linux/drivers/mmc/core/core.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37
  38#include "core.h"
  39#include "bus.h"
  40#include "host.h"
  41#include "sdio_bus.h"
  42
  43#include "mmc_ops.h"
  44#include "sd_ops.h"
  45#include "sdio_ops.h"
  46
  47/* If the device is not responding */
  48#define MMC_CORE_TIMEOUT_MS     (10 * 60 * 1000) /* 10 minute timeout */
  49
  50/*
  51 * Background operations can take a long time, depending on the housekeeping
  52 * operations the card has to perform.
  53 */
  54#define MMC_BKOPS_MAX_TIMEOUT   (4 * 60 * 1000) /* max time to wait in ms */
  55
  56static struct workqueue_struct *workqueue;
  57static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  58
  59/*
  60 * Enabling software CRCs on the data blocks can be a significant (30%)
  61 * performance cost, and for other reasons may not always be desired.
  62 * So we allow it it to be disabled.
  63 */
  64bool use_spi_crc = 1;
  65module_param(use_spi_crc, bool, 0);
  66
  67/*
  68 * We normally treat cards as removed during suspend if they are not
  69 * known to be on a non-removable bus, to avoid the risk of writing
  70 * back data to a different card after resume.  Allow this to be
  71 * overridden if necessary.
  72 */
  73#ifdef CONFIG_MMC_UNSAFE_RESUME
  74bool mmc_assume_removable;
  75#else
  76bool mmc_assume_removable = 1;
  77#endif
  78EXPORT_SYMBOL(mmc_assume_removable);
  79module_param_named(removable, mmc_assume_removable, bool, 0644);
  80MODULE_PARM_DESC(
  81        removable,
  82        "MMC/SD cards are removable and may be removed during suspend");
  83
  84/*
  85 * Internal function. Schedule delayed work in the MMC work queue.
  86 */
  87static int mmc_schedule_delayed_work(struct delayed_work *work,
  88                                     unsigned long delay)
  89{
  90        return queue_delayed_work(workqueue, work, delay);
  91}
  92
  93/*
  94 * Internal function. Flush all scheduled work from the MMC work queue.
  95 */
  96static void mmc_flush_scheduled_work(void)
  97{
  98        flush_workqueue(workqueue);
  99}
 100
 101#ifdef CONFIG_FAIL_MMC_REQUEST
 102
 103/*
 104 * Internal function. Inject random data errors.
 105 * If mmc_data is NULL no errors are injected.
 106 */
 107static void mmc_should_fail_request(struct mmc_host *host,
 108                                    struct mmc_request *mrq)
 109{
 110        struct mmc_command *cmd = mrq->cmd;
 111        struct mmc_data *data = mrq->data;
 112        static const int data_errors[] = {
 113                -ETIMEDOUT,
 114                -EILSEQ,
 115                -EIO,
 116        };
 117
 118        if (!data)
 119                return;
 120
 121        if (cmd->error || data->error ||
 122            !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 123                return;
 124
 125        data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 126        data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 127}
 128
 129#else /* CONFIG_FAIL_MMC_REQUEST */
 130
 131static inline void mmc_should_fail_request(struct mmc_host *host,
 132                                           struct mmc_request *mrq)
 133{
 134}
 135
 136#endif /* CONFIG_FAIL_MMC_REQUEST */
 137
 138/**
 139 *      mmc_request_done - finish processing an MMC request
 140 *      @host: MMC host which completed request
 141 *      @mrq: MMC request which request
 142 *
 143 *      MMC drivers should call this function when they have completed
 144 *      their processing of a request.
 145 */
 146void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 147{
 148        struct mmc_command *cmd = mrq->cmd;
 149        int err = cmd->error;
 150
 151        if (err && cmd->retries && mmc_host_is_spi(host)) {
 152                if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 153                        cmd->retries = 0;
 154        }
 155
 156        if (err && cmd->retries && !mmc_card_removed(host->card)) {
 157                /*
 158                 * Request starter must handle retries - see
 159                 * mmc_wait_for_req_done().
 160                 */
 161                if (mrq->done)
 162                        mrq->done(mrq);
 163        } else {
 164                mmc_should_fail_request(host, mrq);
 165
 166                led_trigger_event(host->led, LED_OFF);
 167
 168                pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 169                        mmc_hostname(host), cmd->opcode, err,
 170                        cmd->resp[0], cmd->resp[1],
 171                        cmd->resp[2], cmd->resp[3]);
 172
 173                if (mrq->data) {
 174                        pr_debug("%s:     %d bytes transferred: %d\n",
 175                                mmc_hostname(host),
 176                                mrq->data->bytes_xfered, mrq->data->error);
 177                }
 178
 179                if (mrq->stop) {
 180                        pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 181                                mmc_hostname(host), mrq->stop->opcode,
 182                                mrq->stop->error,
 183                                mrq->stop->resp[0], mrq->stop->resp[1],
 184                                mrq->stop->resp[2], mrq->stop->resp[3]);
 185                }
 186
 187                if (mrq->done)
 188                        mrq->done(mrq);
 189
 190                mmc_host_clk_release(host);
 191        }
 192}
 193
 194EXPORT_SYMBOL(mmc_request_done);
 195
 196static void
 197mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 198{
 199#ifdef CONFIG_MMC_DEBUG
 200        unsigned int i, sz;
 201        struct scatterlist *sg;
 202#endif
 203
 204        if (mrq->sbc) {
 205                pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 206                         mmc_hostname(host), mrq->sbc->opcode,
 207                         mrq->sbc->arg, mrq->sbc->flags);
 208        }
 209
 210        pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 211                 mmc_hostname(host), mrq->cmd->opcode,
 212                 mrq->cmd->arg, mrq->cmd->flags);
 213
 214        if (mrq->data) {
 215                pr_debug("%s:     blksz %d blocks %d flags %08x "
 216                        "tsac %d ms nsac %d\n",
 217                        mmc_hostname(host), mrq->data->blksz,
 218                        mrq->data->blocks, mrq->data->flags,
 219                        mrq->data->timeout_ns / 1000000,
 220                        mrq->data->timeout_clks);
 221        }
 222
 223        if (mrq->stop) {
 224                pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 225                         mmc_hostname(host), mrq->stop->opcode,
 226                         mrq->stop->arg, mrq->stop->flags);
 227        }
 228
 229        WARN_ON(!host->claimed);
 230
 231        mrq->cmd->error = 0;
 232        mrq->cmd->mrq = mrq;
 233        if (mrq->data) {
 234                BUG_ON(mrq->data->blksz > host->max_blk_size);
 235                BUG_ON(mrq->data->blocks > host->max_blk_count);
 236                BUG_ON(mrq->data->blocks * mrq->data->blksz >
 237                        host->max_req_size);
 238
 239#ifdef CONFIG_MMC_DEBUG
 240                sz = 0;
 241                for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 242                        sz += sg->length;
 243                BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 244#endif
 245
 246                mrq->cmd->data = mrq->data;
 247                mrq->data->error = 0;
 248                mrq->data->mrq = mrq;
 249                if (mrq->stop) {
 250                        mrq->data->stop = mrq->stop;
 251                        mrq->stop->error = 0;
 252                        mrq->stop->mrq = mrq;
 253                }
 254        }
 255        mmc_host_clk_hold(host);
 256        led_trigger_event(host->led, LED_FULL);
 257        host->ops->request(host, mrq);
 258}
 259
 260/**
 261 *      mmc_start_bkops - start BKOPS for supported cards
 262 *      @card: MMC card to start BKOPS
 263 *      @form_exception: A flag to indicate if this function was
 264 *                       called due to an exception raised by the card
 265 *
 266 *      Start background operations whenever requested.
 267 *      When the urgent BKOPS bit is set in a R1 command response
 268 *      then background operations should be started immediately.
 269*/
 270void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 271{
 272        int err;
 273        int timeout;
 274        bool use_busy_signal;
 275
 276        BUG_ON(!card);
 277
 278        if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
 279                return;
 280
 281        err = mmc_read_bkops_status(card);
 282        if (err) {
 283                pr_err("%s: Failed to read bkops status: %d\n",
 284                       mmc_hostname(card->host), err);
 285                return;
 286        }
 287
 288        if (!card->ext_csd.raw_bkops_status)
 289                return;
 290
 291        if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 292            from_exception)
 293                return;
 294
 295        mmc_claim_host(card->host);
 296        if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 297                timeout = MMC_BKOPS_MAX_TIMEOUT;
 298                use_busy_signal = true;
 299        } else {
 300                timeout = 0;
 301                use_busy_signal = false;
 302        }
 303
 304        err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 305                        EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal, true);
 306        if (err) {
 307                pr_warn("%s: Error %d starting bkops\n",
 308                        mmc_hostname(card->host), err);
 309                goto out;
 310        }
 311
 312        /*
 313         * For urgent bkops status (LEVEL_2 and more)
 314         * bkops executed synchronously, otherwise
 315         * the operation is in progress
 316         */
 317        if (!use_busy_signal)
 318                mmc_card_set_doing_bkops(card);
 319out:
 320        mmc_release_host(card->host);
 321}
 322EXPORT_SYMBOL(mmc_start_bkops);
 323
 324/*
 325 * mmc_wait_data_done() - done callback for data request
 326 * @mrq: done data request
 327 *
 328 * Wakes up mmc context, passed as a callback to host controller driver
 329 */
 330static void mmc_wait_data_done(struct mmc_request *mrq)
 331{
 332        mrq->host->context_info.is_done_rcv = true;
 333        wake_up_interruptible(&mrq->host->context_info.wait);
 334}
 335
 336static void mmc_wait_done(struct mmc_request *mrq)
 337{
 338        complete(&mrq->completion);
 339}
 340
 341/*
 342 *__mmc_start_data_req() - starts data request
 343 * @host: MMC host to start the request
 344 * @mrq: data request to start
 345 *
 346 * Sets the done callback to be called when request is completed by the card.
 347 * Starts data mmc request execution
 348 */
 349static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 350{
 351        mrq->done = mmc_wait_data_done;
 352        mrq->host = host;
 353        if (mmc_card_removed(host->card)) {
 354                mrq->cmd->error = -ENOMEDIUM;
 355                mmc_wait_data_done(mrq);
 356                return -ENOMEDIUM;
 357        }
 358        mmc_start_request(host, mrq);
 359
 360        return 0;
 361}
 362
 363static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 364{
 365        init_completion(&mrq->completion);
 366        mrq->done = mmc_wait_done;
 367        if (mmc_card_removed(host->card)) {
 368                mrq->cmd->error = -ENOMEDIUM;
 369                complete(&mrq->completion);
 370                return -ENOMEDIUM;
 371        }
 372        mmc_start_request(host, mrq);
 373        return 0;
 374}
 375
 376/*
 377 * mmc_wait_for_data_req_done() - wait for request completed
 378 * @host: MMC host to prepare the command.
