linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
<<
>>
Prefs
   1/* bnx2x_main.c: Broadcom Everest network driver.
   2 *
   3 * Copyright (c) 2007-2013 Broadcom Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation.
   8 *
   9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
  10 * Written by: Eliezer Tamir
  11 * Based on code from Michael Chan's bnx2 driver
  12 * UDP CSUM errata workaround by Arik Gendelman
  13 * Slowpath and fastpath rework by Vladislav Zolotarov
  14 * Statistics and Link management by Yitchak Gertner
  15 *
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/module.h>
  21#include <linux/moduleparam.h>
  22#include <linux/kernel.h>
  23#include <linux/device.h>  /* for dev_info() */
  24#include <linux/timer.h>
  25#include <linux/errno.h>
  26#include <linux/ioport.h>
  27#include <linux/slab.h>
  28#include <linux/interrupt.h>
  29#include <linux/pci.h>
  30#include <linux/aer.h>
  31#include <linux/init.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/skbuff.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/bitops.h>
  37#include <linux/irq.h>
  38#include <linux/delay.h>
  39#include <asm/byteorder.h>
  40#include <linux/time.h>
  41#include <linux/ethtool.h>
  42#include <linux/mii.h>
  43#include <linux/if_vlan.h>
  44#include <net/ip.h>
  45#include <net/ipv6.h>
  46#include <net/tcp.h>
  47#include <net/checksum.h>
  48#include <net/ip6_checksum.h>
  49#include <linux/workqueue.h>
  50#include <linux/crc32.h>
  51#include <linux/crc32c.h>
  52#include <linux/prefetch.h>
  53#include <linux/zlib.h>
  54#include <linux/io.h>
  55#include <linux/semaphore.h>
  56#include <linux/stringify.h>
  57#include <linux/vmalloc.h>
  58
  59#include "bnx2x.h"
  60#include "bnx2x_init.h"
  61#include "bnx2x_init_ops.h"
  62#include "bnx2x_cmn.h"
  63#include "bnx2x_vfpf.h"
  64#include "bnx2x_dcb.h"
  65#include "bnx2x_sp.h"
  66
  67#include <linux/firmware.h>
  68#include "bnx2x_fw_file_hdr.h"
  69/* FW files */
  70#define FW_FILE_VERSION                                 \
  71        __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
  72        __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
  73        __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
  74        __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  75#define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  76#define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  77#define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  78
  79/* Time in jiffies before concluding the transmitter is hung */
  80#define TX_TIMEOUT              (5*HZ)
  81
  82static char version[] =
  83        "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
  84        DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  85
  86MODULE_AUTHOR("Eliezer Tamir");
  87MODULE_DESCRIPTION("Broadcom NetXtreme II "
  88                   "BCM57710/57711/57711E/"
  89                   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  90                   "57840/57840_MF Driver");
  91MODULE_LICENSE("GPL");
  92MODULE_VERSION(DRV_MODULE_VERSION);
  93MODULE_FIRMWARE(FW_FILE_NAME_E1);
  94MODULE_FIRMWARE(FW_FILE_NAME_E1H);
  95MODULE_FIRMWARE(FW_FILE_NAME_E2);
  96
  97int bnx2x_num_queues;
  98module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
  99MODULE_PARM_DESC(num_queues,
 100                 " Set number of queues (default is as a number of CPUs)");
 101
 102static int disable_tpa;
 103module_param(disable_tpa, int, S_IRUGO);
 104MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
 105
 106static int int_mode;
 107module_param(int_mode, int, S_IRUGO);
 108MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
 109                                "(1 INT#x; 2 MSI)");
 110
 111static int dropless_fc;
 112module_param(dropless_fc, int, S_IRUGO);
 113MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
 114
 115static int mrrs = -1;
 116module_param(mrrs, int, S_IRUGO);
 117MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
 118
 119static int debug;
 120module_param(debug, int, S_IRUGO);
 121MODULE_PARM_DESC(debug, " Default debug msglevel");
 122
 123struct workqueue_struct *bnx2x_wq;
 124
 125struct bnx2x_mac_vals {
 126        u32 xmac_addr;
 127        u32 xmac_val;
 128        u32 emac_addr;
 129        u32 emac_val;
 130        u32 umac_addr;
 131        u32 umac_val;
 132        u32 bmac_addr;
 133        u32 bmac_val[2];
 134};
 135
 136enum bnx2x_board_type {
 137        BCM57710 = 0,
 138        BCM57711,
 139        BCM57711E,
 140        BCM57712,
 141        BCM57712_MF,
 142        BCM57712_VF,
 143        BCM57800,
 144        BCM57800_MF,
 145        BCM57800_VF,
 146        BCM57810,
 147        BCM57810_MF,
 148        BCM57810_VF,
 149        BCM57840_4_10,
 150        BCM57840_2_20,
 151        BCM57840_MF,
 152        BCM57840_VF,
 153        BCM57811,
 154        BCM57811_MF,
 155        BCM57840_O,
 156        BCM57840_MFO,
 157        BCM57811_VF
 158};
 159
 160/* indexed by board_type, above */
 161static struct {
 162        char *name;
 163} board_info[] = {
 164        [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
 165        [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
 166        [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
 167        [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
 168        [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
 169        [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
 170        [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
 171        [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
 172        [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
 173        [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
 174        [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
 175        [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
 176        [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
 177        [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
 178        [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
 179        [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
 180        [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
 181        [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
 182        [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
 183        [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
 184        [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
 185};
 186
 187#ifndef PCI_DEVICE_ID_NX2_57710
 188#define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
 189#endif
 190#ifndef PCI_DEVICE_ID_NX2_57711
 191#define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
 192#endif
 193#ifndef PCI_DEVICE_ID_NX2_57711E
 194#define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
 195#endif
 196#ifndef PCI_DEVICE_ID_NX2_57712
 197#define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
 198#endif
 199#ifndef PCI_DEVICE_ID_NX2_57712_MF
 200#define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
 201#endif
 202#ifndef PCI_DEVICE_ID_NX2_57712_VF
 203#define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
 204#endif
 205#ifndef PCI_DEVICE_ID_NX2_57800
 206#define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
 207#endif
 208#ifndef PCI_DEVICE_ID_NX2_57800_MF
 209#define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
 210#endif
 211#ifndef PCI_DEVICE_ID_NX2_57800_VF
 212#define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
 213#endif
 214#ifndef PCI_DEVICE_ID_NX2_57810
 215#define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
 216#endif
 217#ifndef PCI_DEVICE_ID_NX2_57810_MF
 218#define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
 219#endif
 220#ifndef PCI_DEVICE_ID_NX2_57840_O
 221#define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
 222#endif
 223#ifndef PCI_DEVICE_ID_NX2_57810_VF
 224#define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
 225#endif
 226#ifndef PCI_DEVICE_ID_NX2_57840_4_10
 227#define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
 228#endif
 229#ifndef PCI_DEVICE_ID_NX2_57840_2_20
 230#define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
 231#endif
 232#ifndef PCI_DEVICE_ID_NX2_57840_MFO
 233#define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
 234#endif
 235#ifndef PCI_DEVICE_ID_NX2_57840_MF
 236#define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
 237#endif
 238#ifndef PCI_DEVICE_ID_NX2_57840_VF
 239#define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
 240#endif
 241#ifndef PCI_DEVICE_ID_NX2_57811
 242#define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
 243#endif
 244#ifndef PCI_DEVICE_ID_NX2_57811_MF
 245#define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
 246#endif
 247#ifndef PCI_DEVICE_ID_NX2_57811_VF
 248#define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
 249#endif
 250
 251static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
 252        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
 253        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
 254        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
 255        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
 256        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
 257        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
 258        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
 259        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
 260        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
 261        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
 262        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
 263        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
 264        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 265        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
 266        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
 267        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
 268        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 269        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 270        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
 271        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
 272        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
 273        { 0 }
 274};
 275
 276MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
 277
 278/* Global resources for unloading a previously loaded device */
 279#define BNX2X_PREV_WAIT_NEEDED 1
 280static DEFINE_SEMAPHORE(bnx2x_prev_sem);
 281static LIST_HEAD(bnx2x_prev_list);
 282
 283/* Forward declaration */
 284static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
 285static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
 286static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
 287
 288/****************************************************************************
 289* General service functions
 290****************************************************************************/
 291
 292static void __storm_memset_dma_mapping(struct bnx2x *bp,
 293                                       u32 addr, dma_addr_t mapping)
 294{
 295        REG_WR(bp,  addr, U64_LO(mapping));
 296        REG_WR(bp,  addr + 4, U64_HI(mapping));
 297}
 298
 299static void storm_memset_spq_addr(struct bnx2x *bp,
 300                                  dma_addr_t mapping, u16 abs_fid)
 301{
 302        u32 addr = XSEM_REG_FAST_MEMORY +
 303                        XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
 304
 305        __storm_memset_dma_mapping(bp, addr, mapping);
 306}
 307
 308static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
 309                                  u16 pf_id)
 310{
 311        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
 312                pf_id);
 313        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
 314                pf_id);
 315        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
 316                pf_id);
 317        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
 318                pf_id);
 319}
 320
 321static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
 322                                 u8 enable)
 323{
 324        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
 325                enable);
 326        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
 327                enable);
 328        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
 329                enable);
 330        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
 331                enable);
 332}
 333
 334static void storm_memset_eq_data(struct bnx2x *bp,
 335                                 struct event_ring_data *eq_data,
 336                                u16 pfid)
 337{
 338        size_t size = sizeof(struct event_ring_data);
 339
 340        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
 341
 342        __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
 343}
 344
 345static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
 346                                 u16 pfid)
 347{
 348        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
 349        REG_WR16(bp, addr, eq_prod);
 350}
 351
 352/* used only at init
 353 * locking is done by mcp
 354 */
 355static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
 356{
 357        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 358        pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
 359        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 360                               PCICFG_VENDOR_ID_OFFSET);
 361}
 362
 363static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
 364{
 365        u32 val;
 366
 367        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 368        pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
 369        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 370                               PCICFG_VENDOR_ID_OFFSET);
 371
 372        return val;
 373}
 374
 375#define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
 376#define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
 377#define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
 378#define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
 379#define DMAE_DP_DST_NONE        "dst_addr [none]"
 380
 381static void bnx2x_dp_dmae(struct bnx2x *bp,
 382                          struct dmae_command *dmae, int msglvl)
 383{
 384        u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
 385        int i;
 386
 387        switch (dmae->opcode & DMAE_COMMAND_DST) {
 388        case DMAE_CMD_DST_PCI:
 389                if (src_type == DMAE_CMD_SRC_PCI)
 390                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 391                           "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
 392                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 393                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 394                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 395                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 396                           dmae->comp_val);
 397                else
 398                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 399                           "src [%08x], len [%d*4], dst [%x:%08x]\n"
 400                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 401                           dmae->opcode, dmae->src_addr_lo >> 2,
 402                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 403                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 404                           dmae->comp_val);
 405                break;
 406        case DMAE_CMD_DST_GRC:
 407                if (src_type == DMAE_CMD_SRC_PCI)
 408                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 409                           "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
 410                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 411                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 412                           dmae->len, dmae->dst_addr_lo >> 2,
 413                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 414                           dmae->comp_val);
 415                else
 416                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 417                           "src [%08x], len [%d*4], dst [%08x]\n"
 418                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 419                           dmae->opcode, dmae->src_addr_lo >> 2,
 420                           dmae->len, dmae->dst_addr_lo >> 2,
 421                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 422                           dmae->comp_val);
 423                break;
 424        default:
 425                if (src_type == DMAE_CMD_SRC_PCI)
 426                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 427                           "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
 428                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 429                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 430                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 431                           dmae->comp_val);
 432                else
 433                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 434                           "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
 435                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 436                           dmae->opcode, dmae->src_addr_lo >> 2,
 437                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 438                           dmae->comp_val);
 439                break;
 440        }
 441
 442        for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
 443                DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
 444                   i, *(((u32 *)dmae) + i));
 445}
 446
 447/* copy command into DMAE command memory and set DMAE command go */
 448void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
 449{
 450        u32 cmd_offset;
 451        int i;
 452
 453        cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
 454        for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
 455                REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
 456        }
 457        REG_WR(bp, dmae_reg_go_c[idx], 1);
 458}
 459
 460u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
 461{
 462        return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
 463                           DMAE_CMD_C_ENABLE);
 464}
 465
 466u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
 467{
 468        return opcode & ~DMAE_CMD_SRC_RESET;
 469}
 470
 471u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
 472                             bool with_comp, u8 comp_type)
 473{
 474        u32 opcode = 0;
 475
 476        opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
 477                   (dst_type << DMAE_COMMAND_DST_SHIFT));
 478
 479        opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
 480
 481        opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
 482        opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
 483                   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
 484        opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
 485
 486#ifdef __BIG_ENDIAN
 487        opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
 488#else
 489        opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
 490#endif
 491        if (with_comp)
 492                opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
 493        return opcode;
 494}
 495
 496void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
 497                                      struct dmae_command *dmae,
 498                                      u8 src_type, u8 dst_type)
 499{
 500        memset(dmae, 0, sizeof(struct dmae_command));
 501
 502        /* set the opcode */
 503        dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
 504                                         true, DMAE_COMP_PCI);
 505
 506        /* fill in the completion parameters */
 507        dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
 508        dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
 509        dmae->comp_val = DMAE_COMP_VAL;
 510}
 511
 512/* issue a dmae command over the init-channel and wait for completion */
 513int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
 514                               u32 *comp)
 515{
 516        int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
 517        int rc = 0;
 518
 519        bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
 520
 521        /* Lock the dmae channel. Disable BHs to prevent a dead-lock
 522         * as long as this code is called both from syscall context and
 523         * from ndo_set_rx_mode() flow that may be called from BH.
