P Q  rather than
2323                         * Q D D D P
2324                         */
2325                        stripe2 += 1;
2326                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2327                        qd_idx = pd_idx + 1;
2328                        if (pd_idx == raid_disks-1) {
2329                                (*dd_idx)++;    /* Q D D D P */
2330                                qd_idx = 0;
2331                        } else if (*dd_idx >= pd_idx)
2332                                (*dd_idx) += 2; /* D D P Q D */
2333                        ddf_layout = 1;
2334                        break;
2335
2336                case ALGORITHM_ROTATING_N_CONTINUE:
2337                        /* Same as left_symmetric but Q is before P */
2338                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2339                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2340                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2341                        ddf_layout = 1;
2342                        break;
2343
2344                case ALGORITHM_LEFT_ASYMMETRIC_6:
2345                        /* RAID5 left_asymmetric, with Q on last device */
2346                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2347                        if (*dd_idx >= pd_idx)
2348                                (*dd_idx)++;
2349                        qd_idx = raid_disks - 1;
2350                        break;
2351
2352                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2353                        pd_idx = sector_div(stripe2, raid_disks-1);
2354                        if (*dd_idx >= pd_idx)
2355                                (*dd_idx)++;
2356                        qd_idx = raid_disks - 1;
2357                        break;
2358
2359                case ALGORITHM_LEFT_SYMMETRIC_6:
2360                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2361                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2362                        qd_idx = raid_disks - 1;
2363                        break;
2364
2365                case ALGORITHM_RIGHT_SYMMETRIC_6:
2366                        pd_idx = sector_div(stripe2, raid_disks-1);
2367                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2368                        qd_idx = raid_disks - 1;
2369                        break;
2370
2371                case ALGORITHM_PARITY_0_6:
2372                        pd_idx = 0;
2373                        (*dd_idx)++;
2374                        qd_idx = raid_disks - 1;
2375                        break;
2376
2377                default:
2378                        BUG();
2379                }
2380                break;
2381        }
2382
2383        if (sh) {
2384                sh->pd_idx = pd_idx;
2385                sh->qd_idx = qd_idx;
2386                sh->ddf_layout = ddf_layout;
2387        }
2388        /*
2389         * Finally, compute the new sector number
2390         */
2391        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2392        return new_sector;
2393}
2394
2395
2396static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2397{
2398        struct r5conf *conf = sh->raid_conf;
2399        int raid_disks = sh->disks;
2400        int data_disks = raid_disks - conf->max_degraded;
2401        sector_t new_sector = sh->sector, check;
2402        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2403                                         : conf->chunk_sectors;
2404        int algorithm = previous ? conf->prev_algo
2405                                 : conf->algorithm;
2406        sector_t stripe;
2407        int chunk_offset;
2408        sector_t chunk_number;
2409        int dummy1, dd_idx = i;
2410        sector_t r_sector;
2411        struct stripe_head sh2;
2412
2413
2414        chunk_offset = sector_div(new_sector, sectors_per_chunk);
2415        stripe = new_sector;
2416
2417        if (i == sh->pd_idx)
2418                return 0;
2419        switch(conf->level) {
2420        case 4: break;
2421        case 5:
2422                switch (algorithm) {
2423                case ALGORITHM_LEFT_ASYMMETRIC:
2424                case ALGORITHM_RIGHT_ASYMMETRIC:
2425                        if (i > sh->pd_idx)
2426                                i--;
2427                        break;
2428                case ALGORITHM_LEFT_SYMMETRIC:
2429                case ALGORITHM_RIGHT_SYMMETRIC:
2430                        if (i < sh->pd_idx)
2431                                i += raid_disks;
2432                        i -= (sh->pd_idx + 1);
2433                        break;
2434                case ALGORITHM_PARITY_0:
2435                        i -= 1;
2436                        break;
2437                case ALGORITHM_PARITY_N:
2438                        break;
2439                default:
2440                        BUG();
2441                }
2442                break;
2443        case 6:
2444                if (i == sh->qd_idx)
2445                        return 0; /* It is the Q disk */
2446                switch (algorithm) {
2447                case ALGORITHM_LEFT_ASYMMETRIC:
2448                case ALGORITHM_RIGHT_ASYMMETRIC:
2449                case ALGORITHM_ROTATING_ZERO_RESTART:
2450                case ALGORITHM_ROTATING_N_RESTART:
2451                        if (sh->pd_idx == raid_disks-1)
2452                                i--;    /* Q D D D P */
2453                        else if (i > sh->pd_idx)
2454                                i -= 2; /* D D P Q D */
2455                        break;
2456                case ALGORITHM_LEFT_SYMMETRIC:
2457                case ALGORITHM_RIGHT_SYMMETRIC:
2458                        if (sh->pd_idx == raid_disks-1)
2459                                i--; /* Q D D D P */
2460                        else {
2461                                /* D D P Q D */
2462                                if (i < sh->pd_idx)
2463                                        i += raid_disks;
2464                                i -= (sh->pd_idx + 2);
2465                        }
2466                        break;
2467                case ALGORITHM_PARITY_0:
2468                        i -= 2;
2469                        break;
2470                case ALGORITHM_PARITY_N:
2471                        break;
2472                case ALGORITHM_ROTATING_N_CONTINUE:
2473                        /* Like left_symmetric, but P is before Q */
2474                        if (sh->pd_idx == 0)
2475                                i--;    /* P D D D Q */
2476                        else {
2477                                /* D D Q P D */
2478                                if (i < sh->pd_idx)
2479                                        i += raid_disks;
2480                                i -= (sh->pd_idx + 1);
2481                        }
2482                        break;
2483                case ALGORITHM_LEFT_ASYMMETRIC_6:
2484                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2485                        if (i > sh->pd_idx)
2486                                i--;
2487                        break;
2488                case ALGORITHM_LEFT_SYMMETRIC_6:
2489                case ALGORITHM_RIGHT_SYMMETRIC_6:
2490                        if (i < sh->pd_idx)
2491                                i += data_disks + 1;
2492                        i -= (sh->pd_idx + 1);
2493                        break;
2494                case ALGORITHM_PARITY_0_6:
2495                        i -= 1;
2496                        break;
2497                default:
2498                        BUG();
2499                }
2500                break;
2501        }
2502
2503        chunk_number = stripe * data_disks + i;
2504        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2505
2506        check = raid5_compute_sector(conf, r_sector,
2507                                     previous, &dummy1, &sh2);
2508        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2509                || sh2.qd_idx != sh->qd_idx) {
2510                printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2511                       mdname(conf->mddev));
2512                return 0;
2513        }
2514        return r_sector;
2515}
2516
2517
2518static void
2519schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2520                         int rcw, int expand)
2521{
2522        int i, pd_idx = sh->pd_idx, disks = sh->disks;
2523        struct r5conf *conf = sh->raid_conf;
2524        int level = conf->level;
2525
2526        if (rcw) {
2527
2528                for (i = disks; i--; ) {
2529                        struct r5dev *dev = &sh->dev[i];
2530
2531                        if (dev->towrite) {
2532                                set_bit(R5_LOCKED, &dev->flags);
2533                                set_bit(R5_Wantdrain, &dev->flags);
2534                                if (!expand)
2535                                        clear_bit(R5_UPTODATE, &dev->flags);
2536                                s->locked++;
2537                        }
2538                }
2539                /* if we are not expanding this is a proper write request, and
2540                 * there will be bios with new data to be drained into the
2541                 * stripe cache
2542                 */
2543                if (!expand) {
2544                        if (!s->locked)
2545                                /* False alarm, nothing to do */
2546                                return;
2547                        sh->reconstruct_state = reconstruct_state_drain_run;
2548                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2549                } else
2550                        sh->reconstruct_state = reconstruct_state_run;
2551
2552                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2553
2554                if (s->locked + conf->max_degraded == disks)
2555                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2556                                atomic_inc(&conf->pending_full_writes);
2557        } else {
2558                BUG_ON(level == 6);
2559                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2560                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2561
2562                for (i = disks; i--; ) {
2563                        struct r5dev *dev = &sh->dev[i];
2564                        if (i == pd_idx)
2565                                continue;
2566
2567                        if (dev->towrite &&
2568                            (test_bit(R5_UPTODATE, &dev->flags) ||
2569                             test_bit(R5_Wantcompute, &dev->flags))) {
2570                                set_bit(R5_Wantdrain, &dev->flags);
2571                                set_bit(R5_LOCKED, &dev->flags);
2572                                clear_bit(R5_UPTODATE, &dev->flags);
2573                                s->locked++;
2574                        }
2575                }
2576                if (!s->locked)
2577                        /* False alarm - nothing to do */
2578                        return;
2579                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2580                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2581                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2582                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2583        }
2584
2585        /* keep the parity disk(s) locked while asynchronous operations
2586         * are in flight
2587         */
2588        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2589        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2590        s->locked++;
2591
2592        if (level == 6) {
2593                int qd_idx = sh->qd_idx;
2594                struct r5dev *dev = &sh->dev[qd_idx];
2595
2596                set_bit(R5_LOCKED, &dev->flags);
2597                clear_bit(R5_UPTODATE, &dev->flags);
2598                s->locked++;
2599        }
2600
2601        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2602                __func__, (unsigned long long)sh->sector,
2603                s->locked, s->ops_request);
2604}
2605
2606/*
2607 * Each stripe/dev can have one or more bion attached.
2608 * toread/towrite point to the first in a chain.
2609 * The bi_next chain must be in order.
2610 */
2611static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2612{
2613        struct bio **bip;
2614        struct r5conf *conf = sh->raid_conf;
2615        int firstwrite=0;
2616
2617        pr_debug("adding bi b#%llu to stripe s#%llu\n",
2618                (unsigned long long)bi->bi_iter.bi_sector,
2619                (unsigned long long)sh->sector);
2620
2621        /*
2622         * If several bio share a stripe. The bio bi_phys_segments acts as a
2623         * reference count to avoid race. The reference count should already be
2624         * increased before this function is called (for example, in
2625         * make_request()), so other bio sharing this stripe will not free the
2626         * stripe. If a stripe is owned by one stripe, the stripe lock will
2627         * protect it.
2628         */
2629        spin_lock_irq(&sh->stripe_lock);
2630        if (forwrite) {
2631                bip = &sh->dev[dd_idx].towrite;
2632                if (*bip == NULL)
2633                        firstwrite = 1;
2634        } else
2635                bip = &sh->dev[dd_idx].toread;
2636        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2637                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2638                        goto overlap;
2639                bip = & (*bip)->bi_next;
2640        }
2641        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2642                goto overlap;
2643
2644        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2645        if (*bip)
2646                bi->bi_next = *bip;
2647        *bip = bi;
2648        raid5_inc_bi_active_stripes(bi);
2649
2650        if (forwrite) {
2651                /* check if page is covered */
2652                sector_t sector = sh->dev[dd_idx].sector;
2653                for (bi=sh->dev[dd_idx].towrite;
2654                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2655                             bi && bi->bi_iter.bi_sector <= sector;
2656                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2657                        if (bio_end_sector(bi) >= sector)
2658                                sector = bio_end_sector(bi);
2659                }
2660                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2661                        set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2662        }
2663
2664        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2665                (unsigned long long)(*bip)->bi_iter.bi_sector,
2666                (unsigned long long)sh->sector, dd_idx);
2667        spin_unlock_irq(&sh->stripe_lock);
2668
2669        if (conf->mddev->bitmap && firstwrite) {
2670                bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2671                                  STRIPE_SECTORS, 0);
2672                sh->bm_seq = conf->seq_flush+1;
2673                set_bit(STRIPE_BIT_DELAY, &sh->state);
2674        }
2675        return 1;
2676
2677 overlap:
2678        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2679        spin_unlock_irq(&sh->stripe_lock);
2680        return 0;
2681}
2682
2683static void end_reshape(struct r5conf *conf);
2684
2685static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2686                            struct stripe_head *sh)
2687{
2688        int sectors_per_chunk =
2689                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2690        int dd_idx;
2691        int chunk_offset = sector_div(stripe, sectors_per_chunk);
2692        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2693
2694        raid5_compute_sector(conf,
2695                             stripe * (disks - conf->max_degraded)
2696                             *sectors_per_chunk + chunk_offset,
2697                             previous,
2698                             &dd_idx, sh);
2699}
2700
2701static void
2702handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2703                                struct stripe_head_state *s, int disks,
2704                                struct bio **return_bi)
2705{
2706        int i;
2707        for (i = disks; i--; ) {
2708                struct bio *bi;
2709                int bitmap_end = 0;
2710
2711                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2712                        struct md_rdev *rdev;
2713                        rcu_read_lock();
2714                        rdev = rcu_dereference(conf->disks[i].rdev);
2715                        if (rdev && test_bit(In_sync, &rdev->flags))
2716                                atomic_inc(&rdev->nr_pending);
2717                        else
2718                                rdev = NULL;
2719                        rcu_read_unlock();
2720                        if (rdev) {
2721                                if (!rdev_set_badblocks(
2722                                            rdev,
2723                                            sh->sector,
2724                                            STRIPE_SECTORS, 0))
2725                                        md_error(conf->mddev, rdev);
2726                                rdev_dec_pending(rdev, conf->mddev);
2727                        }
2728                }
2729                spin_lock_irq(&sh->stripe_lock);
2730                /* fail all writes first */
2731                bi = sh->dev[i].towrite;
2732                sh->dev[i].towrite = NULL;
2733                spin_unlock_irq(&sh->stripe_lock);
2734                if (bi)
2735                        bitmap_end = 1;
2736
2737                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2738                        wake_up(&conf->wait_for_overlap);
2739
2740                while (bi && bi->bi_iter.bi_sector <
2741                        sh->dev[i].sector + STRIPE_SECTORS) {
2742                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2743                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
2744                        if (!raid5_dec_bi_active_stripes(bi)) {
2745                                md_write_end(conf->mddev);
2746                                bi->bi_next = *return_bi;
2747                                *return_bi = bi;
2748                        }
2749                        bi = nextbi;
2750                }
2751                if (bitmap_end)
2752                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2753                                STRIPE_SECTORS, 0, 0);
2754                bitmap_end = 0;
2755                /* and fail all 'written' */
2756                bi = sh->dev[i].written;
2757                sh->dev[i].written = NULL;
2758                if (bi) bitmap_end = 1;
2759                while (bi && bi->bi_iter.bi_sector <
2760                       sh->dev[i].sector + STRIPE_SECTORS) {
2761                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2762                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
2763                        if (!raid5_dec_bi_active_stripes(bi)) {
2764                                md_write_end(conf->mddev);
2765                                bi->bi_next = *return_bi;
2766                                *return_bi = bi;
2767                        }
2768                        bi = bi2;
2769                }
2770
2771                /* fail any reads if this device is non-operational and
2772                 * the data has not reached the cache yet.
2773                 */
2774                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2775                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2776                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2777                        spin_lock_irq(&sh->stripe_lock);
2778                        bi = sh->dev[i].toread;
2779                        sh->dev[i].toread = NULL;
2780                        spin_unlock_irq(&sh->stripe_lock);
2781                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2782                                wake_up(&conf->wait_for_overlap);
2783                        while (bi && bi->bi_iter.bi_sector <
2784                               sh->dev[i].sector + STRIPE_SECTORS) {
2785                                struct bio *nextbi =
2786                                        r5_next_bio(bi, sh->dev[i].sector);
2787                                clear_bit(BIO_UPTODATE, &bi->bi_flags);
2788                                if (!raid5_dec_bi_active_stripes(bi)) {
2789                                        bi->bi_next = *return_bi;
2790                                        *return_bi = bi;
2791                                }
2792                                bi = nextbi;
2793                        }
2794                }
2795                if (bitmap_end)
2796                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2797                                        STRIPE_SECTORS, 0, 0);
2798                /* If we were in the middle of a write the parity block might
2799                 * still be locked - so just clear all R5_LOCKED flags
2800                 */
2801                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2802        }
2803
2804        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2805                if (atomic_dec_and_test(&conf->pending_full_writes))
2806                        md_wakeup_thread(conf->mddev->thread);
2807}
2808
2809static void
2810handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2811                   struct stripe_head_state *s)
2812{
2813        int abort = 0;
2814        int i;
2815
2816        clear_bit(STRIPE_SYNCING, &sh->state);
2817        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2818                wake_up(&conf->wait_for_overlap);
2819        s->syncing = 0;
2820        s->replacing = 0;
2821        /* There is nothing more to do for sync/check/repair.
2822         * Don't even need to abort as that is handled elsewhere
2823         * if needed, and not always wanted e.g. if there is a known
2824         * bad block here.
2825         * For recover/replace we need to record a bad block on all
2826         * non-sync devices, or abort the recovery
2827         */
2828        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2829                /* During recovery devices cannot be removed, so
2830                 * locking and refcounting of rdevs is not needed
2831                 */
2832                for (i = 0; i < conf->raid_disks; i++) {
2833                        struct md_rdev *rdev = conf->disks[i].rdev;
2834                        if (rdev
2835                            && !test_bit(Faulty, &rdev->flags)
2836                            && !test_bit(In_sync, &rdev->flags)
2837                            && !rdev_set_badblocks(rdev, sh->sector,
2838                                                   STRIPE_SECTORS, 0))
2839                                abort = 1;
2840                        rdev = conf->disks[i].replacement;
2841                        if (rdev
2842                            && !test_bit(Faulty, &rdev->flags)
2843                            && !test_bit(In_sync, &rdev->flags)
2844                            && !rdev_set_badblocks(rdev, sh->sector,
2845                                                   STRIPE_SECTORS, 0))
2846                                abort = 1;
2847                }
2848                if (abort)
2849                        conf->recovery_disabled =
2850                                conf->mddev->recovery_disabled;
2851        }
2852        md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2853}
2854
2855static int want_replace(struct stripe_head *sh, int disk_idx)
2856{
2857        struct md_rdev *rdev;
2858        int rv = 0;
2859        /* Doing recovery so rcu locking not required */
2860        rdev = sh->raid_conf->disks[disk_idx].replacement;
2861        if (rdev
2862            && !test_bit(Faulty, &rdev->flags)
2863            && !test_bit(In_sync, &rdev->flags)
2864            && (rdev->recovery_offset <= sh->sector
2865                || rdev->mddev->recovery_cp <= sh->sector))
2866                rv = 1;
2867
2868        return rv;
2869}
2870
2871/* fetch_block - checks the given member device to see if its data needs
2872 * to be read or computed to satisfy a request.
2873 *
2874 * Returns 1 when no more member devices need to be checked, otherwise returns
2875 * 0 to tell the loop in handle_stripe_fill to continue
2876 */
2877static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2878                       int disk_idx, int disks)
2879{
2880        struct r5dev *dev = &sh->dev[disk_idx];
2881        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2882                                  &sh->dev[s->failed_num[1]] };
2883
2884        /* is the data in this block needed, and can we get it? */
2885        if (!test_bit(R5_LOCKED, &dev->flags) &&
2886            !test_bit(R5_UPTODATE, &dev->flags) &&
2887            (dev->toread ||
2888             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2889             s->syncing || s->expanding ||
2890             (s->replacing && want_replace(sh, disk_idx)) ||
2891             (s->failed >= 1 && fdev[0]->toread) ||
2892             (s->failed >= 2 && fdev[1]->toread) ||
2893             (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2894              !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2895             (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2896                /* we would like to get this block, possibly by computing it,
2897                 * otherwise read it if the backing disk is insync
2898                 */
2899                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2900                BUG_ON(test_bit(R5_Wantread, &dev->flags));
2901                if ((s->uptodate == disks - 1) &&
2902                    (s->failed && (disk_idx == s->failed_num[0] ||
2903                                   disk_idx == s->failed_num[1]))) {
2904                        /* have disk failed, and we're requested to fetch it;
2905                         * do compute it
2906                         */
2907                        pr_debug("Computing stripe %llu block %d\n",
2908                               (unsigned long long)sh->sector, disk_idx);
2909                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2910                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2911                        set_bit(R5_Wantcompute, &dev->flags);
2912                        sh->ops.target = disk_idx;
2913                        sh->ops.target2 = -1; /* no 2nd target */
2914                        s->req_compute = 1;
2915                        /* Careful: from this point on 'uptodate' is in the eye
2916                         * of raid_run_ops which services 'compute' operations
2917                         * before writes. R5_Wantcompute flags a block that will
2918                         * be R5_UPTODATE by the time it is needed for a
2919                         * subsequent operation.