 379 * @mrq: MMC request to wait for
 380 *
 381 * Blocks MMC context till host controller will ack end of data request
 382 * execution or new request notification arrives from the block layer.
 383 * Handles command retries.
 384 *
 385 * Returns enum mmc_blk_status after checking errors.
 386 */
 387static int mmc_wait_for_data_req_done(struct mmc_host *host,
 388                                      struct mmc_request *mrq,
 389                                      struct mmc_async_req *next_req)
 390{
 391        struct mmc_command *cmd;
 392        struct mmc_context_info *context_info = &host->context_info;
 393        int err;
 394        unsigned long flags;
 395
 396        while (1) {
 397                wait_event_interruptible(context_info->wait,
 398                                (context_info->is_done_rcv ||
 399                                 context_info->is_new_req));
 400                spin_lock_irqsave(&context_info->lock, flags);
 401                context_info->is_waiting_last_req = false;
 402                spin_unlock_irqrestore(&context_info->lock, flags);
 403                if (context_info->is_done_rcv) {
 404                        context_info->is_done_rcv = false;
 405                        context_info->is_new_req = false;
 406                        cmd = mrq->cmd;
 407
 408                        if (!cmd->error || !cmd->retries ||
 409                            mmc_card_removed(host->card)) {
 410                                err = host->areq->err_check(host->card,
 411                                                            host->areq);
 412                                break; /* return err */
 413                        } else {
 414                                pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 415                                        mmc_hostname(host),
 416                                        cmd->opcode, cmd->error);
 417                                cmd->retries--;
 418                                cmd->error = 0;
 419                                host->ops->request(host, mrq);
 420                                continue; /* wait for done/new event again */
 421                        }
 422                } else if (context_info->is_new_req) {
 423                        context_info->is_new_req = false;
 424                        if (!next_req) {
 425                                err = MMC_BLK_NEW_REQUEST;
 426                                break; /* return err */
 427                        }
 428                }
 429        }
 430        return err;
 431}
 432
 433static void mmc_wait_for_req_done(struct mmc_host *host,
 434                                  struct mmc_request *mrq)
 435{
 436        struct mmc_command *cmd;
 437
 438        while (1) {
 439                wait_for_completion(&mrq->completion);
 440
 441                cmd = mrq->cmd;
 442
 443                /*
 444                 * If host has timed out waiting for the sanitize
 445                 * to complete, card might be still in programming state
 446                 * so let's try to bring the card out of programming
 447                 * state.
 448                 */
 449                if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 450                        if (!mmc_interrupt_hpi(host->card)) {
 451                                pr_warning("%s: %s: Interrupted sanitize\n",
 452                                           mmc_hostname(host), __func__);
 453                                cmd->error = 0;
 454                                break;
 455                        } else {
 456                                pr_err("%s: %s: Failed to interrupt sanitize\n",
 457                                       mmc_hostname(host), __func__);
 458                        }
 459                }
 460                if (!cmd->error || !cmd->retries ||
 461                    mmc_card_removed(host->card))
 462                        break;
 463
 464                pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 465                         mmc_hostname(host), cmd->opcode, cmd->error);
 466                cmd->retries--;
 467                cmd->error = 0;
 468                host->ops->request(host, mrq);
 469        }
 470}
 471
 472/**
 473 *      mmc_pre_req - Prepare for a new request
 474 *      @host: MMC host to prepare command
 475 *      @mrq: MMC request to prepare for
 476 *      @is_first_req: true if there is no previous started request
 477 *                     that may run in parellel to this call, otherwise false
 478 *
 479 *      mmc_pre_req() is called in prior to mmc_start_req() to let
 480 *      host prepare for the new request. Preparation of a request may be
 481 *      performed while another request is running on the host.
 482 */
 483static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 484                 bool is_first_req)
 485{
 486        if (host->ops->pre_req) {
 487                mmc_host_clk_hold(host);
 488                host->ops->pre_req(host, mrq, is_first_req);
 489                mmc_host_clk_release(host);
 490        }
 491}
 492
 493/**
 494 *      mmc_post_req - Post process a completed request
 495 *      @host: MMC host to post process command
 496 *      @mrq: MMC request to post process for
 497 *      @err: Error, if non zero, clean up any resources made in pre_req
 498 *
 499 *      Let the host post process a completed request. Post processing of
 500 *      a request may be performed while another reuqest is running.
 501 */
 502static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 503                         int err)
 504{
 505        if (host->ops->post_req) {
 506                mmc_host_clk_hold(host);
 507                host->ops->post_req(host, mrq, err);
 508                mmc_host_clk_release(host);
 509        }
 510}
 511
 512/**
 513 *      mmc_start_req - start a non-blocking request
 514 *      @host: MMC host to start command
 515 *      @areq: async request to start
 516 *      @error: out parameter returns 0 for success, otherwise non zero
 517 *
 518 *      Start a new MMC custom command request for a host.
 519 *      If there is on ongoing async request wait for completion
 520 *      of that request and start the new one and return.
 521 *      Does not wait for the new request to complete.
 522 *
 523 *      Returns the completed request, NULL in case of none completed.
 524 *      Wait for the an ongoing request (previoulsy started) to complete and
 525 *      return the completed request. If there is no ongoing request, NULL
 526 *      is returned without waiting. NULL is not an error condition.
 527 */
 528struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 529                                    struct mmc_async_req *areq, int *error)
 530{
 531        int err = 0;
 532        int start_err = 0;
 533        struct mmc_async_req *data = host->areq;
 534
 535        /* Prepare a new request */
 536        if (areq)
 537                mmc_pre_req(host, areq->mrq, !host->areq);
 538
 539        if (host->areq) {
 540                err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
 541                if (err == MMC_BLK_NEW_REQUEST) {
 542                        if (error)
 543                                *error = err;
 544                        /*
 545                         * The previous request was not completed,
 546                         * nothing to return
 547                         */
 548                        return NULL;
 549                }
 550                /*
 551                 * Check BKOPS urgency for each R1 response
 552                 */
 553                if (host->card && mmc_card_mmc(host->card) &&
 554                    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 555                     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 556                    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
 557                        mmc_start_bkops(host->card, true);
 558        }
 559
 560        if (!err && areq)
 561                start_err = __mmc_start_data_req(host, areq->mrq);
 562
 563        if (host->areq)
 564                mmc_post_req(host, host->areq->mrq, 0);
 565
 566         /* Cancel a prepared request if it was not started. */
 567        if ((err || start_err) && areq)
 568                mmc_post_req(host, areq->mrq, -EINVAL);
 569
 570        if (err)
 571                host->areq = NULL;
 572        else
 573                host->areq = areq;
 574
 575        if (error)
 576                *error = err;
 577        return data;
 578}
 579EXPORT_SYMBOL(mmc_start_req);
 580
 581/**
 582 *      mmc_wait_for_req - start a request and wait for completion
 583 *      @host: MMC host to start command
 584 *      @mrq: MMC request to start
 585 *
 586 *      Start a new MMC custom command request for a host, and wait
 587 *      for the command to complete. Does not attempt to parse the
 588 *      response.
 589 */
 590void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 591{
 592        __mmc_start_req(host, mrq);
 593        mmc_wait_for_req_done(host, mrq);
 594}
 595EXPORT_SYMBOL(mmc_wait_for_req);
 596
 597/**
 598 *      mmc_interrupt_hpi - Issue for High priority Interrupt
 599 *      @card: the MMC card associated with the HPI transfer
 600 *
 601 *      Issued High Priority Interrupt, and check for card status
 602 *      until out-of prg-state.
 603 */
 604int mmc_interrupt_hpi(struct mmc_card *card)
 605{
 606        int err;
 607        u32 status;
 608        unsigned long prg_wait;
 609
 610        BUG_ON(!card);
 611
 612        if (!card->ext_csd.hpi_en) {
 613                pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 614                return 1;
 615        }
 616
 617        mmc_claim_host(card->host);
 618        err = mmc_send_status(card, &status);
 619        if (err) {
 620                pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 621                goto out;
 622        }
 623
 624        switch (R1_CURRENT_STATE(status)) {
 625        case R1_STATE_IDLE:
 626        case R1_STATE_READY:
 627        case R1_STATE_STBY:
 628        case R1_STATE_TRAN:
 629                /*
 630                 * In idle and transfer states, HPI is not needed and the caller
 631                 * can issue the next intended command immediately
 632                 */
 633                goto out;
 634        case R1_STATE_PRG:
 635                break;
 636        default:
 637                /* In all other states, it's illegal to issue HPI */
 638                pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 639                        mmc_hostname(card->host), R1_CURRENT_STATE(status));
 640                err = -EINVAL;
 641                goto out;
 642        }
 643
 644        err = mmc_send_hpi_cmd(card, &status);
 645        if (err)
 646                goto out;
 647
 648        prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 649        do {
 650                err = mmc_send_status(card, &status);
 651
 652                if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 653                        break;
 654                if (time_after(jiffies, prg_wait))
 655                        err = -ETIMEDOUT;
 656        } while (!err);
 657
 658out:
 659        mmc_release_host(card->host);
 660        return err;
 661}
 662EXPORT_SYMBOL(mmc_interrupt_hpi);
 663
 664/**
 665 *      mmc_wait_for_cmd - start a command and wait for completion
 666 *      @host: MMC host to start command
 667 *      @cmd: MMC command to start
 668 *      @retries: maximum number of retries
 669 *
 670 *      Start a new MMC command for a host, and wait for the command
 671 *      to complete.  Return any error that occurred while the command
 672 *      was executing.  Do not attempt to parse the response.
 673 */
 674int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 675{
 676        struct mmc_request mrq = {NULL};
 677
 678        WARN_ON(!host->claimed);
 679
 680        memset(cmd->resp, 0, sizeof(cmd->resp));
 681        cmd->retries = retries;
 682
 683        mrq.cmd = cmd;
 684        cmd->data = NULL;
 685
 686        mmc_wait_for_req(host, &mrq);
 687
 688        return cmd->error;
 689}
 690
 691EXPORT_SYMBOL(mmc_wait_for_cmd);
 692
 693/**
 694 *      mmc_stop_bkops - stop ongoing BKOPS
 695 *      @card: MMC card to check BKOPS
 696 *
 697 *      Send HPI command to stop ongoing background operations to
 698 *      allow rapid servicing of foreground operations, e.g. read/
 699 *      writes. Wait until the card comes out of the programming state
 700 *      to avoid errors in servicing read/write requests.