 524         */
 525        spin_lock_bh(&bp->dmae_lock);
 526
 527        /* reset completion */
 528        *comp = 0;
 529
 530        /* post the command on the channel used for initializations */
 531        bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
 532
 533        /* wait for completion */
 534        udelay(5);
 535        while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
 536
 537                if (!cnt ||
 538                    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
 539                     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
 540                        BNX2X_ERR("DMAE timeout!\n");
 541                        rc = DMAE_TIMEOUT;
 542                        goto unlock;
 543                }
 544                cnt--;
 545                udelay(50);
 546        }
 547        if (*comp & DMAE_PCI_ERR_FLAG) {
 548                BNX2X_ERR("DMAE PCI error!\n");
 549                rc = DMAE_PCI_ERROR;
 550        }
 551
 552unlock:
 553        spin_unlock_bh(&bp->dmae_lock);
 554        return rc;
 555}
 556
 557void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
 558                      u32 len32)
 559{
 560        int rc;
 561        struct dmae_command dmae;
 562
 563        if (!bp->dmae_ready) {
 564                u32 *data = bnx2x_sp(bp, wb_data[0]);
 565
 566                if (CHIP_IS_E1(bp))
 567                        bnx2x_init_ind_wr(bp, dst_addr, data, len32);
 568                else
 569                        bnx2x_init_str_wr(bp, dst_addr, data, len32);
 570                return;
 571        }
 572
 573        /* set opcode and fixed command fields */
 574        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
 575
 576        /* fill in addresses and len */
 577        dmae.src_addr_lo = U64_LO(dma_addr);
 578        dmae.src_addr_hi = U64_HI(dma_addr);
 579        dmae.dst_addr_lo = dst_addr >> 2;
 580        dmae.dst_addr_hi = 0;
 581        dmae.len = len32;
 582
 583        /* issue the command and wait for completion */
 584        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 585        if (rc) {
 586                BNX2X_ERR("DMAE returned failure %d\n", rc);
 587#ifdef BNX2X_STOP_ON_ERROR
 588                bnx2x_panic();
 589#endif
 590        }
 591}
 592
 593void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
 594{
 595        int rc;
 596        struct dmae_command dmae;
 597
 598        if (!bp->dmae_ready) {
 599                u32 *data = bnx2x_sp(bp, wb_data[0]);
 600                int i;
 601
 602                if (CHIP_IS_E1(bp))
 603                        for (i = 0; i < len32; i++)
 604                                data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
 605                else
 606                        for (i = 0; i < len32; i++)
 607                                data[i] = REG_RD(bp, src_addr + i*4);
 608
 609                return;
 610        }
 611
 612        /* set opcode and fixed command fields */
 613        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
 614
 615        /* fill in addresses and len */
 616        dmae.src_addr_lo = src_addr >> 2;
 617        dmae.src_addr_hi = 0;
 618        dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
 619        dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
 620        dmae.len = len32;
 621
 622        /* issue the command and wait for completion */
 623        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 624        if (rc) {
 625                BNX2X_ERR("DMAE returned failure %d\n", rc);
 626#ifdef BNX2X_STOP_ON_ERROR
 627                bnx2x_panic();
 628#endif
 629        }
 630}
 631
 632static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
 633                                      u32 addr, u32 len)
 634{
 635        int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
 636        int offset = 0;
 637
 638        while (len > dmae_wr_max) {
 639                bnx2x_write_dmae(bp, phys_addr + offset,
 640                                 addr + offset, dmae_wr_max);
 641                offset += dmae_wr_max * 4;
 642                len -= dmae_wr_max;
 643        }
 644
 645        bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
 646}
 647
 648static int bnx2x_mc_assert(struct bnx2x *bp)
 649{
 650        char last_idx;
 651        int i, rc = 0;
 652        u32 row0, row1, row2, row3;
 653
 654        /* XSTORM */
 655        last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
 656                           XSTORM_ASSERT_LIST_INDEX_OFFSET);
 657        if (last_idx)
 658                BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 659
 660        /* print the asserts */
 661        for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 662
 663                row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
 664                              XSTORM_ASSERT_LIST_OFFSET(i));
 665                row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
 666                              XSTORM_ASSERT_LIST_OFFSET(i) + 4);
 667                row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
 668                              XSTORM_ASSERT_LIST_OFFSET(i) + 8);
 669                row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
 670                              XSTORM_ASSERT_LIST_OFFSET(i) + 12);
 671
 672                if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 673                        BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 674                                  i, row3, row2, row1, row0);
 675                        rc++;
 676                } else {
 677                        break;
 678                }
 679        }
 680
 681        /* TSTORM */
 682        last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
 683                           TSTORM_ASSERT_LIST_INDEX_OFFSET);
 684        if (last_idx)
 685                BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 686
 687        /* print the asserts */
 688        for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 689
 690                row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
 691                              TSTORM_ASSERT_LIST_OFFSET(i));
 692                row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
 693                              TSTORM_ASSERT_LIST_OFFSET(i) + 4);
 694                row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
 695                              TSTORM_ASSERT_LIST_OFFSET(i) + 8);
 696                row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
 697                              TSTORM_ASSERT_LIST_OFFSET(i) + 12);
 698
 699                if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 700                        BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 701                                  i, row3, row2, row1, row0);
 702                        rc++;
 703                } else {
 704                        break;
 705                }
 706        }
 707
 708        /* CSTORM */
 709        last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
 710                           CSTORM_ASSERT_LIST_INDEX_OFFSET);
 711        if (last_idx)
 712                BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 713
 714        /* print the asserts */
 715        for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 716
 717                row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
 718                              CSTORM_ASSERT_LIST_OFFSET(i));
 719                row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
 720                              CSTORM_ASSERT_LIST_OFFSET(i) + 4);
 721                row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
 722                              CSTORM_ASSERT_LIST_OFFSET(i) + 8);
 723                row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
 724                              CSTORM_ASSERT_LIST_OFFSET(i) + 12);
 725
 726                if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 727                        BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 728                                  i, row3, row2, row1, row0);
 729                        rc++;
 730                } else {
 731                        break;
 732                }
 733        }
 734
 735        /* USTORM */
 736        last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
 737                           USTORM_ASSERT_LIST_INDEX_OFFSET);
 738        if (last_idx)
 739                BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 740
 741        /* print the asserts */
 742        for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 743
 744                row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
 745                              USTORM_ASSERT_LIST_OFFSET(i));
 746                row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
 747                              USTORM_ASSERT_LIST_OFFSET(i) + 4);
 748                row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
 749                              USTORM_ASSERT_LIST_OFFSET(i) + 8);
 750                row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
 751                              USTORM_ASSERT_LIST_OFFSET(i) + 12);
 752
 753                if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 754                        BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 755                                  i, row3, row2, row1, row0);
 756                        rc++;
 757                } else {
 758                        break;
 759                }
 760        }
 761
 762        return rc;
 763}
 764
 765#define MCPR_TRACE_BUFFER_SIZE  (0x800)
 766#define SCRATCH_BUFFER_SIZE(bp) \
 767        (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
 768
 769void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
 770{
 771        u32 addr, val;
 772        u32 mark, offset;
 773        __be32 data[9];
 774        int word;
 775        u32 trace_shmem_base;
 776        if (BP_NOMCP(bp)) {
 777                BNX2X_ERR("NO MCP - can not dump\n");
 778                return;
 779        }
 780        netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
 781                (bp->common.bc_ver & 0xff0000) >> 16,
 782                (bp->common.bc_ver & 0xff00) >> 8,
 783                (bp->common.bc_ver & 0xff));
 784
 785        val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
 786        if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
 787                BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
 788
 789        if (BP_PATH(bp) == 0)
 790                trace_shmem_base = bp->common.shmem_base;
 791        else
 792                trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
 793
 794        /* sanity */
 795        if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
 796            trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
 797                                SCRATCH_BUFFER_SIZE(bp)) {
 798                BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
 799                          trace_shmem_base);
 800                return;
 801        }
 802
 803        addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
 804
 805        /* validate TRCB signature */
 806        mark = REG_RD(bp, addr);
 807        if (mark != MFW_TRACE_SIGNATURE) {
 808                BNX2X_ERR("Trace buffer signature is missing.");
 809                return ;
 810        }
 811
 812        /* read cyclic buffer pointer */
 813        addr += 4;
 814        mark = REG_RD(bp, addr);
 815        mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
 816        if (mark >= trace_shmem_base || mark < addr + 4) {
 817                BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
 818                return;
 819        }
 820        printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
 821
 822        printk("%s", lvl);
 823
 824        /* dump buffer after the mark */
 825        for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
 826                for (word = 0; word < 8; word++)
 827                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 828                data[8] = 0x0;
 829                pr_cont("%s", (char *)data);
 830        }
 831
 832        /* dump buffer before the mark */
 833        for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
 834                for (word = 0; word < 8; word++)
 835                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 836                data[8] = 0x0;
 837                pr_cont("%s", (char *)data);
 838        }
 839        printk("%s" "end of fw dump\n", lvl);
 840}
 841
 842static void bnx2x_fw_dump(struct bnx2x *bp)
 843{
 844        bnx2x_fw_dump_lvl(bp, KERN_ERR);
 845}
 846
 847static void bnx2x_hc_int_disable(struct bnx2x *bp)
 848{
 849        int port = BP_PORT(bp);
 850        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
 851        u32 val = REG_RD(bp, addr);
 852
 853        /* in E1 we must use only PCI configuration space to disable
 854         * MSI/MSIX capability
 855         * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
 856         */
 857        if (CHIP_IS_E1(bp)) {
 858                /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
 859                 * Use mask register to prevent from HC sending interrupts
 860                 * after we exit the function
 861                 */
 862                REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
 863
 864                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 865                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 866                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 867        } else
 868                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 869                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 870                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 871                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 872
 873        DP(NETIF_MSG_IFDOWN,
 874           "write %x to HC %d (addr 0x%x)\n",
 875           val, port, addr);
 876
 877        /* flush all outstanding writes */
 878        mmiowb();
 879
 880        REG_WR(bp, addr, val);
 881        if (REG_RD(bp, addr) != val)
 882                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 883}
 884
 885static void bnx2x_igu_int_disable(struct bnx2x *bp)
 886{
 887        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
 888
 889        val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
 890                 IGU_PF_CONF_INT_LINE_EN |
 891                 IGU_PF_CONF_ATTN_BIT_EN);
 892
 893        DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
 894
 895        /* flush all outstanding writes */
 896        mmiowb();
 897
 898        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 899        if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
 900                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 901}
 902
 903static void bnx2x_int_disable(struct bnx2x *bp)
 904{
 905        if (bp->common.int_block == INT_BLOCK_HC)
 906                bnx2x_hc_int_disable(bp);
 907        else
 908                bnx2x_igu_int_disable(bp);
 909}
 910
 911void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
 912{
 913        int i;
 914        u16 j;
 915        struct hc_sp_status_block_data sp_sb_data;
 916        int func = BP_FUNC(bp);
 917#ifdef BNX2X_STOP_ON_ERROR
 918        u16 start = 0, end = 0;
 919        u8 cos;
 920#endif
 921        if (disable_int)
 922                bnx2x_int_disable(bp);
 923
 924        bp->stats_state = STATS_STATE_DISABLED;
 925        bp->eth_stats.unrecoverable_error++;
 926        DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
 927
 928        BNX2X_ERR("begin crash dump -----------------\n");
 929
 930        /* Indices */
 931        /* Common */
 932        BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
 933                  bp->def_idx, bp->def_att_idx, bp->attn_state,
 934                  bp->spq_prod_idx, bp->stats_counter);
 935        BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
 936                  bp->def_status_blk->atten_status_block.attn_bits,
 937                  bp->def_status_blk->atten_status_block.attn_bits_ack,
 938                  bp->def_status_blk->atten_status_block.status_block_id,
 939                  bp->def_status_blk->atten_status_block.attn_bits_index);
 940        BNX2X_ERR("     def (");
 941        for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
 942                pr_cont("0x%x%s",
 943                        bp->def_status_blk->sp_sb.index_values[i],
 944                        (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
 945
 946        for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
 947                *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
 948                        CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
 949                        i*sizeof(u32));
 950
 951        pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
 952               sp_sb_data.igu_sb_id,
 953               sp_sb_data.igu_seg_id,
 954               sp_sb_data.p_func.pf_id,
 955               sp_sb_data.p_func.vnic_id,
 956               sp_sb_data.p_func.vf_id,
 957               sp_sb_data.p_func.vf_valid,
 958               sp_sb_data.state);
 959
 960        for_each_eth_queue(bp, i) {
 961                struct bnx2x_fastpath *fp = &bp->fp[i];
 962                int loop;
 963                struct hc_status_block_data_e2 sb_data_e2;
 964                struct hc_status_block_data_e1x sb_data_e1x;
 965                struct hc_status_block_sm  *hc_sm_p =
 966                        CHIP_IS_E1x(bp) ?
 967                        sb_data_e1x.common.state_machine :
 968                        sb_data_e2.common.state_machine;
 969                struct hc_index_data *hc_index_p =
 970                        CHIP_IS_E1x(bp) ?
 971                        sb_data_e1x.index_data :
 972                        sb_data_e2.index_data;
 973                u8 data_size, cos;
 974                u32 *sb_data_p;
 975                struct bnx2x_fp_txdata txdata;
 976
 977                /* Rx */
 978                BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
 979                          i, fp->rx_bd_prod, fp->rx_bd_cons,
 980                          fp->rx_comp_prod,
 981                          fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
 982                BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
 983                          fp->rx_sge_prod, fp->last_max_sge,
 984                          le16_to_cpu(fp->fp_hc_idx));
 985
 986                /* Tx */
 987                for_each_cos_in_tx_queue(fp, cos)
 988                {
 989                        txdata = *fp->txdata_ptr[cos];
 990                        BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
 991                                  i, txdata.tx_pkt_prod,
 992                                  txdata.tx_pkt_cons, txdata.tx_bd_prod,
 993                                  txdata.tx_bd_cons,
 994                                  le16_to_cpu(*txdata.tx_cons_sb));
 995                }
 996
 997                loop = CHIP_IS_E1x(bp) ?