2920                         */
2921                        s->uptodate++;
2922                        return 1;
2923                } else if (s->uptodate == disks-2 && s->failed >= 2) {
2924                        /* Computing 2-failure is *very* expensive; only
2925                         * do it if failed >= 2
2926                         */
2927                        int other;
2928                        for (other = disks; other--; ) {
2929                                if (other == disk_idx)
2930                                        continue;
2931                                if (!test_bit(R5_UPTODATE,
2932                                      &sh->dev[other].flags))
2933                                        break;
2934                        }
2935                        BUG_ON(other < 0);
2936                        pr_debug("Computing stripe %llu blocks %d,%d\n",
2937                               (unsigned long long)sh->sector,
2938                               disk_idx, other);
2939                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2940                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2941                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2942                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
2943                        sh->ops.target = disk_idx;
2944                        sh->ops.target2 = other;
2945                        s->uptodate += 2;
2946                        s->req_compute = 1;
2947                        return 1;
2948                } else if (test_bit(R5_Insync, &dev->flags)) {
2949                        set_bit(R5_LOCKED, &dev->flags);
2950                        set_bit(R5_Wantread, &dev->flags);
2951                        s->locked++;
2952                        pr_debug("Reading block %d (sync=%d)\n",
2953                                disk_idx, s->syncing);
2954                }
2955        }
2956
2957        return 0;
2958}
2959
2960/**
2961 * handle_stripe_fill - read or compute data to satisfy pending requests.
2962 */
2963static void handle_stripe_fill(struct stripe_head *sh,
2964                               struct stripe_head_state *s,
2965                               int disks)
2966{
2967        int i;
2968
2969        /* look for blocks to read/compute, skip this if a compute
2970         * is already in flight, or if the stripe contents are in the
2971         * midst of changing due to a write
2972         */
2973        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2974            !sh->reconstruct_state)
2975                for (i = disks; i--; )
2976                        if (fetch_block(sh, s, i, disks))
2977                                break;
2978        set_bit(STRIPE_HANDLE, &sh->state);
2979}
2980
2981
2982/* handle_stripe_clean_event
2983 * any written block on an uptodate or failed drive can be returned.
2984 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2985 * never LOCKED, so we don't need to test 'failed' directly.
2986 */
2987static void handle_stripe_clean_event(struct r5conf *conf,
2988        struct stripe_head *sh, int disks, struct bio **return_bi)
2989{
2990        int i;
2991        struct r5dev *dev;
2992        int discard_pending = 0;
2993
2994        for (i = disks; i--; )
2995                if (sh->dev[i].written) {
2996                        dev = &sh->dev[i];
2997                        if (!test_bit(R5_LOCKED, &dev->flags) &&
2998                            (test_bit(R5_UPTODATE, &dev->flags) ||
2999                             test_bit(R5_Discard, &dev->flags))) {
3000                                /* We can return any write requests */
3001                                struct bio *wbi, *wbi2;
3002                                pr_debug("Return write for disc %d\n", i);
3003                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3004                                        clear_bit(R5_UPTODATE, &dev->flags);
3005                                wbi = dev->written;
3006                                dev->written = NULL;
3007                                while (wbi && wbi->bi_iter.bi_sector <
3008                                        dev->sector + STRIPE_SECTORS) {
3009                                        wbi2 = r5_next_bio(wbi, dev->sector);
3010                                        if (!raid5_dec_bi_active_stripes(wbi)) {
3011                                                md_write_end(conf->mddev);
3012                                                wbi->bi_next = *return_bi;
3013                                                *return_bi = wbi;
3014                                        }
3015                                        wbi = wbi2;
3016                                }
3017                                bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3018                                                STRIPE_SECTORS,
3019                                         !test_bit(STRIPE_DEGRADED, &sh->state),
3020                                                0);
3021                        } else if (test_bit(R5_Discard, &dev->flags))
3022                                discard_pending = 1;
3023                }
3024        if (!discard_pending &&
3025            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3026                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3027                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3028                if (sh->qd_idx >= 0) {
3029                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3030                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3031                }
3032                /* now that discard is done we can proceed with any sync */
3033                clear_bit(STRIPE_DISCARD, &sh->state);
3034                /*
3035                 * SCSI discard will change some bio fields and the stripe has
3036                 * no updated data, so remove it from hash list and the stripe
3037                 * will be reinitialized
3038                 */
3039                spin_lock_irq(&conf->device_lock);
3040                remove_hash(sh);
3041                spin_unlock_irq(&conf->device_lock);
3042                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3043                        set_bit(STRIPE_HANDLE, &sh->state);
3044
3045        }
3046
3047        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3048                if (atomic_dec_and_test(&conf->pending_full_writes))
3049                        md_wakeup_thread(conf->mddev->thread);
3050}
3051
3052static void handle_stripe_dirtying(struct r5conf *conf,
3053                                   struct stripe_head *sh,
3054                                   struct stripe_head_state *s,
3055                                   int disks)
3056{
3057        int rmw = 0, rcw = 0, i;
3058        sector_t recovery_cp = conf->mddev->recovery_cp;
3059
3060        /* RAID6 requires 'rcw' in current implementation.
3061         * Otherwise, check whether resync is now happening or should start.
3062         * If yes, then the array is dirty (after unclean shutdown or
3063         * initial creation), so parity in some stripes might be inconsistent.
3064         * In this case, we need to always do reconstruct-write, to ensure
3065         * that in case of drive failure or read-error correction, we
3066         * generate correct data from the parity.
3067         */
3068        if (conf->max_degraded == 2 ||
3069            (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3070                /* Calculate the real rcw later - for now make it
3071                 * look like rcw is cheaper
3072                 */
3073                rcw = 1; rmw = 2;
3074                pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3075                         conf->max_degraded, (unsigned long long)recovery_cp,
3076                         (unsigned long long)sh->sector);
3077        } else for (i = disks; i--; ) {
3078                /* would I have to read this buffer for read_modify_write */
3079                struct r5dev *dev = &sh->dev[i];
3080                if ((dev->towrite || i == sh->pd_idx) &&
3081                    !test_bit(R5_LOCKED, &dev->flags) &&
3082                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3083                      test_bit(R5_Wantcompute, &dev->flags))) {
3084                        if (test_bit(R5_Insync, &dev->flags))
3085                                rmw++;
3086                        else
3087                                rmw += 2*disks;  /* cannot read it */
3088                }
3089                /* Would I have to read this buffer for reconstruct_write */
3090                if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3091                    !test_bit(R5_LOCKED, &dev->flags) &&
3092                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3093                    test_bit(R5_Wantcompute, &dev->flags))) {
3094                        if (test_bit(R5_Insync, &dev->flags)) rcw++;
3095                        else
3096                                rcw += 2*disks;
3097                }
3098        }
3099        pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3100                (unsigned long long)sh->sector, rmw, rcw);
3101        set_bit(STRIPE_HANDLE, &sh->state);
3102        if (rmw < rcw && rmw > 0) {
3103                /* prefer read-modify-write, but need to get some data */
3104                if (conf->mddev->queue)
3105                        blk_add_trace_msg(conf->mddev->queue,
3106                                          "raid5 rmw %llu %d",
3107                                          (unsigned long long)sh->sector, rmw);
3108                for (i = disks; i--; ) {
3109                        struct r5dev *dev = &sh->dev[i];
3110                        if ((dev->towrite || i == sh->pd_idx) &&
3111                            !test_bit(R5_LOCKED, &dev->flags) &&
3112                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3113                            test_bit(R5_Wantcompute, &dev->flags)) &&
3114                            test_bit(R5_Insync, &dev->flags)) {
3115                                if (
3116                                  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3117                                        pr_debug("Read_old block "
3118                                                 "%d for r-m-w\n", i);
3119                                        set_bit(R5_LOCKED, &dev->flags);
3120                                        set_bit(R5_Wantread, &dev->flags);
3121                                        s->locked++;
3122                                } else {
3123                                        set_bit(STRIPE_DELAYED, &sh->state);
3124                                        set_bit(STRIPE_HANDLE, &sh->state);
3125                                }
3126                        }
3127                }
3128        }
3129        if (rcw <= rmw && rcw > 0) {
3130                /* want reconstruct write, but need to get some data */
3131                int qread =0;
3132                rcw = 0;
3133                for (i = disks; i--; ) {
3134                        struct r5dev *dev = &sh->dev[i];
3135                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3136                            i != sh->pd_idx && i != sh->qd_idx &&
3137                            !test_bit(R5_LOCKED, &dev->flags) &&
3138                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3139                              test_bit(R5_Wantcompute, &dev->flags))) {
3140                                rcw++;
3141                                if (!test_bit(R5_Insync, &dev->flags))
3142                                        continue; /* it's a failed drive */
3143                                if (
3144                                  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3145                                        pr_debug("Read_old block "
3146                                                "%d for Reconstruct\n", i);
3147                                        set_bit(R5_LOCKED, &dev->flags);
3148                                        set_bit(R5_Wantread, &dev->flags);
3149                                        s->locked++;
3150                                        qread++;
3151                                } else {
3152                                        set_bit(STRIPE_DELAYED, &sh->state);
3153                                        set_bit(STRIPE_HANDLE, &sh->state);
3154                                }
3155                        }
3156                }
3157                if (rcw && conf->mddev->queue)
3158                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3159                                          (unsigned long long)sh->sector,
3160                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3161        }
3162        /* now if nothing is locked, and if we have enough data,
3163         * we can start a write request
3164         */
3165        /* since handle_stripe can be called at any time we need to handle the
3166         * case where a compute block operation has been submitted and then a
3167         * subsequent call wants to start a write request.  raid_run_ops only
3168         * handles the case where compute block and reconstruct are requested
3169         * simultaneously.  If this is not the case then new writes need to be
3170         * held off until the compute completes.
3171         */
3172        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3173            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3174            !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3175                schedule_reconstruction(sh, s, rcw == 0, 0);
3176}
3177
3178static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3179                                struct stripe_head_state *s, int disks)
3180{
3181        struct r5dev *dev = NULL;
3182
3183        set_bit(STRIPE_HANDLE, &sh->state);
3184
3185        switch (sh->check_state) {
3186        case check_state_idle:
3187                /* start a new check operation if there are no failures */
3188                if (s->failed == 0) {
3189                        BUG_ON(s->uptodate != disks);
3190                        sh->check_state = check_state_run;
3191                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
3192                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3193                        s->uptodate--;
3194                        break;
3195                }
3196                dev = &sh->dev[s->failed_num[0]];
3197                /* fall through */
3198        case check_state_compute_result:
3199                sh->check_state = check_state_idle;
3200                if (!dev)
3201                        dev = &sh->dev[sh->pd_idx];
3202
3203                /* check that a write has not made the stripe insync */
3204                if (test_bit(STRIPE_INSYNC, &sh->state))
3205                        break;
3206
3207                /* either failed parity check, or recovery is happening */
3208                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3209                BUG_ON(s->uptodate != disks);
3210
3211                set_bit(R5_LOCKED, &dev->flags);
3212                s->locked++;
3213                set_bit(R5_Wantwrite, &dev->flags);
3214
3215                clear_bit(STRIPE_DEGRADED, &sh->state);
3216                set_bit(STRIPE_INSYNC, &sh->state);
3217                break;
3218        case check_state_run:
3219                break; /* we will be called again upon completion */
3220        case check_state_check_result:
3221                sh->check_state = check_state_idle;
3222
3223                /* if a failure occurred during the check operation, leave
3224                 * STRIPE_INSYNC not set and let the stripe be handled again
3225                 */
3226                if (s->failed)
3227                        break;
3228
3229                /* handle a successful check operation, if parity is correct
3230                 * we are done.  Otherwise update the mismatch count and repair
3231                 * parity if !MD_RECOVERY_CHECK
3232                 */
3233                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3234                        /* parity is correct (on disc,
3235                         * not in buffer any more)
3236                         */
3237                        set_bit(STRIPE_INSYNC, &sh->state);
3238                else {
3239                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3240                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3241                                /* don't try to repair!! */
3242                                set_bit(STRIPE_INSYNC, &sh->state);
3243                        else {
3244                                sh->check_state = check_state_compute_run;
3245                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3246                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3247                                set_bit(R5_Wantcompute,
3248                                        &sh->dev[sh->pd_idx].flags);
3249                                sh->ops.target = sh->pd_idx;
3250                                sh->ops.target2 = -1;
3251                                s->uptodate++;
3252                        }
3253                }
3254                break;
3255        case check_state_compute_run:
3256                break;
3257        default:
3258                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3259                       __func__, sh->check_state,
3260                       (unsigned long long) sh->sector);
3261                BUG();
3262        }
3263}
3264
3265
3266static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3267                                  struct stripe_head_state *s,
3268                                  int disks)
3269{
3270        int pd_idx = sh->pd_idx;
3271        int qd_idx = sh->qd_idx;
3272        struct r5dev *dev;
3273
3274        set_bit(STRIPE_HANDLE, &sh->state);
3275
3276        BUG_ON(s->failed > 2);
3277
3278        /* Want to check and possibly repair P and Q.
3279         * However there could be one 'failed' device, in which
3280         * case we can only check one of them, possibly using the
3281         * other to generate missing data
3282         */
3283
3284        switch (sh->check_state) {
3285        case check_state_idle:
3286                /* start a new check operation if there are < 2 failures */
3287                if (s->failed == s->q_failed) {
3288                        /* The only possible failed device holds Q, so it
3289                         * makes sense to check P (If anything else were failed,
3290                         * we would have used P to recreate it).
3291                         */
3292                        sh->check_state = check_state_run;
3293                }
3294                if (!s->q_failed && s->failed < 2) {
3295                        /* Q is not failed, and we didn't use it to generate
3296                         * anything, so it makes sense to check it
3297                         */
3298                        if (sh->check_state == check_state_run)
3299                                sh->check_state = check_state_run_pq;
3300                        else
3301                                sh->check_state = check_state_run_q;
3302                }
3303
3304                /* discard potentially stale zero_sum_result */
3305                sh->ops.zero_sum_result = 0;
3306
3307                if (sh->check_state == check_state_run) {
3308                        /* async_xor_zero_sum destroys the contents of P */
3309                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3310                        s->uptodate--;
3311                }
3312                if (sh->check_state >= check_state_run &&
3313                    sh->check_state <= check_state_run_pq) {
3314                        /* async_syndrome_zero_sum preserves P and Q, so
3315                         * no need to mark them !uptodate here
3316                         */
3317                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
3318                        break;
3319                }
3320
3321                /* we have 2-disk failure */
3322                BUG_ON(s->failed != 2);
3323                /* fall through */
3324        case check_state_compute_result:
3325                sh->check_state = check_state_idle;
3326
3327                /* check that a write has not made the stripe insync */
3328                if (test_bit(STRIPE_INSYNC, &sh->state))
3329                        break;
3330
3331                /* now write out any block on a failed drive,
3332                 * or P or Q if they were recomputed
3333                 */
3334                BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3335                if (s->failed == 2) {
3336                        dev = &sh->dev[s->failed_num[1]];
3337                        s->locked++;
3338                        set_bit(R5_LOCKED, &dev->flags);
3339                        set_bit(R5_Wantwrite, &dev->flags);
3340                }
3341                if (s->failed >= 1) {
3342                        dev = &sh->dev[s->failed_num[0]];
3343                        s->locked++;
3344                        set_bit(R5_LOCKED, &dev->flags);
3345                        set_bit(R5_Wantwrite, &dev->flags);
3346                }
3347                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3348                        dev = &sh->dev[pd_idx];
3349                        s->locked++;
3350                        set_bit(R5_LOCKED, &dev->flags);
3351                        set_bit(R5_Wantwrite, &dev->flags);
3352                }
3353                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3354                        dev = &sh->dev[qd_idx];
3355                        s->locked++;
3356                        set_bit(R5_LOCKED, &dev->flags);
3357                        set_bit(R5_Wantwrite, &dev->flags);
3358                }
3359                clear_bit(STRIPE_DEGRADED, &sh->state);
3360
3361                set_bit(STRIPE_INSYNC, &sh->state);
3362                break;
3363        case check_state_run:
3364        case check_state_run_q:
3365        case check_state_run_pq:
3366                break; /* we will be called again upon completion */
3367        case check_state_check_result:
3368                sh->check_state = check_state_idle;
3369
3370                /* handle a successful check operation, if parity is correct
3371                 * we are done.  Otherwise update the mismatch count and repair
3372                 * parity if !MD_RECOVERY_CHECK
3373                 */
3374                if (sh->ops.zero_sum_result == 0) {
3375                        /* both parities are correct */
3376                        if (!s->failed)
3377                                set_bit(STRIPE_INSYNC, &sh->state);
3378                        else {
3379                                /* in contrast to the raid5 case we can validate
3380                                 * parity, but still have a failure to write
3381                                 * back
3382                                 */
3383                                sh->check_state = check_state_compute_result;
3384                                /* Returning at this point means that we may go
3385                                 * off and bring p and/or q uptodate again so
3386                                 * we make sure to check zero_sum_result again
3387                                 * to verify if p or q need writeback
3388                                 */
3389                        }
3390                } else {
3391                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3392                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3393                                /* don't try to repair!! */
3394                                set_bit(STRIPE_INSYNC, &sh->state);
3395                        else {
3396                                int *target = &sh->ops.target;
3397
3398                                sh->ops.target = -1;
3399                                sh->ops.target2 = -1;
3400                                sh->check_state = check_state_compute_run;
3401                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3402                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3403                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3404                                        set_bit(R5_Wantcompute,
3405                                                &sh->dev[pd_idx].flags);
3406                                        *target = pd_idx;
3407                                        target = &sh->ops.target2;
3408                                        s->uptodate++;
3409                                }
3410                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3411                                        set_bit(R5_Wantcompute,
3412                                                &sh->dev[qd_idx].flags);
3413                                        *target = qd_idx;
3414                                        s->uptodate++;
3415                                }
3416                        }
3417                }
3418                break;
3419        case check_state_compute_run:
3420                break;
3421        default:
3422                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3423                       __func__, sh->check_state,
3424                       (unsigned long long) sh->sector);
3425                BUG();
3426        }
3427}
3428
3429static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3430{
3431        int i;
3432
3433        /* We have read all the blocks in this stripe and now we need to
3434         * copy some of them into a target stripe for expand.
3435         */
3436        struct dma_async_tx_descriptor *tx = NULL;
3437        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3438        for (i = 0; i < sh->disks; i++)
3439                if (i != sh->pd_idx && i != sh->qd_idx) {
3440                        int dd_idx, j;
3441                        struct stripe_head *sh2;
3442                        struct async_submit_ctl submit;
3443
3444                        sector_t bn = compute_blocknr(sh, i, 1);
3445                        sector_t s = raid5_compute_sector(conf, bn, 0,
3446                                                          &dd_idx, NULL);
3447                        sh2 = get_active_stripe(conf, s, 0, 1, 1);
3448                        if (sh2 == NULL)
3449                                /* so far only the early blocks of this stripe
3450                                 * have been requested.  When later blocks
3451                                 * get requested, we will try again
3452                                 */
3453                                continue;
3454                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3455                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3456                                /* must have already done this block */
3457                                release_stripe(sh2);
3458                                continue;
3459                        }
3460
3461                        /* place all the copies on one channel */
3462                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3463                        tx = async_memcpy(sh2->dev[dd_idx].page,
3464                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
3465                                          &submit);
3466
3467                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3468                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3469                        for (j = 0; j < conf->raid_disks; j++)
3470                                if (j != sh2->pd_idx &&
3471                                    j != sh2->qd_idx &&
3472                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3473                                        break;
3474                        if (j == conf->raid_disks) {
3475                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
3476                                set_bit(STRIPE_HANDLE, &sh2->state);
3477                        }
3478                        release_stripe(sh2);
3479
3480                }
3481        /* done submitting copies, wait for them to complete */
3482        async_tx_quiesce(&tx);
3483}
3484
3485/*
3486 * handle_stripe - do things to a stripe.
3487 *
3488 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3489 * state of various bits to see what needs to be done.
