linux/drivers/mtd/nand/mxc_nand.c
<<
>>
Prefs
   1/*
   2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
   3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17 * MA 02110-1301, USA.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/mtd/mtd.h>
  25#include <linux/mtd/nand.h>
  26#include <linux/mtd/partitions.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/platform_device.h>
  30#include <linux/clk.h>
  31#include <linux/err.h>
  32#include <linux/io.h>
  33#include <linux/irq.h>
  34#include <linux/completion.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37#include <linux/of_mtd.h>
  38
  39#include <asm/mach/flash.h>
  40#include <linux/platform_data/mtd-mxc_nand.h>
  41
  42#define DRIVER_NAME "mxc_nand"
  43
  44/* Addresses for NFC registers */
  45#define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
  46#define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
  47#define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
  48#define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
  49#define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
  50#define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
  51#define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
  52#define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
  53#define NFC_V1_V2_WRPROT                (host->regs + 0x12)
  54#define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
  55#define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
  56#define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
  57#define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
  58#define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
  59#define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
  60#define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
  61#define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
  62#define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
  63#define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
  64#define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
  65#define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
  66#define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
  67
  68#define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
  69#define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
  70#define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
  71#define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
  72#define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
  73#define NFC_V1_V2_CONFIG1_RST           (1 << 6)
  74#define NFC_V1_V2_CONFIG1_CE            (1 << 7)
  75#define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
  76#define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
  77#define NFC_V2_CONFIG1_FP_INT           (1 << 11)
  78
  79#define NFC_V1_V2_CONFIG2_INT           (1 << 15)
  80
  81/*
  82 * Operation modes for the NFC. Valid for v1, v2 and v3
  83 * type controllers.
  84 */
  85#define NFC_CMD                         (1 << 0)
  86#define NFC_ADDR                        (1 << 1)
  87#define NFC_INPUT                       (1 << 2)
  88#define NFC_OUTPUT                      (1 << 3)
  89#define NFC_ID                          (1 << 4)
  90#define NFC_STATUS                      (1 << 5)
  91
  92#define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
  93#define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
  94
  95#define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
  96#define NFC_V3_CONFIG1_SP_EN            (1 << 0)
  97#define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
  98
  99#define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
 100
 101#define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
 102
 103#define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
 104#define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
 105#define NFC_V3_WRPROT_LOCK              (1 << 1)
 106#define NFC_V3_WRPROT_UNLOCK            (1 << 2)
 107#define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
 108
 109#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
 110
 111#define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
 112#define NFC_V3_CONFIG2_PS_512                   (0 << 0)
 113#define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
 114#define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
 115#define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
 116#define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
 117#define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
 118#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
 119#define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
 120#define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
 121#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
 122#define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
 123#define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
 124#define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
 125
 126#define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
 127#define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
 128#define NFC_V3_CONFIG3_FW8                      (1 << 3)
 129#define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
 130#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
 131#define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
 132#define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
 133
 134#define NFC_V3_IPC                      (host->regs_ip + 0x2C)
 135#define NFC_V3_IPC_CREQ                 (1 << 0)
 136#define NFC_V3_IPC_INT                  (1 << 31)
 137
 138#define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
 139
 140struct mxc_nand_host;
 141
 142struct mxc_nand_devtype_data {
 143        void (*preset)(struct mtd_info *);
 144        void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
 145        void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
 146        void (*send_page)(struct mtd_info *, unsigned int);
 147        void (*send_read_id)(struct mxc_nand_host *);
 148        uint16_t (*get_dev_status)(struct mxc_nand_host *);
 149        int (*check_int)(struct mxc_nand_host *);
 150        void (*irq_control)(struct mxc_nand_host *, int);
 151        u32 (*get_ecc_status)(struct mxc_nand_host *);
 152        struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
 153        void (*select_chip)(struct mtd_info *mtd, int chip);
 154        int (*correct_data)(struct mtd_info *mtd, u_char *dat,
 155                        u_char *read_ecc, u_char *calc_ecc);
 156
 157        /*
 158         * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
 159         * (CONFIG1:INT_MSK is set). To handle this the driver uses
 160         * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
 161         */
 162        int irqpending_quirk;
 163        int needs_ip;
 164
 165        size_t regs_offset;
 166        size_t spare0_offset;
 167        size_t axi_offset;
 168
 169        int spare_len;
 170        int eccbytes;
 171        int eccsize;