 998                        HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
 999
1000                /* host sb data */
1001
1002                if (IS_FCOE_FP(fp))
1003                        continue;
1004
1005                BNX2X_ERR("     run indexes (");
1006                for (j = 0; j < HC_SB_MAX_SM; j++)
1007                        pr_cont("0x%x%s",
1008                               fp->sb_running_index[j],
1009                               (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1010
1011                BNX2X_ERR("     indexes (");
1012                for (j = 0; j < loop; j++)
1013                        pr_cont("0x%x%s",
1014                               fp->sb_index_values[j],
1015                               (j == loop - 1) ? ")" : " ");
1016                /* fw sb data */
1017                data_size = CHIP_IS_E1x(bp) ?
1018                        sizeof(struct hc_status_block_data_e1x) :
1019                        sizeof(struct hc_status_block_data_e2);
1020                data_size /= sizeof(u32);
1021                sb_data_p = CHIP_IS_E1x(bp) ?
1022                        (u32 *)&sb_data_e1x :
1023                        (u32 *)&sb_data_e2;
1024                /* copy sb data in here */
1025                for (j = 0; j < data_size; j++)
1026                        *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1027                                CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1028                                j * sizeof(u32));
1029
1030                if (!CHIP_IS_E1x(bp)) {
1031                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1032                                sb_data_e2.common.p_func.pf_id,
1033                                sb_data_e2.common.p_func.vf_id,
1034                                sb_data_e2.common.p_func.vf_valid,
1035                                sb_data_e2.common.p_func.vnic_id,
1036                                sb_data_e2.common.same_igu_sb_1b,
1037                                sb_data_e2.common.state);
1038                } else {
1039                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1040                                sb_data_e1x.common.p_func.pf_id,
1041                                sb_data_e1x.common.p_func.vf_id,
1042                                sb_data_e1x.common.p_func.vf_valid,
1043                                sb_data_e1x.common.p_func.vnic_id,
1044                                sb_data_e1x.common.same_igu_sb_1b,
1045                                sb_data_e1x.common.state);
1046                }
1047
1048                /* SB_SMs data */
1049                for (j = 0; j < HC_SB_MAX_SM; j++) {
1050                        pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1051                                j, hc_sm_p[j].__flags,
1052                                hc_sm_p[j].igu_sb_id,
1053                                hc_sm_p[j].igu_seg_id,
1054                                hc_sm_p[j].time_to_expire,
1055                                hc_sm_p[j].timer_value);
1056                }
1057
1058                /* Indices data */
1059                for (j = 0; j < loop; j++) {
1060                        pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1061                               hc_index_p[j].flags,
1062                               hc_index_p[j].timeout);
1063                }
1064        }
1065
1066#ifdef BNX2X_STOP_ON_ERROR
1067
1068        /* event queue */
1069        BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1070        for (i = 0; i < NUM_EQ_DESC; i++) {
1071                u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1072
1073                BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1074                          i, bp->eq_ring[i].message.opcode,
1075                          bp->eq_ring[i].message.error);
1076                BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1077        }
1078
1079        /* Rings */
1080        /* Rx */
1081        for_each_valid_rx_queue(bp, i) {
1082                struct bnx2x_fastpath *fp = &bp->fp[i];
1083
1084                start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1085                end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1086                for (j = start; j != end; j = RX_BD(j + 1)) {
1087                        u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1088                        struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1089
1090                        BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1091                                  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1092                }
1093
1094                start = RX_SGE(fp->rx_sge_prod);
1095                end = RX_SGE(fp->last_max_sge);
1096                for (j = start; j != end; j = RX_SGE(j + 1)) {
1097                        u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1098                        struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1099
1100                        BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1101                                  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1102                }
1103
1104                start = RCQ_BD(fp->rx_comp_cons - 10);
1105                end = RCQ_BD(fp->rx_comp_cons + 503);
1106                for (j = start; j != end; j = RCQ_BD(j + 1)) {
1107                        u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1108
1109                        BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1110                                  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1111                }
1112        }
1113
1114        /* Tx */
1115        for_each_valid_tx_queue(bp, i) {
1116                struct bnx2x_fastpath *fp = &bp->fp[i];
1117                for_each_cos_in_tx_queue(fp, cos) {
1118                        struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1119
1120                        start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1121                        end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1122                        for (j = start; j != end; j = TX_BD(j + 1)) {
1123                                struct sw_tx_bd *sw_bd =
1124                                        &txdata->tx_buf_ring[j];
1125
1126                                BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1127                                          i, cos, j, sw_bd->skb,
1128                                          sw_bd->first_bd);
1129                        }
1130
1131                        start = TX_BD(txdata->tx_bd_cons - 10);
1132                        end = TX_BD(txdata->tx_bd_cons + 254);
1133                        for (j = start; j != end; j = TX_BD(j + 1)) {
1134                                u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1135
1136                                BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1137                                          i, cos, j, tx_bd[0], tx_bd[1],
1138                                          tx_bd[2], tx_bd[3]);
1139                        }
1140                }
1141        }
1142#endif
1143        bnx2x_fw_dump(bp);
1144        bnx2x_mc_assert(bp);
1145        BNX2X_ERR("end crash dump -----------------\n");
1146}
1147
1148/*
1149 * FLR Support for E2
1150 *
1151 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1152 * initialization.
1153 */
1154#define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1155#define FLR_WAIT_INTERVAL       50      /* usec */
1156#define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1157
1158struct pbf_pN_buf_regs {
1159        int pN;
1160        u32 init_crd;
1161        u32 crd;
1162        u32 crd_freed;
1163};
1164
1165struct pbf_pN_cmd_regs {
1166        int pN;
1167        u32 lines_occup;
1168        u32 lines_freed;
1169};
1170
1171static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1172                                     struct pbf_pN_buf_regs *regs,
1173                                     u32 poll_count)
1174{
1175        u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1176        u32 cur_cnt = poll_count;
1177
1178        crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1179        crd = crd_start = REG_RD(bp, regs->crd);
1180        init_crd = REG_RD(bp, regs->init_crd);
1181
1182        DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1183        DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1184        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1185
1186        while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1187               (init_crd - crd_start))) {
1188                if (cur_cnt--) {
1189                        udelay(FLR_WAIT_INTERVAL);
1190                        crd = REG_RD(bp, regs->crd);
1191                        crd_freed = REG_RD(bp, regs->crd_freed);
1192                } else {
1193                        DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1194                           regs->pN);
1195                        DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1196                           regs->pN, crd);
1197                        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1198                           regs->pN, crd_freed);
1199                        break;
1200                }
1201        }
1202        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1203           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1204}
1205
1206static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1207                                     struct pbf_pN_cmd_regs *regs,
1208                                     u32 poll_count)
1209{
1210        u32 occup, to_free, freed, freed_start;
1211        u32 cur_cnt = poll_count;
1212
1213        occup = to_free = REG_RD(bp, regs->lines_occup);
1214        freed = freed_start = REG_RD(bp, regs->lines_freed);
1215
1216        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1217        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1218
1219        while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1220                if (cur_cnt--) {
1221                        udelay(FLR_WAIT_INTERVAL);
1222                        occup = REG_RD(bp, regs->lines_occup);
1223                        freed = REG_RD(bp, regs->lines_freed);
1224                } else {
1225                        DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1226                           regs->pN);
1227                        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1228                           regs->pN, occup);
1229                        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1230                           regs->pN, freed);
1231                        break;
1232                }
1233        }
1234        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1235           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236}
1237
1238static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1239                                    u32 expected, u32 poll_count)
1240{
1241        u32 cur_cnt = poll_count;
1242        u32 val;
1243
1244        while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1245                udelay(FLR_WAIT_INTERVAL);
1246
1247        return val;
1248}
1249
1250int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1251                                    char *msg, u32 poll_cnt)
1252{
1253        u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1254        if (val != 0) {
1255                BNX2X_ERR("%s usage count=%d\n", msg, val);
1256                return 1;
1257        }
1258        return 0;
1259}
1260
1261/* Common routines with VF FLR cleanup */
1262u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1263{
1264        /* adjust polling timeout */
1265        if (CHIP_REV_IS_EMUL(bp))
1266                return FLR_POLL_CNT * 2000;
1267
1268        if (CHIP_REV_IS_FPGA(bp))
1269                return FLR_POLL_CNT * 120;
1270
1271        return FLR_POLL_CNT;
1272}
1273
1274void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1275{
1276        struct pbf_pN_cmd_regs cmd_regs[] = {
1277                {0, (CHIP_IS_E3B0(bp)) ?
1278                        PBF_REG_TQ_OCCUPANCY_Q0 :
1279                        PBF_REG_P0_TQ_OCCUPANCY,
1280                    (CHIP_IS_E3B0(bp)) ?
1281                        PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1282                        PBF_REG_P0_TQ_LINES_FREED_CNT},
1283                {1, (CHIP_IS_E3B0(bp)) ?
1284                        PBF_REG_TQ_OCCUPANCY_Q1 :
1285                        PBF_REG_P1_TQ_OCCUPANCY,
1286                    (CHIP_IS_E3B0(bp)) ?
1287                        PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1288                        PBF_REG_P1_TQ_LINES_FREED_CNT},
1289                {4, (CHIP_IS_E3B0(bp)) ?
1290                        PBF_REG_TQ_OCCUPANCY_LB_Q :
1291                        PBF_REG_P4_TQ_OCCUPANCY,
1292                    (CHIP_IS_E3B0(bp)) ?
1293                        PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1294                        PBF_REG_P4_TQ_LINES_FREED_CNT}
1295        };
1296
1297        struct pbf_pN_buf_regs buf_regs[] = {
1298                {0, (CHIP_IS_E3B0(bp)) ?
1299                        PBF_REG_INIT_CRD_Q0 :
1300                        PBF_REG_P0_INIT_CRD ,
1301                    (CHIP_IS_E3B0(bp)) ?
1302                        PBF_REG_CREDIT_Q0 :
1303                        PBF_REG_P0_CREDIT,
1304                    (CHIP_IS_E3B0(bp)) ?
1305                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1306                        PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1307                {1, (CHIP_IS_E3B0(bp)) ?
1308                        PBF_REG_INIT_CRD_Q1 :
1309                        PBF_REG_P1_INIT_CRD,
1310                    (CHIP_IS_E3B0(bp)) ?
1311                        PBF_REG_CREDIT_Q1 :
1312                        PBF_REG_P1_CREDIT,
1313                    (CHIP_IS_E3B0(bp)) ?
1314                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1315                        PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1316                {4, (CHIP_IS_E3B0(bp)) ?
1317                        PBF_REG_INIT_CRD_LB_Q :
1318                        PBF_REG_P4_INIT_CRD,
1319                    (CHIP_IS_E3B0(bp)) ?
1320                        PBF_REG_CREDIT_LB_Q :
1321                        PBF_REG_P4_CREDIT,
1322                    (CHIP_IS_E3B0(bp)) ?