3490 * Possible results:
3491 *    return some read requests which now have data
3492 *    return some write requests which are safely on storage
3493 *    schedule a read on some buffers
3494 *    schedule a write of some buffers
3495 *    return confirmation of parity correctness
3496 *
3497 */
3498
3499static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3500{
3501        struct r5conf *conf = sh->raid_conf;
3502        int disks = sh->disks;
3503        struct r5dev *dev;
3504        int i;
3505        int do_recovery = 0;
3506
3507        memset(s, 0, sizeof(*s));
3508
3509        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3510        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3511        s->failed_num[0] = -1;
3512        s->failed_num[1] = -1;
3513
3514        /* Now to look around and see what can be done */
3515        rcu_read_lock();
3516        for (i=disks; i--; ) {
3517                struct md_rdev *rdev;
3518                sector_t first_bad;
3519                int bad_sectors;
3520                int is_bad = 0;
3521
3522                dev = &sh->dev[i];
3523
3524                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3525                         i, dev->flags,
3526                         dev->toread, dev->towrite, dev->written);
3527                /* maybe we can reply to a read
3528                 *
3529                 * new wantfill requests are only permitted while
3530                 * ops_complete_biofill is guaranteed to be inactive
3531                 */
3532                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3533                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3534                        set_bit(R5_Wantfill, &dev->flags);
3535
3536                /* now count some things */
3537                if (test_bit(R5_LOCKED, &dev->flags))
3538                        s->locked++;
3539                if (test_bit(R5_UPTODATE, &dev->flags))
3540                        s->uptodate++;
3541                if (test_bit(R5_Wantcompute, &dev->flags)) {
3542                        s->compute++;
3543                        BUG_ON(s->compute > 2);
3544                }
3545
3546                if (test_bit(R5_Wantfill, &dev->flags))
3547                        s->to_fill++;
3548                else if (dev->toread)
3549                        s->to_read++;
3550                if (dev->towrite) {
3551                        s->to_write++;
3552                        if (!test_bit(R5_OVERWRITE, &dev->flags))
3553                                s->non_overwrite++;
3554                }
3555                if (dev->written)
3556                        s->written++;
3557                /* Prefer to use the replacement for reads, but only
3558                 * if it is recovered enough and has no bad blocks.
3559                 */
3560                rdev = rcu_dereference(conf->disks[i].replacement);
3561                if (rdev && !test_bit(Faulty, &rdev->flags) &&
3562                    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3563                    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3564                                 &first_bad, &bad_sectors))
3565                        set_bit(R5_ReadRepl, &dev->flags);
3566                else {
3567                        if (rdev)
3568                                set_bit(R5_NeedReplace, &dev->flags);
3569                        rdev = rcu_dereference(conf->disks[i].rdev);
3570                        clear_bit(R5_ReadRepl, &dev->flags);
3571                }
3572                if (rdev && test_bit(Faulty, &rdev->flags))
3573                        rdev = NULL;
3574                if (rdev) {
3575                        is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3576                                             &first_bad, &bad_sectors);
3577                        if (s->blocked_rdev == NULL
3578                            && (test_bit(Blocked, &rdev->flags)
3579                                || is_bad < 0)) {
3580                                if (is_bad < 0)
3581                                        set_bit(BlockedBadBlocks,
3582                                                &rdev->flags);
3583                                s->blocked_rdev = rdev;
3584                                atomic_inc(&rdev->nr_pending);
3585                        }
3586                }
3587                clear_bit(R5_Insync, &dev->flags);
3588                if (!rdev)
3589                        /* Not in-sync */;
3590                else if (is_bad) {
3591                        /* also not in-sync */
3592                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3593                            test_bit(R5_UPTODATE, &dev->flags)) {
3594                                /* treat as in-sync, but with a read error
3595                                 * which we can now try to correct
3596                                 */
3597                                set_bit(R5_Insync, &dev->flags);
3598                                set_bit(R5_ReadError, &dev->flags);
3599                        }
3600                } else if (test_bit(In_sync, &rdev->flags))
3601                        set_bit(R5_Insync, &dev->flags);
3602                else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3603                        /* in sync if before recovery_offset */
3604                        set_bit(R5_Insync, &dev->flags);
3605                else if (test_bit(R5_UPTODATE, &dev->flags) &&
3606                         test_bit(R5_Expanded, &dev->flags))
3607                        /* If we've reshaped into here, we assume it is Insync.
3608                         * We will shortly update recovery_offset to make
3609                         * it official.
3610                         */
3611                        set_bit(R5_Insync, &dev->flags);
3612
3613                if (test_bit(R5_WriteError, &dev->flags)) {
3614                        /* This flag does not apply to '.replacement'
3615                         * only to .rdev, so make sure to check that*/
3616                        struct md_rdev *rdev2 = rcu_dereference(
3617                                conf->disks[i].rdev);
3618                        if (rdev2 == rdev)
3619                                clear_bit(R5_Insync, &dev->flags);
3620                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3621                                s->handle_bad_blocks = 1;
3622                                atomic_inc(&rdev2->nr_pending);
3623                        } else
3624                                clear_bit(R5_WriteError, &dev->flags);
3625                }
3626                if (test_bit(R5_MadeGood, &dev->flags)) {
3627                        /* This flag does not apply to '.replacement'
3628                         * only to .rdev, so make sure to check that*/
3629                        struct md_rdev *rdev2 = rcu_dereference(
3630                                conf->disks[i].rdev);
3631                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3632                                s->handle_bad_blocks = 1;
3633                                atomic_inc(&rdev2->nr_pending);
3634                        } else
3635                                clear_bit(R5_MadeGood, &dev->flags);
3636                }
3637                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3638                        struct md_rdev *rdev2 = rcu_dereference(
3639                                conf->disks[i].replacement);
3640                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3641                                s->handle_bad_blocks = 1;
3642                                atomic_inc(&rdev2->nr_pending);
3643                        } else
3644                                clear_bit(R5_MadeGoodRepl, &dev->flags);
3645                }
3646                if (!test_bit(R5_Insync, &dev->flags)) {
3647                        /* The ReadError flag will just be confusing now */
3648                        clear_bit(R5_ReadError, &dev->flags);
3649                        clear_bit(R5_ReWrite, &dev->flags);
3650                }
3651                if (test_bit(R5_ReadError, &dev->flags))
3652                        clear_bit(R5_Insync, &dev->flags);
3653                if (!test_bit(R5_Insync, &dev->flags)) {
3654                        if (s->failed < 2)
3655                                s->failed_num[s->failed] = i;
3656                        s->failed++;
3657                        if (rdev && !test_bit(Faulty, &rdev->flags))
3658                                do_recovery = 1;
3659                }
3660        }
3661        if (test_bit(STRIPE_SYNCING, &sh->state)) {
3662                /* If there is a failed device being replaced,
3663                 *     we must be recovering.
3664                 * else if we are after recovery_cp, we must be syncing
3665                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3666                 * else we can only be replacing
3667                 * sync and recovery both need to read all devices, and so
3668                 * use the same flag.
3669                 */
3670                if (do_recovery ||
3671                    sh->sector >= conf->mddev->recovery_cp ||
3672                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3673                        s->syncing = 1;
3674                else
3675                        s->replacing = 1;
3676        }
3677        rcu_read_unlock();
3678}
3679
3680static void handle_stripe(struct stripe_head *sh)
3681{
3682        struct stripe_head_state s;
3683        struct r5conf *conf = sh->raid_conf;
3684        int i;
3685        int prexor;
3686        int disks = sh->disks;
3687        struct r5dev *pdev, *qdev;
3688
3689        clear_bit(STRIPE_HANDLE, &sh->state);
3690        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3691                /* already being handled, ensure it gets handled
3692                 * again when current action finishes */
3693                set_bit(STRIPE_HANDLE, &sh->state);
3694                return;
3695        }
3696
3697        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3698                spin_lock(&sh->stripe_lock);
3699                /* Cannot process 'sync' concurrently with 'discard' */
3700                if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3701                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3702                        set_bit(STRIPE_SYNCING, &sh->state);
3703                        clear_bit(STRIPE_INSYNC, &sh->state);
3704                        clear_bit(STRIPE_REPLACED, &sh->state);
3705                }
3706                spin_unlock(&sh->stripe_lock);
3707        }
3708        clear_bit(STRIPE_DELAYED, &sh->state);
3709
3710        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3711                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3712               (unsigned long long)sh->sector, sh->state,
3713               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3714               sh->check_state, sh->reconstruct_state);
3715
3716        analyse_stripe(sh, &s);
3717
3718        if (s.handle_bad_blocks) {
3719                set_bit(STRIPE_HANDLE, &sh->state);
3720                goto finish;
3721        }
3722
3723        if (unlikely(s.blocked_rdev)) {
3724                if (s.syncing || s.expanding || s.expanded ||
3725                    s.replacing || s.to_write || s.written) {
3726                        set_bit(STRIPE_HANDLE, &sh->state);
3727                        goto finish;
3728                }
3729                /* There is nothing for the blocked_rdev to block */
3730                rdev_dec_pending(s.blocked_rdev, conf->mddev);
3731                s.blocked_rdev = NULL;
3732        }
3733
3734        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3735                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3736                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3737        }
3738
3739        pr_debug("locked=%d uptodate=%d to_read=%d"
3740               " to_write=%d failed=%d failed_num=%d,%d\n",
3741               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3742               s.failed_num[0], s.failed_num[1]);
3743        /* check if the array has lost more than max_degraded devices and,
3744         * if so, some requests might need to be failed.
3745         */
3746        if (s.failed > conf->max_degraded) {
3747                sh->check_state = 0;
3748                sh->reconstruct_state = 0;
3749                if (s.to_read+s.to_write+s.written)
3750                        handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3751                if (s.syncing + s.replacing)
3752                        handle_failed_sync(conf, sh, &s);
3753        }
3754
3755        /* Now we check to see if any write operations have recently
3756         * completed
3757         */
3758        prexor = 0;
3759        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3760                prexor = 1;
3761        if (sh->reconstruct_state == reconstruct_state_drain_result ||
3762            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3763                sh->reconstruct_state = reconstruct_state_idle;
3764
3765                /* All the 'written' buffers and the parity block are ready to
3766                 * be written back to disk
3767                 */
3768                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3769                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3770                BUG_ON(sh->qd_idx >= 0 &&
3771                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3772                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3773                for (i = disks; i--; ) {
3774                        struct r5dev *dev = &sh->dev[i];
3775                        if (test_bit(R5_LOCKED, &dev->flags) &&
3776                                (i == sh->pd_idx || i == sh->qd_idx ||
3777                                 dev->written)) {
3778                                pr_debug("Writing block %d\n", i);
3779                                set_bit(R5_Wantwrite, &dev->flags);
3780                                if (prexor)
3781                                        continue;
3782                                if (!test_bit(R5_Insync, &dev->flags) ||
3783                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3784                                     s.failed == 0))
3785                                        set_bit(STRIPE_INSYNC, &sh->state);
3786                        }
3787                }
3788                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3789                        s.dec_preread_active = 1;
3790        }
3791
3792        /*
3793         * might be able to return some write requests if the parity blocks
3794         * are safe, or on a failed drive
3795         */
3796        pdev = &sh->dev[sh->pd_idx];
3797        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3798                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3799        qdev = &sh->dev[sh->qd_idx];
3800        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3801                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3802                || conf->level < 6;
3803
3804        if (s.written &&
3805            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3806                             && !test_bit(R5_LOCKED, &pdev->flags)
3807                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
3808                                 test_bit(R5_Discard, &pdev->flags))))) &&
3809            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3810                             && !test_bit(R5_LOCKED, &qdev->flags)
3811                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
3812                                 test_bit(R5_Discard, &qdev->flags))))))
3813                handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3814
3815        /* Now we might consider reading some blocks, either to check/generate
3816         * parity, or to satisfy requests
3817         * or to load a block that is being partially written.
3818         */
3819        if (s.to_read || s.non_overwrite
3820            || (conf->level == 6 && s.to_write && s.failed)
3821            || (s.syncing && (s.uptodate + s.compute < disks))
3822            || s.replacing
3823            || s.expanding)
3824                handle_stripe_fill(sh, &s, disks);
3825
3826        /* Now to consider new write requests and what else, if anything
3827         * should be read.  We do not handle new writes when:
3828         * 1/ A 'write' operation (copy+xor) is already in flight.
3829         * 2/ A 'check' operation is in flight, as it may clobber the parity
3830         *    block.
3831         */
3832        if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3833                handle_stripe_dirtying(conf, sh, &s, disks);
3834
3835        /* maybe we need to check and possibly fix the parity for this stripe
3836         * Any reads will already have been scheduled, so we just see if enough
3837         * data is available.  The parity check is held off while parity
3838         * dependent operations are in flight.
3839         */
3840        if (sh->check_state ||
3841            (s.syncing && s.locked == 0 &&
3842             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3843             !test_bit(STRIPE_INSYNC, &sh->state))) {
3844                if (conf->level == 6)
3845                        handle_parity_checks6(conf, sh, &s, disks);
3846                else
3847                        handle_parity_checks5(conf, sh, &s, disks);
3848        }
3849
3850        if ((s.replacing || s.syncing) && s.locked == 0
3851            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3852            && !test_bit(STRIPE_REPLACED, &sh->state)) {
3853                /* Write out to replacement devices where possible */
3854                for (i = 0; i < conf->raid_disks; i++)
3855                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3856                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3857                                set_bit(R5_WantReplace, &sh->dev[i].flags);
3858                                set_bit(R5_LOCKED, &sh->dev[i].flags);
3859                                s.locked++;
3860                        }
3861                if (s.replacing)
3862                        set_bit(STRIPE_INSYNC, &sh->state);
3863                set_bit(STRIPE_REPLACED, &sh->state);
3864        }
3865        if ((s.syncing || s.replacing) && s.locked == 0 &&
3866            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3867            test_bit(STRIPE_INSYNC, &sh->state)) {
3868                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3869                clear_bit(STRIPE_SYNCING, &sh->state);
3870                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3871                        wake_up(&conf->wait_for_overlap);
3872        }
3873
3874        /* If the failed drives are just a ReadError, then we might need
3875         * to progress the repair/check process
3876         */
3877        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3878                for (i = 0; i < s.failed; i++) {
3879                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
3880                        if (test_bit(R5_ReadError, &dev->flags)
3881                            && !test_bit(R5_LOCKED, &dev->flags)
3882                            && test_bit(R5_UPTODATE, &dev->flags)
3883                                ) {
3884                                if (!test_bit(R5_ReWrite, &dev->flags)) {
3885                                        set_bit(R5_Wantwrite, &dev->flags);
3886                                        set_bit(R5_ReWrite, &dev->flags);
3887                                        set_bit(R5_LOCKED, &dev->flags);
3888                                        s.locked++;
3889                                } else {
3890                                        /* let's read it back */
3891                                        set_bit(R5_Wantread, &dev->flags);
3892                                        set_bit(R5_LOCKED, &dev->flags);
3893                                        s.locked++;
3894                                }
3895                        }
3896                }
3897
3898
3899        /* Finish reconstruct operations initiated by the expansion process */
3900        if (sh->reconstruct_state == reconstruct_state_result) {
3901                struct stripe_head *sh_src
3902                        = get_active_stripe(conf, sh->sector, 1, 1, 1);
3903                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3904                        /* sh cannot be written until sh_src has been read.
3905                         * so arrange for sh to be delayed a little
3906                         */
3907                        set_bit(STRIPE_DELAYED, &sh->state);
3908                        set_bit(STRIPE_HANDLE, &sh->state);
3909                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3910                                              &sh_src->state))
3911                                atomic_inc(&conf->preread_active_stripes);
3912                        release_stripe(sh_src);
3913                        goto finish;
3914                }
3915                if (sh_src)
3916                        release_stripe(sh_src);
3917
3918                sh->reconstruct_state = reconstruct_state_idle;
3919                clear_bit(STRIPE_EXPANDING, &sh->state);
3920                for (i = conf->raid_disks; i--; ) {
3921                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
3922                        set_bit(R5_LOCKED, &sh->dev[i].flags);
3923                        s.locked++;
3924                }
3925        }
3926
3927        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3928            !sh->reconstruct_state) {
3929                /* Need to write out all blocks after computing parity */
3930                sh->disks = conf->raid_disks;
3931                stripe_set_idx(sh->sector, conf, 0, sh);
3932                schedule_reconstruction(sh, &s, 1, 1);
3933        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3934                clear_bit(STRIPE_EXPAND_READY, &sh->state);
3935                atomic_dec(&conf->reshape_stripes);
3936                wake_up(&conf->wait_for_overlap);
3937                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3938        }
3939
3940        if (s.expanding && s.locked == 0 &&
3941            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3942                handle_stripe_expansion(conf, sh);
3943
3944finish:
3945        /* wait for this device to become unblocked */
3946        if (unlikely(s.blocked_rdev)) {
3947                if (conf->mddev->external)
3948                        md_wait_for_blocked_rdev(s.blocked_rdev,
3949                                                 conf->mddev);
3950                else
3951                        /* Internal metadata will immediately
3952                         * be written by raid5d, so we don't
3953                         * need to wait here.
3954                         */
3955                        rdev_dec_pending(s.blocked_rdev,
3956                                         conf->mddev);
3957        }
3958
3959        if (s.handle_bad_blocks)
3960                for (i = disks; i--; ) {
3961                        struct md_rdev *rdev;
3962                        struct r5dev *dev = &sh->dev[i];
3963                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3964                                /* We own a safe reference to the rdev */
3965                                rdev = conf->disks[i].rdev;
3966                                if (!rdev_set_badblocks(rdev, sh->sector,
3967                                                        STRIPE_SECTORS, 0))
3968                                        md_error(conf->mddev, rdev);
3969                                rdev_dec_pending(rdev, conf->mddev);
3970                        }
3971                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3972                                rdev = conf->disks[i].rdev;
3973                                rdev_clear_badblocks(rdev, sh->sector,
3974                                                     STRIPE_SECTORS, 0);
3975                                rdev_dec_pending(rdev, conf->mddev);
3976                        }
3977                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3978                                rdev = conf->disks[i].replacement;
3979                                if (!rdev)
3980                                        /* rdev have been moved down */
3981                                        rdev = conf->disks[i].rdev;
3982                                rdev_clear_badblocks(rdev, sh->sector,
3983                                                     STRIPE_SECTORS, 0);
3984                                rdev_dec_pending(rdev, conf->mddev);
3985                        }
3986                }
3987
3988        if (s.ops_request)
3989                raid_run_ops(sh, s.ops_request);
3990
3991        ops_run_io(sh, &s);
3992
3993        if (s.dec_preread_active) {
3994                /* We delay this until after ops_run_io so that if make_request
3995                 * is waiting on a flush, it won't continue until the writes
3996                 * have actually been submitted.
3997                 */
3998                atomic_dec(&conf->preread_active_stripes);
3999                if (atomic_read(&conf->preread_active_stripes) <
4000                    IO_THRESHOLD)
4001                        md_wakeup_thread(conf->mddev->thread);
4002        }
4003
4004        return_io(s.return_bi);
4005
4006        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4007}
4008
4009static void raid5_activate_delayed(struct r5conf *conf)
4010{
4011        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4012                while (!list_empty(&conf->delayed_list)) {
4013                        struct list_head *l = conf->delayed_list.next;
4014                        struct stripe_head *sh;
4015                        sh = list_entry(l, struct stripe_head, lru);
4016                        list_del_init(l);
4017                        clear_bit(STRIPE_DELAYED, &sh->state);
4018                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4019                                atomic_inc(&conf->preread_active_stripes);
4020                        list_add_tail(&sh->lru, &conf->hold_list);
4021                        raid5_wakeup_stripe_thread(sh);
4022                }
4023        }
4024}
4025
4026static void activate_bit_delay(struct r5conf *conf,
4027        struct list_head *temp_inactive_list)
4028{
4029        /* device_lock is held */
4030        struct list_head head;
4031        list_add(&head, &conf->bitmap_list);
4032        list_del_init(&conf->bitmap_list);
4033        while (!list_empty(&head)) {
4034                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4035                int hash;
4036                list_del_init(&sh->lru);
4037                atomic_inc(&sh->count);
4038                hash = sh->hash_lock_index;
4039                __release_stripe(conf, sh, &temp_inactive_list[hash]);
4040        }
4041}
4042
4043int md_raid5_congested(struct mddev *mddev, int bits)
4044{
4045        struct r5conf *conf = mddev->private;
4046
4047        /* No difference between reads and writes.  Just check
4048         * how busy the stripe_cache is
4049         */
4050
4051        if (conf->inactive_blocked)
4052                return 1;
4053        if (conf->quiesce)
4054                return 1;
4055        if (atomic_read(&conf->empty_inactive_list_nr))
4056                return 1;
4057
4058        return 0;
4059}
4060EXPORT_SYMBOL_GPL(md_raid5_congested);
4061
4062static int raid5_congested(void *data, int bits)
4063{
4064        struct mddev *mddev = data;
4065
4066        return mddev_congested(mddev, bits) ||
4067                md_raid5_congested(mddev, bits);
4068}
4069
4070/* We want read requests to align with chunks where possible,
4071 * but write requests don't need to.