 172        int ppb_shift;
 173};
 174
 175struct mxc_nand_host {
 176        struct mtd_info         mtd;
 177        struct nand_chip        nand;
 178        struct device           *dev;
 179
 180        void __iomem            *spare0;
 181        void __iomem            *main_area0;
 182
 183        void __iomem            *base;
 184        void __iomem            *regs;
 185        void __iomem            *regs_axi;
 186        void __iomem            *regs_ip;
 187        int                     status_request;
 188        struct clk              *clk;
 189        int                     clk_act;
 190        int                     irq;
 191        int                     eccsize;
 192        int                     active_cs;
 193
 194        struct completion       op_completion;
 195
 196        uint8_t                 *data_buf;
 197        unsigned int            buf_start;
 198
 199        const struct mxc_nand_devtype_data *devtype_data;
 200        struct mxc_nand_platform_data pdata;
 201};
 202
 203/* OOB placement block for use with hardware ecc generation */
 204static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
 205        .eccbytes = 5,
 206        .eccpos = {6, 7, 8, 9, 10},
 207        .oobfree = {{0, 5}, {12, 4}, }
 208};
 209
 210static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
 211        .eccbytes = 20,
 212        .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
 213                   38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
 214        .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
 215};
 216
 217/* OOB description for 512 byte pages with 16 byte OOB */
 218static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
 219        .eccbytes = 1 * 9,
 220        .eccpos = {
 221                 7,  8,  9, 10, 11, 12, 13, 14, 15
 222        },
 223        .oobfree = {
 224                {.offset = 0, .length = 5}
 225        }
 226};
 227
 228/* OOB description for 2048 byte pages with 64 byte OOB */
 229static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
 230        .eccbytes = 4 * 9,
 231        .eccpos = {
 232                 7,  8,  9, 10, 11, 12, 13, 14, 15,
 233                23, 24, 25, 26, 27, 28, 29, 30, 31,
 234                39, 40, 41, 42, 43, 44, 45, 46, 47,
 235                55, 56, 57, 58, 59, 60, 61, 62, 63
 236        },
 237        .oobfree = {
 238                {.offset = 2, .length = 4},
 239                {.offset = 16, .length = 7},
 240                {.offset = 32, .length = 7},
 241                {.offset = 48, .length = 7}
 242        }
 243};
 244
 245/* OOB description for 4096 byte pages with 128 byte OOB */
 246static struct nand_ecclayout nandv2_hw_eccoob_4k = {
 247        .eccbytes = 8 * 9,
 248        .eccpos = {
 249                7,  8,  9, 10, 11, 12, 13, 14, 15,
 250                23, 24, 25, 26, 27, 28, 29, 30, 31,
 251                39, 40, 41, 42, 43, 44, 45, 46, 47,
 252                55, 56, 57, 58, 59, 60, 61, 62, 63,
 253                71, 72, 73, 74, 75, 76, 77, 78, 79,
 254                87, 88, 89, 90, 91, 92, 93, 94, 95,
 255                103, 104, 105, 106, 107, 108, 109, 110, 111,
 256                119, 120, 121, 122, 123, 124, 125, 126, 127,
 257        },
 258        .oobfree = {
 259                {.offset = 2, .length = 4},
 260                {.offset = 16, .length = 7},
 261                {.offset = 32, .length = 7},
 262                {.offset = 48, .length = 7},
 263                {.offset = 64, .length = 7},
 264                {.offset = 80, .length = 7},
 265                {.offset = 96, .length = 7},
 266                {.offset = 112, .length = 7},
 267        }
 268};
 269
 270static const char * const part_probes[] = {
 271        "cmdlinepart", "RedBoot", "ofpart", NULL };
 272
 273static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 274{
 275        int i;
 276        u32 *t = trg;
 277        const __iomem u32 *s = src;
 278
 279        for (i = 0; i < (size >> 2); i++)
 280                *t++ = __raw_readl(s++);
 281}
 282
 283static void memcpy32_toio(void __iomem *trg, const void *src, int size)
 284{
 285        int i;
 286        u32 __iomem *t = trg;
 287        const u32 *s = src;
 288
 289        for (i = 0; i < (size >> 2); i++)
 290                __raw_writel(*s++, t++);
 291}
 292
 293static int check_int_v3(struct mxc_nand_host *host)
 294{
 295        uint32_t tmp;
 296
 297        tmp = readl(NFC_V3_IPC);
 298        if (!(tmp & NFC_V3_IPC_INT))
 299                return 0;
 300
 301        tmp &= ~NFC_V3_IPC_INT;
 302        writel(tmp, NFC_V3_IPC);
 303
 304        return 1;
 305}
 306
 307static int check_int_v1_v2(struct mxc_nand_host *host)
 308{
 309        uint32_t tmp;
 310
 311        tmp = readw(NFC_V1_V2_CONFIG2);
 312        if (!(tmp & NFC_V1_V2_CONFIG2_INT))
 313                return 0;
 314
 315        if (!host->devtype_data->irqpending_quirk)
 316                writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
 317
 318        return 1;
 319}
 320
 321static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
 322{
 323        uint16_t tmp;
 324
 325        tmp = readw(NFC_V1_V2_CONFIG1);
 326
 327        if (activate)
 328                tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
 329        else
 330                tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
 331
 332        writew(tmp, NFC_V1_V2_CONFIG1);
 333}
 334
 335static void irq_control_v3(struct mxc_nand_host *host, int activate)
 336{
 337        uint32_t tmp;
 338
 339        tmp = readl(NFC_V3_CONFIG2);
 340
 341        if (activate)
 342                tmp &= ~NFC_V3_CONFIG2_INT_MSK;
 343        else
 344                tmp |= NFC_V3_CONFIG2_INT_MSK;
 345
 346        writel(tmp, NFC_V3_CONFIG2);
 347}
 348
 349static void irq_control(struct mxc_nand_host *host, int activate)
 350{
 351        if (host->devtype_data->irqpending_quirk) {
 352                if (activate)
 353                        enable_irq(host->irq);
 354                else
 355                        disable_irq_nosync(host->irq);
 356        } else {
 357                host->devtype_data->irq_control(host, activate);
 358        }
 359}
 360
 361static u32 get_ecc_status_v1(struct mxc_nand_host *host)
 362{
 363        return readw(NFC_V1_V2_ECC_STATUS_RESULT);
 364}
 365
 366static u32 get_ecc_status_v2(struct mxc_nand_host *host)
 367{
 368        return readl(NFC_V1_V2_ECC_STATUS_RESULT);
 369}
 370
 371static u32 get_ecc_status_v3(struct mxc_nand_host *host)
 372{
 373        return readl(NFC_V3_ECC_STATUS_RESULT);
 374}
 375
 376static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
 377{
 378        struct mxc_nand_host *host = dev_id;
 379
 380        if (!host->devtype_data->check_int(host))
 381                return IRQ_NONE;
 382
 383        irq_control(host, 0);
 384
 385        complete(&host->op_completion);
 386
 387        return IRQ_HANDLED;
 388}
 389
 390/* This function polls the NANDFC to wait for the basic operation to
 391 * complete by checking the INT bit of config2 register.