1323                        PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1324                        PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1325        };
1326
1327        int i;
1328
1329        /* Verify the command queues are flushed P0, P1, P4 */
1330        for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1331                bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1332
1333        /* Verify the transmission buffers are flushed P0, P1, P4 */
1334        for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1335                bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1336}
1337
1338#define OP_GEN_PARAM(param) \
1339        (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1340
1341#define OP_GEN_TYPE(type) \
1342        (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1343
1344#define OP_GEN_AGG_VECT(index) \
1345        (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1346
1347int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1348{
1349        u32 op_gen_command = 0;
1350        u32 comp_addr = BAR_CSTRORM_INTMEM +
1351                        CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1352        int ret = 0;
1353
1354        if (REG_RD(bp, comp_addr)) {
1355                BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1356                return 1;
1357        }
1358
1359        op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1360        op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1361        op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1362        op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1363
1364        DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1365        REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1366
1367        if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1368                BNX2X_ERR("FW final cleanup did not succeed\n");
1369                DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1370                   (REG_RD(bp, comp_addr)));
1371                bnx2x_panic();
1372                return 1;
1373        }
1374        /* Zero completion for next FLR */
1375        REG_WR(bp, comp_addr, 0);
1376
1377        return ret;
1378}
1379
1380u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1381{
1382        u16 status;
1383
1384        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1385        return status & PCI_EXP_DEVSTA_TRPND;
1386}
1387
1388/* PF FLR specific routines
1389*/
1390static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1391{
1392        /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1393        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1394                        CFC_REG_NUM_LCIDS_INSIDE_PF,
1395                        "CFC PF usage counter timed out",
1396                        poll_cnt))
1397                return 1;
1398
1399        /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1400        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1401                        DORQ_REG_PF_USAGE_CNT,
1402                        "DQ PF usage counter timed out",
1403                        poll_cnt))
1404                return 1;
1405
1406        /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1407        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1408                        QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1409                        "QM PF usage counter timed out",
1410                        poll_cnt))
1411                return 1;
1412
1413        /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1414        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1415                        TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1416                        "Timers VNIC usage counter timed out",
1417                        poll_cnt))
1418                return 1;
1419        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1420                        TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1421                        "Timers NUM_SCANS usage counter timed out",
1422                        poll_cnt))
1423                return 1;
1424
1425        /* Wait DMAE PF usage counter to zero */
1426        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1427                        dmae_reg_go_c[INIT_DMAE_C(bp)],
1428                        "DMAE command register timed out",
1429                        poll_cnt))
1430                return 1;
1431
1432        return 0;
1433}
1434
1435static void bnx2x_hw_enable_status(struct bnx2x *bp)
1436{
1437        u32 val;
1438
1439        val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1440        DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1441
1442        val = REG_RD(bp, PBF_REG_DISABLE_PF);
1443        DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1444
1445        val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1446        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1447
1448        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1449        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1450
1451        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1452        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1453
1454        val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1455        DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1456
1457        val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1458        DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1459
1460        val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1461        DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1462           val);
1463}
1464
1465static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1466{
1467        u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1468
1469        DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1470
1471        /* Re-enable PF target read access */
1472        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1473
1474        /* Poll HW usage counters */
1475        DP(BNX2X_MSG_SP, "Polling usage counters\n");
1476        if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1477                return -EBUSY;
1478
1479        /* Zero the igu 'trailing edge' and 'leading edge' */
1480
1481        /* Send the FW cleanup command */
1482        if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1483                return -EBUSY;
1484
1485        /* ATC cleanup */
1486
1487        /* Verify TX hw is flushed */
1488        bnx2x_tx_hw_flushed(bp, poll_cnt);
1489
1490        /* Wait 100ms (not adjusted according to platform) */
1491        msleep(100);
1492
1493        /* Verify no pending pci transactions */
1494        if (bnx2x_is_pcie_pending(bp->pdev))
1495                BNX2X_ERR("PCIE Transactions still pending\n");
1496
1497        /* Debug */
1498        bnx2x_hw_enable_status(bp);
1499
1500        /*
1501         * Master enable - Due to WB DMAE writes performed before this
1502         * register is re-initialized as part of the regular function init
1503         */
1504        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1505
1506        return 0;
1507}
1508
1509static void bnx2x_hc_int_enable(struct bnx2x *bp)
1510{
1511        int port = BP_PORT(bp);
1512        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1513        u32 val = REG_RD(bp, addr);
1514        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1515        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1516        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1517
1518        if (msix) {
1519                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1520                         HC_CONFIG_0_REG_INT_LINE_EN_0);
1521                val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1522                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1523                if (single_msix)
1524                        val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1525        } else if (msi) {
1526                val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1527                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1528                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1529                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1530        } else {
1531                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1532                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1533                        HC_CONFIG_0_REG_INT_LINE_EN_0 |
1534                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1535
1536                if (!CHIP_IS_E1(bp)) {
1537                        DP(NETIF_MSG_IFUP,
1538                           "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1539
1540                        REG_WR(bp, addr, val);
1541
1542                        val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1543                }
1544        }
1545
1546        if (CHIP_IS_E1(bp))
1547                REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1548
1549        DP(NETIF_MSG_IFUP,
1550           "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1551           (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1552
1553        REG_WR(bp, addr, val);
1554        /*
1555         * Ensure that HC_CONFIG is written before leading/trailing edge config
1556         */
1557        mmiowb();
1558        barrier();
1559
1560        if (!CHIP_IS_E1(bp)) {
1561                /* init leading/trailing edge */
1562                if (IS_MF(bp)) {
1563                        val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1564                        if (bp->port.pmf)
1565                                /* enable nig and gpio3 attention */
1566                                val |= 0x1100;
1567                } else
1568                        val = 0xffff;
1569
1570                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1571                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1572        }
1573
1574        /* Make sure that interrupts are indeed enabled from here on */
1575        mmiowb();
1576}
1577
1578static void bnx2x_igu_int_enable(struct bnx2x *bp)
1579{
1580        u32 val;
1581        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1582        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1583        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1584
1585        val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1586
1587        if (msix) {
1588                val &= ~(IGU_PF_CONF_INT_LINE_EN |
1589                         IGU_PF_CONF_SINGLE_ISR_EN);
1590                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1591                        IGU_PF_CONF_ATTN_BIT_EN);
1592
1593                if (single_msix)
1594                        val |= IGU_PF_CONF_SINGLE_ISR_EN;
1595        } else if (msi) {
1596                val &= ~IGU_PF_CONF_INT_LINE_EN;
1597                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1598                        IGU_PF_CONF_ATTN_BIT_EN |
1599                        IGU_PF_CONF_SINGLE_ISR_EN);
1600        } else {
1601                val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1602                val |= (IGU_PF_CONF_INT_LINE_EN |
1603                        IGU_PF_CONF_ATTN_BIT_EN |
1604                        IGU_PF_CONF_SINGLE_ISR_EN);
1605        }
1606
1607        /* Clean previous status - need to configure igu prior to ack*/
1608        if ((!msix) || single_msix) {
1609                REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1610                bnx2x_ack_int(bp);
1611        }
1612
1613        val |= IGU_PF_CONF_FUNC_EN;
1614
1615        DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1616           val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1617
1618        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1619
1620        if (val & IGU_PF_CONF_INT_LINE_EN)
1621                pci_intx(bp->pdev, true);
1622
1623        barrier();
1624
1625        /* init leading/trailing edge */
1626        if (IS_MF(bp)) {
1627                val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1628                if (bp->port.pmf)
1629                        /* enable nig and gpio3 attention */
1630                        val |= 0x1100;
1631        } else
1632                val = 0xffff;
1633
1634        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1635        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1636
1637        /* Make sure that interrupts are indeed enabled from here on */
1638        mmiowb();
1639}
1640
1641void bnx2x_int_enable(struct bnx2x *bp)
1642{
1643        if (bp->common.int_block == INT_BLOCK_HC)
1644                bnx2x_hc_int_enable(bp);
1645        else
1646                bnx2x_igu_int_enable(bp);
1647}
1648
1649void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1650{
1651        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1652        int i, offset;
1653
1654        if (disable_hw)
1655                /* prevent the HW from sending interrupts */
1656                bnx2x_int_disable(bp);
1657
1658        /* make sure all ISRs are done */
1659        if (msix) {
1660                synchronize_irq(bp->msix_table[0].vector);
1661                offset = 1;
1662                if (CNIC_SUPPORT(bp))
1663                        offset++;
1664                for_each_eth_queue(bp, i)
1665                        synchronize_irq(bp->msix_table[offset++].vector);
1666        } else
1667                synchronize_irq(bp->pdev->irq);
1668
1669        /* make sure sp_task is not running */
1670        cancel_delayed_work(&bp->sp_task);
1671        cancel_delayed_work(&bp->period_task);
1672        flush_workqueue(bnx2x_wq);
1673}
1674
1675/* fast path */
1676
1677/*
1678 * General service functions
1679 */
1680
1681/* Return true if succeeded to acquire the lock */
1682static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1683{
1684        u32 lock_status;
1685        u32 resource_bit = (1 << resource);
1686        int func = BP_FUNC(bp);
1687        u32 hw_lock_control_reg;
1688
1689        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1690           "Trying to take a lock on resource %d\n", resource);
1691
1692        /* Validating that the resource is within range */
1693        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1694                DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1695                   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1696                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1697                return false;
1698        }
1699
1700        if (func <= 5)
1701                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1702        else
1703                hw_lock_control_reg =
1704                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1705
1706        /* Try to acquire the lock */
1707        REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1708        lock_status = REG_RD(bp, hw_lock_control_reg);
1709        if (lock_status & resource_bit)
1710                return true;
1711
1712        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713           "Failed to get a lock on resource %d\n", resource);
1714        return false;
1715}
1716
1717/**
1718 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1719 *
1720 * @bp: driver handle
1721 *
1722 * Returns the recovery leader resource id according to the engine this function
1723 * belongs to. Currently only only 2 engines is supported.
1724 */
1725static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1726{
1727        if (BP_PATH(bp))
1728                return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1729        else
1730                return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1731}
1732
1733/**
1734 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1735 *
1736 * @bp: driver handle
1737 *
1738 * Tries to acquire a leader lock for current engine.
1739 */
1740static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1741{
1742        return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1743}
1744
1745static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1746
1747/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1748static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1749{
1750        /* Set the interrupt occurred bit for the sp-task to recognize it
1751         * must ack the interrupt and transition according to the IGU
1752         * state machine.
1753         */
1754        atomic_set(&bp->interrupt_occurred, 1);
1755
1756        /* The sp_task must execute only after this bit
1757         * is set, otherwise we will get out of sync and miss all
1758         * further interrupts. Hence, the barrier.
1759         */
1760        smp_wmb();
1761
1762        /* schedule sp_task to workqueue */
1763        return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1764}
1765
1766void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1767{
1768        struct bnx2x *bp = fp->bp;
1769        int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1770        int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1771        enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1772        struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1773
1774        DP(BNX2X_MSG_SP,
1775           "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1776           fp->index, cid, command, bp->state,
1777           rr_cqe->ramrod_cqe.ramrod_type);
1778
1779        /* If cid is within VF range, replace the slowpath object with the
1780         * one corresponding to this VF
1781         */
1782        if (cid >= BNX2X_FIRST_VF_CID  &&
1783            cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1784                bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1785
1786        switch (command) {
1787        case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1788                DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1789                drv_cmd = BNX2X_Q_CMD_UPDATE;
1790                break;
1791
1792        case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1793                DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1794                drv_cmd = BNX2X_Q_CMD_SETUP;
1795                break;
1796
1797        case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1798                DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1799                drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1800                break;
1801
1802        case (RAMROD_CMD_ID_ETH_HALT):
1803                DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1804                drv_cmd = BNX2X_Q_CMD_HALT;
1805                break;
1806
1807        case (RAMROD_CMD_ID_ETH_TERMINATE):
1808                DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1809                drv_cmd = BNX2X_Q_CMD_TERMINATE;
1810                break;
1811
1812        case (RAMROD_CMD_ID_ETH_EMPTY):
1813                DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1814                drv_cmd = BNX2X_Q_CMD_EMPTY;
1815                break;
1816
1817        default:
1818                BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1819                          command, fp->index);
1820                return;
1821        }
1822
1823        if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1824            q_obj->complete_cmd(bp, q_obj, drv_cmd))
1825                /* q_obj->complete_cmd() failure means that this was
1826                 * an unexpected completion.
1827                 *
1828                 * In this case we don't want to increase the bp->spq_left
1829                 * because apparently we haven't sent this command the first
1830                 * place.
1831                 */
1832#ifdef BNX2X_STOP_ON_ERROR
1833                bnx2x_panic();
1834#else
1835                return;
1836#endif
1837        /* SRIOV: reschedule any 'in_progress' operations */
1838        bnx2x_iov_sp_event(bp, cid, true);
1839
1840        smp_mb__before_atomic_inc();
1841        atomic_inc(&bp->cq_spq_left);
1842        /* push the change in bp->spq_left and towards the memory */
1843        smp_mb__after_atomic_inc();
1844
1845        DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1846
1847        if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1848            (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1849                /* if Q update ramrod is completed for last Q in AFEX vif set
1850                 * flow, then ACK MCP at the end
1851                 *
1852                 * mark pending ACK to MCP bit.
1853                 * prevent case that both bits are cleared.