 701 */
 702int mmc_stop_bkops(struct mmc_card *card)
 703{
 704        int err = 0;
 705
 706        BUG_ON(!card);
 707        err = mmc_interrupt_hpi(card);
 708
 709        /*
 710         * If err is EINVAL, we can't issue an HPI.
 711         * It should complete the BKOPS.
 712         */
 713        if (!err || (err == -EINVAL)) {
 714                mmc_card_clr_doing_bkops(card);
 715                err = 0;
 716        }
 717
 718        return err;
 719}
 720EXPORT_SYMBOL(mmc_stop_bkops);
 721
 722int mmc_read_bkops_status(struct mmc_card *card)
 723{
 724        int err;
 725        u8 *ext_csd;
 726
 727        /*
 728         * In future work, we should consider storing the entire ext_csd.
 729         */
 730        ext_csd = kmalloc(512, GFP_KERNEL);
 731        if (!ext_csd) {
 732                pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
 733                       mmc_hostname(card->host));
 734                return -ENOMEM;
 735        }
 736
 737        mmc_claim_host(card->host);
 738        err = mmc_send_ext_csd(card, ext_csd);
 739        mmc_release_host(card->host);
 740        if (err)
 741                goto out;
 742
 743        card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 744        card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 745out:
 746        kfree(ext_csd);
 747        return err;
 748}
 749EXPORT_SYMBOL(mmc_read_bkops_status);
 750
 751/**
 752 *      mmc_set_data_timeout - set the timeout for a data command
 753 *      @data: data phase for command
 754 *      @card: the MMC card associated with the data transfer
 755 *
 756 *      Computes the data timeout parameters according to the
 757 *      correct algorithm given the card type.
 758 */
 759void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 760{
 761        unsigned int mult;
 762
 763        /*
 764         * SDIO cards only define an upper 1 s limit on access.
 765         */
 766        if (mmc_card_sdio(card)) {
 767                data->timeout_ns = 1000000000;
 768                data->timeout_clks = 0;
 769                return;
 770        }
 771
 772        /*
 773         * SD cards use a 100 multiplier rather than 10
 774         */
 775        mult = mmc_card_sd(card) ? 100 : 10;
 776
 777        /*
 778         * Scale up the multiplier (and therefore the timeout) by
 779         * the r2w factor for writes.
 780         */
 781        if (data->flags & MMC_DATA_WRITE)
 782                mult <<= card->csd.r2w_factor;
 783
 784        data->timeout_ns = card->csd.tacc_ns * mult;
 785        data->timeout_clks = card->csd.tacc_clks * mult;
 786
 787        /*
 788         * SD cards also have an upper limit on the timeout.
 789         */
 790        if (mmc_card_sd(card)) {
 791                unsigned int timeout_us, limit_us;
 792
 793                timeout_us = data->timeout_ns / 1000;
 794                if (mmc_host_clk_rate(card->host))
 795                        timeout_us += data->timeout_clks * 1000 /
 796                                (mmc_host_clk_rate(card->host) / 1000);
 797
 798                if (data->flags & MMC_DATA_WRITE)
 799                        /*
 800                         * The MMC spec "It is strongly recommended
 801                         * for hosts to implement more than 500ms
 802                         * timeout value even if the card indicates
 803                         * the 250ms maximum busy length."  Even the
 804                         * previous value of 300ms is known to be
 805                         * insufficient for some cards.
 806                         */
 807                        limit_us = 3000000;
 808                else
 809                        limit_us = 100000;
 810
 811                /*
 812                 * SDHC cards always use these fixed values.
 813                 */
 814                if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 815                        data->timeout_ns = limit_us * 1000;
 816                        data->timeout_clks = 0;
 817                }
 818        }
 819
 820        /*
 821         * Some cards require longer data read timeout than indicated in CSD.
 822         * Address this by setting the read timeout to a "reasonably high"
 823         * value. For the cards tested, 300ms has proven enough. If necessary,
 824         * this value can be increased if other problematic cards require this.
 825         */
 826        if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 827                data->timeout_ns = 300000000;
 828                data->timeout_clks = 0;
 829        }
 830
 831        /*
 832         * Some cards need very high timeouts if driven in SPI mode.
 833         * The worst observed timeout was 900ms after writing a
 834         * continuous stream of data until the internal logic
 835         * overflowed.
 836         */
 837        if (mmc_host_is_spi(card->host)) {
 838                if (data->flags & MMC_DATA_WRITE) {
 839                        if (data->timeout_ns < 1000000000)
 840                                data->timeout_ns = 1000000000;  /* 1s */
 841                } else {
 842                        if (data->timeout_ns < 100000000)
 843                                data->timeout_ns =  100000000;  /* 100ms */
 844                }
 845        }
 846}
 847EXPORT_SYMBOL(mmc_set_data_timeout);
 848
 849/**
 850 *      mmc_align_data_size - pads a transfer size to a more optimal value
 851 *      @card: the MMC card associated with the data transfer
 852 *      @sz: original transfer size
 853 *
 854 *      Pads the original data size with a number of extra bytes in
 855 *      order to avoid controller bugs and/or performance hits
 856 *      (e.g. some controllers revert to PIO for certain sizes).
 857 *
 858 *      Returns the improved size, which might be unmodified.
 859 *
 860 *      Note that this function is only relevant when issuing a
 861 *      single scatter gather entry.
 862 */
 863unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 864{
 865        /*
 866         * FIXME: We don't have a system for the controller to tell
 867         * the core about its problems yet, so for now we just 32-bit
 868         * align the size.
 869         */
 870        sz = ((sz + 3) / 4) * 4;
 871
 872        return sz;
 873}
 874EXPORT_SYMBOL(mmc_align_data_size);
 875
 876/**
 877 *      __mmc_claim_host - exclusively claim a host
 878 *      @host: mmc host to claim
 879 *      @abort: whether or not the operation should be aborted
 880 *
 881 *      Claim a host for a set of operations.  If @abort is non null and
 882 *      dereference a non-zero value then this will return prematurely with
 883 *      that non-zero value without acquiring the lock.  Returns zero
 884 *      with the lock held otherwise.
 885 */
 886int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 887{
 888        DECLARE_WAITQUEUE(wait, current);
 889        unsigned long flags;
 890        int stop;
 891
 892        might_sleep();
 893
 894        add_wait_queue(&host->wq, &wait);
 895        spin_lock_irqsave(&host->lock, flags);
 896        while (1) {
 897                set_current_state(TASK_UNINTERRUPTIBLE);
 898                stop = abort ? atomic_read(abort) : 0;
 899                if (stop || !host->claimed || host->claimer == current)
 900                        break;
 901                spin_unlock_irqrestore(&host->lock, flags);
 902                schedule();
 903                spin_lock_irqsave(&host->lock, flags);
 904        }
 905        set_current_state(TASK_RUNNING);
 906        if (!stop) {
 907                host->claimed = 1;
 908                host->claimer = current;
 909                host->claim_cnt += 1;
 910        } else
 911                wake_up(&host->wq);
 912        spin_unlock_irqrestore(&host->lock, flags);
 913        remove_wait_queue(&host->wq, &wait);
 914        if (host->ops->enable && !stop && host->claim_cnt == 1)
 915                host->ops->enable(host);
 916        return stop;
 917}
 918
 919EXPORT_SYMBOL(__mmc_claim_host);
 920
 921/**
 922 *      mmc_release_host - release a host
 923 *      @host: mmc host to release
 924 *
 925 *      Release a MMC host, allowing others to claim the host
 926 *      for their operations.
 927 */
 928void mmc_release_host(struct mmc_host *host)
 929{
 930        unsigned long flags;
 931
 932        WARN_ON(!host->claimed);
 933
 934        if (host->ops->disable && host->claim_cnt == 1)
 935                host->ops->disable(host);
 936
 937        spin_lock_irqsave(&host->lock, flags);
 938        if (--host->claim_cnt) {
 939                /* Release for nested claim */
 940                spin_unlock_irqrestore(&host->lock, flags);
 941        } else {
 942                host->claimed = 0;
 943                host->claimer = NULL;
 944                spin_unlock_irqrestore(&host->lock, flags);
 945                wake_up(&host->wq);
 946        }
 947}
 948EXPORT_SYMBOL(mmc_release_host);
 949
 950/*
 951 * This is a helper function, which fetches a runtime pm reference for the
 952 * card device and also claims the host.
 953 */
 954void mmc_get_card(struct mmc_card *card)
 955{
 956        pm_runtime_get_sync(&card->dev);
 957        mmc_claim_host(card->host);
 958}
 959EXPORT_SYMBOL(mmc_get_card);
 960
 961/*
 962 * This is a helper function, which releases the host and drops the runtime
 963 * pm reference for the card device.
 964 */
 965void mmc_put_card(struct mmc_card *card)
 966{
 967        mmc_release_host(card->host);
 968        pm_runtime_mark_last_busy(&card->dev);
 969        pm_runtime_put_autosuspend(&card->dev);
 970}
 971EXPORT_SYMBOL(mmc_put_card);
 972
 973/*
 974 * Internal function that does the actual ios call to the host driver,
 975 * optionally printing some debug output.
 976 */
 977static inline void mmc_set_ios(struct mmc_host *host)
 978{
 979        struct mmc_ios *ios = &host->ios;
 980
 981        pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 982                "width %u timing %u\n",
 983                 mmc_hostname(host), ios->clock, ios->bus_mode,
 984                 ios->power_mode, ios->chip_select, ios->vdd,
 985                 ios->bus_width, ios->timing);
 986
 987        if (ios->clock > 0)
 988                mmc_set_ungated(host);
 989        host->ops->set_ios(host, ios);
 990}
 991
 992/*
 993 * Control chip select pin on a host.
 994 */
 995void mmc_set_chip_select(struct mmc_host *host, int mode)
 996{
 997        mmc_host_clk_hold(host);
 998        host->ios.chip_select = mode;
 999        mmc_set_ios(host);
1000        mmc_host_clk_release(host);
1001}
1002
1003/*
1004 * Sets the host clock to the highest possible frequency that
1005 * is below "hz".
1006 */
1007static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1008{
1009        WARN_ON(hz < host->f_min);
1010
1011        if (hz > host->f_max)
1012                hz = host->f_max;
1013
1014        host->ios.clock = hz;
1015        mmc_set_ios(host);
1016}
1017
1018void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1019{
1020        mmc_host_clk_hold(host);
1021        __mmc_set_clock(host, hz);
1022        mmc_host_clk_release(host);
1023}
1024
1025#ifdef CONFIG_MMC_CLKGATE
1026/*
1027 * This gates the clock by setting it to 0 Hz.