 392 */
 393static void wait_op_done(struct mxc_nand_host *host, int useirq)
 394{
 395        int max_retries = 8000;
 396
 397        if (useirq) {
 398                if (!host->devtype_data->check_int(host)) {
 399                        reinit_completion(&host->op_completion);
 400                        irq_control(host, 1);
 401                        wait_for_completion(&host->op_completion);
 402                }
 403        } else {
 404                while (max_retries-- > 0) {
 405                        if (host->devtype_data->check_int(host))
 406                                break;
 407
 408                        udelay(1);
 409                }
 410                if (max_retries < 0)
 411                        pr_debug("%s: INT not set\n", __func__);
 412        }
 413}
 414
 415static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 416{
 417        /* fill command */
 418        writel(cmd, NFC_V3_FLASH_CMD);
 419
 420        /* send out command */
 421        writel(NFC_CMD, NFC_V3_LAUNCH);
 422
 423        /* Wait for operation to complete */
 424        wait_op_done(host, useirq);
 425}
 426
 427/* This function issues the specified command to the NAND device and
 428 * waits for completion. */
 429static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 430{
 431        pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
 432
 433        writew(cmd, NFC_V1_V2_FLASH_CMD);
 434        writew(NFC_CMD, NFC_V1_V2_CONFIG2);
 435
 436        if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
 437                int max_retries = 100;
 438                /* Reset completion is indicated by NFC_CONFIG2 */
 439                /* being set to 0 */
 440                while (max_retries-- > 0) {
 441                        if (readw(NFC_V1_V2_CONFIG2) == 0) {
 442                                break;
 443                        }
 444                        udelay(1);
 445                }
 446                if (max_retries < 0)
 447                        pr_debug("%s: RESET failed\n", __func__);
 448        } else {
 449                /* Wait for operation to complete */
 450                wait_op_done(host, useirq);
 451        }
 452}
 453
 454static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
 455{
 456        /* fill address */
 457        writel(addr, NFC_V3_FLASH_ADDR0);
 458
 459        /* send out address */
 460        writel(NFC_ADDR, NFC_V3_LAUNCH);
 461
 462        wait_op_done(host, 0);
 463}
 464
 465/* This function sends an address (or partial address) to the
 466 * NAND device. The address is used to select the source/destination for
 467 * a NAND command. */
 468static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
 469{
 470        pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
 471
 472        writew(addr, NFC_V1_V2_FLASH_ADDR);
 473        writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
 474
 475        /* Wait for operation to complete */
 476        wait_op_done(host, islast);
 477}
 478
 479static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
 480{
 481        struct nand_chip *nand_chip = mtd->priv;
 482        struct mxc_nand_host *host = nand_chip->priv;
 483        uint32_t tmp;
 484
 485        tmp = readl(NFC_V3_CONFIG1);
 486        tmp &= ~(7 << 4);
 487        writel(tmp, NFC_V3_CONFIG1);
 488
 489        /* transfer data from NFC ram to nand */
 490        writel(ops, NFC_V3_LAUNCH);
 491
 492        wait_op_done(host, false);
 493}
 494
 495static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
 496{
 497        struct nand_chip *nand_chip = mtd->priv;
 498        struct mxc_nand_host *host = nand_chip->priv;
 499
 500        /* NANDFC buffer 0 is used for page read/write */
 501        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 502
 503        writew(ops, NFC_V1_V2_CONFIG2);
 504
 505        /* Wait for operation to complete */
 506        wait_op_done(host, true);
 507}
 508
 509static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
 510{
 511        struct nand_chip *nand_chip = mtd->priv;
 512        struct mxc_nand_host *host = nand_chip->priv;
 513        int bufs, i;
 514
 515        if (mtd->writesize > 512)
 516                bufs = 4;
 517        else
 518                bufs = 1;
 519
 520        for (i = 0; i < bufs; i++) {
 521
 522                /* NANDFC buffer 0 is used for page read/write */
 523                writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 524
 525                writew(ops, NFC_V1_V2_CONFIG2);
 526
 527                /* Wait for operation to complete */
 528                wait_op_done(host, true);
 529        }
 530}
 531
 532static void send_read_id_v3(struct mxc_nand_host *host)
 533{
 534        struct nand_chip *this = &host->nand;
 535
 536        /* Read ID into main buffer */
 537        writel(NFC_ID, NFC_V3_LAUNCH);
 538
 539        wait_op_done(host, true);
 540
 541        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 542
 543        if (this->options & NAND_BUSWIDTH_16) {
 544                /* compress the ID info */
 545                host->data_buf[1] = host->data_buf[2];
 546                host->data_buf[2] = host->data_buf[4];
 547                host->data_buf[3] = host->data_buf[6];
 548                host->data_buf[4] = host->data_buf[8];
 549                host->data_buf[5] = host->data_buf[10];
 550        }
 551}
 552
 553/* Request the NANDFC to perform a read of the NAND device ID. */
 554static void send_read_id_v1_v2(struct mxc_nand_host *host)
 555{
 556        struct nand_chip *this = &host->nand;
 557
 558        /* NANDFC buffer 0 is used for device ID output */
 559        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 560
 561        writew(NFC_ID, NFC_V1_V2_CONFIG2);
 562
 563        /* Wait for operation to complete */
 564        wait_op_done(host, true);
 565
 566        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 567
 568        if (this->options & NAND_BUSWIDTH_16) {
 569                /* compress the ID info */
 570                host->data_buf[1] = host->data_buf[2];
 571                host->data_buf[2] = host->data_buf[4];
 572                host->data_buf[3] = host->data_buf[6];
 573                host->data_buf[4] = host->data_buf[8];
 574                host->data_buf[5] = host->data_buf[10];
 575        }
 576}
 577
 578static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
 579{
 580        writew(NFC_STATUS, NFC_V3_LAUNCH);
 581        wait_op_done(host, true);
 582
 583        return readl(NFC_V3_CONFIG1) >> 16;
 584}
 585
 586/* This function requests the NANDFC to perform a read of the
 587 * NAND device status and returns the current status. */
 588static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
 589{
 590        void __iomem *main_buf = host->main_area0;
 591        uint32_t store;
 592        uint16_t ret;
 593
 594        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 595
 596        /*
 597         * The device status is stored in main_area0. To
 598         * prevent corruption of the buffer save the value
 599         * and restore it afterwards.
 600         */
 601        store = readl(main_buf);
 602
 603        writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
 604        wait_op_done(host, true);
 605
 606        ret = readw(main_buf);
 607
 608        writel(store, main_buf);
 609
 610        return ret;
 611}
 612
 613/* This functions is used by upper layer to checks if device is ready */
 614static int mxc_nand_dev_ready(struct mtd_info *mtd)
 615{
 616        /*
 617         * NFC handles R/B internally. Therefore, this function
 618         * always returns status as ready.
 619         */
 620        return 1;
 621}
 622
 623static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 624{
 625        /*
 626         * If HW ECC is enabled, we turn it on during init. There is
 627         * no need to enable again here.