4072 */
4073static int raid5_mergeable_bvec(struct request_queue *q,
4074                                struct bvec_merge_data *bvm,
4075                                struct bio_vec *biovec)
4076{
4077        struct mddev *mddev = q->queuedata;
4078        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4079        int max;
4080        unsigned int chunk_sectors = mddev->chunk_sectors;
4081        unsigned int bio_sectors = bvm->bi_size >> 9;
4082
4083        if ((bvm->bi_rw & 1) == WRITE)
4084                return biovec->bv_len; /* always allow writes to be mergeable */
4085
4086        if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4087                chunk_sectors = mddev->new_chunk_sectors;
4088        max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4089        if (max < 0) max = 0;
4090        if (max <= biovec->bv_len && bio_sectors == 0)
4091                return biovec->bv_len;
4092        else
4093                return max;
4094}
4095
4096
4097static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4098{
4099        sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4100        unsigned int chunk_sectors = mddev->chunk_sectors;
4101        unsigned int bio_sectors = bio_sectors(bio);
4102
4103        if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4104                chunk_sectors = mddev->new_chunk_sectors;
4105        return  chunk_sectors >=
4106                ((sector & (chunk_sectors - 1)) + bio_sectors);
4107}
4108
4109/*
4110 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4111 *  later sampled by raid5d.
4112 */
4113static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4114{
4115        unsigned long flags;
4116
4117        spin_lock_irqsave(&conf->device_lock, flags);
4118
4119        bi->bi_next = conf->retry_read_aligned_list;
4120        conf->retry_read_aligned_list = bi;
4121
4122        spin_unlock_irqrestore(&conf->device_lock, flags);
4123        md_wakeup_thread(conf->mddev->thread);
4124}
4125
4126
4127static struct bio *remove_bio_from_retry(struct r5conf *conf)
4128{
4129        struct bio *bi;
4130
4131        bi = conf->retry_read_aligned;
4132        if (bi) {
4133                conf->retry_read_aligned = NULL;
4134                return bi;
4135        }
4136        bi = conf->retry_read_aligned_list;
4137        if(bi) {
4138                conf->retry_read_aligned_list = bi->bi_next;
4139                bi->bi_next = NULL;
4140                /*
4141                 * this sets the active strip count to 1 and the processed
4142                 * strip count to zero (upper 8 bits)
4143                 */
4144                raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4145        }
4146
4147        return bi;
4148}
4149
4150
4151/*
4152 *  The "raid5_align_endio" should check if the read succeeded and if it
4153 *  did, call bio_endio on the original bio (having bio_put the new bio
4154 *  first).
4155 *  If the read failed..
4156 */
4157static void raid5_align_endio(struct bio *bi, int error)
4158{
4159        struct bio* raid_bi  = bi->bi_private;
4160        struct mddev *mddev;
4161        struct r5conf *conf;
4162        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4163        struct md_rdev *rdev;
4164
4165        bio_put(bi);
4166
4167        rdev = (void*)raid_bi->bi_next;
4168        raid_bi->bi_next = NULL;
4169        mddev = rdev->mddev;
4170        conf = mddev->private;
4171
4172        rdev_dec_pending(rdev, conf->mddev);
4173
4174        if (!error && uptodate) {
4175                trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4176                                         raid_bi, 0);
4177                bio_endio(raid_bi, 0);
4178                if (atomic_dec_and_test(&conf->active_aligned_reads))
4179                        wake_up(&conf->wait_for_stripe);
4180                return;
4181        }
4182
4183
4184        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4185
4186        add_bio_to_retry(raid_bi, conf);
4187}
4188
4189static int bio_fits_rdev(struct bio *bi)
4190{
4191        struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4192
4193        if (bio_sectors(bi) > queue_max_sectors(q))
4194                return 0;
4195        blk_recount_segments(q, bi);
4196        if (bi->bi_phys_segments > queue_max_segments(q))
4197                return 0;
4198
4199        if (q->merge_bvec_fn)
4200                /* it's too hard to apply the merge_bvec_fn at this stage,
4201                 * just just give up
4202                 */
4203                return 0;
4204
4205        return 1;
4206}
4207
4208
4209static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4210{
4211        struct r5conf *conf = mddev->private;
4212        int dd_idx;
4213        struct bio* align_bi;
4214        struct md_rdev *rdev;
4215        sector_t end_sector;
4216
4217        if (!in_chunk_boundary(mddev, raid_bio)) {
4218                pr_debug("chunk_aligned_read : non aligned\n");
4219                return 0;
4220        }
4221        /*
4222         * use bio_clone_mddev to make a copy of the bio
4223         */
4224        align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4225        if (!align_bi)
4226                return 0;
4227        /*
4228         *   set bi_end_io to a new function, and set bi_private to the
4229         *     original bio.
4230         */
4231        align_bi->bi_end_io  = raid5_align_endio;
4232        align_bi->bi_private = raid_bio;
4233        /*
4234         *      compute position
4235         */
4236        align_bi->bi_iter.bi_sector =
4237                raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4238                                     0, &dd_idx, NULL);
4239
4240        end_sector = bio_end_sector(align_bi);
4241        rcu_read_lock();
4242        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4243        if (!rdev || test_bit(Faulty, &rdev->flags) ||
4244            rdev->recovery_offset < end_sector) {
4245                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4246                if (rdev &&
4247                    (test_bit(Faulty, &rdev->flags) ||
4248                    !(test_bit(In_sync, &rdev->flags) ||
4249                      rdev->recovery_offset >= end_sector)))
4250                        rdev = NULL;
4251        }
4252        if (rdev) {
4253                sector_t first_bad;
4254                int bad_sectors;
4255
4256                atomic_inc(&rdev->nr_pending);
4257                rcu_read_unlock();
4258                raid_bio->bi_next = (void*)rdev;
4259                align_bi->bi_bdev =  rdev->bdev;
4260                align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4261
4262                if (!bio_fits_rdev(align_bi) ||
4263                    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4264                                bio_sectors(align_bi),
4265                                &first_bad, &bad_sectors)) {
4266                        /* too big in some way, or has a known bad block */
4267                        bio_put(align_bi);
4268                        rdev_dec_pending(rdev, mddev);
4269                        return 0;
4270                }
4271
4272                /* No reshape active, so we can trust rdev->data_offset */
4273                align_bi->bi_iter.bi_sector += rdev->data_offset;
4274
4275                spin_lock_irq(&conf->device_lock);
4276                wait_event_lock_irq(conf->wait_for_stripe,
4277                                    conf->quiesce == 0,
4278                                    conf->device_lock);
4279                atomic_inc(&conf->active_aligned_reads);
4280                spin_unlock_irq(&conf->device_lock);
4281
4282                if (mddev->gendisk)
4283                        trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4284                                              align_bi, disk_devt(mddev->gendisk),
4285                                              raid_bio->bi_iter.bi_sector);
4286                generic_make_request(align_bi);
4287                return 1;
4288        } else {
4289                rcu_read_unlock();
4290                bio_put(align_bi);
4291                return 0;
4292        }
4293}
4294
4295/* __get_priority_stripe - get the next stripe to process
4296 *
4297 * Full stripe writes are allowed to pass preread active stripes up until
4298 * the bypass_threshold is exceeded.  In general the bypass_count
4299 * increments when the handle_list is handled before the hold_list; however, it
4300 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4301 * stripe with in flight i/o.  The bypass_count will be reset when the
4302 * head of the hold_list has changed, i.e. the head was promoted to the
4303 * handle_list.
4304 */
4305static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4306{
4307        struct stripe_head *sh = NULL, *tmp;
4308        struct list_head *handle_list = NULL;
4309        struct r5worker_group *wg = NULL;
4310
4311        if (conf->worker_cnt_per_group == 0) {
4312                handle_list = &conf->handle_list;
4313        } else if (group != ANY_GROUP) {
4314                handle_list = &conf->worker_groups[group].handle_list;
4315                wg = &conf->worker_groups[group];
4316        } else {
4317                int i;
4318                for (i = 0; i < conf->group_cnt; i++) {
4319                        handle_list = &conf->worker_groups[i].handle_list;
4320                        wg = &conf->worker_groups[i];
4321                        if (!list_empty(handle_list))
4322                                break;
4323                }
4324        }
4325
4326        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4327                  __func__,
4328                  list_empty(handle_list) ? "empty" : "busy",
4329                  list_empty(&conf->hold_list) ? "empty" : "busy",
4330                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4331
4332        if (!list_empty(handle_list)) {
4333                sh = list_entry(handle_list->next, typeof(*sh), lru);
4334
4335                if (list_empty(&conf->hold_list))
4336                        conf->bypass_count = 0;
4337                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4338                        if (conf->hold_list.next == conf->last_hold)
4339                                conf->bypass_count++;
4340                        else {
4341                                conf->last_hold = conf->hold_list.next;
4342                                conf->bypass_count -= conf->bypass_threshold;
4343                                if (conf->bypass_count < 0)
4344                                        conf->bypass_count = 0;
4345                        }
4346                }
4347        } else if (!list_empty(&conf->hold_list) &&
4348                   ((conf->bypass_threshold &&
4349                     conf->bypass_count > conf->bypass_threshold) ||
4350                    atomic_read(&conf->pending_full_writes) == 0)) {
4351
4352                list_for_each_entry(tmp, &conf->hold_list,  lru) {
4353                        if (conf->worker_cnt_per_group == 0 ||
4354                            group == ANY_GROUP ||
4355                            !cpu_online(tmp->cpu) ||
4356                            cpu_to_group(tmp->cpu) == group) {
4357                                sh = tmp;
4358                                break;
4359                        }
4360                }
4361
4362                if (sh) {
4363                        conf->bypass_count -= conf->bypass_threshold;
4364                        if (conf->bypass_count < 0)
4365                                conf->bypass_count = 0;
4366                }
4367                wg = NULL;
4368        }
4369
4370        if (!sh)
4371                return NULL;
4372
4373        if (wg) {
4374                wg->stripes_cnt--;
4375                sh->group = NULL;
4376        }
4377        list_del_init(&sh->lru);
4378        atomic_inc(&sh->count);
4379        BUG_ON(atomic_read(&sh->count) != 1);
4380        return sh;
4381}
4382
4383struct raid5_plug_cb {
4384        struct blk_plug_cb      cb;
4385        struct list_head        list;
4386        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4387};
4388
4389static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4390{
4391        struct raid5_plug_cb *cb = container_of(
4392                blk_cb, struct raid5_plug_cb, cb);
4393        struct stripe_head *sh;
4394        struct mddev *mddev = cb->cb.data;
4395        struct r5conf *conf = mddev->private;
4396        int cnt = 0;
4397        int hash;
4398
4399        if (cb->list.next && !list_empty(&cb->list)) {
4400                spin_lock_irq(&conf->device_lock);
4401                while (!list_empty(&cb->list)) {
4402                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
4403                        list_del_init(&sh->lru);
4404                        /*
4405                         * avoid race release_stripe_plug() sees
4406                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
4407                         * is still in our list
4408                         */
4409                        smp_mb__before_clear_bit();
4410                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4411                        /*
4412                         * STRIPE_ON_RELEASE_LIST could be set here. In that
4413                         * case, the count is always > 1 here
4414                         */
4415                        hash = sh->hash_lock_index;
4416                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4417                        cnt++;
4418                }
4419                spin_unlock_irq(&conf->device_lock);
4420        }
4421        release_inactive_stripe_list(conf, cb->temp_inactive_list,
4422                                     NR_STRIPE_HASH_LOCKS);
4423        if (mddev->queue)
4424                trace_block_unplug(mddev->queue, cnt, !from_schedule);
4425        kfree(cb);
4426}
4427
4428static void release_stripe_plug(struct mddev *mddev,
4429                                struct stripe_head *sh)
4430{
4431        struct blk_plug_cb *blk_cb = blk_check_plugged(
4432                raid5_unplug, mddev,
4433                sizeof(struct raid5_plug_cb));
4434        struct raid5_plug_cb *cb;
4435
4436        if (!blk_cb) {
4437                release_stripe(sh);
4438                return;
4439        }
4440
4441        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4442
4443        if (cb->list.next == NULL) {
4444                int i;
4445                INIT_LIST_HEAD(&cb->list);
4446                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4447                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
4448        }
4449
4450        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4451                list_add_tail(&sh->lru, &cb->list);
4452        else
4453                release_stripe(sh);
4454}
4455
4456static void make_discard_request(struct mddev *mddev, struct bio *bi)
4457{
4458        struct r5conf *conf = mddev->private;
4459        sector_t logical_sector, last_sector;
4460        struct stripe_head *sh;
4461        int remaining;
4462        int stripe_sectors;
4463
4464        if (mddev->reshape_position != MaxSector)
4465                /* Skip discard while reshape is happening */
4466                return;
4467
4468        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4469        last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4470
4471        bi->bi_next = NULL;
4472        bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4473
4474        stripe_sectors = conf->chunk_sectors *
4475                (conf->raid_disks - conf->max_degraded);
4476        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4477                                               stripe_sectors);
4478        sector_div(last_sector, stripe_sectors);
4479
4480        logical_sector *= conf->chunk_sectors;
4481        last_sector *= conf->chunk_sectors;
4482
4483        for (; logical_sector < last_sector;
4484             logical_sector += STRIPE_SECTORS) {
4485                DEFINE_WAIT(w);
4486                int d;
4487        again:
4488                sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4489                prepare_to_wait(&conf->wait_for_overlap, &w,
4490                                TASK_UNINTERRUPTIBLE);
4491                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4492                if (test_bit(STRIPE_SYNCING, &sh->state)) {
4493                        release_stripe(sh);
4494                        schedule();
4495                        goto again;
4496                }
4497                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4498                spin_lock_irq(&sh->stripe_lock);
4499                for (d = 0; d < conf->raid_disks; d++) {
4500                        if (d == sh->pd_idx || d == sh->qd_idx)
4501                                continue;
4502                        if (sh->dev[d].towrite || sh->dev[d].toread) {
4503                                set_bit(R5_Overlap, &sh->dev[d].flags);
4504                                spin_unlock_irq(&sh->stripe_lock);
4505                                release_stripe(sh);
4506                                schedule();
4507                                goto again;
4508                        }
4509                }
4510                set_bit(STRIPE_DISCARD, &sh->state);
4511                finish_wait(&conf->wait_for_overlap, &w);
4512                for (d = 0; d < conf->raid_disks; d++) {
4513                        if (d == sh->pd_idx || d == sh->qd_idx)
4514                                continue;
4515                        sh->dev[d].towrite = bi;
4516                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4517                        raid5_inc_bi_active_stripes(bi);
4518                }
4519                spin_unlock_irq(&sh->stripe_lock);
4520                if (conf->mddev->bitmap) {
4521                        for (d = 0;
4522                             d < conf->raid_disks - conf->max_degraded;
4523                             d++)
4524                                bitmap_startwrite(mddev->bitmap,
4525                                                  sh->sector,
4526                                                  STRIPE_SECTORS,
4527                                                  0);
4528                        sh->bm_seq = conf->seq_flush + 1;
4529                        set_bit(STRIPE_BIT_DELAY, &sh->state);
4530                }
4531
4532                set_bit(STRIPE_HANDLE, &sh->state);
4533                clear_bit(STRIPE_DELAYED, &sh->state);
4534                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4535                        atomic_inc(&conf->preread_active_stripes);
4536                release_stripe_plug(mddev, sh);
4537        }
4538
4539        remaining = raid5_dec_bi_active_stripes(bi);
4540        if (remaining == 0) {
4541                md_write_end(mddev);
4542                bio_endio(bi, 0);
4543        }
4544}
4545
4546static void make_request(struct mddev *mddev, struct bio * bi)
4547{
4548        struct r5conf *conf = mddev->private;
4549        int dd_idx;
4550        sector_t new_sector;
4551        sector_t logical_sector, last_sector;
4552        struct stripe_head *sh;
4553        const int rw = bio_data_dir(bi);
4554        int remaining;
4555
4556        if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4557                md_flush_request(mddev, bi);
4558                return;
4559        }
4560
4561        md_write_start(mddev, bi);
4562
4563        if (rw == READ &&
4564             mddev->reshape_position == MaxSector &&
4565             chunk_aligned_read(mddev,bi))
4566                return;
4567
4568        if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4569                make_discard_request(mddev, bi);
4570                return;
4571        }
4572
4573        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4574        last_sector = bio_end_sector(bi);
4575        bi->bi_next = NULL;
4576        bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4577
4578        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4579                DEFINE_WAIT(w);
4580                int previous;
4581                int seq;
4582
4583        retry:
4584                seq = read_seqcount_begin(&conf->gen_lock);
4585                previous = 0;
4586                prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4587                if (unlikely(conf->reshape_progress != MaxSector)) {
4588                        /* spinlock is needed as reshape_progress may be
4589                         * 64bit on a 32bit platform, and so it might be
4590                         * possible to see a half-updated value
4591                         * Of course reshape_progress could change after
4592                         * the lock is dropped, so once we get a reference
4593                         * to the stripe that we think it is, we will have
4594                         * to check again.
4595                         */
4596                        spin_lock_irq(&conf->device_lock);
4597                        if (mddev->reshape_backwards
4598                            ? logical_sector < conf->reshape_progress
4599                            : logical_sector >= conf->reshape_progress) {
4600                                previous = 1;
4601                        } else {
4602                                if (mddev->reshape_backwards
4603                                    ? logical_sector < conf->reshape_safe
4604                                    : logical_sector >= conf->reshape_safe) {
4605                                        spin_unlock_irq(&conf->device_lock);
4606                                        schedule();
4607                                        goto retry;
4608                                }
4609                        }
4610                        spin_unlock_irq(&conf->device_lock);
4611                }
4612
4613                new_sector = raid5_compute_sector(conf, logical_sector,
4614                                                  previous,
4615                                                  &dd_idx, NULL);
4616                pr_debug("raid456: make_request, sector %llu logical %llu\n",
4617                        (unsigned long long)new_sector,
4618                        (unsigned long long)logical_sector);
4619
4620                sh = get_active_stripe(conf, new_sector, previous,
4621                                       (bi->bi_rw&RWA_MASK), 0);
4622                if (sh) {
4623                        if (unlikely(previous)) {
4624                                /* expansion might have moved on while waiting for a
4625                                 * stripe, so we must do the range check again.
4626                                 * Expansion could still move past after this
4627                                 * test, but as we are holding a reference to
4628                                 * 'sh', we know that if that happens,
4629                                 *  STRIPE_EXPANDING will get set and the expansion
4630                                 * won't proceed until we finish with the stripe.
4631                                 */
4632                                int must_retry = 0;
4633                                spin_lock_irq(&conf->device_lock);
4634                                if (mddev->reshape_backwards
4635                                    ? logical_sector >= conf->reshape_progress
4636                                    : logical_sector < conf->reshape_progress)
4637                                        /* mismatch, need to try again */
4638                                        must_retry = 1;
4639                                spin_unlock_irq(&conf->device_lock);
4640                                if (must_retry) {
4641                                        release_stripe(sh);
4642                                        schedule();
4643                                        goto retry;
4644                                }
4645                        }
4646                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
4647                                /* Might have got the wrong stripe_head
4648                                 * by accident
4649                                 */
4650                                release_stripe(sh);
4651                                goto retry;
4652                        }
4653
4654                        if (rw == WRITE &&
4655                            logical_sector >= mddev->suspend_lo &&
4656                            logical_sector < mddev->suspend_hi) {
4657                                release_stripe(sh);
4658                                /* As the suspend_* range is controlled by
4659                                 * userspace, we want an interruptible
4660                                 * wait.