1028 */
1029void mmc_gate_clock(struct mmc_host *host)
1030{
1031        unsigned long flags;
1032
1033        spin_lock_irqsave(&host->clk_lock, flags);
1034        host->clk_old = host->ios.clock;
1035        host->ios.clock = 0;
1036        host->clk_gated = true;
1037        spin_unlock_irqrestore(&host->clk_lock, flags);
1038        mmc_set_ios(host);
1039}
1040
1041/*
1042 * This restores the clock from gating by using the cached
1043 * clock value.
1044 */
1045void mmc_ungate_clock(struct mmc_host *host)
1046{
1047        /*
1048         * We should previously have gated the clock, so the clock shall
1049         * be 0 here! The clock may however be 0 during initialization,
1050         * when some request operations are performed before setting
1051         * the frequency. When ungate is requested in that situation
1052         * we just ignore the call.
1053         */
1054        if (host->clk_old) {
1055                BUG_ON(host->ios.clock);
1056                /* This call will also set host->clk_gated to false */
1057                __mmc_set_clock(host, host->clk_old);
1058        }
1059}
1060
1061void mmc_set_ungated(struct mmc_host *host)
1062{
1063        unsigned long flags;
1064
1065        /*
1066         * We've been given a new frequency while the clock is gated,
1067         * so make sure we regard this as ungating it.
1068         */
1069        spin_lock_irqsave(&host->clk_lock, flags);
1070        host->clk_gated = false;
1071        spin_unlock_irqrestore(&host->clk_lock, flags);
1072}
1073
1074#else
1075void mmc_set_ungated(struct mmc_host *host)
1076{
1077}
1078#endif
1079
1080/*
1081 * Change the bus mode (open drain/push-pull) of a host.
1082 */
1083void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1084{
1085        mmc_host_clk_hold(host);
1086        host->ios.bus_mode = mode;
1087        mmc_set_ios(host);
1088        mmc_host_clk_release(host);
1089}
1090
1091/*
1092 * Change data bus width of a host.
1093 */
1094void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1095{
1096        mmc_host_clk_hold(host);
1097        host->ios.bus_width = width;
1098        mmc_set_ios(host);
1099        mmc_host_clk_release(host);
1100}
1101
1102/**
1103 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1104 * @vdd:        voltage (mV)
1105 * @low_bits:   prefer low bits in boundary cases
1106 *
1107 * This function returns the OCR bit number according to the provided @vdd
1108 * value. If conversion is not possible a negative errno value returned.
1109 *
1110 * Depending on the @low_bits flag the function prefers low or high OCR bits
1111 * on boundary voltages. For example,
1112 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1113 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1114 *
1115 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1116 */
1117static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1118{
1119        const int max_bit = ilog2(MMC_VDD_35_36);
1120        int bit;
1121
1122        if (vdd < 1650 || vdd > 3600)
1123                return -EINVAL;
1124
1125        if (vdd >= 1650 && vdd <= 1950)
1126                return ilog2(MMC_VDD_165_195);
1127
1128        if (low_bits)
1129                vdd -= 1;
1130
1131        /* Base 2000 mV, step 100 mV, bit's base 8. */
1132        bit = (vdd - 2000) / 100 + 8;
1133        if (bit > max_bit)
1134                return max_bit;
1135        return bit;
1136}
1137
1138/**
1139 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1140 * @vdd_min:    minimum voltage value (mV)
1141 * @vdd_max:    maximum voltage value (mV)
1142 *
1143 * This function returns the OCR mask bits according to the provided @vdd_min
1144 * and @vdd_max values. If conversion is not possible the function returns 0.
1145 *
1146 * Notes wrt boundary cases:
1147 * This function sets the OCR bits for all boundary voltages, for example
1148 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1149 * MMC_VDD_34_35 mask.
1150 */
1151u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1152{
1153        u32 mask = 0;
1154
1155        if (vdd_max < vdd_min)
1156                return 0;
1157
1158        /* Prefer high bits for the boundary vdd_max values. */
1159        vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1160        if (vdd_max < 0)
1161                return 0;
1162
1163        /* Prefer low bits for the boundary vdd_min values. */
1164        vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1165        if (vdd_min < 0)
1166                return 0;
1167
1168        /* Fill the mask, from max bit to min bit. */
1169        while (vdd_max >= vdd_min)
1170                mask |= 1 << vdd_max--;
1171
1172        return mask;
1173}
1174EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1175
1176#ifdef CONFIG_OF
1177
1178/**
1179 * mmc_of_parse_voltage - return mask of supported voltages
1180 * @np: The device node need to be parsed.
1181 * @mask: mask of voltages available for MMC/SD/SDIO
1182 *
1183 * 1. Return zero on success.
1184 * 2. Return negative errno: voltage-range is invalid.
1185 */
1186int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1187{
1188        const u32 *voltage_ranges;
1189        int num_ranges, i;
1190
1191        voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1192        num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1193        if (!voltage_ranges || !num_ranges) {
1194                pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1195                return -EINVAL;
1196        }
1197
1198        for (i = 0; i < num_ranges; i++) {
1199                const int j = i * 2;
1200                u32 ocr_mask;
1201
1202                ocr_mask = mmc_vddrange_to_ocrmask(
1203                                be32_to_cpu(voltage_ranges[j]),
1204                                be32_to_cpu(voltage_ranges[j + 1]));
1205                if (!ocr_mask) {
1206                        pr_err("%s: voltage-range #%d is invalid\n",
1207                                np->full_name, i);
1208                        return -EINVAL;
1209                }
1210                *mask |= ocr_mask;
1211        }
1212
1213        return 0;
1214}
1215EXPORT_SYMBOL(mmc_of_parse_voltage);
1216
1217#endif /* CONFIG_OF */
1218
1219#ifdef CONFIG_REGULATOR
1220
1221/**
1222 * mmc_regulator_get_ocrmask - return mask of supported voltages
1223 * @supply: regulator to use
1224 *
1225 * This returns either a negative errno, or a mask of voltages that
1226 * can be provided to MMC/SD/SDIO devices using the specified voltage
1227 * regulator.  This would normally be called before registering the
1228 * MMC host adapter.
1229 */
1230int mmc_regulator_get_ocrmask(struct regulator *supply)
1231{
1232        int                     result = 0;
1233        int                     count;
1234        int                     i;
1235
1236        count = regulator_count_voltages(supply);
1237        if (count < 0)
1238                return count;
1239
1240        for (i = 0; i < count; i++) {
1241                int             vdd_uV;
1242                int             vdd_mV;
1243
1244                vdd_uV = regulator_list_voltage(supply, i);
1245                if (vdd_uV <= 0)
1246                        continue;
1247
1248                vdd_mV = vdd_uV / 1000;
1249                result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1250        }
1251
1252        return result;
1253}
1254EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1255
1256/**
1257 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1258 * @mmc: the host to regulate
1259 * @supply: regulator to use
1260 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1261 *
1262 * Returns zero on success, else negative errno.
1263 *
1264 * MMC host drivers may use this to enable or disable a regulator using
1265 * a particular supply voltage.  This would normally be called from the
1266 * set_ios() method.
1267 */
1268int mmc_regulator_set_ocr(struct mmc_host *mmc,
1269                        struct regulator *supply,
1270                        unsigned short vdd_bit)
1271{
1272        int                     result = 0;
1273        int                     min_uV, max_uV;
1274
1275        if (vdd_bit) {
1276                int             tmp;
1277                int             voltage;
1278
1279                /*
1280                 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1281                 * bits this regulator doesn't quite support ... don't
1282                 * be too picky, most cards and regulators are OK with
1283                 * a 0.1V range goof (it's a small error percentage).
1284                 */
1285                tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1286                if (tmp == 0) {
1287                        min_uV = 1650 * 1000;
1288                        max_uV = 1950 * 1000;
1289                } else {
1290                        min_uV = 1900 * 1000 + tmp * 100 * 1000;
1291                        max_uV = min_uV + 100 * 1000;
1292                }
1293
1294                /*
1295                 * If we're using a fixed/static regulator, don't call
1296                 * regulator_set_voltage; it would fail.
1297                 */
1298                voltage = regulator_get_voltage(supply);
1299
1300                if (!regulator_can_change_voltage(supply))
1301                        min_uV = max_uV = voltage;
1302
1303                if (voltage < 0)
1304                        result = voltage;
1305                else if (voltage < min_uV || voltage > max_uV)
1306                        result = regulator_set_voltage(supply, min_uV, max_uV);
1307                else
1308                        result = 0;
1309
1310                if (result == 0 && !mmc->regulator_enabled) {
1311                        result = regulator_enable(supply);
1312                        if (!result)
1313                                mmc->regulator_enabled = true;
1314                }
1315        } else if (mmc->regulator_enabled) {
1316                result = regulator_disable(supply);
1317                if (result == 0)
1318                        mmc->regulator_enabled = false;
1319        }
1320
1321        if (result)
1322                dev_err(mmc_dev(mmc),
1323                        "could not set regulator OCR (%d)\n", result);
1324        return result;
1325}
1326EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1327
1328int mmc_regulator_get_supply(struct mmc_host *mmc)
1329{
1330        struct device *dev = mmc_dev(mmc);
1331        struct regulator *supply;
1332        int ret;
1333
1334        supply = devm_regulator_get(dev, "vmmc");
1335        mmc->supply.vmmc = supply;
1336        mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1337
1338        if (IS_ERR(supply))
1339                return PTR_ERR(supply);
1340
1341        ret = mmc_regulator_get_ocrmask(supply);
1342        if (ret > 0)
1343                mmc->ocr_avail = ret;
1344        else
1345                dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1346
1347        return 0;
1348}
1349EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1350
1351#endif /* CONFIG_REGULATOR */
1352
1353/*
1354 * Mask off any voltages we don't support and select
1355 * the lowest voltage
1356 */
1357u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1358{
1359        int bit;
1360
1361        /*
1362         * Sanity check the voltages that the card claims to
1363         * support.