 628         */
 629}
 630
 631static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
 632                                 u_char *read_ecc, u_char *calc_ecc)
 633{
 634        struct nand_chip *nand_chip = mtd->priv;
 635        struct mxc_nand_host *host = nand_chip->priv;
 636
 637        /*
 638         * 1-Bit errors are automatically corrected in HW.  No need for
 639         * additional correction.  2-Bit errors cannot be corrected by
 640         * HW ECC, so we need to return failure
 641         */
 642        uint16_t ecc_status = get_ecc_status_v1(host);
 643
 644        if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
 645                pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
 646                return -1;
 647        }
 648
 649        return 0;
 650}
 651
 652static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
 653                                 u_char *read_ecc, u_char *calc_ecc)
 654{
 655        struct nand_chip *nand_chip = mtd->priv;
 656        struct mxc_nand_host *host = nand_chip->priv;
 657        u32 ecc_stat, err;
 658        int no_subpages = 1;
 659        int ret = 0;
 660        u8 ecc_bit_mask, err_limit;
 661
 662        ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
 663        err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
 664
 665        no_subpages = mtd->writesize >> 9;
 666
 667        ecc_stat = host->devtype_data->get_ecc_status(host);
 668
 669        do {
 670                err = ecc_stat & ecc_bit_mask;
 671                if (err > err_limit) {
 672                        printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
 673                        return -1;
 674                } else {
 675                        ret += err;
 676                }
 677                ecc_stat >>= 4;
 678        } while (--no_subpages);
 679
 680        pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
 681
 682        return ret;
 683}
 684
 685static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 686                                  u_char *ecc_code)
 687{
 688        return 0;
 689}
 690
 691static u_char mxc_nand_read_byte(struct mtd_info *mtd)
 692{
 693        struct nand_chip *nand_chip = mtd->priv;
 694        struct mxc_nand_host *host = nand_chip->priv;
 695        uint8_t ret;
 696
 697        /* Check for status request */
 698        if (host->status_request)
 699                return host->devtype_data->get_dev_status(host) & 0xFF;
 700
 701        ret = *(uint8_t *)(host->data_buf + host->buf_start);
 702        host->buf_start++;
 703
 704        return ret;
 705}
 706
 707static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
 708{
 709        struct nand_chip *nand_chip = mtd->priv;
 710        struct mxc_nand_host *host = nand_chip->priv;
 711        uint16_t ret;
 712
 713        ret = *(uint16_t *)(host->data_buf + host->buf_start);
 714        host->buf_start += 2;
 715
 716        return ret;
 717}
 718
 719/* Write data of length len to buffer buf. The data to be
 720 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 721 * Operation by the NFC, the data is written to NAND Flash */
 722static void mxc_nand_write_buf(struct mtd_info *mtd,
 723                                const u_char *buf, int len)
 724{
 725        struct nand_chip *nand_chip = mtd->priv;
 726        struct mxc_nand_host *host = nand_chip->priv;
 727        u16 col = host->buf_start;
 728        int n = mtd->oobsize + mtd->writesize - col;
 729
 730        n = min(n, len);
 731
 732        memcpy(host->data_buf + col, buf, n);
 733
 734        host->buf_start += n;
 735}
 736
 737/* Read the data buffer from the NAND Flash. To read the data from NAND
 738 * Flash first the data output cycle is initiated by the NFC, which copies
 739 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 740 */
 741static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 742{
 743        struct nand_chip *nand_chip = mtd->priv;
 744        struct mxc_nand_host *host = nand_chip->priv;
 745        u16 col = host->buf_start;
 746        int n = mtd->oobsize + mtd->writesize - col;
 747
 748        n = min(n, len);
 749
 750        memcpy(buf, host->data_buf + col, n);
 751
 752        host->buf_start += n;
 753}
 754
 755/* This function is used by upper layer for select and
 756 * deselect of the NAND chip */
 757static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
 758{
 759        struct nand_chip *nand_chip = mtd->priv;
 760        struct mxc_nand_host *host = nand_chip->priv;
 761
 762        if (chip == -1) {
 763                /* Disable the NFC clock */
 764                if (host->clk_act) {
 765                        clk_disable_unprepare(host->clk);
 766                        host->clk_act = 0;
 767                }
 768                return;
 769        }
 770
 771        if (!host->clk_act) {
 772                /* Enable the NFC clock */
 773                clk_prepare_enable(host->clk);
 774                host->clk_act = 1;
 775        }
 776}
 777
 778static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
 779{
 780        struct nand_chip *nand_chip = mtd->priv;
 781        struct mxc_nand_host *host = nand_chip->priv;
 782
 783        if (chip == -1) {
 784                /* Disable the NFC clock */
 785                if (host->clk_act) {
 786                        clk_disable_unprepare(host->clk);
 787                        host->clk_act = 0;
 788                }
 789                return;
 790        }
 791
 792        if (!host->clk_act) {
 793                /* Enable the NFC clock */
 794                clk_prepare_enable(host->clk);
 795                host->clk_act = 1;
 796        }
 797
 798        host->active_cs = chip;
 799        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 800}
 801
 802/*
 803 * Function to transfer data to/from spare area.
 804 */
 805static void copy_spare(struct mtd_info *mtd, bool bfrom)
 806{
 807        struct nand_chip *this = mtd->priv;
 808        struct mxc_nand_host *host = this->priv;
 809        u16 i, j;
 810        u16 n = mtd->writesize >> 9;
 811        u8 *d = host->data_buf + mtd->writesize;
 812        u8 __iomem *s = host->spare0;
 813        u16 t = host->devtype_data->spare_len;
 814
 815        j = (mtd->oobsize / n >> 1) << 1;
 816
 817        if (bfrom) {
 818                for (i = 0; i < n - 1; i++)
 819                        memcpy32_fromio(d + i * j, s + i * t, j);
 820
 821                /* the last section */
 822                memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
 823        } else {
 824                for (i = 0; i < n - 1; i++)
 825                        memcpy32_toio(&s[i * t], &d[i * j], j);
 826
 827                /* the last section */
 828                memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
 829        }
 830}
 831
 832static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
 833{
 834        struct nand_chip *nand_chip = mtd->priv;
 835        struct mxc_nand_host *host = nand_chip->priv;
 836
 837        /* Write out column address, if necessary */
 838        if (column != -1) {
 839                /*
 840                 * MXC NANDFC can only perform full page+spare or
 841                 * spare-only read/write.  When the upper layers
 842                 * perform a read/write buf operation, the saved column
 843                  * address is used to index into the full page.