4661                                 */
4662                                flush_signals(current);
4663                                prepare_to_wait(&conf->wait_for_overlap,
4664                                                &w, TASK_INTERRUPTIBLE);
4665                                if (logical_sector >= mddev->suspend_lo &&
4666                                    logical_sector < mddev->suspend_hi)
4667                                        schedule();
4668                                goto retry;
4669                        }
4670
4671                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4672                            !add_stripe_bio(sh, bi, dd_idx, rw)) {
4673                                /* Stripe is busy expanding or
4674                                 * add failed due to overlap.  Flush everything
4675                                 * and wait a while
4676                                 */
4677                                md_wakeup_thread(mddev->thread);
4678                                release_stripe(sh);
4679                                schedule();
4680                                goto retry;
4681                        }
4682                        finish_wait(&conf->wait_for_overlap, &w);
4683                        set_bit(STRIPE_HANDLE, &sh->state);
4684                        clear_bit(STRIPE_DELAYED, &sh->state);
4685                        if ((bi->bi_rw & REQ_SYNC) &&
4686                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4687                                atomic_inc(&conf->preread_active_stripes);
4688                        release_stripe_plug(mddev, sh);
4689                } else {
4690                        /* cannot get stripe for read-ahead, just give-up */
4691                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
4692                        finish_wait(&conf->wait_for_overlap, &w);
4693                        break;
4694                }
4695        }
4696
4697        remaining = raid5_dec_bi_active_stripes(bi);
4698        if (remaining == 0) {
4699
4700                if ( rw == WRITE )
4701                        md_write_end(mddev);
4702
4703                trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4704                                         bi, 0);
4705                bio_endio(bi, 0);
4706        }
4707}
4708
4709static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4710
4711static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4712{
4713        /* reshaping is quite different to recovery/resync so it is
4714         * handled quite separately ... here.
4715         *
4716         * On each call to sync_request, we gather one chunk worth of
4717         * destination stripes and flag them as expanding.
4718         * Then we find all the source stripes and request reads.
4719         * As the reads complete, handle_stripe will copy the data
4720         * into the destination stripe and release that stripe.
4721         */
4722        struct r5conf *conf = mddev->private;
4723        struct stripe_head *sh;
4724        sector_t first_sector, last_sector;
4725        int raid_disks = conf->previous_raid_disks;
4726        int data_disks = raid_disks - conf->max_degraded;
4727        int new_data_disks = conf->raid_disks - conf->max_degraded;
4728        int i;
4729        int dd_idx;
4730        sector_t writepos, readpos, safepos;
4731        sector_t stripe_addr;
4732        int reshape_sectors;
4733        struct list_head stripes;
4734
4735        if (sector_nr == 0) {
4736                /* If restarting in the middle, skip the initial sectors */
4737                if (mddev->reshape_backwards &&
4738                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4739                        sector_nr = raid5_size(mddev, 0, 0)
4740                                - conf->reshape_progress;
4741                } else if (!mddev->reshape_backwards &&
4742                           conf->reshape_progress > 0)
4743                        sector_nr = conf->reshape_progress;
4744                sector_div(sector_nr, new_data_disks);
4745                if (sector_nr) {
4746                        mddev->curr_resync_completed = sector_nr;
4747                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4748                        *skipped = 1;
4749                        return sector_nr;
4750                }
4751        }
4752
4753        /* We need to process a full chunk at a time.
4754         * If old and new chunk sizes differ, we need to process the
4755         * largest of these
4756         */
4757        if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4758                reshape_sectors = mddev->new_chunk_sectors;
4759        else
4760                reshape_sectors = mddev->chunk_sectors;
4761
4762        /* We update the metadata at least every 10 seconds, or when
4763         * the data about to be copied would over-write the source of
4764         * the data at the front of the range.  i.e. one new_stripe
4765         * along from reshape_progress new_maps to after where
4766         * reshape_safe old_maps to
4767         */
4768        writepos = conf->reshape_progress;
4769        sector_div(writepos, new_data_disks);
4770        readpos = conf->reshape_progress;
4771        sector_div(readpos, data_disks);
4772        safepos = conf->reshape_safe;
4773        sector_div(safepos, data_disks);
4774        if (mddev->reshape_backwards) {
4775                writepos -= min_t(sector_t, reshape_sectors, writepos);
4776                readpos += reshape_sectors;
4777                safepos += reshape_sectors;
4778        } else {
4779                writepos += reshape_sectors;
4780                readpos -= min_t(sector_t, reshape_sectors, readpos);
4781                safepos -= min_t(sector_t, reshape_sectors, safepos);
4782        }
4783
4784        /* Having calculated the 'writepos' possibly use it
4785         * to set 'stripe_addr' which is where we will write to.
4786         */
4787        if (mddev->reshape_backwards) {
4788                BUG_ON(conf->reshape_progress == 0);
4789                stripe_addr = writepos;
4790                BUG_ON((mddev->dev_sectors &
4791                        ~((sector_t)reshape_sectors - 1))
4792                       - reshape_sectors - stripe_addr
4793                       != sector_nr);
4794        } else {
4795                BUG_ON(writepos != sector_nr + reshape_sectors);
4796                stripe_addr = sector_nr;
4797        }
4798
4799        /* 'writepos' is the most advanced device address we might write.
4800         * 'readpos' is the least advanced device address we might read.
4801         * 'safepos' is the least address recorded in the metadata as having
4802         *     been reshaped.
4803         * If there is a min_offset_diff, these are adjusted either by
4804         * increasing the safepos/readpos if diff is negative, or
4805         * increasing writepos if diff is positive.
4806         * If 'readpos' is then behind 'writepos', there is no way that we can
4807         * ensure safety in the face of a crash - that must be done by userspace
4808         * making a backup of the data.  So in that case there is no particular
4809         * rush to update metadata.
4810         * Otherwise if 'safepos' is behind 'writepos', then we really need to
4811         * update the metadata to advance 'safepos' to match 'readpos' so that
4812         * we can be safe in the event of a crash.
4813         * So we insist on updating metadata if safepos is behind writepos and
4814         * readpos is beyond writepos.
4815         * In any case, update the metadata every 10 seconds.
4816         * Maybe that number should be configurable, but I'm not sure it is
4817         * worth it.... maybe it could be a multiple of safemode_delay???
4818         */
4819        if (conf->min_offset_diff < 0) {
4820                safepos += -conf->min_offset_diff;
4821                readpos += -conf->min_offset_diff;
4822        } else
4823                writepos += conf->min_offset_diff;
4824
4825        if ((mddev->reshape_backwards
4826             ? (safepos > writepos && readpos < writepos)
4827             : (safepos < writepos && readpos > writepos)) ||
4828            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4829                /* Cannot proceed until we've updated the superblock... */
4830                wait_event(conf->wait_for_overlap,
4831                           atomic_read(&conf->reshape_stripes)==0
4832                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4833                if (atomic_read(&conf->reshape_stripes) != 0)
4834                        return 0;
4835                mddev->reshape_position = conf->reshape_progress;
4836                mddev->curr_resync_completed = sector_nr;
4837                conf->reshape_checkpoint = jiffies;
4838                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4839                md_wakeup_thread(mddev->thread);
4840                wait_event(mddev->sb_wait, mddev->flags == 0 ||
4841                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4842                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4843                        return 0;
4844                spin_lock_irq(&conf->device_lock);
4845                conf->reshape_safe = mddev->reshape_position;
4846                spin_unlock_irq(&conf->device_lock);
4847                wake_up(&conf->wait_for_overlap);
4848                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4849        }
4850
4851        INIT_LIST_HEAD(&stripes);
4852        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4853                int j;
4854                int skipped_disk = 0;
4855                sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4856                set_bit(STRIPE_EXPANDING, &sh->state);
4857                atomic_inc(&conf->reshape_stripes);
4858                /* If any of this stripe is beyond the end of the old
4859                 * array, then we need to zero those blocks
4860                 */
4861                for (j=sh->disks; j--;) {
4862                        sector_t s;
4863                        if (j == sh->pd_idx)
4864                                continue;
4865                        if (conf->level == 6 &&
4866                            j == sh->qd_idx)
4867                                continue;
4868                        s = compute_blocknr(sh, j, 0);
4869                        if (s < raid5_size(mddev, 0, 0)) {
4870                                skipped_disk = 1;
4871                                continue;
4872                        }
4873                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4874                        set_bit(R5_Expanded, &sh->dev[j].flags);
4875                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
4876                }
4877                if (!skipped_disk) {
4878                        set_bit(STRIPE_EXPAND_READY, &sh->state);
4879                        set_bit(STRIPE_HANDLE, &sh->state);
4880                }
4881                list_add(&sh->lru, &stripes);
4882        }
4883        spin_lock_irq(&conf->device_lock);
4884        if (mddev->reshape_backwards)
4885                conf->reshape_progress -= reshape_sectors * new_data_disks;
4886        else
4887                conf->reshape_progress += reshape_sectors * new_data_disks;
4888        spin_unlock_irq(&conf->device_lock);
4889        /* Ok, those stripe are ready. We can start scheduling
4890         * reads on the source stripes.
4891         * The source stripes are determined by mapping the first and last
4892         * block on the destination stripes.
4893         */
4894        first_sector =
4895                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4896                                     1, &dd_idx, NULL);
4897        last_sector =
4898                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4899                                            * new_data_disks - 1),
4900                                     1, &dd_idx, NULL);
4901        if (last_sector >= mddev->dev_sectors)
4902                last_sector = mddev->dev_sectors - 1;
4903        while (first_sector <= last_sector) {
4904                sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4905                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4906                set_bit(STRIPE_HANDLE, &sh->state);
4907                release_stripe(sh);
4908                first_sector += STRIPE_SECTORS;
4909        }
4910        /* Now that the sources are clearly marked, we can release
4911         * the destination stripes
4912         */
4913        while (!list_empty(&stripes)) {
4914                sh = list_entry(stripes.next, struct stripe_head, lru);
4915                list_del_init(&sh->lru);
4916                release_stripe(sh);
4917        }
4918        /* If this takes us to the resync_max point where we have to pause,
4919         * then we need to write out the superblock.
4920         */
4921        sector_nr += reshape_sectors;
4922        if ((sector_nr - mddev->curr_resync_completed) * 2
4923            >= mddev->resync_max - mddev->curr_resync_completed) {
4924                /* Cannot proceed until we've updated the superblock... */
4925                wait_event(conf->wait_for_overlap,
4926                           atomic_read(&conf->reshape_stripes) == 0
4927                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4928                if (atomic_read(&conf->reshape_stripes) != 0)
4929                        goto ret;
4930                mddev->reshape_position = conf->reshape_progress;
4931                mddev->curr_resync_completed = sector_nr;
4932                conf->reshape_checkpoint = jiffies;
4933                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4934                md_wakeup_thread(mddev->thread);
4935                wait_event(mddev->sb_wait,
4936                           !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4937                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4938                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4939                        goto ret;
4940                spin_lock_irq(&conf->device_lock);
4941                conf->reshape_safe = mddev->reshape_position;
4942                spin_unlock_irq(&conf->device_lock);
4943                wake_up(&conf->wait_for_overlap);
4944                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4945        }
4946ret:
4947        return reshape_sectors;
4948}
4949
4950/* FIXME go_faster isn't used */
4951static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4952{
4953        struct r5conf *conf = mddev->private;
4954        struct stripe_head *sh;
4955        sector_t max_sector = mddev->dev_sectors;
4956        sector_t sync_blocks;
4957        int still_degraded = 0;
4958        int i;
4959
4960        if (sector_nr >= max_sector) {
4961                /* just being told to finish up .. nothing much to do */
4962
4963                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4964                        end_reshape(conf);
4965                        return 0;
4966                }
4967
4968                if (mddev->curr_resync < max_sector) /* aborted */
4969                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4970                                        &sync_blocks, 1);
4971                else /* completed sync */
4972                        conf->fullsync = 0;
4973                bitmap_close_sync(mddev->bitmap);
4974
4975                return 0;
4976        }
4977
4978        /* Allow raid5_quiesce to complete */
4979        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4980
4981        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4982                return reshape_request(mddev, sector_nr, skipped);
4983
4984        /* No need to check resync_max as we never do more than one
4985         * stripe, and as resync_max will always be on a chunk boundary,
4986         * if the check in md_do_sync didn't fire, there is no chance
4987         * of overstepping resync_max here
4988         */
4989
4990        /* if there is too many failed drives and we are trying
4991         * to resync, then assert that we are finished, because there is
4992         * nothing we can do.
4993         */
4994        if (mddev->degraded >= conf->max_degraded &&
4995            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4996                sector_t rv = mddev->dev_sectors - sector_nr;
4997                *skipped = 1;
4998                return rv;
4999        }
5000        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5001            !conf->fullsync &&
5002            !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5003            sync_blocks >= STRIPE_SECTORS) {
5004                /* we can skip this block, and probably more */
5005                sync_blocks /= STRIPE_SECTORS;
5006                *skipped = 1;
5007                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5008        }
5009
5010        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5011
5012        sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5013        if (sh == NULL) {
5014                sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5015                /* make sure we don't swamp the stripe cache if someone else
5016                 * is trying to get access
5017                 */
5018                schedule_timeout_uninterruptible(1);
5019        }
5020        /* Need to check if array will still be degraded after recovery/resync
5021         * We don't need to check the 'failed' flag as when that gets set,
5022         * recovery aborts.
5023         */
5024        for (i = 0; i < conf->raid_disks; i++)
5025                if (conf->disks[i].rdev == NULL)
5026                        still_degraded = 1;
5027
5028        bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5029
5030        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5031
5032        handle_stripe(sh);
5033        release_stripe(sh);
5034
5035        return STRIPE_SECTORS;
5036}
5037
5038static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5039{
5040        /* We may not be able to submit a whole bio at once as there
5041         * may not be enough stripe_heads available.
5042         * We cannot pre-allocate enough stripe_heads as we may need
5043         * more than exist in the cache (if we allow ever large chunks).
5044         * So we do one stripe head at a time and record in
5045         * ->bi_hw_segments how many have been done.
5046         *
5047         * We *know* that this entire raid_bio is in one chunk, so
5048         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5049         */
5050        struct stripe_head *sh;
5051        int dd_idx;
5052        sector_t sector, logical_sector, last_sector;
5053        int scnt = 0;
5054        int remaining;
5055        int handled = 0;
5056
5057        logical_sector = raid_bio->bi_iter.bi_sector &
5058                ~((sector_t)STRIPE_SECTORS-1);
5059        sector = raid5_compute_sector(conf, logical_sector,
5060                                      0, &dd_idx, NULL);
5061        last_sector = bio_end_sector(raid_bio);
5062
5063        for (; logical_sector < last_sector;
5064             logical_sector += STRIPE_SECTORS,
5065                     sector += STRIPE_SECTORS,
5066                     scnt++) {
5067
5068                if (scnt < raid5_bi_processed_stripes(raid_bio))
5069                        /* already done this stripe */
5070                        continue;
5071
5072                sh = get_active_stripe(conf, sector, 0, 1, 0);
5073
5074                if (!sh) {
5075                        /* failed to get a stripe - must wait */
5076                        raid5_set_bi_processed_stripes(raid_bio, scnt);
5077                        conf->retry_read_aligned = raid_bio;
5078                        return handled;
5079                }
5080
5081                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5082                        release_stripe(sh);
5083                        raid5_set_bi_processed_stripes(raid_bio, scnt);
5084                        conf->retry_read_aligned = raid_bio;
5085                        return handled;
5086                }
5087
5088                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5089                handle_stripe(sh);
5090                release_stripe(sh);
5091                handled++;
5092        }
5093        remaining = raid5_dec_bi_active_stripes(raid_bio);
5094        if (remaining == 0) {
5095                trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5096                                         raid_bio, 0);
5097                bio_endio(raid_bio, 0);
5098        }
5099        if (atomic_dec_and_test(&conf->active_aligned_reads))
5100                wake_up(&conf->wait_for_stripe);
5101        return handled;
5102}
5103
5104static int handle_active_stripes(struct r5conf *conf, int group,
5105                                 struct r5worker *worker,
5106                                 struct list_head *temp_inactive_list)
5107{
5108        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5109        int i, batch_size = 0, hash;
5110        bool release_inactive = false;
5111
5112        while (batch_size < MAX_STRIPE_BATCH &&
5113                        (sh = __get_priority_stripe(conf, group)) != NULL)
5114                batch[batch_size++] = sh;
5115
5116        if (batch_size == 0) {
5117                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5118                        if (!list_empty(temp_inactive_list + i))
5119                                break;
5120                if (i == NR_STRIPE_HASH_LOCKS)
5121                        return batch_size;
5122                release_inactive = true;
5123        }
5124        spin_unlock_irq(&conf->device_lock);
5125
5126        release_inactive_stripe_list(conf, temp_inactive_list,
5127                                     NR_STRIPE_HASH_LOCKS);
5128
5129        if (release_inactive) {
5130                spin_lock_irq(&conf->device_lock);
5131                return 0;
5132        }
5133
5134        for (i = 0; i < batch_size; i++)
5135                handle_stripe(batch[i]);
5136
5137        cond_resched();
5138
5139        spin_lock_irq(&conf->device_lock);
5140        for (i = 0; i < batch_size; i++) {
5141                hash = batch[i]->hash_lock_index;
5142                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5143        }
5144        return batch_size;
5145}
5146
5147static void raid5_do_work(struct work_struct *work)
5148{
5149        struct r5worker *worker = container_of(work, struct r5worker, work);
5150        struct r5worker_group *group = worker->group;
5151        struct r5conf *conf = group->conf;
5152        int group_id = group - conf->worker_groups;
5153        int handled;
5154        struct blk_plug plug;
5155
5156        pr_debug("+++ raid5worker active\n");
5157
5158        blk_start_plug(&plug);
5159        handled = 0;
5160        spin_lock_irq(&conf->device_lock);
5161        while (1) {
5162                int batch_size, released;
5163
5164                released = release_stripe_list(conf, worker->temp_inactive_list);
5165
5166                batch_size = handle_active_stripes(conf, group_id, worker,
5167                                                   worker->temp_inactive_list);
5168                worker->working = false;
5169                if (!batch_size && !released)
5170                        break;
5171                handled += batch_size;
5172        }
5173        pr_debug("%d stripes handled\n", handled);
5174
5175        spin_unlock_irq(&conf->device_lock);
5176        blk_finish_plug(&plug);
5177
5178        pr_debug("--- raid5worker inactive\n");
5179}
5180
5181/*
5182 * This is our raid5 kernel thread.
5183 *
5184 * We scan the hash table for stripes which can be handled now.
5185 * During the scan, completed stripes are saved for us by the interrupt
5186 * handler, so that they will not have to wait for our next wakeup.