1854                 * At the end of load/unload driver checks that
1855                 * sp_state is cleared, and this order prevents
1856                 * races
1857                 */
1858                smp_mb__before_clear_bit();
1859                set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1860                wmb();
1861                clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1862                smp_mb__after_clear_bit();
1863
1864                /* schedule the sp task as mcp ack is required */
1865                bnx2x_schedule_sp_task(bp);
1866        }
1867
1868        return;
1869}
1870
1871irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1872{
1873        struct bnx2x *bp = netdev_priv(dev_instance);
1874        u16 status = bnx2x_ack_int(bp);
1875        u16 mask;
1876        int i;
1877        u8 cos;
1878
1879        /* Return here if interrupt is shared and it's not for us */
1880        if (unlikely(status == 0)) {
1881                DP(NETIF_MSG_INTR, "not our interrupt!\n");
1882                return IRQ_NONE;
1883        }
1884        DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1885
1886#ifdef BNX2X_STOP_ON_ERROR
1887        if (unlikely(bp->panic))
1888                return IRQ_HANDLED;
1889#endif
1890
1891        for_each_eth_queue(bp, i) {
1892                struct bnx2x_fastpath *fp = &bp->fp[i];
1893
1894                mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1895                if (status & mask) {
1896                        /* Handle Rx or Tx according to SB id */
1897                        for_each_cos_in_tx_queue(fp, cos)
1898                                prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1899                        prefetch(&fp->sb_running_index[SM_RX_ID]);
1900                        napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1901                        status &= ~mask;
1902                }
1903        }
1904
1905        if (CNIC_SUPPORT(bp)) {
1906                mask = 0x2;
1907                if (status & (mask | 0x1)) {
1908                        struct cnic_ops *c_ops = NULL;
1909
1910                        rcu_read_lock();
1911                        c_ops = rcu_dereference(bp->cnic_ops);
1912                        if (c_ops && (bp->cnic_eth_dev.drv_state &
1913                                      CNIC_DRV_STATE_HANDLES_IRQ))
1914                                c_ops->cnic_handler(bp->cnic_data, NULL);
1915                        rcu_read_unlock();
1916
1917                        status &= ~mask;
1918                }
1919        }
1920
1921        if (unlikely(status & 0x1)) {
1922
1923                /* schedule sp task to perform default status block work, ack
1924                 * attentions and enable interrupts.
1925                 */
1926                bnx2x_schedule_sp_task(bp);
1927
1928                status &= ~0x1;
1929                if (!status)
1930                        return IRQ_HANDLED;
1931        }
1932
1933        if (unlikely(status))
1934                DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1935                   status);
1936
1937        return IRQ_HANDLED;
1938}
1939
1940/* Link */
1941
1942/*
1943 * General service functions
1944 */
1945
1946int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1947{
1948        u32 lock_status;
1949        u32 resource_bit = (1 << resource);
1950        int func = BP_FUNC(bp);
1951        u32 hw_lock_control_reg;
1952        int cnt;
1953
1954        /* Validating that the resource is within range */
1955        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1956                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1957                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1958                return -EINVAL;
1959        }
1960
1961        if (func <= 5) {
1962                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1963        } else {
1964                hw_lock_control_reg =
1965                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1966        }
1967
1968        /* Validating that the resource is not already taken */
1969        lock_status = REG_RD(bp, hw_lock_control_reg);
1970        if (lock_status & resource_bit) {
1971                BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1972                   lock_status, resource_bit);
1973                return -EEXIST;
1974        }
1975
1976        /* Try for 5 second every 5ms */
1977        for (cnt = 0; cnt < 1000; cnt++) {
1978                /* Try to acquire the lock */
1979                REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1980                lock_status = REG_RD(bp, hw_lock_control_reg);
1981                if (lock_status & resource_bit)
1982                        return 0;
1983
1984                usleep_range(5000, 10000);
1985        }
1986        BNX2X_ERR("Timeout\n");
1987        return -EAGAIN;
1988}
1989
1990int bnx2x_release_leader_lock(struct bnx2x *bp)
1991{
1992        return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1993}
1994
1995int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1996{
1997        u32 lock_status;
1998        u32 resource_bit = (1 << resource);
1999        int func = BP_FUNC(bp);
2000        u32 hw_lock_control_reg;
2001
2002        /* Validating that the resource is within range */
2003        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2004                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2005                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2006                return -EINVAL;
2007        }
2008
2009        if (func <= 5) {
2010                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2011        } else {
2012                hw_lock_control_reg =
2013                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2014        }
2015
2016        /* Validating that the resource is currently taken */
2017        lock_status = REG_RD(bp, hw_lock_control_reg);
2018        if (!(lock_status & resource_bit)) {
2019                BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2020                          lock_status, resource_bit);
2021                return -EFAULT;
2022        }
2023
2024        REG_WR(bp, hw_lock_control_reg, resource_bit);
2025        return 0;
2026}
2027
2028int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2029{
2030        /* The GPIO should be swapped if swap register is set and active */
2031        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2032                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2033        int gpio_shift = gpio_num +
2034                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2035        u32 gpio_mask = (1 << gpio_shift);
2036        u32 gpio_reg;
2037        int value;
2038
2039        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2040                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2041                return -EINVAL;
2042        }
2043
2044        /* read GPIO value */
2045        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2046
2047        /* get the requested pin value */
2048        if ((gpio_reg & gpio_mask) == gpio_mask)
2049                value = 1;
2050        else
2051                value = 0;
2052
2053        DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2054
2055        return value;
2056}
2057
2058int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2059{
2060        /* The GPIO should be swapped if swap register is set and active */
2061        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2062                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2063        int gpio_shift = gpio_num +
2064                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2065        u32 gpio_mask = (1 << gpio_shift);
2066        u32 gpio_reg;
2067
2068        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2069                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2070                return -EINVAL;
2071        }
2072
2073        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2074        /* read GPIO and mask except the float bits */
2075        gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2076
2077        switch (mode) {
2078        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2079                DP(NETIF_MSG_LINK,
2080                   "Set GPIO %d (shift %d) -> output low\n",
2081                   gpio_num, gpio_shift);
2082                /* clear FLOAT and set CLR */
2083                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2084                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2085                break;
2086
2087        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2088                DP(NETIF_MSG_LINK,
2089                   "Set GPIO %d (shift %d) -> output high\n",
2090                   gpio_num, gpio_shift);
2091                /* clear FLOAT and set SET */
2092                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2093                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2094                break;
2095
2096        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2097                DP(NETIF_MSG_LINK,
2098                   "Set GPIO %d (shift %d) -> input\n",
2099                   gpio_num, gpio_shift);
2100                /* set FLOAT */
2101                gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2102                break;
2103
2104        default:
2105                break;
2106        }
2107
2108        REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2109        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2110
2111        return 0;
2112}
2113
2114int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2115{
2116        u32 gpio_reg = 0;
2117        int rc = 0;
2118
2119        /* Any port swapping should be handled by caller. */
2120
2121        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2122        /* read GPIO and mask except the float bits */
2123        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2124        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2125        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2126        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2127
2128        switch (mode) {
2129        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2130                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2131                /* set CLR */
2132                gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2133                break;
2134
2135        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2136                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2137                /* set SET */
2138                gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2139                break;
2140
2141        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2142                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2143                /* set FLOAT */
2144                gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2145                break;
2146
2147        default:
2148                BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2149                rc = -EINVAL;
2150                break;
2151        }
2152
2153        if (rc == 0)
2154                REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2155
2156        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2157
2158        return rc;
2159}
2160
2161int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2162{
2163        /* The GPIO should be swapped if swap register is set and active */
2164        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2165                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2166        int gpio_shift = gpio_num +
2167                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2168        u32 gpio_mask = (1 << gpio_shift);
2169        u32 gpio_reg;
2170
2171        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2172                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2173                return -EINVAL;
2174        }
2175
2176        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177        /* read GPIO int */
2178        gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2179
2180        switch (mode) {
2181        case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2182                DP(NETIF_MSG_LINK,
2183                   "Clear GPIO INT %d (shift %d) -> output low\n",
2184                   gpio_num, gpio_shift);
2185                /* clear SET and set CLR */
2186                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2187                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2188                break;
2189
2190        case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2191                DP(NETIF_MSG_LINK,
2192                   "Set GPIO INT %d (shift %d) -> output high\n",
2193                   gpio_num, gpio_shift);
2194                /* clear CLR and set SET */
2195                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2196                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2197                break;
2198
2199        default:
2200                break;
2201        }
2202
2203        REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2204        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2205
2206        return 0;
2207}
2208
2209static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2210{
2211        u32 spio_reg;
2212
2213        /* Only 2 SPIOs are configurable */
2214        if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2215                BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2216                return -EINVAL;
2217        }
2218
2219        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2220        /* read SPIO and mask except the float bits */
2221        spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2222
2223        switch (mode) {
2224        case MISC_SPIO_OUTPUT_LOW:
2225                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2226                /* clear FLOAT and set CLR */
2227                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2228                spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2229                break;
2230
2231        case MISC_SPIO_OUTPUT_HIGH:
2232                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2233                /* clear FLOAT and set SET */
2234                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2235                spio_reg |=  (spio << MISC_SPIO_SET_POS);
2236                break;
2237
2238        case MISC_SPIO_INPUT_HI_Z:
2239                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2240                /* set FLOAT */
2241                spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2242                break;
2243
2244        default:
2245                break;
2246        }
2247
2248        REG_WR(bp, MISC_REG_SPIO, spio_reg);
2249        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2250
2251        return 0;
2252}
2253
2254void bnx2x_calc_fc_adv(struct bnx2x *bp)
2255{
2256        u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2257        switch (bp->link_vars.ieee_fc &
2258                MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2259        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2260                bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2261                                                   ADVERTISED_Pause);
2262                break;
2263
2264        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2265                bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2266                                                  ADVERTISED_Pause);
2267                break;
2268
2269        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2270                bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2271                break;
2272
2273        default:
2274                bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2275                                                   ADVERTISED_Pause);
2276                break;
2277        }
2278}
2279
2280static void bnx2x_set_requested_fc(struct bnx2x *bp)
2281{
2282        /* Initialize link parameters structure variables
2283         * It is recommended to turn off RX FC for jumbo frames
2284         *  for better performance
2285         */
2286        if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2287                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2288        else
2289                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2290}
2291
2292static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2293{
2294        u32 pause_enabled = 0;
2295
2296        if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2297                if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2298                        pause_enabled = 1;
2299
2300                REG_WR(bp, BAR_USTRORM_INTMEM +
2301                           USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2302                       pause_enabled);
2303        }
2304
2305        DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2306           pause_enabled ? "enabled" : "disabled");
2307}
2308
2309int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2310{
2311        int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2312        u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2313
2314        if (!BP_NOMCP(bp)) {
2315                bnx2x_set_requested_fc(bp);
2316                bnx2x_acquire_phy_lock(bp);
2317
2318                if (load_mode == LOAD_DIAG) {
2319                        struct link_params *lp = &bp->link_params;
2320                        lp->loopback_mode = LOOPBACK_XGXS;
2321                        /* do PHY loopback at 10G speed, if possible */
2322                        if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2323                                if (lp->speed_cap_mask[cfx_idx] &
2324                                    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2325                                        lp->req_line_speed[cfx_idx] =
2326                                        SPEED_10000;
2327                                else
2328                                        lp->req_line_speed[cfx_idx] =
2329                                        SPEED_1000;
2330                        }
2331                }
2332
2333                if (load_mode == LOAD_LOOPBACK_EXT) {
2334                        struct link_params *lp = &bp->link_params;
2335                        lp->loopback_mode = LOOPBACK_EXT;
2336                }
2337
2338                rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2339
2340                bnx2x_release_phy_lock(bp);
2341
2342                bnx2x_init_dropless_fc(bp);
2343
2344                bnx2x_calc_fc_adv(bp);
2345
2346                if (bp->link_vars.link_up) {
2347                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2348                        bnx2x_link_report(bp);
2349                }
2350                queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2351                bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2352                return rc;
2353        }
2354        BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2355        return -EINVAL;
2356}
2357
2358void bnx2x_link_set(struct bnx2x *bp)
2359{
2360        if (!BP_NOMCP(bp)) {
2361                bnx2x_acquire_phy_lock(bp);
2362                bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2363                bnx2x_release_phy_lock(bp);
2364
2365                bnx2x_init_dropless_fc(bp);
2366
2367                bnx2x_calc_fc_adv(bp);
2368        } else
2369                BNX2X_ERR("Bootcode is missing - can not set link\n");
2370}
2371
2372static void bnx2x__link_reset(struct bnx2x *bp)
2373{
2374        if (!BP_NOMCP(bp)) {
2375                bnx2x_acquire_phy_lock(bp);
2376                bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2377                bnx2x_release_phy_lock(bp);
2378        } else
2379                BNX2X_ERR("Bootcode is missing - can not reset link\n");
2380}
2381
2382void bnx2x_force_link_reset(struct bnx2x *bp)
2383{
2384        bnx2x_acquire_phy_lock(bp);
2385        bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2386        bnx2x_release_phy_lock(bp);
2387}
2388
2389u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2390{
2391        u8 rc = 0;
2392
2393        if (!BP_NOMCP(bp)) {
2394                bnx2x_acquire_phy_lock(bp);
2395                rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2396                                     is_serdes);
2397                bnx2x_release_phy_lock(bp);
2398        } else
2399                BNX2X_ERR("Bootcode is missing - can not test link\n");
2400
2401        return rc;
2402}
2403
2404/* Calculates the sum of vn_min_rates.
2405   It's needed for further normalizing of the min_rates.
2406   Returns:
2407     sum of vn_min_rates.
2408       or
2409     0 - if all the min_rates are 0.