 844                 */
 845                host->devtype_data->send_addr(host, 0, page_addr == -1);
 846                if (mtd->writesize > 512)
 847                        /* another col addr cycle for 2k page */
 848                        host->devtype_data->send_addr(host, 0, false);
 849        }
 850
 851        /* Write out page address, if necessary */
 852        if (page_addr != -1) {
 853                /* paddr_0 - p_addr_7 */
 854                host->devtype_data->send_addr(host, (page_addr & 0xff), false);
 855
 856                if (mtd->writesize > 512) {
 857                        if (mtd->size >= 0x10000000) {
 858                                /* paddr_8 - paddr_15 */
 859                                host->devtype_data->send_addr(host,
 860                                                (page_addr >> 8) & 0xff,
 861                                                false);
 862                                host->devtype_data->send_addr(host,
 863                                                (page_addr >> 16) & 0xff,
 864                                                true);
 865                        } else
 866                                /* paddr_8 - paddr_15 */
 867                                host->devtype_data->send_addr(host,
 868                                                (page_addr >> 8) & 0xff, true);
 869                } else {
 870                        /* One more address cycle for higher density devices */
 871                        if (mtd->size >= 0x4000000) {
 872                                /* paddr_8 - paddr_15 */
 873                                host->devtype_data->send_addr(host,
 874                                                (page_addr >> 8) & 0xff,
 875                                                false);
 876                                host->devtype_data->send_addr(host,
 877                                                (page_addr >> 16) & 0xff,
 878                                                true);
 879                        } else
 880                                /* paddr_8 - paddr_15 */
 881                                host->devtype_data->send_addr(host,
 882                                                (page_addr >> 8) & 0xff, true);
 883                }
 884        }
 885}
 886
 887/*
 888 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
 889 * on how much oob the nand chip has. For 8bit ecc we need at least
 890 * 26 bytes of oob data per 512 byte block.
 891 */
 892static int get_eccsize(struct mtd_info *mtd)
 893{
 894        int oobbytes_per_512 = 0;
 895
 896        oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
 897
 898        if (oobbytes_per_512 < 26)
 899                return 4;
 900        else
 901                return 8;
 902}
 903
 904static void preset_v1(struct mtd_info *mtd)
 905{
 906        struct nand_chip *nand_chip = mtd->priv;
 907        struct mxc_nand_host *host = nand_chip->priv;
 908        uint16_t config1 = 0;
 909
 910        if (nand_chip->ecc.mode == NAND_ECC_HW)
 911                config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 912
 913        if (!host->devtype_data->irqpending_quirk)
 914                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
 915
 916        host->eccsize = 1;
 917
 918        writew(config1, NFC_V1_V2_CONFIG1);
 919        /* preset operation */
 920
 921        /* Unlock the internal RAM Buffer */
 922        writew(0x2, NFC_V1_V2_CONFIG);
 923
 924        /* Blocks to be unlocked */
 925        writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
 926        writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
 927
 928        /* Unlock Block Command for given address range */
 929        writew(0x4, NFC_V1_V2_WRPROT);
 930}
 931
 932static void preset_v2(struct mtd_info *mtd)
 933{
 934        struct nand_chip *nand_chip = mtd->priv;
 935        struct mxc_nand_host *host = nand_chip->priv;
 936        uint16_t config1 = 0;
 937
 938        if (nand_chip->ecc.mode == NAND_ECC_HW)
 939                config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 940
 941        config1 |= NFC_V2_CONFIG1_FP_INT;
 942
 943        if (!host->devtype_data->irqpending_quirk)
 944                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
 945
 946        if (mtd->writesize) {
 947                uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
 948
 949                host->eccsize = get_eccsize(mtd);
 950                if (host->eccsize == 4)
 951                        config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
 952
 953                config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
 954        } else {
 955                host->eccsize = 1;
 956        }
 957
 958        writew(config1, NFC_V1_V2_CONFIG1);
 959        /* preset operation */
 960
 961        /* Unlock the internal RAM Buffer */
 962        writew(0x2, NFC_V1_V2_CONFIG);
 963
 964        /* Blocks to be unlocked */
 965        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
 966        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
 967        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
 968        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
 969        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
 970        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
 971        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
 972        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
 973
 974        /* Unlock Block Command for given address range */
 975        writew(0x4, NFC_V1_V2_WRPROT);
 976}
 977
 978static void preset_v3(struct mtd_info *mtd)
 979{
 980        struct nand_chip *chip = mtd->priv;
 981        struct mxc_nand_host *host = chip->priv;
 982        uint32_t config2, config3;
 983        int i, addr_phases;
 984
 985        writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
 986        writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
 987
 988        /* Unlock the internal RAM Buffer */
 989        writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
 990                        NFC_V3_WRPROT);
 991
 992        /* Blocks to be unlocked */
 993        for (i = 0; i < NAND_MAX_CHIPS; i++)
 994                writel(0x0 |    (0xffff << 16),
 995                                NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
 996
 997        writel(0, NFC_V3_IPC);
 998
 999        config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1000                NFC_V3_CONFIG2_2CMD_PHASES |
1001                NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1002                NFC_V3_CONFIG2_ST_CMD(0x70) |
1003                NFC_V3_CONFIG2_INT_MSK |
1004                NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1005
1006        if (chip->ecc.mode == NAND_ECC_HW)
1007                config2 |= NFC_V3_CONFIG2_ECC_EN;
1008
1009        addr_phases = fls(chip->pagemask) >> 3;
1010
1011        if (mtd->writesize == 2048) {
1012                config2 |= NFC_V3_CONFIG2_PS_2048;
1013                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1014        } else if (mtd->writesize == 4096) {
1015                config2 |= NFC_V3_CONFIG2_PS_4096;
1016                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1017        } else {
1018                config2 |= NFC_V3_CONFIG2_PS_512;