5187 */
5188static void raid5d(struct md_thread *thread)
5189{
5190        struct mddev *mddev = thread->mddev;
5191        struct r5conf *conf = mddev->private;
5192        int handled;
5193        struct blk_plug plug;
5194
5195        pr_debug("+++ raid5d active\n");
5196
5197        md_check_recovery(mddev);
5198
5199        blk_start_plug(&plug);
5200        handled = 0;
5201        spin_lock_irq(&conf->device_lock);
5202        while (1) {
5203                struct bio *bio;
5204                int batch_size, released;
5205
5206                released = release_stripe_list(conf, conf->temp_inactive_list);
5207
5208                if (
5209                    !list_empty(&conf->bitmap_list)) {
5210                        /* Now is a good time to flush some bitmap updates */
5211                        conf->seq_flush++;
5212                        spin_unlock_irq(&conf->device_lock);
5213                        bitmap_unplug(mddev->bitmap);
5214                        spin_lock_irq(&conf->device_lock);
5215                        conf->seq_write = conf->seq_flush;
5216                        activate_bit_delay(conf, conf->temp_inactive_list);
5217                }
5218                raid5_activate_delayed(conf);
5219
5220                while ((bio = remove_bio_from_retry(conf))) {
5221                        int ok;
5222                        spin_unlock_irq(&conf->device_lock);
5223                        ok = retry_aligned_read(conf, bio);
5224                        spin_lock_irq(&conf->device_lock);
5225                        if (!ok)
5226                                break;
5227                        handled++;
5228                }
5229
5230                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5231                                                   conf->temp_inactive_list);
5232                if (!batch_size && !released)
5233                        break;
5234                handled += batch_size;
5235
5236                if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5237                        spin_unlock_irq(&conf->device_lock);
5238                        md_check_recovery(mddev);
5239                        spin_lock_irq(&conf->device_lock);
5240                }
5241        }
5242        pr_debug("%d stripes handled\n", handled);
5243
5244        spin_unlock_irq(&conf->device_lock);
5245
5246        async_tx_issue_pending_all();
5247        blk_finish_plug(&plug);
5248
5249        pr_debug("--- raid5d inactive\n");
5250}
5251
5252static ssize_t
5253raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5254{
5255        struct r5conf *conf = mddev->private;
5256        if (conf)
5257                return sprintf(page, "%d\n", conf->max_nr_stripes);
5258        else
5259                return 0;
5260}
5261
5262int
5263raid5_set_cache_size(struct mddev *mddev, int size)
5264{
5265        struct r5conf *conf = mddev->private;
5266        int err;
5267        int hash;
5268
5269        if (size <= 16 || size > 32768)
5270                return -EINVAL;
5271        hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5272        while (size < conf->max_nr_stripes) {
5273                if (drop_one_stripe(conf, hash))
5274                        conf->max_nr_stripes--;
5275                else
5276                        break;
5277                hash--;
5278                if (hash < 0)
5279                        hash = NR_STRIPE_HASH_LOCKS - 1;
5280        }
5281        err = md_allow_write(mddev);
5282        if (err)
5283                return err;
5284        hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5285        while (size > conf->max_nr_stripes) {
5286                if (grow_one_stripe(conf, hash))
5287                        conf->max_nr_stripes++;
5288                else break;
5289                hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5290        }
5291        return 0;
5292}
5293EXPORT_SYMBOL(raid5_set_cache_size);
5294
5295static ssize_t
5296raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5297{
5298        struct r5conf *conf = mddev->private;
5299        unsigned long new;
5300        int err;
5301
5302        if (len >= PAGE_SIZE)
5303                return -EINVAL;
5304        if (!conf)
5305                return -ENODEV;
5306
5307        if (kstrtoul(page, 10, &new))
5308                return -EINVAL;
5309        err = raid5_set_cache_size(mddev, new);
5310        if (err)
5311                return err;
5312        return len;
5313}
5314
5315static struct md_sysfs_entry
5316raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5317                                raid5_show_stripe_cache_size,
5318                                raid5_store_stripe_cache_size);
5319
5320static ssize_t
5321raid5_show_preread_threshold(struct mddev *mddev, char *page)
5322{
5323        struct r5conf *conf = mddev->private;
5324        if (conf)
5325                return sprintf(page, "%d\n", conf->bypass_threshold);
5326        else
5327                return 0;
5328}
5329
5330static ssize_t
5331raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5332{
5333        struct r5conf *conf = mddev->private;
5334        unsigned long new;
5335        if (len >= PAGE_SIZE)
5336                return -EINVAL;
5337        if (!conf)
5338                return -ENODEV;
5339
5340        if (kstrtoul(page, 10, &new))
5341                return -EINVAL;
5342        if (new > conf->max_nr_stripes)
5343                return -EINVAL;
5344        conf->bypass_threshold = new;
5345        return len;
5346}
5347
5348static struct md_sysfs_entry
5349raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5350                                        S_IRUGO | S_IWUSR,
5351                                        raid5_show_preread_threshold,
5352                                        raid5_store_preread_threshold);
5353
5354static ssize_t
5355stripe_cache_active_show(struct mddev *mddev, char *page)
5356{
5357        struct r5conf *conf = mddev->private;
5358        if (conf)
5359                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5360        else
5361                return 0;
5362}
5363
5364static struct md_sysfs_entry
5365raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5366
5367static ssize_t
5368raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5369{
5370        struct r5conf *conf = mddev->private;
5371        if (conf)
5372                return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5373        else
5374                return 0;
5375}
5376
5377static int alloc_thread_groups(struct r5conf *conf, int cnt,
5378                               int *group_cnt,
5379                               int *worker_cnt_per_group,
5380                               struct r5worker_group **worker_groups);
5381static ssize_t
5382raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5383{
5384        struct r5conf *conf = mddev->private;
5385        unsigned long new;
5386        int err;
5387        struct r5worker_group *new_groups, *old_groups;
5388        int group_cnt, worker_cnt_per_group;
5389
5390        if (len >= PAGE_SIZE)
5391                return -EINVAL;
5392        if (!conf)
5393                return -ENODEV;
5394
5395        if (kstrtoul(page, 10, &new))
5396                return -EINVAL;
5397
5398        if (new == conf->worker_cnt_per_group)
5399                return len;
5400
5401        mddev_suspend(mddev);
5402
5403        old_groups = conf->worker_groups;
5404        if (old_groups)
5405                flush_workqueue(raid5_wq);
5406
5407        err = alloc_thread_groups(conf, new,
5408                                  &group_cnt, &worker_cnt_per_group,
5409                                  &new_groups);
5410        if (!err) {
5411                spin_lock_irq(&conf->device_lock);
5412                conf->group_cnt = group_cnt;
5413                conf->worker_cnt_per_group = worker_cnt_per_group;
5414                conf->worker_groups = new_groups;
5415                spin_unlock_irq(&conf->device_lock);
5416
5417                if (old_groups)
5418                        kfree(old_groups[0].workers);
5419                kfree(old_groups);
5420        }
5421
5422        mddev_resume(mddev);
5423
5424        if (err)
5425                return err;
5426        return len;
5427}
5428
5429static struct md_sysfs_entry
5430raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5431                                raid5_show_group_thread_cnt,
5432                                raid5_store_group_thread_cnt);
5433
5434static struct attribute *raid5_attrs[] =  {
5435        &raid5_stripecache_size.attr,
5436        &raid5_stripecache_active.attr,
5437        &raid5_preread_bypass_threshold.attr,
5438        &raid5_group_thread_cnt.attr,
5439        NULL,
5440};
5441static struct attribute_group raid5_attrs_group = {
5442        .name = NULL,
5443        .attrs = raid5_attrs,
5444};
5445
5446static int alloc_thread_groups(struct r5conf *conf, int cnt,
5447                               int *group_cnt,
5448                               int *worker_cnt_per_group,
5449                               struct r5worker_group **worker_groups)
5450{
5451        int i, j, k;
5452        ssize_t size;
5453        struct r5worker *workers;
5454
5455        *worker_cnt_per_group = cnt;
5456        if (cnt == 0) {
5457                *group_cnt = 0;
5458                *worker_groups = NULL;
5459                return 0;
5460        }
5461        *group_cnt = num_possible_nodes();
5462        size = sizeof(struct r5worker) * cnt;
5463        workers = kzalloc(size * *group_cnt, GFP_NOIO);
5464        *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5465                                *group_cnt, GFP_NOIO);
5466        if (!*worker_groups || !workers) {
5467                kfree(workers);
5468                kfree(*worker_groups);
5469                return -ENOMEM;
5470        }
5471
5472        for (i = 0; i < *group_cnt; i++) {
5473                struct r5worker_group *group;
5474
5475                group = &(*worker_groups)[i];
5476                INIT_LIST_HEAD(&group->handle_list);
5477                group->conf = conf;
5478                group->workers = workers + i * cnt;
5479
5480                for (j = 0; j < cnt; j++) {
5481                        struct r5worker *worker = group->workers + j;
5482                        worker->group = group;
5483                        INIT_WORK(&worker->work, raid5_do_work);
5484
5485                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5486                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
5487                }
5488        }
5489
5490        return 0;
5491}
5492
5493static void free_thread_groups(struct r5conf *conf)
5494{
5495        if (conf->worker_groups)
5496                kfree(conf->worker_groups[0].workers);
5497        kfree(conf->worker_groups);
5498        conf->worker_groups = NULL;
5499}
5500
5501static sector_t
5502raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5503{
5504        struct r5conf *conf = mddev->private;
5505
5506        if (!sectors)
5507                sectors = mddev->dev_sectors;
5508        if (!raid_disks)
5509                /* size is defined by the smallest of previous and new size */
5510                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5511
5512        sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5513        sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5514        return sectors * (raid_disks - conf->max_degraded);
5515}
5516
5517static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5518{
5519        safe_put_page(percpu->spare_page);
5520        kfree(percpu->scribble);
5521        percpu->spare_page = NULL;
5522        percpu->scribble = NULL;
5523}
5524
5525static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5526{
5527        if (conf->level == 6 && !percpu->spare_page)
5528                percpu->spare_page = alloc_page(GFP_KERNEL);
5529        if (!percpu->scribble)
5530                percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5531
5532        if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5533                free_scratch_buffer(conf, percpu);
5534                return -ENOMEM;
5535        }
5536
5537        return 0;
5538}
5539
5540static void raid5_free_percpu(struct r5conf *conf)
5541{
5542        unsigned long cpu;
5543
5544        if (!conf->percpu)
5545                return;
5546
5547#ifdef CONFIG_HOTPLUG_CPU
5548        unregister_cpu_notifier(&conf->cpu_notify);
5549#endif
5550
5551        get_online_cpus();
5552        for_each_possible_cpu(cpu)
5553                free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5554        put_online_cpus();
5555
5556        free_percpu(conf->percpu);
5557}
5558
5559static void free_conf(struct r5conf *conf)
5560{
5561        free_thread_groups(conf);
5562        shrink_stripes(conf);
5563        raid5_free_percpu(conf);
5564        kfree(conf->disks);
5565        kfree(conf->stripe_hashtbl);
5566        kfree(conf);
5567}
5568
5569#ifdef CONFIG_HOTPLUG_CPU
5570static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5571                              void *hcpu)
5572{
5573        struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5574        long cpu = (long)hcpu;
5575        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5576
5577        switch (action) {
5578        case CPU_UP_PREPARE:
5579        case CPU_UP_PREPARE_FROZEN:
5580                if (alloc_scratch_buffer(conf, percpu)) {
5581                        pr_err("%s: failed memory allocation for cpu%ld\n",
5582                               __func__, cpu);
5583                        return notifier_from_errno(-ENOMEM);
5584                }
5585                break;
5586        case CPU_DEAD:
5587        case CPU_DEAD_FROZEN:
5588                free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5589                break;
5590        default:
5591                break;
5592        }
5593        return NOTIFY_OK;
5594}
5595#endif
5596
5597static int raid5_alloc_percpu(struct r5conf *conf)
5598{
5599        unsigned long cpu;
5600        int err = 0;
5601
5602        conf->percpu = alloc_percpu(struct raid5_percpu);
5603        if (!conf->percpu)
5604                return -ENOMEM;
5605
5606#ifdef CONFIG_HOTPLUG_CPU
5607        conf->cpu_notify.notifier_call = raid456_cpu_notify;
5608        conf->cpu_notify.priority = 0;
5609        err = register_cpu_notifier(&conf->cpu_notify);
5610        if (err)
5611                return err;
5612#endif
5613
5614        get_online_cpus();
5615        for_each_present_cpu(cpu) {
5616                err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5617                if (err) {
5618                        pr_err("%s: failed memory allocation for cpu%ld\n",
5619                               __func__, cpu);
5620                        break;
5621                }
5622        }
5623        put_online_cpus();
5624
5625        return err;
5626}
5627
5628static struct r5conf *setup_conf(struct mddev *mddev)
5629{
5630        struct r5conf *conf;
5631        int raid_disk, memory, max_disks;
5632        struct md_rdev *rdev;
5633        struct disk_info *disk;
5634        char pers_name[6];
5635        int i;
5636        int group_cnt, worker_cnt_per_group;
5637        struct r5worker_group *new_group;
5638
5639        if (mddev->new_level != 5
5640            && mddev->new_level != 4
5641            && mddev->new_level != 6) {
5642                printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5643                       mdname(mddev), mddev->new_level);
5644                return ERR_PTR(-EIO);
5645        }
5646        if ((mddev->new_level == 5
5647             && !algorithm_valid_raid5(mddev->new_layout)) ||
5648            (mddev->new_level == 6
5649             && !algorithm_valid_raid6(mddev->new_layout))) {
5650                printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5651                       mdname(mddev), mddev->new_layout);
5652                return ERR_PTR(-EIO);
5653        }
5654        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5655                printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5656                       mdname(mddev), mddev->raid_disks);
5657                return ERR_PTR(-EINVAL);
5658        }
5659
5660        if (!mddev->new_chunk_sectors ||
5661            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5662            !is_power_of_2(mddev->new_chunk_sectors)) {
5663                printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5664                       mdname(mddev), mddev->new_chunk_sectors << 9);
5665                return ERR_PTR(-EINVAL);
5666        }
5667
5668        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5669        if (conf == NULL)
5670                goto abort;
5671        /* Don't enable multi-threading by default*/
5672        if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5673                                 &new_group)) {
5674                conf->group_cnt = group_cnt;
5675                conf->worker_cnt_per_group = worker_cnt_per_group;
5676                conf->worker_groups = new_group;
5677        } else
5678                goto abort;
5679        spin_lock_init(&conf->device_lock);
5680        seqcount_init(&conf->gen_lock);
5681        init_waitqueue_head(&conf->wait_for_stripe);
5682        init_waitqueue_head(&conf->wait_for_overlap);
5683        INIT_LIST_HEAD(&conf->handle_list);
5684        INIT_LIST_HEAD(&conf->hold_list);
5685        INIT_LIST_HEAD(&conf->delayed_list);
5686        INIT_LIST_HEAD(&conf->bitmap_list);
5687        init_llist_head(&conf->released_stripes);
5688        atomic_set(&conf->active_stripes, 0);
5689        atomic_set(&conf->preread_active_stripes, 0);
5690        atomic_set(&conf->active_aligned_reads, 0);
5691        conf->bypass_threshold = BYPASS_THRESHOLD;
5692        conf->recovery_disabled = mddev->recovery_disabled - 1;
5693
5694        conf->raid_disks = mddev->raid_disks;
5695        if (mddev->reshape_position == MaxSector)
5696                conf->previous_raid_disks = mddev->raid_disks;
5697        else
5698                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5699        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5700        conf->scribble_len = scribble_len(max_disks);
5701
5702        conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5703                              GFP_KERNEL);
5704        if (!conf->disks)
5705                goto abort;
5706
5707        conf->mddev = mddev;
5708
5709        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5710                goto abort;
5711
5712        /* We init hash_locks[0] separately to that it can be used
5713         * as the reference lock in the spin_lock_nest_lock() call
5714         * in lock_all_device_hash_locks_irq in order to convince
5715         * lockdep that we know what we are doing.
5716         */
5717        spin_lock_init(conf->hash_locks);
5718        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5719                spin_lock_init(conf->hash_locks + i);
5720
5721        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5722                INIT_LIST_HEAD(conf->inactive_list + i);
5723
5724        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5725                INIT_LIST_HEAD(conf->temp_inactive_list + i);
5726
5727        conf->level = mddev->new_level;
5728        if (raid5_alloc_percpu(conf) != 0)
5729                goto abort;
5730
5731        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5732
5733        rdev_for_each(rdev, mddev) {
5734                raid_disk = rdev->raid_disk;
5735                if (raid_disk >= max_disks
5736                    || raid_disk < 0)
5737                        continue;
5738                disk = conf->disks + raid_disk;
5739
5740                if (test_bit(Replacement, &rdev->flags)) {
5741                        if (disk->replacement)
5742                                goto abort;
5743                        disk->replacement = rdev;
5744                } else {
5745                        if (disk->rdev)
5746                                goto abort;
5747                        disk->rdev = rdev;
5748                }
5749
5750                if (test_bit(In_sync, &rdev->flags)) {
5751                        char b[BDEVNAME_SIZE];
5752                        printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5753                               " disk %d\n",
5754                               mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5755                } else if (rdev->saved_raid_disk != raid_disk)
5756                        /* Cannot rely on bitmap to complete recovery */
5757                        conf->fullsync = 1;
5758        }
5759
5760        conf->chunk_sectors = mddev->new_chunk_sectors;
5761        conf->level = mddev->new_level;
5762        if (conf->level == 6)
5763                conf->max_degraded = 2;
5764        else
5765                conf->max_degraded = 1;
5766        conf->algorithm = mddev->new_layout;
5767        conf->reshape_progress = mddev->reshape_position;
5768        if (conf->reshape_progress != MaxSector) {
5769                conf->prev_chunk_sectors = mddev->chunk_sectors;
5770                conf->prev_algo = mddev->layout;
5771        }
5772
5773        memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5774                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5775        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5776        if (grow_stripes(conf, NR_STRIPES)) {
5777                printk(KERN_ERR
5778                       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5779                       mdname(mddev), memory);
5780                goto abort;
5781        } else
5782                printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5783                       mdname(mddev), memory);
5784
5785        sprintf(pers_name, "raid%d", mddev->new_level);
5786        conf->thread = md_register_thread(raid5d, mddev, pers_name);
5787        if (!conf->thread) {
5788                printk(KERN_ERR
5789                       "md/raid:%s: couldn't allocate thread.\n",
5790                       mdname(mddev));
5791                goto abort;
5792        }
5793
5794        return conf;
5795
5796 abort:
5797        if (conf) {
5798                free_conf(conf);
5799                return ERR_PTR(-EIO);
5800        } else
5801                return ERR_PTR(-ENOMEM);
5802}
5803
5804
5805static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5806{
5807        switch (algo) {
5808        case ALGORITHM_PARITY_0:
5809                if (raid_disk < max_degraded)
5810                        return 1;
5811                break;
5812        case ALGORITHM_PARITY_N:
5813                if (raid_disk >= raid_disks - max_degraded)
5814                        return 1;
5815                break;
5816        case ALGORITHM_PARITY_0_6:
5817                if (raid_disk == 0 || 
5818                    raid_disk == raid_disks - 1)
5819                        return 1;
5820                break;
5821        case ALGORITHM_LEFT_ASYMMETRIC_6:
5822        case ALGORITHM_RIGHT_ASYMMETRIC_6:
5823        case ALGORITHM_LEFT_SYMMETRIC_6:
5824        case ALGORITHM_RIGHT_SYMMETRIC_6:
5825                if (raid_disk == raid_disks - 1)
5826                        return 1;
5827        }
5828        return 0;
5829}
5830
5831static int run(struct mddev *mddev)
5832{
5833        struct r5conf *conf;
5834        int working_disks = 0;
5835        int dirty_parity_disks = 0;
5836        struct md_rdev *rdev;
5837        sector_t reshape_offset = 0;
5838        int i;
5839        long long min_offset_diff = 0;
5840        int first = 1;
5841
5842        if (mddev->recovery_cp != MaxSector)
5843                printk(KERN_NOTICE "md/raid:%s: not clean"
5844                       " -- starting background reconstruction\n",
5845                       mdname(mddev));
5846
5847        rdev_for_each(rdev, mddev) {
5848                long long diff;
5849                if (rdev->raid_disk < 0)
5850                        continue;
5851                diff = (rdev->new_data_offset - rdev->data_offset);
5852                if (first) {
5853                        min_offset_diff = diff;
5854                        first = 0;
5855                } else if (mddev->reshape_backwards &&
5856                         diff < min_offset_diff)
5857                        min_offset_diff = diff;
5858                else if (!mddev->reshape_backwards &&
5859                         diff > min_offset_diff)
5860                        min_offset_diff = diff;
5861        }
5862
5863        if (mddev->reshape_position != MaxSector) {
5864                /* Check that we can continue the reshape.
5865                 * Difficulties arise if the stripe we would write to
5866                 * next is at or after the stripe we would read from next.
5867                 * For a reshape that changes the number of devices, this
5868                 * is only possible for a very short time, and mdadm makes
5869                 * sure that time appears to have past before assembling
5870                 * the array.  So we fail if that time hasn't passed.
5871                 * For a reshape that keeps the number of devices the same
5872                 * mdadm must be monitoring the reshape can keeping the
5873                 * critical areas read-only and backed up.  It will start
5874                 * the array in read-only mode, so we check for that.
5875                 */
5876                sector_t here_new, here_old;
5877                int old_disks;
5878                int max_degraded = (mddev->level == 6 ? 2 : 1);
5879
5880                if (mddev->new_level != mddev->level) {
5881                        printk(KERN_ERR "md/raid:%s: unsupported reshape "
5882                               "required - aborting.\n",
5883                               mdname(mddev));
5884                        return -EINVAL;
5885                }
5886                old_disks = mddev->raid_disks - mddev->delta_disks;
5887                /* reshape_position must be on a new-stripe boundary, and one
5888                 * further up in new geometry must map after here in old
5889                 * geometry.