1364         */
1365        if (ocr & 0x7F) {
1366                dev_warn(mmc_dev(host),
1367                "card claims to support voltages below defined range\n");
1368                ocr &= ~0x7F;
1369        }
1370
1371        ocr &= host->ocr_avail;
1372        if (!ocr) {
1373                dev_warn(mmc_dev(host), "no support for card's volts\n");
1374                return 0;
1375        }
1376
1377        if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1378                bit = ffs(ocr) - 1;
1379                ocr &= 3 << bit;
1380                mmc_power_cycle(host, ocr);
1381        } else {
1382                bit = fls(ocr) - 1;
1383                ocr &= 3 << bit;
1384                if (bit != host->ios.vdd)
1385                        dev_warn(mmc_dev(host), "exceeding card's volts\n");
1386        }
1387
1388        return ocr;
1389}
1390
1391int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1392{
1393        int err = 0;
1394        int old_signal_voltage = host->ios.signal_voltage;
1395
1396        host->ios.signal_voltage = signal_voltage;
1397        if (host->ops->start_signal_voltage_switch) {
1398                mmc_host_clk_hold(host);
1399                err = host->ops->start_signal_voltage_switch(host, &host->ios);
1400                mmc_host_clk_release(host);
1401        }
1402
1403        if (err)
1404                host->ios.signal_voltage = old_signal_voltage;
1405
1406        return err;
1407
1408}
1409
1410int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1411{
1412        struct mmc_command cmd = {0};
1413        int err = 0;
1414        u32 clock;
1415
1416        BUG_ON(!host);
1417
1418        /*
1419         * Send CMD11 only if the request is to switch the card to
1420         * 1.8V signalling.
1421         */
1422        if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1423                return __mmc_set_signal_voltage(host, signal_voltage);
1424
1425        /*
1426         * If we cannot switch voltages, return failure so the caller
1427         * can continue without UHS mode
1428         */
1429        if (!host->ops->start_signal_voltage_switch)
1430                return -EPERM;
1431        if (!host->ops->card_busy)
1432                pr_warning("%s: cannot verify signal voltage switch\n",
1433                                mmc_hostname(host));
1434
1435        cmd.opcode = SD_SWITCH_VOLTAGE;
1436        cmd.arg = 0;
1437        cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1438
1439        err = mmc_wait_for_cmd(host, &cmd, 0);
1440        if (err)
1441                return err;
1442
1443        if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1444                return -EIO;
1445
1446        mmc_host_clk_hold(host);
1447        /*
1448         * The card should drive cmd and dat[0:3] low immediately
1449         * after the response of cmd11, but wait 1 ms to be sure
1450         */
1451        mmc_delay(1);
1452        if (host->ops->card_busy && !host->ops->card_busy(host)) {
1453                err = -EAGAIN;
1454                goto power_cycle;
1455        }
1456        /*
1457         * During a signal voltage level switch, the clock must be gated
1458         * for 5 ms according to the SD spec
1459         */
1460        clock = host->ios.clock;
1461        host->ios.clock = 0;
1462        mmc_set_ios(host);
1463
1464        if (__mmc_set_signal_voltage(host, signal_voltage)) {
1465                /*
1466                 * Voltages may not have been switched, but we've already
1467                 * sent CMD11, so a power cycle is required anyway
1468                 */
1469                err = -EAGAIN;
1470                goto power_cycle;
1471        }
1472
1473        /* Keep clock gated for at least 5 ms */
1474        mmc_delay(5);
1475        host->ios.clock = clock;
1476        mmc_set_ios(host);
1477
1478        /* Wait for at least 1 ms according to spec */
1479        mmc_delay(1);
1480
1481        /*
1482         * Failure to switch is indicated by the card holding
1483         * dat[0:3] low
1484         */
1485        if (host->ops->card_busy && host->ops->card_busy(host))
1486                err = -EAGAIN;
1487
1488power_cycle:
1489        if (err) {
1490                pr_debug("%s: Signal voltage switch failed, "
1491                        "power cycling card\n", mmc_hostname(host));
1492                mmc_power_cycle(host, ocr);
1493        }
1494
1495        mmc_host_clk_release(host);
1496
1497        return err;
1498}
1499
1500/*
1501 * Select timing parameters for host.
1502 */
1503void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1504{
1505        mmc_host_clk_hold(host);
1506        host->ios.timing = timing;
1507        mmc_set_ios(host);
1508        mmc_host_clk_release(host);
1509}
1510
1511/*
1512 * Select appropriate driver type for host.
1513 */
1514void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1515{
1516        mmc_host_clk_hold(host);
1517        host->ios.drv_type = drv_type;
1518        mmc_set_ios(host);
1519        mmc_host_clk_release(host);
1520}
1521
1522/*
1523 * Apply power to the MMC stack.  This is a two-stage process.
1524 * First, we enable power to the card without the clock running.
1525 * We then wait a bit for the power to stabilise.  Finally,
1526 * enable the bus drivers and clock to the card.
1527 *
1528 * We must _NOT_ enable the clock prior to power stablising.
1529 *
1530 * If a host does all the power sequencing itself, ignore the
1531 * initial MMC_POWER_UP stage.
1532 */
1533void mmc_power_up(struct mmc_host *host, u32 ocr)
1534{
1535        if (host->ios.power_mode == MMC_POWER_ON)
1536                return;
1537
1538        mmc_host_clk_hold(host);
1539
1540        host->ios.vdd = fls(ocr) - 1;
1541        if (mmc_host_is_spi(host))
1542                host->ios.chip_select = MMC_CS_HIGH;
1543        else
1544                host->ios.chip_select = MMC_CS_DONTCARE;
1545        host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1546        host->ios.power_mode = MMC_POWER_UP;
1547        host->ios.bus_width = MMC_BUS_WIDTH_1;
1548        host->ios.timing = MMC_TIMING_LEGACY;
1549        mmc_set_ios(host);
1550
1551        /* Set signal voltage to 3.3V */
1552        __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1553
1554        /*
1555         * This delay should be sufficient to allow the power supply
1556         * to reach the minimum voltage.
1557         */
1558        mmc_delay(10);
1559
1560        host->ios.clock = host->f_init;
1561
1562        host->ios.power_mode = MMC_POWER_ON;
1563        mmc_set_ios(host);
1564
1565        /*
1566         * This delay must be at least 74 clock sizes, or 1 ms, or the
1567         * time required to reach a stable voltage.
1568         */
1569        mmc_delay(10);
1570
1571        mmc_host_clk_release(host);
1572}
1573
1574void mmc_power_off(struct mmc_host *host)
1575{
1576        if (host->ios.power_mode == MMC_POWER_OFF)
1577                return;
1578
1579        mmc_host_clk_hold(host);
1580
1581        host->ios.clock = 0;
1582        host->ios.vdd = 0;
1583
1584        if (!mmc_host_is_spi(host)) {
1585                host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1586                host->ios.chip_select = MMC_CS_DONTCARE;
1587        }
1588        host->ios.power_mode = MMC_POWER_OFF;
1589        host->ios.bus_width = MMC_BUS_WIDTH_1;
1590        host->ios.timing = MMC_TIMING_LEGACY;
1591        mmc_set_ios(host);
1592
1593        /*
1594         * Some configurations, such as the 802.11 SDIO card in the OLPC
1595         * XO-1.5, require a short delay after poweroff before the card
1596         * can be successfully turned on again.
1597         */
1598        mmc_delay(1);
1599
1600        mmc_host_clk_release(host);
1601}
1602
1603void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1604{
1605        mmc_power_off(host);
1606        /* Wait at least 1 ms according to SD spec */
1607        mmc_delay(1);
1608        mmc_power_up(host, ocr);
1609}
1610
1611/*
1612 * Cleanup when the last reference to the bus operator is dropped.
1613 */
1614static void __mmc_release_bus(struct mmc_host *host)
1615{
1616        BUG_ON(!host);
1617        BUG_ON(host->bus_refs);
1618        BUG_ON(!host->bus_dead);
1619
1620        host->bus_ops = NULL;
1621}
1622
1623/*
1624 * Increase reference count of bus operator
1625 */
1626static inline void mmc_bus_get(struct mmc_host *host)
1627{
1628        unsigned long flags;
1629
1630        spin_lock_irqsave(&host->lock, flags);
1631        host->bus_refs++;
1632        spin_unlock_irqrestore(&host->lock, flags);
1633}
1634
1635/*
1636 * Decrease reference count of bus operator and free it if
1637 * it is the last reference.
1638 */
1639static inline void mmc_bus_put(struct mmc_host *host)
1640{
1641        unsigned long flags;
1642
1643        spin_lock_irqsave(&host->lock, flags);
1644        host->bus_refs--;
1645        if ((host->bus_refs == 0) && host->bus_ops)
1646                __mmc_release_bus(host);
1647        spin_unlock_irqrestore(&host->lock, flags);
1648}
1649
1650/*
1651 * Assign a mmc bus handler to a host. Only one bus handler may control a
1652 * host at any given time.
1653 */
1654void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1655{
1656        unsigned long flags;
1657
1658        BUG_ON(!host);
1659        BUG_ON(!ops);
1660
1661        WARN_ON(!host->claimed);
1662
1663        spin_lock_irqsave(&host->lock, flags);
1664
1665        BUG_ON(host->bus_ops);
1666        BUG_ON(host->bus_refs);
1667
1668        host->bus_ops = ops;
1669        host->bus_refs = 1;
1670        host->bus_dead = 0;
1671
1672        spin_unlock_irqrestore(&host->lock, flags);
1673}
1674
1675/*
1676 * Remove the current bus handler from a host.
1677 */
1678void mmc_detach_bus(struct mmc_host *host)
1679{
1680        unsigned long flags;
1681
1682        BUG_ON(!host);
1683
1684        WARN_ON(!host->claimed);
1685        WARN_ON(!host->bus_ops);
1686
1687        spin_lock_irqsave(&host->lock, flags);
1688
1689        host->bus_dead = 1;
1690
1691        spin_unlock_irqrestore(&host->lock, flags);
1692
1693        mmc_bus_put(host);
1694}
1695
1696static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1697                                bool cd_irq)
1698{
1699#ifdef CONFIG_MMC_DEBUG
1700        unsigned long flags;
1701        spin_lock_irqsave(&host->lock, flags);
1702        WARN_ON(host->removed);
1703        spin_unlock_irqrestore(&host->lock, flags);
1704#endif
1705
1706        /*
1707         * If the device is configured as wakeup, we prevent a new sleep for
1708         * 5 s to give provision for user space to consume the event.
1709         */
1710        if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1711                device_can_wakeup(mmc_dev(host)))
1712                pm_wakeup_event(mmc_dev(host), 5000);
1713
1714        host->detect_change = 1;
1715        mmc_schedule_delayed_work(&host->detect, delay);
1716}
1717
1718/**
1719 *      mmc_detect_change - process change of state on a MMC socket
1720 *      @host: host which changed state.
1721 *      @delay: optional delay to wait before detection (jiffies)
1722 *
1723 *      MMC drivers should call this when they detect a card has been
1724 *      inserted or removed. The MMC layer will confirm that any
1725 *      present card is still functional, and initialize any newly
1726 *      inserted.