1019                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1020        }
1021
1022        if (mtd->writesize) {
1023                config2 |= NFC_V3_CONFIG2_PPB(
1024                                ffs(mtd->erasesize / mtd->writesize) - 6,
1025                                host->devtype_data->ppb_shift);
1026                host->eccsize = get_eccsize(mtd);
1027                if (host->eccsize == 8)
1028                        config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1029        }
1030
1031        writel(config2, NFC_V3_CONFIG2);
1032
1033        config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1034                        NFC_V3_CONFIG3_NO_SDMA |
1035                        NFC_V3_CONFIG3_RBB_MODE |
1036                        NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1037                        NFC_V3_CONFIG3_ADD_OP(0);
1038
1039        if (!(chip->options & NAND_BUSWIDTH_16))
1040                config3 |= NFC_V3_CONFIG3_FW8;
1041
1042        writel(config3, NFC_V3_CONFIG3);
1043
1044        writel(0, NFC_V3_DELAY_LINE);
1045}
1046
1047/* Used by the upper layer to write command to NAND Flash for
1048 * different operations to be carried out on NAND Flash */
1049static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1050                                int column, int page_addr)
1051{
1052        struct nand_chip *nand_chip = mtd->priv;
1053        struct mxc_nand_host *host = nand_chip->priv;
1054
1055        pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1056              command, column, page_addr);
1057
1058        /* Reset command state information */
1059        host->status_request = false;
1060
1061        /* Command pre-processing step */
1062        switch (command) {
1063        case NAND_CMD_RESET:
1064                host->devtype_data->preset(mtd);
1065                host->devtype_data->send_cmd(host, command, false);
1066                break;
1067
1068        case NAND_CMD_STATUS:
1069                host->buf_start = 0;
1070                host->status_request = true;
1071
1072                host->devtype_data->send_cmd(host, command, true);
1073                mxc_do_addr_cycle(mtd, column, page_addr);
1074                break;
1075
1076        case NAND_CMD_READ0:
1077        case NAND_CMD_READOOB:
1078                if (command == NAND_CMD_READ0)
1079                        host->buf_start = column;
1080                else
1081                        host->buf_start = column + mtd->writesize;
1082
1083                command = NAND_CMD_READ0; /* only READ0 is valid */
1084
1085                host->devtype_data->send_cmd(host, command, false);
1086                mxc_do_addr_cycle(mtd, column, page_addr);
1087
1088                if (mtd->writesize > 512)
1089                        host->devtype_data->send_cmd(host,
1090                                        NAND_CMD_READSTART, true);
1091
1092                host->devtype_data->send_page(mtd, NFC_OUTPUT);
1093
1094                memcpy32_fromio(host->data_buf, host->main_area0,
1095                                mtd->writesize);
1096                copy_spare(mtd, true);
1097                break;
1098
1099        case NAND_CMD_SEQIN:
1100                if (column >= mtd->writesize)
1101                        /* call ourself to read a page */
1102                        mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1103
1104                host->buf_start = column;
1105
1106                host->devtype_data->send_cmd(host, command, false);
1107                mxc_do_addr_cycle(mtd, column, page_addr);
1108                break;
1109
1110        case NAND_CMD_PAGEPROG:
1111                memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1112                copy_spare(mtd, false);
1113                host->devtype_data->send_page(mtd, NFC_INPUT);
1114                host->devtype_data->send_cmd(host, command, true);
1115                mxc_do_addr_cycle(mtd, column, page_addr);
1116                break;
1117
1118        case NAND_CMD_READID:
1119                host->devtype_data->send_cmd(host, command, true);
1120                mxc_do_addr_cycle(mtd, column, page_addr);
1121                host->devtype_data->send_read_id(host);
1122                host->buf_start = column;
1123                break;
1124
1125        case NAND_CMD_ERASE1:
1126        case NAND_CMD_ERASE2:
1127                host->devtype_data->send_cmd(host, command, false);
1128                mxc_do_addr_cycle(mtd, column, page_addr);
1129
1130                break;
1131        }
1132}
1133
1134/*
1135 * The generic flash bbt decriptors overlap with our ecc
1136 * hardware, so define some i.MX specific ones.
1137 */
1138static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1139static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1140
1141static struct nand_bbt_descr bbt_main_descr = {
1142        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1143            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1144        .offs = 0,
1145        .len = 4,
1146        .veroffs = 4,
1147        .maxblocks = 4,
1148        .pattern = bbt_pattern,
1149};
1150
1151static struct nand_bbt_descr bbt_mirror_descr = {
1152        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1153            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1154        .offs = 0,
1155        .len = 4,
1156        .veroffs = 4,
1157        .maxblocks = 4,
1158        .pattern = mirror_pattern,
1159};
1160
1161/* v1 + irqpending_quirk: i.MX21 */
1162static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1163        .preset = preset_v1,
1164        .send_cmd = send_cmd_v1_v2,
1165        .send_addr = send_addr_v1_v2,
1166        .send_page = send_page_v1,
1167        .send_read_id = send_read_id_v1_v2,
1168        .get_dev_status = get_dev_status_v1_v2,
1169        .check_int = check_int_v1_v2,
1170        .irq_control = irq_control_v1_v2,
1171        .get_ecc_status = get_ecc_status_v1,
1172        .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1173        .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1174        .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1175        .select_chip = mxc_nand_select_chip_v1_v3,
1176        .correct_data = mxc_nand_correct_data_v1,
1177        .irqpending_quirk = 1,
1178        .needs_ip = 0,
1179        .regs_offset = 0xe00,
1180        .spare0_offset = 0x800,
1181        .spare_len = 16,
1182        .eccbytes = 3,
1183        .eccsize = 1,
1184};
1185
1186/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1187static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1188        .preset = preset_v1,
1189        .send_cmd = send_cmd_v1_v2,
1190        .send_addr = send_addr_v1_v2,
1191        .send_page = send_page_v1,
1192        .send_read_id = send_read_id_v1_v2,
1193        .get_dev_status = get_dev_status_v1_v2,
1194        .check_int = check_int_v1_v2,
1195        .irq_control = irq_control_v1_v2,
1196        .get_ecc_status = get_ecc_status_v1,
1197        .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1198        .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1199        .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1200        .select_chip = mxc_nand_select_chip_v1_v3,
1201        .correct_data = mxc_nand_correct_data_v1,
1202        .irqpending_quirk = 0,