2410     In the later case fairness algorithm should be deactivated.
2411     If not all min_rates are zero then those that are zeroes will be set to 1.
2412 */
2413static void bnx2x_calc_vn_min(struct bnx2x *bp,
2414                                      struct cmng_init_input *input)
2415{
2416        int all_zero = 1;
2417        int vn;
2418
2419        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2420                u32 vn_cfg = bp->mf_config[vn];
2421                u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2422                                   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2423
2424                /* Skip hidden vns */
2425                if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2426                        vn_min_rate = 0;
2427                /* If min rate is zero - set it to 1 */
2428                else if (!vn_min_rate)
2429                        vn_min_rate = DEF_MIN_RATE;
2430                else
2431                        all_zero = 0;
2432
2433                input->vnic_min_rate[vn] = vn_min_rate;
2434        }
2435
2436        /* if ETS or all min rates are zeros - disable fairness */
2437        if (BNX2X_IS_ETS_ENABLED(bp)) {
2438                input->flags.cmng_enables &=
2439                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2440                DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2441        } else if (all_zero) {
2442                input->flags.cmng_enables &=
2443                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2444                DP(NETIF_MSG_IFUP,
2445                   "All MIN values are zeroes fairness will be disabled\n");
2446        } else
2447                input->flags.cmng_enables |=
2448                                        CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2449}
2450
2451static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2452                                    struct cmng_init_input *input)
2453{
2454        u16 vn_max_rate;
2455        u32 vn_cfg = bp->mf_config[vn];
2456
2457        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2458                vn_max_rate = 0;
2459        else {
2460                u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2461
2462                if (IS_MF_SI(bp)) {
2463                        /* maxCfg in percents of linkspeed */
2464                        vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2465                } else /* SD modes */
2466                        /* maxCfg is absolute in 100Mb units */
2467                        vn_max_rate = maxCfg * 100;
2468        }
2469
2470        DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2471
2472        input->vnic_max_rate[vn] = vn_max_rate;
2473}
2474
2475static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2476{
2477        if (CHIP_REV_IS_SLOW(bp))
2478                return CMNG_FNS_NONE;
2479        if (IS_MF(bp))
2480                return CMNG_FNS_MINMAX;
2481
2482        return CMNG_FNS_NONE;
2483}
2484
2485void bnx2x_read_mf_cfg(struct bnx2x *bp)
2486{
2487        int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2488
2489        if (BP_NOMCP(bp))
2490                return; /* what should be the default value in this case */
2491
2492        /* For 2 port configuration the absolute function number formula
2493         * is:
2494         *      abs_func = 2 * vn + BP_PORT + BP_PATH
2495         *
2496         *      and there are 4 functions per port
2497         *
2498         * For 4 port configuration it is
2499         *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2500         *
2501         *      and there are 2 functions per port
2502         */
2503        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2504                int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2505
2506                if (func >= E1H_FUNC_MAX)
2507                        break;
2508
2509                bp->mf_config[vn] =
2510                        MF_CFG_RD(bp, func_mf_config[func].config);
2511        }
2512        if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2513                DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2514                bp->flags |= MF_FUNC_DIS;
2515        } else {
2516                DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2517                bp->flags &= ~MF_FUNC_DIS;
2518        }
2519}
2520
2521static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2522{
2523        struct cmng_init_input input;
2524        memset(&input, 0, sizeof(struct cmng_init_input));
2525
2526        input.port_rate = bp->link_vars.line_speed;
2527
2528        if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2529                int vn;
2530
2531                /* read mf conf from shmem */
2532                if (read_cfg)
2533                        bnx2x_read_mf_cfg(bp);
2534
2535                /* vn_weight_sum and enable fairness if not 0 */
2536                bnx2x_calc_vn_min(bp, &input);
2537
2538                /* calculate and set min-max rate for each vn */
2539                if (bp->port.pmf)
2540                        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2541                                bnx2x_calc_vn_max(bp, vn, &input);
2542
2543                /* always enable rate shaping and fairness */
2544                input.flags.cmng_enables |=
2545                                        CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2546
2547                bnx2x_init_cmng(&input, &bp->cmng);
2548                return;
2549        }
2550
2551        /* rate shaping and fairness are disabled */
2552        DP(NETIF_MSG_IFUP,
2553           "rate shaping and fairness are disabled\n");
2554}
2555
2556static void storm_memset_cmng(struct bnx2x *bp,
2557                              struct cmng_init *cmng,
2558                              u8 port)
2559{
2560        int vn;
2561        size_t size = sizeof(struct cmng_struct_per_port);
2562
2563        u32 addr = BAR_XSTRORM_INTMEM +
2564                        XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2565
2566        __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2567
2568        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2569                int func = func_by_vn(bp, vn);
2570
2571                addr = BAR_XSTRORM_INTMEM +
2572                       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2573                size = sizeof(struct rate_shaping_vars_per_vn);
2574                __storm_memset_struct(bp, addr, size,
2575                                      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2576
2577                addr = BAR_XSTRORM_INTMEM +
2578                       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2579                size = sizeof(struct fairness_vars_per_vn);
2580                __storm_memset_struct(bp, addr, size,
2581                                      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2582        }
2583}
2584
2585/* init cmng mode in HW according to local configuration */
2586void bnx2x_set_local_cmng(struct bnx2x *bp)
2587{
2588        int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2589
2590        if (cmng_fns != CMNG_FNS_NONE) {
2591                bnx2x_cmng_fns_init(bp, false, cmng_fns);
2592                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2593        } else {
2594                /* rate shaping and fairness are disabled */
2595                DP(NETIF_MSG_IFUP,
2596                   "single function mode without fairness\n");
2597        }
2598}
2599
2600/* This function is called upon link interrupt */
2601static void bnx2x_link_attn(struct bnx2x *bp)
2602{
2603        /* Make sure that we are synced with the current statistics */
2604        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2605
2606        bnx2x_link_update(&bp->link_params, &bp->link_vars);
2607
2608        bnx2x_init_dropless_fc(bp);
2609
2610        if (bp->link_vars.link_up) {
2611
2612                if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2613                        struct host_port_stats *pstats;
2614
2615                        pstats = bnx2x_sp(bp, port_stats);
2616                        /* reset old mac stats */
2617                        memset(&(pstats->mac_stx[0]), 0,
2618                               sizeof(struct mac_stx));
2619                }
2620                if (bp->state == BNX2X_STATE_OPEN)
2621                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2622        }
2623
2624        if (bp->link_vars.link_up && bp->link_vars.line_speed)
2625                bnx2x_set_local_cmng(bp);
2626
2627        __bnx2x_link_report(bp);
2628
2629        if (IS_MF(bp))
2630                bnx2x_link_sync_notify(bp);
2631}
2632
2633void bnx2x__link_status_update(struct bnx2x *bp)
2634{
2635        if (bp->state != BNX2X_STATE_OPEN)
2636                return;
2637
2638        /* read updated dcb configuration */
2639        if (IS_PF(bp)) {
2640                bnx2x_dcbx_pmf_update(bp);
2641                bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2642                if (bp->link_vars.link_up)
2643                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2644                else
2645                        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2646                        /* indicate link status */
2647                bnx2x_link_report(bp);
2648
2649        } else { /* VF */
2650                bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2651                                          SUPPORTED_10baseT_Full |
2652                                          SUPPORTED_100baseT_Half |
2653                                          SUPPORTED_100baseT_Full |
2654                                          SUPPORTED_1000baseT_Full |
2655                                          SUPPORTED_2500baseX_Full |
2656                                          SUPPORTED_10000baseT_Full |
2657                                          SUPPORTED_TP |
2658                                          SUPPORTED_FIBRE |
2659                                          SUPPORTED_Autoneg |
2660                                          SUPPORTED_Pause |
2661                                          SUPPORTED_Asym_Pause);
2662                bp->port.advertising[0] = bp->port.supported[0];
2663
2664                bp->link_params.bp = bp;
2665                bp->link_params.port = BP_PORT(bp);
2666                bp->link_params.req_duplex[0] = DUPLEX_FULL;
2667                bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2668                bp->link_params.req_line_speed[0] = SPEED_10000;
2669                bp->link_params.speed_cap_mask[0] = 0x7f0000;
2670                bp->link_params.switch_cfg = SWITCH_CFG_10G;
2671                bp->link_vars.mac_type = MAC_TYPE_BMAC;
2672                bp->link_vars.line_speed = SPEED_10000;
2673                bp->link_vars.link_status =
2674                        (LINK_STATUS_LINK_UP |
2675                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2676                bp->link_vars.link_up = 1;
2677                bp->link_vars.duplex = DUPLEX_FULL;
2678                bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2679                __bnx2x_link_report(bp);
2680                bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2681        }
2682}
2683
2684static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2685                                  u16 vlan_val, u8 allowed_prio)
2686{
2687        struct bnx2x_func_state_params func_params = {NULL};
2688        struct bnx2x_func_afex_update_params *f_update_params =
2689                &func_params.params.afex_update;
2690
2691        func_params.f_obj = &bp->func_obj;
2692        func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2693
2694        /* no need to wait for RAMROD completion, so don't
2695         * set RAMROD_COMP_WAIT flag
2696         */
2697
2698        f_update_params->vif_id = vifid;
2699        f_update_params->afex_default_vlan = vlan_val;
2700        f_update_params->allowed_priorities = allowed_prio;
2701
2702        /* if ramrod can not be sent, response to MCP immediately */
2703        if (bnx2x_func_state_change(bp, &func_params) < 0)
2704                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2705
2706        return 0;
2707}
2708
2709static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2710                                          u16 vif_index, u8 func_bit_map)
2711{
2712        struct bnx2x_func_state_params func_params = {NULL};
2713        struct bnx2x_func_afex_viflists_params *update_params =
2714                &func_params.params.afex_viflists;
2715        int rc;
2716        u32 drv_msg_code;
2717
2718        /* validate only LIST_SET and LIST_GET are received from switch */
2719        if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2720                BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2721                          cmd_type);
2722
2723        func_params.f_obj = &bp->func_obj;
2724        func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2725
2726        /* set parameters according to cmd_type */
2727        update_params->afex_vif_list_command = cmd_type;
2728        update_params->vif_list_index = vif_index;
2729        update_params->func_bit_map =
2730                (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2731        update_params->func_to_clear = 0;
2732        drv_msg_code =
2733                (cmd_type == VIF_LIST_RULE_GET) ?