1727 */
1728void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1729{
1730        _mmc_detect_change(host, delay, true);
1731}
1732EXPORT_SYMBOL(mmc_detect_change);
1733
1734void mmc_init_erase(struct mmc_card *card)
1735{
1736        unsigned int sz;
1737
1738        if (is_power_of_2(card->erase_size))
1739                card->erase_shift = ffs(card->erase_size) - 1;
1740        else
1741                card->erase_shift = 0;
1742
1743        /*
1744         * It is possible to erase an arbitrarily large area of an SD or MMC
1745         * card.  That is not desirable because it can take a long time
1746         * (minutes) potentially delaying more important I/O, and also the
1747         * timeout calculations become increasingly hugely over-estimated.
1748         * Consequently, 'pref_erase' is defined as a guide to limit erases
1749         * to that size and alignment.
1750         *
1751         * For SD cards that define Allocation Unit size, limit erases to one
1752         * Allocation Unit at a time.  For MMC cards that define High Capacity
1753         * Erase Size, whether it is switched on or not, limit to that size.
1754         * Otherwise just have a stab at a good value.  For modern cards it
1755         * will end up being 4MiB.  Note that if the value is too small, it
1756         * can end up taking longer to erase.
1757         */
1758        if (mmc_card_sd(card) && card->ssr.au) {
1759                card->pref_erase = card->ssr.au;
1760                card->erase_shift = ffs(card->ssr.au) - 1;
1761        } else if (card->ext_csd.hc_erase_size) {
1762                card->pref_erase = card->ext_csd.hc_erase_size;
1763        } else {
1764                sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1765                if (sz < 128)
1766                        card->pref_erase = 512 * 1024 / 512;
1767                else if (sz < 512)
1768                        card->pref_erase = 1024 * 1024 / 512;
1769                else if (sz < 1024)
1770                        card->pref_erase = 2 * 1024 * 1024 / 512;
1771                else
1772                        card->pref_erase = 4 * 1024 * 1024 / 512;
1773                if (card->pref_erase < card->erase_size)
1774                        card->pref_erase = card->erase_size;
1775                else {
1776                        sz = card->pref_erase % card->erase_size;
1777                        if (sz)
1778                                card->pref_erase += card->erase_size - sz;
1779                }
1780        }
1781}
1782
1783static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1784                                          unsigned int arg, unsigned int qty)
1785{
1786        unsigned int erase_timeout;
1787
1788        if (arg == MMC_DISCARD_ARG ||
1789            (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1790                erase_timeout = card->ext_csd.trim_timeout;
1791        } else if (card->ext_csd.erase_group_def & 1) {
1792                /* High Capacity Erase Group Size uses HC timeouts */
1793                if (arg == MMC_TRIM_ARG)
1794                        erase_timeout = card->ext_csd.trim_timeout;
1795                else
1796                        erase_timeout = card->ext_csd.hc_erase_timeout;
1797        } else {
1798                /* CSD Erase Group Size uses write timeout */
1799                unsigned int mult = (10 << card->csd.r2w_factor);
1800                unsigned int timeout_clks = card->csd.tacc_clks * mult;
1801                unsigned int timeout_us;
1802
1803                /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1804                if (card->csd.tacc_ns < 1000000)
1805                        timeout_us = (card->csd.tacc_ns * mult) / 1000;
1806                else
1807                        timeout_us = (card->csd.tacc_ns / 1000) * mult;
1808
1809                /*
1810                 * ios.clock is only a target.  The real clock rate might be
1811                 * less but not that much less, so fudge it by multiplying by 2.
1812                 */
1813                timeout_clks <<= 1;
1814                timeout_us += (timeout_clks * 1000) /
1815                              (mmc_host_clk_rate(card->host) / 1000);
1816
1817                erase_timeout = timeout_us / 1000;
1818
1819                /*
1820                 * Theoretically, the calculation could underflow so round up
1821                 * to 1ms in that case.
1822                 */
1823                if (!erase_timeout)
1824                        erase_timeout = 1;
1825        }
1826
1827        /* Multiplier for secure operations */
1828        if (arg & MMC_SECURE_ARGS) {
1829                if (arg == MMC_SECURE_ERASE_ARG)
1830                        erase_timeout *= card->ext_csd.sec_erase_mult;
1831                else
1832                        erase_timeout *= card->ext_csd.sec_trim_mult;
1833        }
1834
1835        erase_timeout *= qty;
1836
1837        /*
1838         * Ensure at least a 1 second timeout for SPI as per
1839         * 'mmc_set_data_timeout()'
1840         */
1841        if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1842                erase_timeout = 1000;
1843
1844        return erase_timeout;
1845}
1846
1847static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1848                                         unsigned int arg,
1849                                         unsigned int qty)
1850{
1851        unsigned int erase_timeout;
1852
1853        if (card->ssr.erase_timeout) {
1854                /* Erase timeout specified in SD Status Register (SSR) */
1855                erase_timeout = card->ssr.erase_timeout * qty +
1856                                card->ssr.erase_offset;
1857        } else {
1858                /*
1859                 * Erase timeout not specified in SD Status Register (SSR) so
1860                 * use 250ms per write block.
1861                 */
1862                erase_timeout = 250 * qty;
1863        }
1864
1865        /* Must not be less than 1 second */
1866        if (erase_timeout < 1000)
1867                erase_timeout = 1000;
1868
1869        return erase_timeout;
1870}
1871
1872static unsigned int mmc_erase_timeout(struct mmc_card *card,
1873                                      unsigned int arg,
1874                                      unsigned int qty)
1875{
1876        if (mmc_card_sd(card))
1877                return mmc_sd_erase_timeout(card, arg, qty);
1878        else
1879                return mmc_mmc_erase_timeout(card, arg, qty);
1880}
1881
1882static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1883                        unsigned int to, unsigned int arg)
1884{
1885        struct mmc_command cmd = {0};
1886        unsigned int qty = 0;
1887        unsigned long timeout;
1888        int err;
1889
1890        /*
1891         * qty is used to calculate the erase timeout which depends on how many
1892         * erase groups (or allocation units in SD terminology) are affected.
1893         * We count erasing part of an erase group as one erase group.
1894         * For SD, the allocation units are always a power of 2.  For MMC, the
1895         * erase group size is almost certainly also power of 2, but it does not
1896         * seem to insist on that in the JEDEC standard, so we fall back to
1897         * division in that case.  SD may not specify an allocation unit size,
1898         * in which case the timeout is based on the number of write blocks.
1899         *
1900         * Note that the timeout for secure trim 2 will only be correct if the
1901         * number of erase groups specified is the same as the total of all
1902         * preceding secure trim 1 commands.  Since the power may have been
1903         * lost since the secure trim 1 commands occurred, it is generally
1904         * impossible to calculate the secure trim 2 timeout correctly.
1905         */
1906        if (card->erase_shift)
1907                qty += ((to >> card->erase_shift) -
1908                        (from >> card->erase_shift)) + 1;
1909        else if (mmc_card_sd(card))
1910                qty += to - from + 1;
1911        else
1912                qty += ((to / card->erase_size) -
1913                        (from / card->erase_size)) + 1;
1914
1915        if (!mmc_card_blockaddr(card)) {
1916                from <<= 9;
1917                to <<= 9;
1918        }
1919
1920        if (mmc_card_sd(card))
1921                cmd.opcode = SD_ERASE_WR_BLK_START;
1922        else
1923                cmd.opcode = MMC_ERASE_GROUP_START;
1924        cmd.arg = from;
1925        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927        if (err) {
1928                pr_err("mmc_erase: group start error %d, "
1929                       "status %#x\n", err, cmd.resp[0]);
1930                err = -EIO;
1931                goto out;
1932        }
1933
1934        memset(&cmd, 0, sizeof(struct mmc_command));
1935        if (mmc_card_sd(card))
1936                cmd.opcode = SD_ERASE_WR_BLK_END;
1937        else
1938                cmd.opcode = MMC_ERASE_GROUP_END;
1939        cmd.arg = to;
1940        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1941        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1942        if (err) {
1943                pr_err("mmc_erase: group end error %d, status %#x\n",
1944                       err, cmd.resp[0]);
1945                err = -EIO;
1946                goto out;
1947        }
1948
1949        memset(&cmd, 0, sizeof(struct mmc_command));
1950        cmd.opcode = MMC_ERASE;
1951        cmd.arg = arg;
1952        cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1953        cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1954        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1955        if (err) {
1956                pr_err("mmc_erase: erase error %d, status %#x\n",
1957                       err, cmd.resp[0]);
1958                err = -EIO;
1959                goto out;
1960        }
1961
1962        if (mmc_host_is_spi(card->host))
1963                goto out;
1964
1965        timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1966        do {
1967                memset(&cmd, 0, sizeof(struct mmc_command));
1968                cmd.opcode = MMC_SEND_STATUS;
1969                cmd.arg = card->rca << 16;
1970                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1971                /* Do not retry else we can't see errors */
1972                err = mmc_wait_for_cmd(card->host, &cmd, 0);
1973                if (err || (cmd.resp[0] & 0xFDF92000)) {
1974                        pr_err("error %d requesting status %#x\n",
1975                                err, cmd.resp[0]);
1976                        err = -EIO;
1977                        goto out;
1978                }
1979
1980                /* Timeout if the device never becomes ready for data and
1981                 * never leaves the program state.
1982                 */
1983                if (time_after(jiffies, timeout)) {
1984                        pr_err("%s: Card stuck in programming state! %s\n",
1985                                mmc_hostname(card->host), __func__);
1986                        err =  -EIO;
1987                        goto out;
1988                }
1989
1990        } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1991                 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1992out:
1993        return err;
1994}
1995
1996/**
1997 * mmc_erase - erase sectors.
1998 * @card: card to erase
1999 * @from: first sector to erase
2000 * @nr: number of sectors to erase
2001 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2002 *
2003 * Caller must claim host before calling this function.