1203        .needs_ip = 0,
1204        .regs_offset = 0xe00,
1205        .spare0_offset = 0x800,
1206        .axi_offset = 0,
1207        .spare_len = 16,
1208        .eccbytes = 3,
1209        .eccsize = 1,
1210};
1211
1212/* v21: i.MX25, i.MX35 */
1213static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1214        .preset = preset_v2,
1215        .send_cmd = send_cmd_v1_v2,
1216        .send_addr = send_addr_v1_v2,
1217        .send_page = send_page_v2,
1218        .send_read_id = send_read_id_v1_v2,
1219        .get_dev_status = get_dev_status_v1_v2,
1220        .check_int = check_int_v1_v2,
1221        .irq_control = irq_control_v1_v2,
1222        .get_ecc_status = get_ecc_status_v2,
1223        .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1224        .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1225        .ecclayout_4k = &nandv2_hw_eccoob_4k,
1226        .select_chip = mxc_nand_select_chip_v2,
1227        .correct_data = mxc_nand_correct_data_v2_v3,
1228        .irqpending_quirk = 0,
1229        .needs_ip = 0,
1230        .regs_offset = 0x1e00,
1231        .spare0_offset = 0x1000,
1232        .axi_offset = 0,
1233        .spare_len = 64,
1234        .eccbytes = 9,
1235        .eccsize = 0,
1236};
1237
1238/* v3.2a: i.MX51 */
1239static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1240        .preset = preset_v3,
1241        .send_cmd = send_cmd_v3,
1242        .send_addr = send_addr_v3,
1243        .send_page = send_page_v3,
1244        .send_read_id = send_read_id_v3,
1245        .get_dev_status = get_dev_status_v3,
1246        .check_int = check_int_v3,
1247        .irq_control = irq_control_v3,
1248        .get_ecc_status = get_ecc_status_v3,
1249        .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1250        .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1251        .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1252        .select_chip = mxc_nand_select_chip_v1_v3,
1253        .correct_data = mxc_nand_correct_data_v2_v3,
1254        .irqpending_quirk = 0,
1255        .needs_ip = 1,
1256        .regs_offset = 0,
1257        .spare0_offset = 0x1000,
1258        .axi_offset = 0x1e00,
1259        .spare_len = 64,
1260        .eccbytes = 0,
1261        .eccsize = 0,
1262        .ppb_shift = 7,
1263};
1264
1265/* v3.2b: i.MX53 */
1266static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1267        .preset = preset_v3,
1268        .send_cmd = send_cmd_v3,
1269        .send_addr = send_addr_v3,
1270        .send_page = send_page_v3,
1271        .send_read_id = send_read_id_v3,
1272        .get_dev_status = get_dev_status_v3,
1273        .check_int = check_int_v3,
1274        .irq_control = irq_control_v3,
1275        .get_ecc_status = get_ecc_status_v3,
1276        .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1277        .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1278        .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1279        .select_chip = mxc_nand_select_chip_v1_v3,
1280        .correct_data = mxc_nand_correct_data_v2_v3,
1281        .irqpending_quirk = 0,
1282        .needs_ip = 1,
1283        .regs_offset = 0,
1284        .spare0_offset = 0x1000,
1285        .axi_offset = 0x1e00,
1286        .spare_len = 64,
1287        .eccbytes = 0,
1288        .eccsize = 0,
1289        .ppb_shift = 8,
1290};
1291
1292static inline int is_imx21_nfc(struct mxc_nand_host *host)
1293{
1294        return host->devtype_data == &imx21_nand_devtype_data;
1295}
1296
1297static inline int is_imx27_nfc(struct mxc_nand_host *host)
1298{
1299        return host->devtype_data == &imx27_nand_devtype_data;
1300}
1301
1302static inline int is_imx25_nfc(struct mxc_nand_host *host)
1303{
1304        return host->devtype_data == &imx25_nand_devtype_data;
1305}
1306
1307static inline int is_imx51_nfc(struct mxc_nand_host *host)
1308{
1309        return host->devtype_data == &imx51_nand_devtype_data;
1310}
1311
1312static inline int is_imx53_nfc(struct mxc_nand_host *host)
1313{
1314        return host->devtype_data == &imx53_nand_devtype_data;
1315}
1316
1317static struct platform_device_id mxcnd_devtype[] = {
1318        {
1319                .name = "imx21-nand",
1320                .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1321        }, {
1322                .name = "imx27-nand",
1323                .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1324        }, {
1325                .name = "imx25-nand",
1326                .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1327        }, {
1328                .name = "imx51-nand",
1329                .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1330        }, {
1331                .name = "imx53-nand",
1332                .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1333        }, {
1334                /* sentinel */
1335        }
1336};
1337MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1338
1339#ifdef CONFIG_OF_MTD
1340static const struct of_device_id mxcnd_dt_ids[] = {
1341        {
1342                .compatible = "fsl,imx21-nand",
1343                .data = &imx21_nand_devtype_data,
1344        }, {
1345                .compatible = "fsl,imx27-nand",
1346                .data = &imx27_nand_devtype_data,
1347        }, {
1348                .compatible = "fsl,imx25-nand",
1349                .data = &imx25_nand_devtype_data,
1350        }, {
1351                .compatible = "fsl,imx51-nand",
1352                .data = &imx51_nand_devtype_data,
1353        }, {
1354                .compatible = "fsl,imx53-nand",
1355                .data = &imx53_nand_devtype_data,
1356        },
1357        { /* sentinel */ }
1358};
1359
1360static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1361{
1362        struct device_node *np = host->dev->of_node;
1363        struct mxc_nand_platform_data *pdata = &host->pdata;
1364        const struct of_device_id *of_id =
1365                of_match_device(mxcnd_dt_ids, host->dev);
1366        int buswidth;
1367
1368        if (!np)
1369                return 1;
1370
1371        if (of_get_nand_ecc_mode(np) >= 0)
1372                pdata->hw_ecc = 1;
1373
1374        pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1375
1376        buswidth = of_get_nand_bus_width(np);
1377        if (buswidth < 0)
1378                return buswidth;
1379
1380        pdata->width = buswidth / 8;
1381
1382        host->devtype_data = of_id->data;
1383
1384        return 0;
1385}
1386#else
1387static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1388{
1389        return 1;
1390}
1391#endif
1392
1393static int mxcnd_probe(struct platform_device *pdev)
1394{
1395        struct nand_chip *this;
1396        struct mtd_info *mtd;
1397        struct mxc_nand_host *host;
1398        struct resource *res;
1399        int err = 0;
1400
1401        /* Allocate memory for MTD device structure and private data */
1402        host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1403                        GFP_KERNEL);
1404        if (!host)
1405                return -ENOMEM;
1406
1407        /* allocate a temporary buffer for the nand_scan_ident() */
1408        host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1409        if (!host->data_buf)
1410                return -ENOMEM;
1411
1412        host->dev = &pdev->dev;
1413        /* structures must be linked */
1414        this = &host->nand;