5890                 */
5891                here_new = mddev->reshape_position;
5892                if (sector_div(here_new, mddev->new_chunk_sectors *
5893                               (mddev->raid_disks - max_degraded))) {
5894                        printk(KERN_ERR "md/raid:%s: reshape_position not "
5895                               "on a stripe boundary\n", mdname(mddev));
5896                        return -EINVAL;
5897                }
5898                reshape_offset = here_new * mddev->new_chunk_sectors;
5899                /* here_new is the stripe we will write to */
5900                here_old = mddev->reshape_position;
5901                sector_div(here_old, mddev->chunk_sectors *
5902                           (old_disks-max_degraded));
5903                /* here_old is the first stripe that we might need to read
5904                 * from */
5905                if (mddev->delta_disks == 0) {
5906                        if ((here_new * mddev->new_chunk_sectors !=
5907                             here_old * mddev->chunk_sectors)) {
5908                                printk(KERN_ERR "md/raid:%s: reshape position is"
5909                                       " confused - aborting\n", mdname(mddev));
5910                                return -EINVAL;
5911                        }
5912                        /* We cannot be sure it is safe to start an in-place
5913                         * reshape.  It is only safe if user-space is monitoring
5914                         * and taking constant backups.
5915                         * mdadm always starts a situation like this in
5916                         * readonly mode so it can take control before
5917                         * allowing any writes.  So just check for that.
5918                         */
5919                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5920                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
5921                                /* not really in-place - so OK */;
5922                        else if (mddev->ro == 0) {
5923                                printk(KERN_ERR "md/raid:%s: in-place reshape "
5924                                       "must be started in read-only mode "
5925                                       "- aborting\n",
5926                                       mdname(mddev));
5927                                return -EINVAL;
5928                        }
5929                } else if (mddev->reshape_backwards
5930                    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5931                       here_old * mddev->chunk_sectors)
5932                    : (here_new * mddev->new_chunk_sectors >=
5933                       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5934                        /* Reading from the same stripe as writing to - bad */
5935                        printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5936                               "auto-recovery - aborting.\n",
5937                               mdname(mddev));
5938                        return -EINVAL;
5939                }
5940                printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5941                       mdname(mddev));
5942                /* OK, we should be able to continue; */
5943        } else {
5944                BUG_ON(mddev->level != mddev->new_level);
5945                BUG_ON(mddev->layout != mddev->new_layout);
5946                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5947                BUG_ON(mddev->delta_disks != 0);
5948        }
5949
5950        if (mddev->private == NULL)
5951                conf = setup_conf(mddev);
5952        else
5953                conf = mddev->private;
5954
5955        if (IS_ERR(conf))
5956                return PTR_ERR(conf);
5957
5958        conf->min_offset_diff = min_offset_diff;
5959        mddev->thread = conf->thread;
5960        conf->thread = NULL;
5961        mddev->private = conf;
5962
5963        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5964             i++) {
5965                rdev = conf->disks[i].rdev;
5966                if (!rdev && conf->disks[i].replacement) {
5967                        /* The replacement is all we have yet */
5968                        rdev = conf->disks[i].replacement;
5969                        conf->disks[i].replacement = NULL;
5970                        clear_bit(Replacement, &rdev->flags);
5971                        conf->disks[i].rdev = rdev;
5972                }
5973                if (!rdev)
5974                        continue;
5975                if (conf->disks[i].replacement &&
5976                    conf->reshape_progress != MaxSector) {
5977                        /* replacements and reshape simply do not mix. */
5978                        printk(KERN_ERR "md: cannot handle concurrent "
5979                               "replacement and reshape.\n");
5980                        goto abort;
5981                }
5982                if (test_bit(In_sync, &rdev->flags)) {
5983                        working_disks++;
5984                        continue;
5985                }
5986                /* This disc is not fully in-sync.  However if it
5987                 * just stored parity (beyond the recovery_offset),
5988                 * when we don't need to be concerned about the
5989                 * array being dirty.
5990                 * When reshape goes 'backwards', we never have
5991                 * partially completed devices, so we only need
5992                 * to worry about reshape going forwards.
5993                 */
5994                /* Hack because v0.91 doesn't store recovery_offset properly. */
5995                if (mddev->major_version == 0 &&
5996                    mddev->minor_version > 90)
5997                        rdev->recovery_offset = reshape_offset;
5998
5999                if (rdev->recovery_offset < reshape_offset) {
6000                        /* We need to check old and new layout */
6001                        if (!only_parity(rdev->raid_disk,
6002                                         conf->algorithm,
6003                                         conf->raid_disks,
6004                                         conf->max_degraded))
6005                                continue;
6006                }
6007                if (!only_parity(rdev->raid_disk,
6008                                 conf->prev_algo,
6009                                 conf->previous_raid_disks,
6010                                 conf->max_degraded))
6011                        continue;
6012                dirty_parity_disks++;
6013        }
6014
6015        /*
6016         * 0 for a fully functional array, 1 or 2 for a degraded array.
6017         */
6018        mddev->degraded = calc_degraded(conf);
6019
6020        if (has_failed(conf)) {
6021                printk(KERN_ERR "md/raid:%s: not enough operational devices"
6022                        " (%d/%d failed)\n",
6023                        mdname(mddev), mddev->degraded, conf->raid_disks);
6024                goto abort;
6025        }
6026
6027        /* device size must be a multiple of chunk size */
6028        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6029        mddev->resync_max_sectors = mddev->dev_sectors;
6030
6031        if (mddev->degraded > dirty_parity_disks &&
6032            mddev->recovery_cp != MaxSector) {
6033                if (mddev->ok_start_degraded)
6034                        printk(KERN_WARNING
6035                               "md/raid:%s: starting dirty degraded array"
6036                               " - data corruption possible.\n",
6037                               mdname(mddev));
6038                else {
6039                        printk(KERN_ERR
6040                               "md/raid:%s: cannot start dirty degraded array.\n",
6041                               mdname(mddev));
6042                        goto abort;
6043                }
6044        }
6045
6046        if (mddev->degraded == 0)
6047                printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6048                       " devices, algorithm %d\n", mdname(mddev), conf->level,
6049                       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6050                       mddev->new_layout);
6051        else
6052                printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6053                       " out of %d devices, algorithm %d\n",
6054                       mdname(mddev), conf->level,
6055                       mddev->raid_disks - mddev->degraded,
6056                       mddev->raid_disks, mddev->new_layout);
6057
6058        print_raid5_conf(conf);
6059
6060        if (conf->reshape_progress != MaxSector) {
6061                conf->reshape_safe = conf->reshape_progress;
6062                atomic_set(&conf->reshape_stripes, 0);
6063                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6064                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6065                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6066                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6067                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6068                                                        "reshape");
6069        }
6070
6071
6072        /* Ok, everything is just fine now */
6073        if (mddev->to_remove == &raid5_attrs_group)
6074                mddev->to_remove = NULL;
6075        else if (mddev->kobj.sd &&
6076            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6077                printk(KERN_WARNING
6078                       "raid5: failed to create sysfs attributes for %s\n",
6079                       mdname(mddev));
6080        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6081
6082        if (mddev->queue) {
6083                int chunk_size;
6084                bool discard_supported = true;
6085                /* read-ahead size must cover two whole stripes, which
6086                 * is 2 * (datadisks) * chunksize where 'n' is the
6087                 * number of raid devices
6088                 */
6089                int data_disks = conf->previous_raid_disks - conf->max_degraded;
6090                int stripe = data_disks *
6091                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6092                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6093                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6094
6095                blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6096
6097                mddev->queue->backing_dev_info.congested_data = mddev;
6098                mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6099
6100                chunk_size = mddev->chunk_sectors << 9;
6101                blk_queue_io_min(mddev->queue, chunk_size);
6102                blk_queue_io_opt(mddev->queue, chunk_size *
6103                                 (conf->raid_disks - conf->max_degraded));
6104                mddev->queue->limits.raid_partial_stripes_expensive = 1;
6105                /*
6106                 * We can only discard a whole stripe. It doesn't make sense to
6107                 * discard data disk but write parity disk
6108                 */
6109                stripe = stripe * PAGE_SIZE;
6110                /* Round up to power of 2, as discard handling
6111                 * currently assumes that */
6112                while ((stripe-1) & stripe)
6113                        stripe = (stripe | (stripe-1)) + 1;
6114                mddev->queue->limits.discard_alignment = stripe;
6115                mddev->queue->limits.discard_granularity = stripe;
6116                /*
6117                 * unaligned part of discard request will be ignored, so can't
6118                 * guarantee discard_zerors_data
6119                 */
6120                mddev->queue->limits.discard_zeroes_data = 0;
6121
6122                blk_queue_max_write_same_sectors(mddev->queue, 0);
6123
6124                rdev_for_each(rdev, mddev) {
6125                        disk_stack_limits(mddev->gendisk, rdev->bdev,
6126                                          rdev->data_offset << 9);
6127                        disk_stack_limits(mddev->gendisk, rdev->bdev,
6128                                          rdev->new_data_offset << 9);
6129                        /*
6130                         * discard_zeroes_data is required, otherwise data
6131                         * could be lost. Consider a scenario: discard a stripe
6132                         * (the stripe could be inconsistent if
6133                         * discard_zeroes_data is 0); write one disk of the
6134                         * stripe (the stripe could be inconsistent again
6135                         * depending on which disks are used to calculate
6136                         * parity); the disk is broken; The stripe data of this
6137                         * disk is lost.
6138                         */
6139                        if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6140                            !bdev_get_queue(rdev->bdev)->
6141                                                limits.discard_zeroes_data)
6142                                discard_supported = false;
6143                }
6144
6145                if (discard_supported &&
6146                   mddev->queue->limits.max_discard_sectors >= stripe &&
6147                   mddev->queue->limits.discard_granularity >= stripe)
6148                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6149                                                mddev->queue);
6150                else
6151                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6152                                                mddev->queue);
6153        }
6154
6155        return 0;
6156abort:
6157        md_unregister_thread(&mddev->thread);
6158        print_raid5_conf(conf);
6159        free_conf(conf);
6160        mddev->private = NULL;
6161        printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6162        return -EIO;
6163}
6164
6165static int stop(struct mddev *mddev)
6166{
6167        struct r5conf *conf = mddev->private;
6168
6169        md_unregister_thread(&mddev->thread);
6170        if (mddev->queue)
6171                mddev->queue->backing_dev_info.congested_fn = NULL;
6172        free_conf(conf);
6173        mddev->private = NULL;
6174        mddev->to_remove = &raid5_attrs_group;
6175        return 0;
6176}
6177
6178static void status(struct seq_file *seq, struct mddev *mddev)
6179{
6180        struct r5conf *conf = mddev->private;
6181        int i;
6182
6183        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6184                mddev->chunk_sectors / 2, mddev->layout);
6185        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6186        for (i = 0; i < conf->raid_disks; i++)
6187                seq_printf (seq, "%s",
6188                               conf->disks[i].rdev &&
6189                               test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6190        seq_printf (seq, "]");
6191}
6192
6193static void print_raid5_conf (struct r5conf *conf)
6194{
6195        int i;
6196        struct disk_info *tmp;
6197
6198        printk(KERN_DEBUG "RAID conf printout:\n");
6199        if (!conf) {
6200                printk("(conf==NULL)\n");
6201                return;
6202        }
6203        printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6204               conf->raid_disks,
6205               conf->raid_disks - conf->mddev->degraded);
6206
6207        for (i = 0; i < conf->raid_disks; i++) {
6208                char b[BDEVNAME_SIZE];
6209                tmp = conf->disks + i;
6210                if (tmp->rdev)
6211                        printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6212                               i, !test_bit(Faulty, &tmp->rdev->flags),
6213                               bdevname(tmp->rdev->bdev, b));
6214        }
6215}
6216
6217static int raid5_spare_active(struct mddev *mddev)
6218{
6219        int i;
6220        struct r5conf *conf = mddev->private;
6221        struct disk_info *tmp;
6222        int count = 0;
6223        unsigned long flags;
6224
6225        for (i = 0; i < conf->raid_disks; i++) {
6226                tmp = conf->disks + i;
6227                if (tmp->replacement
6228                    && tmp->replacement->recovery_offset == MaxSector
6229                    && !test_bit(Faulty, &tmp->replacement->flags)
6230                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6231                        /* Replacement has just become active. */
6232                        if (!tmp->rdev
6233                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6234                                count++;
6235                        if (tmp->rdev) {
6236                                /* Replaced device not technically faulty,
6237                                 * but we need to be sure it gets removed
6238                                 * and never re-added.
6239                                 */
6240                                set_bit(Faulty, &tmp->rdev->flags);
6241                                sysfs_notify_dirent_safe(
6242                                        tmp->rdev->sysfs_state);
6243                        }
6244                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6245                } else if (tmp->rdev
6246                    && tmp->rdev->recovery_offset == MaxSector
6247                    && !test_bit(Faulty, &tmp->rdev->flags)
6248                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6249                        count++;
6250                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6251                }
6252        }
6253        spin_lock_irqsave(&conf->device_lock, flags);
6254        mddev->degraded = calc_degraded(conf);
6255        spin_unlock_irqrestore(&conf->device_lock, flags);
6256        print_raid5_conf(conf);
6257        return count;
6258}
6259
6260static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6261{
6262        struct r5conf *conf = mddev->private;
6263        int err = 0;
6264        int number = rdev->raid_disk;
6265        struct md_rdev **rdevp;
6266        struct disk_info *p = conf->disks + number;
6267
6268        print_raid5_conf(conf);
6269        if (rdev == p->rdev)
6270                rdevp = &p->rdev;
6271        else if (rdev == p->replacement)
6272                rdevp = &p->replacement;
6273        else
6274                return 0;
6275
6276        if (number >= conf->raid_disks &&
6277            conf->reshape_progress == MaxSector)
6278                clear_bit(In_sync, &rdev->flags);
6279
6280        if (test_bit(In_sync, &rdev->flags) ||
6281            atomic_read(&rdev->nr_pending)) {
6282                err = -EBUSY;
6283                goto abort;
6284        }
6285        /* Only remove non-faulty devices if recovery
6286         * isn't possible.
6287         */
6288        if (!test_bit(Faulty, &rdev->flags) &&
6289            mddev->recovery_disabled != conf->recovery_disabled &&
6290            !has_failed(conf) &&
6291            (!p->replacement || p->replacement == rdev) &&
6292            number < conf->raid_disks) {
6293                err = -EBUSY;
6294                goto abort;
6295        }
6296        *rdevp = NULL;
6297        synchronize_rcu();
6298        if (atomic_read(&rdev->nr_pending)) {
6299                /* lost the race, try later */
6300                err = -EBUSY;
6301                *rdevp = rdev;
6302        } else if (p->replacement) {
6303                /* We must have just cleared 'rdev' */
6304                p->rdev = p->replacement;
6305                clear_bit(Replacement, &p->replacement->flags);
6306                smp_mb(); /* Make sure other CPUs may see both as identical
6307                           * but will never see neither - if they are careful
6308                           */
6309                p->replacement = NULL;
6310                clear_bit(WantReplacement, &rdev->flags);
6311        } else
6312                /* We might have just removed the Replacement as faulty-
6313                 * clear the bit just in case
6314                 */
6315                clear_bit(WantReplacement, &rdev->flags);
6316abort:
6317
6318        print_raid5_conf(conf);
6319        return err;
6320}
6321
6322static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6323{
6324        struct r5conf *conf = mddev->private;
6325        int err = -EEXIST;
6326        int disk;
6327        struct disk_info *p;
6328        int first = 0;
6329        int last = conf->raid_disks - 1;
6330
6331        if (mddev->recovery_disabled == conf->recovery_disabled)
6332                return -EBUSY;
6333
6334        if (rdev->saved_raid_disk < 0 && has_failed(conf))
6335                /* no point adding a device */
6336                return -EINVAL;
6337
6338        if (rdev->raid_disk >= 0)
6339                first = last = rdev->raid_disk;
6340
6341        /*
6342         * find the disk ... but prefer rdev->saved_raid_disk
6343         * if possible.
6344         */
6345        if (rdev->saved_raid_disk >= 0 &&
6346            rdev->saved_raid_disk >= first &&
6347            conf->disks[rdev->saved_raid_disk].rdev == NULL)
6348                first = rdev->saved_raid_disk;
6349
6350        for (disk = first; disk <= last; disk++) {
6351                p = conf->disks + disk;
6352                if (p->rdev == NULL) {
6353                        clear_bit(In_sync, &rdev->flags);
6354                        rdev->raid_disk = disk;
6355                        err = 0;
6356                        if (rdev->saved_raid_disk != disk)
6357                                conf->fullsync = 1;
6358                        rcu_assign_pointer(p->rdev, rdev);
6359                        goto out;
6360                }
6361        }
6362        for (disk = first; disk <= last; disk++) {
6363                p = conf->disks + disk;
6364                if (test_bit(WantReplacement, &p->rdev->flags) &&
6365                    p->replacement == NULL) {
6366                        clear_bit(In_sync, &rdev->flags);
6367                        set_bit(Replacement, &rdev->flags);
6368                        rdev->raid_disk = disk;
6369                        err = 0;
6370                        conf->fullsync = 1;
6371                        rcu_assign_pointer(p->replacement, rdev);
6372                        break;
6373                }
6374        }
6375out:
6376        print_raid5_conf(conf);
6377        return err;
6378}
6379
6380static int raid5_resize(struct mddev *mddev, sector_t sectors)
6381{
6382        /* no resync is happening, and there is enough space
6383         * on all devices, so we can resize.
6384         * We need to make sure resync covers any new space.
6385         * If the array is shrinking we should possibly wait until
6386         * any io in the removed space completes, but it hardly seems
6387         * worth it.
6388         */
6389        sector_t newsize;
6390        sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6391        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6392        if (mddev->external_size &&
6393            mddev->array_sectors > newsize)
6394                return -EINVAL;
6395        if (mddev->bitmap) {
6396                int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6397                if (ret)
6398                        return ret;
6399        }
6400        md_set_array_sectors(mddev, newsize);
6401        set_capacity(mddev->gendisk, mddev->array_sectors);
6402        revalidate_disk(mddev->gendisk);
6403        if (sectors > mddev->dev_sectors &&
6404            mddev->recovery_cp > mddev->dev_sectors) {
6405                mddev->recovery_cp = mddev->dev_sectors;
6406                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6407        }
6408        mddev->dev_sectors = sectors;
6409        mddev->resync_max_sectors = sectors;
6410        return 0;
6411}
6412
6413static int check_stripe_cache(struct mddev *mddev)
6414{
6415        /* Can only proceed if there are plenty of stripe_heads.
6416         * We need a minimum of one full stripe,, and for sensible progress
6417         * it is best to have about 4 times that.
6418         * If we require 4 times, then the default 256 4K stripe_heads will
6419         * allow for chunk sizes up to 256K, which is probably OK.
6420         * If the chunk size is greater, user-space should request more
6421         * stripe_heads first.
6422         */
6423        struct r5conf *conf = mddev->private;
6424        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6425            > conf->max_nr_stripes ||
6426            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6427            > conf->max_nr_stripes) {
6428                printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6429                       mdname(mddev),
6430                       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6431                        / STRIPE_SIZE)*4);
6432                return 0;
6433        }
6434        return 1;
6435}
6436
6437static int check_reshape(struct mddev *mddev)
6438{
6439        struct r5conf *conf = mddev->private;
6440
6441        if (mddev->delta_disks == 0 &&
6442            mddev->new_layout == mddev->layout &&
6443            mddev->new_chunk_sectors == mddev->chunk_sectors)
6444                return 0; /* nothing to do */
6445        if (has_failed(conf))
6446                return -EINVAL;
6447        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6448                /* We might be able to shrink, but the devices must
6449                 * be made bigger first.
6450                 * For raid6, 4 is the minimum size.
6451                 * Otherwise 2 is the minimum
6452                 */
6453                int min = 2;
6454                if (mddev->level == 6)
6455                        min = 4;
6456                if (mddev->raid_disks + mddev->delta_disks < min)
6457                        return -EINVAL;
6458        }
6459
6460        if (!check_stripe_cache(mddev))
6461                return -ENOSPC;
6462
6463        return resize_stripes(conf, (conf->previous_raid_disks
6464                                     + mddev->delta_disks));
6465}
6466
6467static int raid5_start_reshape(struct mddev *mddev)
6468{
6469        struct r5conf *conf = mddev->private;
6470        struct md_rdev *rdev;
6471        int spares = 0;
6472        unsigned long flags;
6473
6474        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6475                return -EBUSY;
6476
6477        if (!check_stripe_cache(mddev))
6478                return -ENOSPC;
6479
6480        if (has_failed(conf))
6481                return -EINVAL;
6482
6483        rdev_for_each(rdev, mddev) {
6484                if (!test_bit(In_sync, &rdev->flags)
6485                    && !test_bit(Faulty, &rdev->flags))
6486                        spares++;
6487        }
6488
6489        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6490                /* Not enough devices even to make a degraded array
6491                 * of that size
6492                 */
6493                return -EINVAL;
6494
6495        /* Refuse to reduce size of the array.  Any reductions in
6496         * array size must be through explicit setting of array_size
6497         * attribute.