2004 */
2005int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2006              unsigned int arg)
2007{
2008        unsigned int rem, to = from + nr;
2009
2010        if (!(card->host->caps & MMC_CAP_ERASE) ||
2011            !(card->csd.cmdclass & CCC_ERASE))
2012                return -EOPNOTSUPP;
2013
2014        if (!card->erase_size)
2015                return -EOPNOTSUPP;
2016
2017        if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2018                return -EOPNOTSUPP;
2019
2020        if ((arg & MMC_SECURE_ARGS) &&
2021            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2022                return -EOPNOTSUPP;
2023
2024        if ((arg & MMC_TRIM_ARGS) &&
2025            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2026                return -EOPNOTSUPP;
2027
2028        if (arg == MMC_SECURE_ERASE_ARG) {
2029                if (from % card->erase_size || nr % card->erase_size)
2030                        return -EINVAL;
2031        }
2032
2033        if (arg == MMC_ERASE_ARG) {
2034                rem = from % card->erase_size;
2035                if (rem) {
2036                        rem = card->erase_size - rem;
2037                        from += rem;
2038                        if (nr > rem)
2039                                nr -= rem;
2040                        else
2041                                return 0;
2042                }
2043                rem = nr % card->erase_size;
2044                if (rem)
2045                        nr -= rem;
2046        }
2047
2048        if (nr == 0)
2049                return 0;
2050
2051        to = from + nr;
2052
2053        if (to <= from)
2054                return -EINVAL;
2055
2056        /* 'from' and 'to' are inclusive */
2057        to -= 1;
2058
2059        return mmc_do_erase(card, from, to, arg);
2060}
2061EXPORT_SYMBOL(mmc_erase);
2062
2063int mmc_can_erase(struct mmc_card *card)
2064{
2065        if ((card->host->caps & MMC_CAP_ERASE) &&
2066            (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2067                return 1;
2068        return 0;
2069}
2070EXPORT_SYMBOL(mmc_can_erase);
2071
2072int mmc_can_trim(struct mmc_card *card)
2073{
2074        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2075                return 1;
2076        return 0;
2077}
2078EXPORT_SYMBOL(mmc_can_trim);
2079
2080int mmc_can_discard(struct mmc_card *card)
2081{
2082        /*
2083         * As there's no way to detect the discard support bit at v4.5
2084         * use the s/w feature support filed.
2085         */
2086        if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2087                return 1;
2088        return 0;
2089}
2090EXPORT_SYMBOL(mmc_can_discard);
2091
2092int mmc_can_sanitize(struct mmc_card *card)
2093{
2094        if (!mmc_can_trim(card) && !mmc_can_erase(card))
2095                return 0;
2096        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2097                return 1;
2098        return 0;
2099}
2100EXPORT_SYMBOL(mmc_can_sanitize);
2101
2102int mmc_can_secure_erase_trim(struct mmc_card *card)
2103{
2104        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2105                return 1;
2106        return 0;
2107}
2108EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2109
2110int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2111                            unsigned int nr)
2112{
2113        if (!card->erase_size)
2114                return 0;
2115        if (from % card->erase_size || nr % card->erase_size)
2116                return 0;
2117        return 1;
2118}
2119EXPORT_SYMBOL(mmc_erase_group_aligned);
2120
2121static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2122                                            unsigned int arg)
2123{
2124        struct mmc_host *host = card->host;
2125        unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2126        unsigned int last_timeout = 0;
2127
2128        if (card->erase_shift)
2129                max_qty = UINT_MAX >> card->erase_shift;
2130        else if (mmc_card_sd(card))
2131                max_qty = UINT_MAX;
2132        else
2133                max_qty = UINT_MAX / card->erase_size;
2134
2135        /* Find the largest qty with an OK timeout */
2136        do {
2137                y = 0;
2138                for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2139                        timeout = mmc_erase_timeout(card, arg, qty + x);
2140                        if (timeout > host->max_discard_to)
2141                                break;
2142                        if (timeout < last_timeout)
2143                                break;
2144                        last_timeout = timeout;
2145                        y = x;
2146                }
2147                qty += y;
2148        } while (y);
2149
2150        if (!qty)
2151                return 0;
2152
2153        if (qty == 1)
2154                return 1;
2155
2156        /* Convert qty to sectors */
2157        if (card->erase_shift)
2158                max_discard = --qty << card->erase_shift;
2159        else if (mmc_card_sd(card))
2160                max_discard = qty;
2161        else
2162                max_discard = --qty * card->erase_size;
2163
2164        return max_discard;
2165}
2166
2167unsigned int mmc_calc_max_discard(struct mmc_card *card)
2168{
2169        struct mmc_host *host = card->host;
2170        unsigned int max_discard, max_trim;
2171
2172        if (!host->max_discard_to)
2173                return UINT_MAX;
2174
2175        /*
2176         * Without erase_group_def set, MMC erase timeout depends on clock
2177         * frequence which can change.  In that case, the best choice is
2178         * just the preferred erase size.
2179         */
2180        if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2181                return card->pref_erase;
2182
2183        max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2184        if (mmc_can_trim(card)) {
2185                max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2186                if (max_trim < max_discard)
2187                        max_discard = max_trim;
2188        } else if (max_discard < card->erase_size) {
2189                max_discard = 0;
2190        }
2191        pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2192                 mmc_hostname(host), max_discard, host->max_discard_to);
2193        return max_discard;
2194}
2195EXPORT_SYMBOL(mmc_calc_max_discard);
2196
2197int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2198{
2199        struct mmc_command cmd = {0};
2200
2201        if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2202                return 0;
2203
2204        cmd.opcode = MMC_SET_BLOCKLEN;
2205        cmd.arg = blocklen;
2206        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2207        return mmc_wait_for_cmd(card->host, &cmd, 5);
2208}
2209EXPORT_SYMBOL(mmc_set_blocklen);
2210
2211int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2212                        bool is_rel_write)
2213{
2214        struct mmc_command cmd = {0};
2215
2216        cmd.opcode = MMC_SET_BLOCK_COUNT;
2217        cmd.arg = blockcount & 0x0000FFFF;
2218        if (is_rel_write)
2219                cmd.arg |= 1 << 31;
2220        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2221        return mmc_wait_for_cmd(card->host, &cmd, 5);
2222}
2223EXPORT_SYMBOL(mmc_set_blockcount);
2224
2225static void mmc_hw_reset_for_init(struct mmc_host *host)
2226{
2227        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2228                return;
2229        mmc_host_clk_hold(host);
2230        host->ops->hw_reset(host);
2231        mmc_host_clk_release(host);
2232}
2233
2234int mmc_can_reset(struct mmc_card *card)
2235{
2236        u8 rst_n_function;
2237
2238        if (!mmc_card_mmc(card))
2239                return 0;
2240        rst_n_function = card->ext_csd.rst_n_function;
2241        if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2242                return 0;
2243        return 1;
2244}
2245EXPORT_SYMBOL(mmc_can_reset);
2246
2247static int mmc_do_hw_reset(struct mmc_host *host, int check)
2248{
2249        struct mmc_card *card = host->card;
2250
2251        if (!host->bus_ops->power_restore)
2252                return -EOPNOTSUPP;
2253
2254        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2255                return -EOPNOTSUPP;
2256
2257        if (!card)
2258                return -EINVAL;
2259
2260        if (!mmc_can_reset(card))
2261                return -EOPNOTSUPP;
2262
2263        mmc_host_clk_hold(host);
2264        mmc_set_clock(host, host->f_init);
2265
2266        host->ops->hw_reset(host);
2267
2268        /* If the reset has happened, then a status command will fail */
2269        if (check) {
2270                struct mmc_command cmd = {0};
2271                int err;
2272
2273                cmd.opcode = MMC_SEND_STATUS;
2274                if (!mmc_host_is_spi(card->host))
2275                        cmd.arg = card->rca << 16;
2276                cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2277                err = mmc_wait_for_cmd(card->host, &cmd, 0);
2278                if (!err) {
2279                        mmc_host_clk_release(host);
2280                        return -ENOSYS;
2281                }
2282        }
2283
2284        host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2285        if (mmc_host_is_spi(host)) {
2286                host->ios.chip_select = MMC_CS_HIGH;
2287                host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2288        } else {
2289                host->ios.chip_select = MMC_CS_DONTCARE;
2290                host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2291        }
2292        host->ios.bus_width = MMC_BUS_WIDTH_1;
2293        host->ios.timing = MMC_TIMING_LEGACY;
2294        mmc_set_ios(host);
2295
2296        mmc_host_clk_release(host);
2297
2298        return host->bus_ops->power_restore(host);
2299}
2300
2301int mmc_hw_reset(struct mmc_host *host)
2302{
2303        return mmc_do_hw_reset(host, 0);
2304}
2305EXPORT_SYMBOL(mmc_hw_reset);
2306
2307int mmc_hw_reset_check(struct mmc_host *host)
2308{
2309        return mmc_do_hw_reset(host, 1);
2310}
2311EXPORT_SYMBOL(mmc_hw_reset_check);
2312
2313static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2314{
2315        host->f_init = freq;
2316
2317#ifdef CONFIG_MMC_DEBUG
2318        pr_info("%s: %s: trying to init card at %u Hz\n",
2319                mmc_hostname(host), __func__, host->f_init);
2320#endif
2321        mmc_power_up(host, host->ocr_avail);
2322
2323        /*
2324         * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2325         * do a hardware reset if possible.
2326         */
2327        mmc_hw_reset_for_init(host);
2328
2329        /*
2330         * sdio_reset sends CMD52 to reset card.  Since we do not know
2331         * if the card is being re-initialized, just send it.  CMD52
2332         * should be ignored by SD/eMMC cards.
2333         */
2334        sdio_reset(host);
2335        mmc_go_idle(host);
2336
2337        mmc_send_if_cond(host, host->ocr_avail);
2338
2339        /* Order's important: probe SDIO, then SD, then MMC */
2340        if (!mmc_attach_sdio(host))
2341                return 0;
2342        if (!mmc_attach_sd(host))
2343                return 0;
2344        if (!mmc_attach_mmc(host))
2345                return 0;
2346
2347        mmc_power_off(host);
2348        return -EIO;
2349}
2350
2351int _mmc_detect_card_removed(struct mmc_host *host)
2352{
2353        int ret;
2354
2355        if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2356                return 0;
2357
2358        if (!host->card || mmc_card_removed(host->card))
2359                return 1;
2360
2361        ret = host->bus_ops->alive(host);
2362
2363        /*
2364         * Card detect status and alive check may be out of sync if card is
2365         * removed slowly, when card detect switch changes while card/slot
2366         * pads are still contacted in hardware (refer to "SD Card Mechanical
2367         * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2368         * detect work 200ms later for this case.
2369         */
2370        if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2371                mmc_detect_change(host, msecs_to_jiffies(200));
2372                pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2373        }
2374
2375        if (ret) {
2376                mmc_card_set_removed(host->card);
2377                pr_debug("%s: card remove detected\n", mmc_hostname(host));
2378        }
2379
2380        return ret;
2381}
2382
2383int mmc_detect_card_removed(struct mmc_host *host)
2384{
2385        struct mmc_card *card = host->card;
2386        int ret;
2387
2388        WARN_ON(!host->claimed);
2389
2390        if (!card)
2391                return 1;
2392
2393        ret = mmc_card_removed(card);
2394        /*
2395         * The card will be considered unchanged unless we have been asked to
2396         * detect a change or host requires polling to provide card detection.