1415        mtd = &host->mtd;
1416        mtd->priv = this;
1417        mtd->owner = THIS_MODULE;
1418        mtd->dev.parent = &pdev->dev;
1419        mtd->name = DRIVER_NAME;
1420
1421        /* 50 us command delay time */
1422        this->chip_delay = 5;
1423
1424        this->priv = host;
1425        this->dev_ready = mxc_nand_dev_ready;
1426        this->cmdfunc = mxc_nand_command;
1427        this->read_byte = mxc_nand_read_byte;
1428        this->read_word = mxc_nand_read_word;
1429        this->write_buf = mxc_nand_write_buf;
1430        this->read_buf = mxc_nand_read_buf;
1431
1432        host->clk = devm_clk_get(&pdev->dev, NULL);
1433        if (IS_ERR(host->clk))
1434                return PTR_ERR(host->clk);
1435
1436        err = mxcnd_probe_dt(host);
1437        if (err > 0) {
1438                struct mxc_nand_platform_data *pdata =
1439                                        dev_get_platdata(&pdev->dev);
1440                if (pdata) {
1441                        host->pdata = *pdata;
1442                        host->devtype_data = (struct mxc_nand_devtype_data *)
1443                                                pdev->id_entry->driver_data;
1444                } else {
1445                        err = -ENODEV;
1446                }
1447        }
1448        if (err < 0)
1449                return err;
1450
1451        if (host->devtype_data->needs_ip) {
1452                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1453                host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1454                if (IS_ERR(host->regs_ip))
1455                        return PTR_ERR(host->regs_ip);
1456
1457                res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1458        } else {
1459                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1460        }
1461
1462        host->base = devm_ioremap_resource(&pdev->dev, res);
1463        if (IS_ERR(host->base))
1464                return PTR_ERR(host->base);
1465
1466        host->main_area0 = host->base;
1467
1468        if (host->devtype_data->regs_offset)
1469                host->regs = host->base + host->devtype_data->regs_offset;
1470        host->spare0 = host->base + host->devtype_data->spare0_offset;
1471        if (host->devtype_data->axi_offset)
1472                host->regs_axi = host->base + host->devtype_data->axi_offset;
1473
1474        this->ecc.bytes = host->devtype_data->eccbytes;
1475        host->eccsize = host->devtype_data->eccsize;
1476
1477        this->select_chip = host->devtype_data->select_chip;
1478        this->ecc.size = 512;
1479        this->ecc.layout = host->devtype_data->ecclayout_512;
1480
1481        if (host->pdata.hw_ecc) {
1482                this->ecc.calculate = mxc_nand_calculate_ecc;
1483                this->ecc.hwctl = mxc_nand_enable_hwecc;
1484                this->ecc.correct = host->devtype_data->correct_data;
1485                this->ecc.mode = NAND_ECC_HW;
1486        } else {
1487                this->ecc.mode = NAND_ECC_SOFT;
1488        }
1489
1490        /* NAND bus width determines access functions used by upper layer */
1491        if (host->pdata.width == 2)
1492                this->options |= NAND_BUSWIDTH_16;
1493
1494        if (host->pdata.flash_bbt) {
1495                this->bbt_td = &bbt_main_descr;
1496                this->bbt_md = &bbt_mirror_descr;
1497                /* update flash based bbt */
1498                this->bbt_options |= NAND_BBT_USE_FLASH;
1499        }
1500
1501        init_completion(&host->op_completion);
1502
1503        host->irq = platform_get_irq(pdev, 0);
1504
1505        /*
1506         * Use host->devtype_data->irq_control() here instead of irq_control()
1507         * because we must not disable_irq_nosync without having requested the
1508         * irq.
1509         */
1510        host->devtype_data->irq_control(host, 0);
1511
1512        err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1513                        0, DRIVER_NAME, host);
1514        if (err)
1515                return err;
1516
1517        err = clk_prepare_enable(host->clk);
1518        if (err)
1519                return err;
1520        host->clk_act = 1;
1521
1522        /*
1523         * Now that we "own" the interrupt make sure the interrupt mask bit is
1524         * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1525         * on this machine.
1526         */
1527        if (host->devtype_data->irqpending_quirk) {
1528                disable_irq_nosync(host->irq);
1529                host->devtype_data->irq_control(host, 1);
1530        }
1531
1532        /* first scan to find the device and get the page size */
1533        if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1534                err = -ENXIO;
1535                goto escan;
1536        }
1537
1538        /* allocate the right size buffer now */
1539        devm_kfree(&pdev->dev, (void *)host->data_buf);
1540        host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1541                                        GFP_KERNEL);
1542        if (!host->data_buf) {
1543                err = -ENOMEM;
1544                goto escan;
1545        }
1546
1547        /* Call preset again, with correct writesize this time */
1548        host->devtype_data->preset(mtd);
1549
1550        if (mtd->writesize == 2048)
1551                this->ecc.layout = host->devtype_data->ecclayout_2k;
1552        else if (mtd->writesize == 4096)
1553                this->ecc.layout = host->devtype_data->ecclayout_4k;
1554
1555        if (this->ecc.mode == NAND_ECC_HW) {
1556                if (is_imx21_nfc(host) || is_imx27_nfc(host))
1557                        this->ecc.strength = 1;
1558                else
1559                        this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1560        }
1561
1562        /* second phase scan */
1563        if (nand_scan_tail(mtd)) {
1564                err = -ENXIO;
1565                goto escan;
1566        }
1567
1568        /* Register the partitions */
1569        mtd_device_parse_register(mtd, part_probes,
1570                        &(struct mtd_part_parser_data){
1571                                .of_node = pdev->dev.of_node,
1572                        },
1573                        host->pdata.parts,
1574                        host->pdata.nr_parts);
1575
1576        platform_set_drvdata(pdev, host);
1577
1578        return 0;
1579
1580escan:
1581        if (host->clk_act)
1582                clk_disable_unprepare(host->clk);
1583
1584        return err;
1585}
1586
1587static int mxcnd_remove(struct platform_device *pdev)
1588{
1589        struct mxc_nand_host *host = platform_get_drvdata(pdev);
1590
1591        nand_release(&host->mtd);
1592        if (host->clk_act)
1593                clk_disable_unprepare(host->clk);
1594
1595        return 0;
1596}
1597
1598static struct platform_driver mxcnd_driver = {
1599        .driver = {
1600                   .name = DRIVER_NAME,
1601                   .owner = THIS_MODULE,
1602                   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1603        },
1604        .id_table = mxcnd_devtype,
1605        .probe = mxcnd_probe,
1606        .remove = mxcnd_remove,
1607};
1608module_platform_driver(mxcnd_driver);
1609
1610MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1611MODULE_DESCRIPTION("MXC NAND MTD driver");
1612MODULE_LICENSE("GPL");
1613