6498         */
6499        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6500            < mddev->array_sectors) {
6501                printk(KERN_ERR "md/raid:%s: array size must be reduced "
6502                       "before number of disks\n", mdname(mddev));
6503                return -EINVAL;
6504        }
6505
6506        atomic_set(&conf->reshape_stripes, 0);
6507        spin_lock_irq(&conf->device_lock);
6508        write_seqcount_begin(&conf->gen_lock);
6509        conf->previous_raid_disks = conf->raid_disks;
6510        conf->raid_disks += mddev->delta_disks;
6511        conf->prev_chunk_sectors = conf->chunk_sectors;
6512        conf->chunk_sectors = mddev->new_chunk_sectors;
6513        conf->prev_algo = conf->algorithm;
6514        conf->algorithm = mddev->new_layout;
6515        conf->generation++;
6516        /* Code that selects data_offset needs to see the generation update
6517         * if reshape_progress has been set - so a memory barrier needed.
6518         */
6519        smp_mb();
6520        if (mddev->reshape_backwards)
6521                conf->reshape_progress = raid5_size(mddev, 0, 0);
6522        else
6523                conf->reshape_progress = 0;
6524        conf->reshape_safe = conf->reshape_progress;
6525        write_seqcount_end(&conf->gen_lock);
6526        spin_unlock_irq(&conf->device_lock);
6527
6528        /* Now make sure any requests that proceeded on the assumption
6529         * the reshape wasn't running - like Discard or Read - have
6530         * completed.
6531         */
6532        mddev_suspend(mddev);
6533        mddev_resume(mddev);
6534
6535        /* Add some new drives, as many as will fit.
6536         * We know there are enough to make the newly sized array work.
6537         * Don't add devices if we are reducing the number of
6538         * devices in the array.  This is because it is not possible
6539         * to correctly record the "partially reconstructed" state of
6540         * such devices during the reshape and confusion could result.
6541         */
6542        if (mddev->delta_disks >= 0) {
6543                rdev_for_each(rdev, mddev)
6544                        if (rdev->raid_disk < 0 &&
6545                            !test_bit(Faulty, &rdev->flags)) {
6546                                if (raid5_add_disk(mddev, rdev) == 0) {
6547                                        if (rdev->raid_disk
6548                                            >= conf->previous_raid_disks)
6549                                                set_bit(In_sync, &rdev->flags);
6550                                        else
6551                                                rdev->recovery_offset = 0;
6552
6553                                        if (sysfs_link_rdev(mddev, rdev))
6554                                                /* Failure here is OK */;
6555                                }
6556                        } else if (rdev->raid_disk >= conf->previous_raid_disks
6557                                   && !test_bit(Faulty, &rdev->flags)) {
6558                                /* This is a spare that was manually added */
6559                                set_bit(In_sync, &rdev->flags);
6560                        }
6561
6562                /* When a reshape changes the number of devices,
6563                 * ->degraded is measured against the larger of the
6564                 * pre and post number of devices.
6565                 */
6566                spin_lock_irqsave(&conf->device_lock, flags);
6567                mddev->degraded = calc_degraded(conf);
6568                spin_unlock_irqrestore(&conf->device_lock, flags);
6569        }
6570        mddev->raid_disks = conf->raid_disks;
6571        mddev->reshape_position = conf->reshape_progress;
6572        set_bit(MD_CHANGE_DEVS, &mddev->flags);
6573
6574        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6575        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6576        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6577        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6578        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6579                                                "reshape");
6580        if (!mddev->sync_thread) {
6581                mddev->recovery = 0;
6582                spin_lock_irq(&conf->device_lock);
6583                write_seqcount_begin(&conf->gen_lock);
6584                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6585                mddev->new_chunk_sectors =
6586                        conf->chunk_sectors = conf->prev_chunk_sectors;
6587                mddev->new_layout = conf->algorithm = conf->prev_algo;
6588                rdev_for_each(rdev, mddev)
6589                        rdev->new_data_offset = rdev->data_offset;
6590                smp_wmb();
6591                conf->generation --;
6592                conf->reshape_progress = MaxSector;
6593                mddev->reshape_position = MaxSector;
6594                write_seqcount_end(&conf->gen_lock);
6595                spin_unlock_irq(&conf->device_lock);
6596                return -EAGAIN;
6597        }
6598        conf->reshape_checkpoint = jiffies;
6599        md_wakeup_thread(mddev->sync_thread);
6600        md_new_event(mddev);
6601        return 0;
6602}
6603
6604/* This is called from the reshape thread and should make any
6605 * changes needed in 'conf'
6606 */
6607static void end_reshape(struct r5conf *conf)
6608{
6609
6610        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6611                struct md_rdev *rdev;
6612
6613                spin_lock_irq(&conf->device_lock);
6614                conf->previous_raid_disks = conf->raid_disks;
6615                rdev_for_each(rdev, conf->mddev)
6616                        rdev->data_offset = rdev->new_data_offset;
6617                smp_wmb();
6618                conf->reshape_progress = MaxSector;
6619                spin_unlock_irq(&conf->device_lock);
6620                wake_up(&conf->wait_for_overlap);
6621
6622                /* read-ahead size must cover two whole stripes, which is
6623                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6624                 */
6625                if (conf->mddev->queue) {
6626                        int data_disks = conf->raid_disks - conf->max_degraded;
6627                        int stripe = data_disks * ((conf->chunk_sectors << 9)
6628                                                   / PAGE_SIZE);
6629                        if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6630                                conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6631                }
6632        }
6633}
6634
6635/* This is called from the raid5d thread with mddev_lock held.
6636 * It makes config changes to the device.
6637 */
6638static void raid5_finish_reshape(struct mddev *mddev)
6639{
6640        struct r5conf *conf = mddev->private;
6641
6642        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6643
6644                if (mddev->delta_disks > 0) {
6645                        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6646                        set_capacity(mddev->gendisk, mddev->array_sectors);
6647                        revalidate_disk(mddev->gendisk);
6648                } else {
6649                        int d;
6650                        spin_lock_irq(&conf->device_lock);
6651                        mddev->degraded = calc_degraded(conf);
6652                        spin_unlock_irq(&conf->device_lock);
6653                        for (d = conf->raid_disks ;
6654                             d < conf->raid_disks - mddev->delta_disks;
6655                             d++) {
6656                                struct md_rdev *rdev = conf->disks[d].rdev;
6657                                if (rdev)
6658                                        clear_bit(In_sync, &rdev->flags);
6659                                rdev = conf->disks[d].replacement;
6660                                if (rdev)
6661                                        clear_bit(In_sync, &rdev->flags);
6662                        }
6663                }
6664                mddev->layout = conf->algorithm;
6665                mddev->chunk_sectors = conf->chunk_sectors;
6666                mddev->reshape_position = MaxSector;
6667                mddev->delta_disks = 0;
6668                mddev->reshape_backwards = 0;
6669        }
6670}
6671
6672static void raid5_quiesce(struct mddev *mddev, int state)
6673{
6674        struct r5conf *conf = mddev->private;
6675
6676        switch(state) {
6677        case 2: /* resume for a suspend */
6678                wake_up(&conf->wait_for_overlap);
6679                break;
6680
6681        case 1: /* stop all writes */
6682                lock_all_device_hash_locks_irq(conf);
6683                /* '2' tells resync/reshape to pause so that all
6684                 * active stripes can drain
6685                 */
6686                conf->quiesce = 2;
6687                wait_event_cmd(conf->wait_for_stripe,
6688                                    atomic_read(&conf->active_stripes) == 0 &&
6689                                    atomic_read(&conf->active_aligned_reads) == 0,
6690                                    unlock_all_device_hash_locks_irq(conf),
6691                                    lock_all_device_hash_locks_irq(conf));
6692                conf->quiesce = 1;
6693                unlock_all_device_hash_locks_irq(conf);
6694                /* allow reshape to continue */
6695                wake_up(&conf->wait_for_overlap);
6696                break;
6697
6698        case 0: /* re-enable writes */
6699                lock_all_device_hash_locks_irq(conf);
6700                conf->quiesce = 0;
6701                wake_up(&conf->wait_for_stripe);
6702                wake_up(&conf->wait_for_overlap);
6703                unlock_all_device_hash_locks_irq(conf);
6704                break;
6705        }
6706}
6707
6708
6709static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6710{
6711        struct r0conf *raid0_conf = mddev->private;
6712        sector_t sectors;
6713
6714        /* for raid0 takeover only one zone is supported */
6715        if (raid0_conf->nr_strip_zones > 1) {
6716                printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6717                       mdname(mddev));
6718                return ERR_PTR(-EINVAL);
6719        }
6720
6721        sectors = raid0_conf->strip_zone[0].zone_end;
6722        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6723        mddev->dev_sectors = sectors;
6724        mddev->new_level = level;
6725        mddev->new_layout = ALGORITHM_PARITY_N;
6726        mddev->new_chunk_sectors = mddev->chunk_sectors;
6727        mddev->raid_disks += 1;
6728        mddev->delta_disks = 1;
6729        /* make sure it will be not marked as dirty */
6730        mddev->recovery_cp = MaxSector;
6731
6732        return setup_conf(mddev);
6733}
6734
6735
6736static void *raid5_takeover_raid1(struct mddev *mddev)
6737{
6738        int chunksect;
6739
6740        if (mddev->raid_disks != 2 ||
6741            mddev->degraded > 1)
6742                return ERR_PTR(-EINVAL);
6743
6744        /* Should check if there are write-behind devices? */
6745
6746        chunksect = 64*2; /* 64K by default */
6747
6748        /* The array must be an exact multiple of chunksize */
6749        while (chunksect && (mddev->array_sectors & (chunksect-1)))
6750                chunksect >>= 1;
6751
6752        if ((chunksect<<9) < STRIPE_SIZE)
6753                /* array size does not allow a suitable chunk size */
6754                return ERR_PTR(-EINVAL);
6755
6756        mddev->new_level = 5;
6757        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6758        mddev->new_chunk_sectors = chunksect;
6759
6760        return setup_conf(mddev);
6761}
6762
6763static void *raid5_takeover_raid6(struct mddev *mddev)
6764{
6765        int new_layout;
6766
6767        switch (mddev->layout) {
6768        case ALGORITHM_LEFT_ASYMMETRIC_6:
6769                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6770                break;
6771        case ALGORITHM_RIGHT_ASYMMETRIC_6:
6772                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6773                break;
6774        case ALGORITHM_LEFT_SYMMETRIC_6:
6775                new_layout = ALGORITHM_LEFT_SYMMETRIC;
6776                break;
6777        case ALGORITHM_RIGHT_SYMMETRIC_6:
6778                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6779                break;
6780        case ALGORITHM_PARITY_0_6:
6781                new_layout = ALGORITHM_PARITY_0;
6782                break;
6783        case ALGORITHM_PARITY_N:
6784                new_layout = ALGORITHM_PARITY_N;
6785                break;
6786        default:
6787                return ERR_PTR(-EINVAL);
6788        }
6789        mddev->new_level = 5;
6790        mddev->new_layout = new_layout;
6791        mddev->delta_disks = -1;
6792        mddev->raid_disks -= 1;
6793        return setup_conf(mddev);
6794}
6795
6796
6797static int raid5_check_reshape(struct mddev *mddev)
6798{
6799        /* For a 2-drive array, the layout and chunk size can be changed
6800         * immediately as not restriping is needed.
6801         * For larger arrays we record the new value - after validation
6802         * to be used by a reshape pass.
6803         */
6804        struct r5conf *conf = mddev->private;
6805        int new_chunk = mddev->new_chunk_sectors;
6806
6807        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6808                return -EINVAL;
6809        if (new_chunk > 0) {
6810                if (!is_power_of_2(new_chunk))
6811                        return -EINVAL;
6812                if (new_chunk < (PAGE_SIZE>>9))
6813                        return -EINVAL;
6814                if (mddev->array_sectors & (new_chunk-1))
6815                        /* not factor of array size */
6816                        return -EINVAL;
6817        }
6818
6819        /* They look valid */
6820
6821        if (mddev->raid_disks == 2) {
6822                /* can make the change immediately */
6823                if (mddev->new_layout >= 0) {
6824                        conf->algorithm = mddev->new_layout;
6825                        mddev->layout = mddev->new_layout;
6826                }
6827                if (new_chunk > 0) {
6828                        conf->chunk_sectors = new_chunk ;
6829                        mddev->chunk_sectors = new_chunk;
6830                }
6831                set_bit(MD_CHANGE_DEVS, &mddev->flags);
6832                md_wakeup_thread(mddev->thread);
6833        }
6834        return check_reshape(mddev);
6835}
6836
6837static int raid6_check_reshape(struct mddev *mddev)
6838{
6839        int new_chunk = mddev->new_chunk_sectors;
6840
6841        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6842                return -EINVAL;
6843        if (new_chunk > 0) {
6844                if (!is_power_of_2(new_chunk))
6845                        return -EINVAL;
6846                if (new_chunk < (PAGE_SIZE >> 9))
6847                        return -EINVAL;
6848                if (mddev->array_sectors & (new_chunk-1))
6849                        /* not factor of array size */
6850                        return -EINVAL;
6851        }
6852
6853        /* They look valid */
6854        return check_reshape(mddev);
6855}
6856
6857static void *raid5_takeover(struct mddev *mddev)
6858{
6859        /* raid5 can take over:
6860         *  raid0 - if there is only one strip zone - make it a raid4 layout
6861         *  raid1 - if there are two drives.  We need to know the chunk size
6862         *  raid4 - trivial - just use a raid4 layout.
6863         *  raid6 - Providing it is a *_6 layout
6864         */
6865        if (mddev->level == 0)
6866                return raid45_takeover_raid0(mddev, 5);
6867        if (mddev->level == 1)
6868                return raid5_takeover_raid1(mddev);
6869        if (mddev->level == 4) {
6870                mddev->new_layout = ALGORITHM_PARITY_N;
6871                mddev->new_level = 5;
6872                return setup_conf(mddev);
6873        }
6874        if (mddev->level == 6)
6875                return raid5_takeover_raid6(mddev);
6876
6877        return ERR_PTR(-EINVAL);
6878}
6879
6880static void *raid4_takeover(struct mddev *mddev)
6881{
6882        /* raid4 can take over:
6883         *  raid0 - if there is only one strip zone
6884         *  raid5 - if layout is right
6885         */
6886        if (mddev->level == 0)
6887                return raid45_takeover_raid0(mddev, 4);
6888        if (mddev->level == 5 &&
6889            mddev->layout == ALGORITHM_PARITY_N) {
6890                mddev->new_layout = 0;
6891                mddev->new_level = 4;
6892                return setup_conf(mddev);
6893        }
6894        return ERR_PTR(-EINVAL);
6895}
6896
6897static struct md_personality raid5_personality;
6898
6899static void *raid6_takeover(struct mddev *mddev)
6900{
6901        /* Currently can only take over a raid5.  We map the
6902         * personality to an equivalent raid6 personality
6903         * with the Q block at the end.
6904         */
6905        int new_layout;
6906
6907        if (mddev->pers != &raid5_personality)
6908                return ERR_PTR(-EINVAL);
6909        if (mddev->degraded > 1)
6910                return ERR_PTR(-EINVAL);
6911        if (mddev->raid_disks > 253)
6912                return ERR_PTR(-EINVAL);
6913        if (mddev->raid_disks < 3)
6914                return ERR_PTR(-EINVAL);
6915
6916        switch (mddev->layout) {
6917        case ALGORITHM_LEFT_ASYMMETRIC:
6918                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6919                break;
6920        case ALGORITHM_RIGHT_ASYMMETRIC:
6921                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6922                break;
6923        case ALGORITHM_LEFT_SYMMETRIC:
6924                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6925                break;
6926        case ALGORITHM_RIGHT_SYMMETRIC:
6927                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6928                break;
6929        case ALGORITHM_PARITY_0:
6930                new_layout = ALGORITHM_PARITY_0_6;
6931                break;
6932        case ALGORITHM_PARITY_N:
6933                new_layout = ALGORITHM_PARITY_N;
6934                break;
6935        default:
6936                return ERR_PTR(-EINVAL);
6937        }
6938        mddev->new_level = 6;
6939        mddev->new_layout = new_layout;
6940        mddev->delta_disks = 1;
6941        mddev->raid_disks += 1;
6942        return setup_conf(mddev);
6943}
6944
6945
6946static struct md_personality raid6_personality =
6947{
6948        .name           = "raid6",
6949        .level          = 6,
6950        .owner          = THIS_MODULE,
6951        .make_request   = make_request,
6952        .run            = run,
6953        .stop           = stop,
6954        .status         = status,
6955        .error_handler  = error,
6956        .hot_add_disk   = raid5_add_disk,
6957        .hot_remove_disk= raid5_remove_disk,
6958        .spare_active   = raid5_spare_active,
6959        .sync_request   = sync_request,
6960        .resize         = raid5_resize,
6961        .size           = raid5_size,
6962        .check_reshape  = raid6_check_reshape,
6963        .start_reshape  = raid5_start_reshape,
6964        .finish_reshape = raid5_finish_reshape,
6965        .quiesce        = raid5_quiesce,
6966        .takeover       = raid6_takeover,
6967};
6968static struct md_personality raid5_personality =
6969{
6970        .name           = "raid5",
6971        .level          = 5,
6972        .owner          = THIS_MODULE,
6973        .make_request   = make_request,
6974        .run            = run,
6975        .stop           = stop,
6976        .status         = status,
6977        .error_handler  = error,
6978        .hot_add_disk   = raid5_add_disk,
6979        .hot_remove_disk= raid5_remove_disk,
6980        .spare_active   = raid5_spare_active,
6981        .sync_request   = sync_request,
6982        .resize         = raid5_resize,
6983        .size           = raid5_size,
6984        .check_reshape  = raid5_check_reshape,
6985        .start_reshape  = raid5_start_reshape,
6986        .finish_reshape = raid5_finish_reshape,
6987        .quiesce        = raid5_quiesce,
6988        .takeover       = raid5_takeover,
6989};
6990
6991static struct md_personality raid4_personality =
6992{
6993        .name           = "raid4",
6994        .level          = 4,
6995        .owner          = THIS_MODULE,
6996        .make_request   = make_request,
6997        .run            = run,
6998        .stop           = stop,
6999        .status         = status,
7000        .error_handler  = error,
7001        .hot_add_disk   = raid5_add_disk,
7002        .hot_remove_disk= raid5_remove_disk,
7003        .spare_active   = raid5_spare_active,
7004        .sync_request   = sync_request,
7005        .resize         = raid5_resize,
7006        .size           = raid5_size,
7007        .check_reshape  = raid5_check_reshape,
7008        .start_reshape  = raid5_start_reshape,
7009        .finish_reshape = raid5_finish_reshape,
7010        .quiesce        = raid5_quiesce,
7011        .takeover       = raid4_takeover,
7012};
7013
7014static int __init raid5_init(void)
7015{
7016        raid5_wq = alloc_workqueue("raid5wq",
7017                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7018        if (!raid5_wq)
7019                return -ENOMEM;
7020        register_md_personality(&raid6_personality);
7021        register_md_personality(&raid5_personality);
7022        register_md_personality(&raid4_personality);
7023        return 0;
7024}
7025
7026static void raid5_exit(void)
7027{
7028        unregister_md_personality(&raid6_personality);
7029        unregister_md_personality(&raid5_personality);
7030        unregister_md_personality(&raid4_personality);
7031        destroy_workqueue(raid5_wq);
7032}
7033
7034module_init(raid5_init);
7035module_exit(raid5_exit);
7036MODULE_LICENSE("GPL");
7037MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7038MODULE_ALIAS("md-personality-4"); /* RAID5 */
7039MODULE_ALIAS("md-raid5");
7040MODULE_ALIAS("md-raid4");
7041MODULE_ALIAS("md-level-5");
7042MODULE_ALIAS("md-level-4");
7043MODULE_ALIAS("md-personality-8"); /* RAID6 */
7044MODULE_ALIAS("md-raid6");
7045MODULE_ALIAS("md-level-6");
7046
7047/* This used to be two separate modules, they were: */
7048MODULE_ALIAS("raid5");
7049MODULE_ALIAS("raid6");
7050