2397         */
2398        if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2399                return ret;
2400
2401        host->detect_change = 0;
2402        if (!ret) {
2403                ret = _mmc_detect_card_removed(host);
2404                if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2405                        /*
2406                         * Schedule a detect work as soon as possible to let a
2407                         * rescan handle the card removal.
2408                         */
2409                        cancel_delayed_work(&host->detect);
2410                        _mmc_detect_change(host, 0, false);
2411                }
2412        }
2413
2414        return ret;
2415}
2416EXPORT_SYMBOL(mmc_detect_card_removed);
2417
2418void mmc_rescan(struct work_struct *work)
2419{
2420        struct mmc_host *host =
2421                container_of(work, struct mmc_host, detect.work);
2422        int i;
2423
2424        if (host->rescan_disable)
2425                return;
2426
2427        /* If there is a non-removable card registered, only scan once */
2428        if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2429                return;
2430        host->rescan_entered = 1;
2431
2432        mmc_bus_get(host);
2433
2434        /*
2435         * if there is a _removable_ card registered, check whether it is
2436         * still present
2437         */
2438        if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2439            && !(host->caps & MMC_CAP_NONREMOVABLE))
2440                host->bus_ops->detect(host);
2441
2442        host->detect_change = 0;
2443
2444        /*
2445         * Let mmc_bus_put() free the bus/bus_ops if we've found that
2446         * the card is no longer present.
2447         */
2448        mmc_bus_put(host);
2449        mmc_bus_get(host);
2450
2451        /* if there still is a card present, stop here */
2452        if (host->bus_ops != NULL) {
2453                mmc_bus_put(host);
2454                goto out;
2455        }
2456
2457        /*
2458         * Only we can add a new handler, so it's safe to
2459         * release the lock here.
2460         */
2461        mmc_bus_put(host);
2462
2463        if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2464                        host->ops->get_cd(host) == 0) {
2465                mmc_claim_host(host);
2466                mmc_power_off(host);
2467                mmc_release_host(host);
2468                goto out;
2469        }
2470
2471        mmc_claim_host(host);
2472        for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2473                if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2474                        break;
2475                if (freqs[i] <= host->f_min)
2476                        break;
2477        }
2478        mmc_release_host(host);
2479
2480 out:
2481        if (host->caps & MMC_CAP_NEEDS_POLL)
2482                mmc_schedule_delayed_work(&host->detect, HZ);
2483}
2484
2485void mmc_start_host(struct mmc_host *host)
2486{
2487        host->f_init = max(freqs[0], host->f_min);
2488        host->rescan_disable = 0;
2489        if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2490                mmc_power_off(host);
2491        else
2492                mmc_power_up(host, host->ocr_avail);
2493        _mmc_detect_change(host, 0, false);
2494}
2495
2496void mmc_stop_host(struct mmc_host *host)
2497{
2498#ifdef CONFIG_MMC_DEBUG
2499        unsigned long flags;
2500        spin_lock_irqsave(&host->lock, flags);
2501        host->removed = 1;
2502        spin_unlock_irqrestore(&host->lock, flags);
2503#endif
2504
2505        host->rescan_disable = 1;
2506        cancel_delayed_work_sync(&host->detect);
2507        mmc_flush_scheduled_work();
2508
2509        /* clear pm flags now and let card drivers set them as needed */
2510        host->pm_flags = 0;
2511
2512        mmc_bus_get(host);
2513        if (host->bus_ops && !host->bus_dead) {
2514                /* Calling bus_ops->remove() with a claimed host can deadlock */
2515                host->bus_ops->remove(host);
2516                mmc_claim_host(host);
2517                mmc_detach_bus(host);
2518                mmc_power_off(host);
2519                mmc_release_host(host);
2520                mmc_bus_put(host);
2521                return;
2522        }
2523        mmc_bus_put(host);
2524
2525        BUG_ON(host->card);
2526
2527        mmc_power_off(host);
2528}
2529
2530int mmc_power_save_host(struct mmc_host *host)
2531{
2532        int ret = 0;
2533
2534#ifdef CONFIG_MMC_DEBUG
2535        pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2536#endif
2537
2538        mmc_bus_get(host);
2539
2540        if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2541                mmc_bus_put(host);
2542                return -EINVAL;
2543        }
2544
2545        if (host->bus_ops->power_save)
2546                ret = host->bus_ops->power_save(host);
2547
2548        mmc_bus_put(host);
2549
2550        mmc_power_off(host);
2551
2552        return ret;
2553}
2554EXPORT_SYMBOL(mmc_power_save_host);
2555
2556int mmc_power_restore_host(struct mmc_host *host)
2557{
2558        int ret;
2559
2560#ifdef CONFIG_MMC_DEBUG
2561        pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2562#endif
2563
2564        mmc_bus_get(host);
2565
2566        if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2567                mmc_bus_put(host);
2568                return -EINVAL;
2569        }
2570
2571        mmc_power_up(host, host->card->ocr);
2572        ret = host->bus_ops->power_restore(host);
2573
2574        mmc_bus_put(host);
2575
2576        return ret;
2577}
2578EXPORT_SYMBOL(mmc_power_restore_host);
2579
2580/*
2581 * Flush the cache to the non-volatile storage.
2582 */
2583int mmc_flush_cache(struct mmc_card *card)
2584{
2585        struct mmc_host *host = card->host;
2586        int err = 0;
2587
2588        if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2589                return err;
2590
2591        if (mmc_card_mmc(card) &&
2592                        (card->ext_csd.cache_size > 0) &&
2593                        (card->ext_csd.cache_ctrl & 1)) {
2594                err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2595                                EXT_CSD_FLUSH_CACHE, 1, 0);
2596                if (err)
2597                        pr_err("%s: cache flush error %d\n",
2598                                        mmc_hostname(card->host), err);
2599        }
2600
2601        return err;
2602}
2603EXPORT_SYMBOL(mmc_flush_cache);
2604
2605/*
2606 * Turn the cache ON/OFF.
2607 * Turning the cache OFF shall trigger flushing of the data
2608 * to the non-volatile storage.
2609 * This function should be called with host claimed
2610 */
2611int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2612{
2613        struct mmc_card *card = host->card;
2614        unsigned int timeout;
2615        int err = 0;
2616
2617        if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2618                        mmc_card_is_removable(host))
2619                return err;
2620
2621        if (card && mmc_card_mmc(card) &&
2622                        (card->ext_csd.cache_size > 0)) {
2623                enable = !!enable;
2624
2625                if (card->ext_csd.cache_ctrl ^ enable) {
2626                        timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2627                        err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2628                                        EXT_CSD_CACHE_CTRL, enable, timeout);
2629                        if (err)
2630                                pr_err("%s: cache %s error %d\n",
2631                                                mmc_hostname(card->host),
2632                                                enable ? "on" : "off",
2633                                                err);
2634                        else
2635                                card->ext_csd.cache_ctrl = enable;
2636                }
2637        }
2638
2639        return err;
2640}
2641EXPORT_SYMBOL(mmc_cache_ctrl);
2642
2643#ifdef CONFIG_PM
2644
2645/* Do the card removal on suspend if card is assumed removeable
2646 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2647   to sync the card.
2648*/
2649int mmc_pm_notify(struct notifier_block *notify_block,
2650                                        unsigned long mode, void *unused)
2651{
2652        struct mmc_host *host = container_of(
2653                notify_block, struct mmc_host, pm_notify);
2654        unsigned long flags;
2655        int err = 0;
2656
2657        switch (mode) {
2658        case PM_HIBERNATION_PREPARE:
2659        case PM_SUSPEND_PREPARE:
2660                spin_lock_irqsave(&host->lock, flags);
2661                host->rescan_disable = 1;
2662                spin_unlock_irqrestore(&host->lock, flags);
2663                cancel_delayed_work_sync(&host->detect);
2664
2665                if (!host->bus_ops)
2666                        break;
2667
2668                /* Validate prerequisites for suspend */
2669                if (host->bus_ops->pre_suspend)
2670                        err = host->bus_ops->pre_suspend(host);
2671                if (!err && host->bus_ops->suspend)
2672                        break;
2673
2674                /* Calling bus_ops->remove() with a claimed host can deadlock */
2675                host->bus_ops->remove(host);
2676                mmc_claim_host(host);
2677                mmc_detach_bus(host);
2678                mmc_power_off(host);
2679                mmc_release_host(host);
2680                host->pm_flags = 0;
2681                break;
2682
2683        case PM_POST_SUSPEND:
2684        case PM_POST_HIBERNATION:
2685        case PM_POST_RESTORE:
2686
2687                spin_lock_irqsave(&host->lock, flags);
2688                host->rescan_disable = 0;
2689                spin_unlock_irqrestore(&host->lock, flags);
2690                _mmc_detect_change(host, 0, false);
2691
2692        }
2693
2694        return 0;
2695}
2696#endif
2697
2698/**
2699 * mmc_init_context_info() - init synchronization context
2700 * @host: mmc host
2701 *
2702 * Init struct context_info needed to implement asynchronous
2703 * request mechanism, used by mmc core, host driver and mmc requests
2704 * supplier.
2705 */
2706void mmc_init_context_info(struct mmc_host *host)
2707{
2708        spin_lock_init(&host->context_info.lock);
2709        host->context_info.is_new_req = false;
2710        host->context_info.is_done_rcv = false;
2711        host->context_info.is_waiting_last_req = false;
2712        init_waitqueue_head(&host->context_info.wait);
2713}
2714
2715static int __init mmc_init(void)
2716{
2717        int ret;
2718
2719        workqueue = alloc_ordered_workqueue("kmmcd", 0);
2720        if (!workqueue)
2721                return -ENOMEM;
2722
2723        ret = mmc_register_bus();
2724        if (ret)
2725                goto destroy_workqueue;
2726
2727        ret = mmc_register_host_class();
2728        if (ret)
2729                goto unregister_bus;
2730
2731        ret = sdio_register_bus();
2732        if (ret)
2733                goto unregister_host_class;
2734
2735        return 0;
2736
2737unregister_host_class:
2738        mmc_unregister_host_class();
2739unregister_bus:
2740        mmc_unregister_bus();
2741destroy_workqueue:
2742        destroy_workqueue(workqueue);
2743
2744        return ret;
2745}
2746
2747static void __exit mmc_exit(void)
2748{
2749        sdio_unregister_bus();
2750        mmc_unregister_host_class();
2751        mmc_unregister_bus();
2752        destroy_workqueue(workqueue);
2753}
2754
2755subsys_initcall(mmc_init);
2756module_exit(mmc_exit);
2757
2758MODULE_LICENSE("GPL");
2759