2734                DRV_MSG_CODE_AFEX_LISTGET_ACK :
2735                DRV_MSG_CODE_AFEX_LISTSET_ACK;
2736
2737        /* if ramrod can not be sent, respond to MCP immediately for
2738         * SET and GET requests (other are not triggered from MCP)
2739         */
2740        rc = bnx2x_func_state_change(bp, &func_params);
2741        if (rc < 0)
2742                bnx2x_fw_command(bp, drv_msg_code, 0);
2743
2744        return 0;
2745}
2746
2747static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2748{
2749        struct afex_stats afex_stats;
2750        u32 func = BP_ABS_FUNC(bp);
2751        u32 mf_config;
2752        u16 vlan_val;
2753        u32 vlan_prio;
2754        u16 vif_id;
2755        u8 allowed_prio;
2756        u8 vlan_mode;
2757        u32 addr_to_write, vifid, addrs, stats_type, i;
2758
2759        if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2760                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2761                DP(BNX2X_MSG_MCP,
2762                   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2763                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2764        }
2765
2766        if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2767                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2768                addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2769                DP(BNX2X_MSG_MCP,
2770                   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2771                   vifid, addrs);
2772                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2773                                               addrs);
2774        }
2775
2776        if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2777                addr_to_write = SHMEM2_RD(bp,
2778                        afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2779                stats_type = SHMEM2_RD(bp,
2780                        afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2781
2782                DP(BNX2X_MSG_MCP,
2783                   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2784                   addr_to_write);
2785
2786                bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2787
2788                /* write response to scratchpad, for MCP */
2789                for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2790                        REG_WR(bp, addr_to_write + i*sizeof(u32),
2791                               *(((u32 *)(&afex_stats))+i));
2792
2793                /* send ack message to MCP */
2794                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2795        }
2796
2797        if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2798                mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2799                bp->mf_config[BP_VN(bp)] = mf_config;
2800                DP(BNX2X_MSG_MCP,
2801                   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2802                   mf_config);
2803
2804                /* if VIF_SET is "enabled" */
2805                if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2806                        /* set rate limit directly to internal RAM */
2807                        struct cmng_init_input cmng_input;
2808                        struct rate_shaping_vars_per_vn m_rs_vn;
2809                        size_t size = sizeof(struct rate_shaping_vars_per_vn);
2810                        u32 addr = BAR_XSTRORM_INTMEM +
2811                            XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2812
2813                        bp->mf_config[BP_VN(bp)] = mf_config;
2814
2815                        bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2816                        m_rs_vn.vn_counter.rate =
2817                                cmng_input.vnic_max_rate[BP_VN(bp)];
2818                        m_rs_vn.vn_counter.quota =
2819                                (m_rs_vn.vn_counter.rate *
2820                                 RS_PERIODIC_TIMEOUT_USEC) / 8;
2821
2822                        __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2823
2824                        /* read relevant values from mf_cfg struct in shmem */
2825                        vif_id =
2826                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2827                                 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2828                                FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2829                        vlan_val =
2830                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2831                                 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2832                                FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2833                        vlan_prio = (mf_config &
2834                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2835                                    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2836                        vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2837                        vlan_mode =
2838                                (MF_CFG_RD(bp,
2839                                           func_mf_config[func].afex_config) &
2840                                 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2841                                FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2842                        allowed_prio =
2843                                (MF_CFG_RD(bp,
2844                                           func_mf_config[func].afex_config) &
2845                                 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2846                                FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2847
2848                        /* send ramrod to FW, return in case of failure */
2849                        if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2850                                                   allowed_prio))
2851                                return;
2852
2853                        bp->afex_def_vlan_tag = vlan_val;
2854                        bp->afex_vlan_mode = vlan_mode;
2855                } else {
2856                        /* notify link down because BP->flags is disabled */
2857                        bnx2x_link_report(bp);
2858
2859                        /* send INVALID VIF ramrod to FW */
2860                        bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2861
2862                        /* Reset the default afex VLAN */
2863                        bp->afex_def_vlan_tag = -1;
2864                }
2865        }
2866}
2867
2868static void bnx2x_pmf_update(struct bnx2x *bp)
2869{
2870        int port = BP_PORT(bp);
2871        u32 val;
2872
2873        bp->port.pmf = 1;
2874        DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2875
2876        /*
2877         * We need the mb() to ensure the ordering between the writing to
2878         * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2879         */
2880        smp_mb();
2881
2882        /* queue a periodic task */
2883        queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2884
2885        bnx2x_dcbx_pmf_update(bp);
2886
2887        /* enable nig attention */
2888        val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2889        if (bp->common.int_block == INT_BLOCK_HC) {
2890                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2891                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2892        } else if (!CHIP_IS_E1x(bp)) {
2893                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2894                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2895        }
2896
2897        bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2898}
2899
2900/* end of Link */
2901
2902/* slow path */
2903
2904/*
2905 * General service functions
2906 */
2907
2908/* send the MCP a request, block until there is a reply */
2909u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2910{
2911        int mb_idx = BP_FW_MB_IDX(bp);
2912        u32 seq;
2913        u32 rc = 0;
2914        u32 cnt = 1;
2915        u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2916
2917        mutex_lock(&bp->fw_mb_mutex);
2918        seq = ++bp->fw_seq;
2919        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2920        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2921
2922        DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2923                        (command | seq), param);
2924
2925        do {
2926                /* let the FW do it's magic ... */
2927                msleep(delay);
2928
2929                rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2930
2931                /* Give the FW up to 5 second (500*10ms) */
2932        } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2933
2934        DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2935           cnt*delay, rc, seq);
2936
2937        /* is this a reply to our command? */
2938        if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2939                rc &= FW_MSG_CODE_MASK;
2940        else {
2941                /* FW BUG! */
2942                BNX2X_ERR("FW failed to respond!\n");
2943                bnx2x_fw_dump(bp);
2944                rc = 0;
2945        }
2946        mutex_unlock(&bp->fw_mb_mutex);
2947
2948        return rc;
2949}
2950
2951static void storm_memset_func_cfg(struct bnx2x *bp,
2952                                 struct tstorm_eth_function_common_config *tcfg,
2953                                 u16 abs_fid)
2954{
2955        size_t size = sizeof(struct tstorm_eth_function_common_config);
2956
2957        u32 addr = BAR_TSTRORM_INTMEM +
2958                        TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2959
2960        __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2961}
2962
2963void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2964{
2965        if (CHIP_IS_E1x(bp)) {
2966                struct tstorm_eth_function_common_config tcfg = {0};
2967
2968                storm_memset_func_cfg(bp, &tcfg, p->func_id);
2969        }
2970
2971        /* Enable the function in the FW */
2972        storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2973        storm_memset_func_en(bp, p->func_id, 1);
2974
2975        /* spq */
2976        if (p->func_flgs & FUNC_FLG_SPQ) {
2977                storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2978                REG_WR(bp, XSEM_REG_FAST_MEMORY +
2979                       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2980        }
2981}
2982
2983/**
2984 * bnx2x_get_common_flags - Return common flags
2985 *
2986 * @bp          device handle
2987 * @fp          queue handle
2988 * @zero_stats  TRUE if statistics zeroing is needed
2989 *
2990 * Return the flags that are common for the Tx-only and not normal connections.
2991 */
2992static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2993                                            struct bnx2x_fastpath *fp,
2994                                            bool zero_stats)
2995{
2996        unsigned long flags = 0;
2997
2998        /* PF driver will always initialize the Queue to an ACTIVE state */
2999        __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3000
3001        /* tx only connections collect statistics (on the same index as the
3002         * parent connection). The statistics are zeroed when the parent
3003         * connection is initialized.
3004         */
3005
3006        __set_bit(BNX2X_Q_FLG_STATS, &flags);
3007        if (zero_stats)
3008                __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3009
3010        if (bp->flags & TX_SWITCHING)
3011                __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3012
3013        __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3014        __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3015
3016#ifdef BNX2X_STOP_ON_ERROR
3017        __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3018#endif
3019
3020        return flags;
3021}
3022
3023static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3024                                       struct bnx2x_fastpath *fp,
3025                                       bool leading)
3026{
3027        unsigned long flags = 0;
3028
3029        /* calculate other queue flags */
3030        if (IS_MF_SD(bp))
3031                __set_bit(BNX2X_Q_FLG_OV, &flags);
3032
3033        if (IS_FCOE_FP(fp)) {
3034                __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3035                /* For FCoE - force usage of default priority (for afex) */
3036                __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3037        }
3038
3039        if (!fp->disable_tpa) {
3040                __set_bit(BNX2X_Q_FLG_TPA, &flags);
3041                __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3042                if (fp->mode == TPA_MODE_GRO)
3043                        __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3044        }
3045
3046        if (leading) {
3047                __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3048                __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3049        }
3050
3051        /* Always set HW VLAN stripping */
3052        __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3053
3054        /* configure silent vlan removal */
3055        if (IS_MF_AFEX(bp))
3056                __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3057
3058        return flags | bnx2x_get_common_flags(bp, fp, true);
3059}
3060
3061static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3062        struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3063        u8 cos)
3064{
3065        gen_init->stat_id = bnx2x_stats_id(fp);
3066        gen_init->spcl_id = fp->cl_id;
3067
3068        /* Always use mini-jumbo MTU for FCoE L2 ring */
3069        if (IS_FCOE_FP(fp))
3070                gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3071        else
3072                gen_init->mtu = bp->dev->mtu;
3073
3074        gen_init->cos = cos;
3075}
3076
3077static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3078        struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3079        struct bnx2x_rxq_setup_params *rxq_init)
3080{
3081        u8 max_sge = 0;
3082        u16 sge_sz = 0;
3083        u16 tpa_agg_size = 0;
3084
3085        if (!fp->disable_tpa) {
3086                pause->sge_th_lo = SGE_TH_LO(bp);
3087                pause->sge_th_hi = SGE_TH_HI(bp);
3088
3089                /* validate SGE ring has enough to cross high threshold */
3090                WARN_ON(bp->dropless_fc &&
3091                                pause->sge_th_hi + FW_PREFETCH_CNT >
3092                                MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3093
3094                tpa_agg_size = TPA_AGG_SIZE;
3095                max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3096                        SGE_PAGE_SHIFT;
3097                max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3098                          (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3099                sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3100        }
3101
3102        /* pause - not for e1 */
3103        if (!CHIP_IS_E1(bp)) {
3104                pause->bd_th_lo = BD_TH_LO(bp);
3105                pause->bd_th_hi = BD_TH_HI(bp);
3106
3107                pause->rcq_th_lo = RCQ_TH_LO(bp);
3108                pause->rcq_th_hi = RCQ_TH_HI(bp);
3109                /*
3110                 * validate that rings have enough entries to cross
3111                 * high thresholds
3112                 */
3113                WARN_ON(bp->dropless_fc &&
3114                                pause->bd_th_hi + FW_PREFETCH_CNT >
3115                                bp->rx_ring_size);
3116                WARN_ON(bp->dropless_fc &&
3117                                pause->rcq_th_hi + FW_PREFETCH_CNT >
3118                                NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3119
3120                pause->pri_map = 1;
3121        }
3122
3123        /* rxq setup */
3124        rxq_init->dscr_map = fp->rx_desc_mapping;
3125        rxq_init->sge_map = fp->rx_sge_mapping;
3126        rxq_init->rcq_map = fp->rx_comp_mapping;
3127        rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3128
3129        /* This should be a maximum number of data bytes that may be
3130         * placed on the BD (not including paddings).
3131         */
3132        rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3133                           BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3134
3135        rxq_init->cl_qzone_id = fp->cl_qzone_id;
3136        rxq_init->tpa_agg_sz = tpa_agg_size;
3137        rxq_init->sge_buf_sz = sge_sz;
3138        rxq_init->max_sges_pkt = max_sge;
3139        rxq_init->rss_engine_id = BP_FUNC(bp);
3140        rxq_init->mcast_engine_id = BP_FUNC(bp);
3141
3142        /* Maximum number or simultaneous TPA aggregation for this Queue.
3143         *
3144         * For PF Clients it should be the maximum available number.
3145         * VF driver(s) may want to define it to a smaller value.
3146         */
3147        rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3148
3149        rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3150        rxq_init->fw_sb_id = fp->fw_sb_id;
3151
3152        if (IS_FCOE_FP(fp))
3153                rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3154        else
3155                rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3156        /* configure silent vlan removal
3157         * if multi function mode is afex, then mask default vlan
3158         */
3159        if (IS_MF_AFEX(bp)) {
3160                rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3161                rxq_init->silent_removal_mask = VLAN_VID_MASK;
3162        }
3163}
3164
3165static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3166        struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3167        u8 cos)
3168{
3169        txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3170        txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3171        txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3172        txq_init->fw_sb_id = fp->fw_sb_id;
3173
3174        /*
3175         * set the tss leading client id for TX classification ==
3176         * leading RSS client id
3177         */
3178        txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3179
3180        if (IS_FCOE_FP(fp)) {
3181                txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3182                txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3183        }
3184}
3185
3186static void bnx2x_pf_init(struct bnx2x *bp)
3187{
3188        struct bnx2x_func_init_params func_init = {0};
3189        struct event_ring_data eq_data = { {0} };
3190        u16 flags;
3191
3192        if (!CHIP_IS_E1x(bp)) {
3193                /* reset IGU PF statistics: MSIX + ATTN */
3194                /* PF */
3195                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3196                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3197                           (CHIP_MODE_IS_4_PORT(bp) ?
3198                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3199                /* ATTN */
3200                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3201                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3202                           BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3203                           (CHIP_MODE_IS_4_PORT(bp) ?
3204                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3205        }
3206
3207        /* function setup flags */
3208        flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3209
3210        /* This flag is relevant for E1x only.
3211         * E2 doesn't have a TPA configuration in a function level.
3212         */
3213        flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3214
3215        func_init.func_flgs = flags;
3216        func_init.pf_id = BP_FUNC(bp);
3217        func_init.func_id = BP_FUNC(bp);
3218        func_init.spq_map = bp->spq_mapping;
3219        func_init.spq_prod = bp->spq_prod_idx;
3220
3221        bnx2x_func_init(bp, &func_init);
3222
3223        memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3224
3225        /*
3226         * Congestion management values depend on the link rate
3227         * There is no active link so initial link rate is set to 10 Gbps.
3228         * When the link comes up The congestion management values are
3229         * re-calculated according to the actual link rate.
3230         */
3231        bp->link_vars.line_speed = SPEED_10000;
3232        bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3233
3234        /* Only the PMF sets the HW */
3235        if (bp->port.pmf)
3236                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3237
3238        /* init Event Queue - PCI bus guarantees correct endianity*/
3239        eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3240        eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3241        eq_data.producer = bp->eq_prod;
3242        eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3243        eq_data.sb_id = DEF_SB_ID;
3244        storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3245}
3246
3247static void bnx2x_e1h_disable(struct bnx2x *bp)
3248{
3249        int port = BP_PORT(bp);
3250
3251        bnx2x_tx_disable(bp);
3252
3253        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3254}
3255
3256static void bnx2x_e1h_enable(struct bnx2x *bp)
3257{
3258        int port = BP_PORT(bp);
3259
3260        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3261
3262        /* Tx queue should be only re-enabled */
3263        netif_tx_wake_all_queues(bp->dev);
3264
3265        /*
3266         * Should not call netif_carrier_on since it will be called if the link
3267         * is up when checking for link state
3268         */
3269}
3270
3271#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3272
3273static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3274{
3275        struct eth_stats_info *ether_stat =
3276                &bp->slowpath->drv_info_to_mcp.ether_stat;
3277        struct bnx2x_vlan_mac_obj *mac_obj =
3278                &bp->sp_objs->mac_obj;
3279        int i;
3280
3281        strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3282                ETH_STAT_INFO_VERSION_LEN);
3283
3284        /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3285         * mac_local field in ether_stat struct. The base address is offset by 2
3286         * bytes to account for the field being 8 bytes but a mac address is
3287         * only 6 bytes. Likewise, the stride for the get_n_elements function is
3288         * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3289         * allocated by the ether_stat struct, so the macs will land in their
3290         * proper positions.
3291         */
3292        for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3293                memset(ether_stat->mac_local + i, 0,
3294                       sizeof(ether_stat->mac_local[0]));
3295        mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3296                                DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3297                                ether_stat->mac_local + MAC_PAD, MAC_PAD,
3298                                ETH_ALEN);
3299        ether_stat->mtu_size = bp->dev->mtu;
3300        if (bp->dev->features & NETIF_F_RXCSUM)
3301                ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3302        if (bp->dev->features & NETIF_F_TSO)
3303                ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3304        ether_stat->feature_flags |= bp->common.boot_mode;
3305
3306        ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3307
3308        ether_stat->txq_size = bp->tx_ring_size;
3309        ether_stat->rxq_size = bp->rx_ring_size;
3310
3311#ifdef CONFIG_BNX2X_SRIOV
3312        ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3313#endif
3314}
3315
3316static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3317{
3318        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3319        struct fcoe_stats_info *fcoe_stat =
3320                &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3321
3322        if (!CNIC_LOADED(bp))
3323                return;
3324
3325        memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3326
3327        fcoe_stat->qos_priority =
3328                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3329
3330        /* insert FCoE stats from ramrod response */
3331        if (!NO_FCOE(bp)) {
3332                struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3333                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3334                        tstorm_queue_statistics;
3335
3336                struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3337                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3338                        xstorm_queue_statistics;
3339
3340                struct fcoe_statistics_params *fw_fcoe_stat =
3341                        &bp->fw_stats_data->fcoe;
3342
3343                ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3344                          fcoe_stat->rx_bytes_lo,
3345                          fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3346
3347                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3348                          fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3349                          fcoe_stat->rx_bytes_lo,
3350                          fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3351
3352                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3353                          fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3354                          fcoe_stat->rx_bytes_lo,
3355                          fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3356
3357                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3358                          fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3359                          fcoe_stat->rx_bytes_lo,
3360                          fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3361
3362                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3363                          fcoe_stat->rx_frames_lo,
3364                          fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3365
3366                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3367                          fcoe_stat->rx_frames_lo,
3368                          fcoe_q_tstorm_stats->rcv_ucast_pkts);
3369
3370                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3371                          fcoe_stat->rx_frames_lo,
3372                          fcoe_q_tstorm_stats->rcv_bcast_pkts);
3373
3374                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3375                          fcoe_stat->rx_frames_lo,
3376                          fcoe_q_tstorm_stats->rcv_mcast_pkts);
3377
3378                ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3379                          fcoe_stat->tx_bytes_lo,
3380                          fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3381
3382                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3383                          fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3384                          fcoe_stat->tx_bytes_lo,
3385                          fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3386
3387                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3388                          fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3389                          fcoe_stat->tx_bytes_lo,
3390                          fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3391
3392                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3393                          fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3394                          fcoe_stat->tx_bytes_lo,
3395                          fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3396
3397                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3398                          fcoe_stat->tx_frames_lo,
3399                          fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3400
3401                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3402                          fcoe_stat->tx_frames_lo,
3403                          fcoe_q_xstorm_stats->ucast_pkts_sent);
3404
3405                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3406                          fcoe_stat->tx_frames_lo,
3407                          fcoe_q_xstorm_stats->bcast_pkts_sent);
3408
3409                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3410                          fcoe_stat->tx_frames_lo,
3411                          fcoe_q_xstorm_stats->mcast_pkts_sent);
3412        }
3413
3414        /* ask L5 driver to add data to the struct */
3415        bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3416}
3417
3418static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3419{
3420        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3421        struct iscsi_stats_info *iscsi_stat =
3422                &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3423
3424        if (!CNIC_LOADED(bp))
3425                return;
3426
3427        memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3428               ETH_ALEN);
3429
3430        iscsi_stat->qos_priority =
3431                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3432
3433        /* ask L5 driver to add data to the struct */
3434        bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3435}
3436
3437/* called due to MCP event (on pmf):
3438 *      reread new bandwidth configuration
3439 *      configure FW
3440 *      notify others function about the change
3441 */
3442static void bnx2x_config_mf_bw(struct bnx2x *bp)
3443{
3444        if (bp->link_vars.link_up) {
3445                bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3446                bnx2x_link_sync_notify(bp);
3447        }
3448        storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3449}
3450
3451static void bnx2x_set_mf_bw(struct bnx2x *bp)
3452{
3453        bnx2x_config_mf_bw(bp);
3454        bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3455}
3456
3457static void bnx2x_handle_eee_event(struct bnx2x *bp)
3458{
3459        DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3460        bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3461}
3462
3463static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3464{
3465        enum drv_info_opcode op_code;
3466        u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3467
3468        /* if drv_info version supported by MFW doesn't match - send NACK */
3469        if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3470                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3471                return;
3472        }
3473
3474        op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3475                  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3476
3477        memset(&bp->slowpath->drv_info_to_mcp, 0,
3478               sizeof(union drv_info_to_mcp));
3479
3480        switch (op_code) {
3481        case ETH_STATS_OPCODE:
3482                bnx2x_drv_info_ether_stat(bp);
3483                break;
3484        case FCOE_STATS_OPCODE:
3485                bnx2x_drv_info_fcoe_stat(bp);
3486                break;
3487        case ISCSI_STATS_OPCODE:
3488                bnx2x_drv_info_iscsi_stat(bp);
3489                break;
3490        default:
3491                /* if op code isn't supported - send NACK */
3492                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3493                return;
3494        }
3495
3496        /* if we got drv_info attn from MFW then these fields are defined in
3497         * shmem2 for sure
3498         */
3499        SHMEM2_WR(bp, drv_info_host_addr_lo,
3500                U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3501        SHMEM2_WR(bp, drv_info_host_addr_hi,
3502                U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3503
3504        bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3505}
3506
3507static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3508{
3509        DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3510
3511        if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3512
3513                /*
3514                 * This is the only place besides the function initialization
3515                 * where the bp->flags can change so it is done without any
3516                 * locks
3517                 */
3518                if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3519                        DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3520                        bp->flags |= MF_FUNC_DIS;
3521
3522                        bnx2x_e1h_disable(bp);
3523                } else {
3524                        DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3525                        bp->flags &= ~MF_FUNC_DIS;
3526
3527                        bnx2x_e1h_enable(bp);
3528                }
3529                dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3530        }
3531        if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3532                bnx2x_config_mf_bw(bp);
3533                dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3534        }
3535
3536        /* Report results to MCP */
3537        if (dcc_event)
3538                bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3539        else
3540                bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3541}
3542
3543/* must be called under the spq lock */
3544static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3545{
3546        struct eth_spe *next_spe = bp->spq_prod_bd;
3547
3548        if (bp->spq_prod_bd == bp->spq_last_bd) {
3549                bp->spq_prod_bd = bp->spq;
3550                bp->spq_prod_idx = 0;
3551                DP(BNX2X_MSG_SP, "end of spq\n");
3552        } else {
3553                bp->spq_prod_bd++;
3554                bp->spq_prod_idx++;
3555        }
3556        return next_spe;
3557}
3558
3559/* must be called under the spq lock */
3560static void bnx2x_sp_prod_update(struct bnx2x *bp)
3561{
3562        int func = BP_FUNC(bp);
3563
3564        /*
3565         * Make sure that BD data is updated before writing the producer:
3566         * BD data is written to the memory, the producer is read from the
3567         * memory, thus we need a full memory barrier to ensure the ordering.
3568         */
3569        mb();
3570
3571        REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3572                 bp->spq_prod_idx);
3573        mmiowb();
3574}
3575
3576/**
3577 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3578 *
3579 * @cmd:        command to check
3580 * @cmd_type:   command type
3581 */
3582static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3583{
3584        if ((cmd_type == NONE_CONNECTION_TYPE) ||
3585            (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3586            (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3587            (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3588            (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3589            (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3590            (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3591                return true;
3592        else
3593                return false;
3594}
3595
3596/**
3597 * bnx2x_sp_post - place a single command on an SP ring
3598 *
3599 * @bp:         driver handle
3600 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3601 * @cid:        SW CID the command is related to
3602 * @data_hi:    command private data address (high 32 bits)
3603 * @data_lo:    command private data address (low 32 bits)
3604 * @cmd_type:   command type (e.g. NONE, ETH)
3605 *
3606 * SP data is handled as if it's always an address pair, thus data fields are
3607 * not swapped to little endian in upper functions. Instead this function swaps
3608 * data as if it's two u32 fields.
3609 */
3610int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3611                  u32 data_hi, u32 data_lo, int cmd_type)
3612{
3613        struct eth_spe *spe;
3614        u16 type;
3615        bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3616
3617#ifdef BNX2X_STOP_ON_ERROR
3618        if (unlikely(bp->panic)) {
3619                BNX2X_ERR("Can't post SP when there is panic\n");
3620                return -EIO;
3621        }
3622#endif
3623
3624        spin_lock_bh(&bp->spq_lock);
3625
3626        if (common) {
3627                if (!atomic_read(&bp->eq_spq_left)) {
3628                        BNX2X_ERR("BUG! EQ ring full!\n");
3629                        spin_unlock_bh(&bp->spq_lock);
3630                        bnx2x_panic();
3631                        return -EBUSY;
3632                }
3633        } else if (!atomic_read(&bp->cq_spq_left)) {
3634                        BNX2X_ERR("BUG! SPQ ring full!\n");
3635                        spin_unlock_bh(&bp->spq_lock);
3636                        bnx2x_panic();
3637                        return -EBUSY;
3638        }
3639
3640        spe = bnx2x_sp_get_next(bp);
3641
3642        /* CID needs port number to be encoded int it */
3643        spe->hdr.conn_and_cmd_data =
3644                        cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3645                                    HW_CID(bp, cid));
3646
3647        type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3648
3649        type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3650                 SPE_HDR_FUNCTION_ID);
3651
3652        spe->hdr.type = cpu_to_le16(type);
3653
3654        spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3655        spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3656
3657        /*
3658         * It's ok if the actual decrement is issued towards the memory
3659         * somewhere between the spin_lock and spin_unlock. Thus no
3660         * more explicit memory barrier is needed.
3661         */
3662        if (common)
3663                atomic_dec(&bp->eq_spq_left);
3664        else
3665                atomic_dec(&bp->cq_spq_left);
3666
3667        DP(BNX2X_MSG_SP,
3668           "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3669           bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3670           (u32)(U64_LO(bp->spq_mapping) +
3671           (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3672           HW_CID(bp, cid), data_hi, data_lo, type,
3673           atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3674
3675        bnx2x_sp_prod_update(bp);
3676        spin_unlock_bh(&bp->spq_lock);
3677        return 0;
3678}
3679
3680/* acquire split MCP access lock register */
3681static int bnx2x_acquire_alr(struct bnx2x *bp)
3682{
3683        u32 j, val;
3684        int rc = 0;
3685
3686        might_sleep();
3687        for (j = 0; j < 1000; j++) {
3688                REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3689                val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3690                if (val & MCPR_ACCESS_LOCK_LOCK)
3691                        break;
3692
3693                usleep_range(5000, 10000);
3694        }
3695        if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3696                BNX2X_ERR("Cannot acquire MCP access lock register\n");
3697                rc = -EBUSY;
3698        }
3699
3700        return rc;
3701}
3702
3703/* release split MCP access lock register */
3704static void bnx2x_release_alr(struct bnx2x *bp)
3705{
3706        REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3707}
3708
3709#define BNX2X_DEF_SB_ATT_IDX    0x0001
3710#define BNX2X_DEF_SB_IDX        0x0002
3711
3712static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3713{
3714        struct host_sp_status_block *def_sb = bp->def_status_blk;
3715        u16 rc = 0;
3716
3717        barrier(); /* status block is written to by the chip */
3718        if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3719                bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3720                rc |= BNX2X_DEF_SB_ATT_IDX;
3721        }
3722
3723        if (bp->def_idx != def_sb->sp_sb.running_index) {
3724                bp->def_idx = def_sb->sp_sb.running_index;
3725                rc |= BNX2X_DEF_SB_IDX;
3726        }
3727
3728        /* Do not reorder: indices reading should complete before handling */
3729        barrier();
3730        return rc;
3731}
3732
3733/*
3734 * slow path service functions
3735 */
3736
3737static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3738{
3739        int port = BP_PORT(bp);
3740        u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3741                              MISC_REG_AEU_MASK_ATTN_FUNC_0;
3742        u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3743                                       NIG_REG_MASK_INTERRUPT_PORT0;
3744        u32 aeu_mask;
3745        u32 nig_mask = 0;
3746        u32 reg_addr;
3747
3748        if (bp->attn_state & asserted)
3749                BNX2X_ERR("IGU ERROR\n");
3750
3751        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3752        aeu_mask = REG_RD(bp, aeu_addr);
3753
3754        DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3755           aeu_mask, asserted);
3756        aeu_mask &= ~(asserted & 0x3ff);
3757        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3758
3759        REG_WR(bp, aeu_addr, aeu_mask);
3760        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3761
3762        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3763        bp->attn_state |= asserted;
3764        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3765
3766        if (asserted & ATTN_HARD_WIRED_MASK) {
3767                if (asserted & ATTN_NIG_FOR_FUNC) {
3768
3769                        bnx2x_acquire_phy_lock(bp);
3770
3771                        /* save nig interrupt mask */
3772                        nig_mask = REG_RD(bp, nig_int_mask_addr);
3773
3774                        /* If nig_mask is not set, no need to call the update
3775                         * function.
3776                         */
3777                        if (nig_mask) {
3778                                REG_WR(bp, nig_int_mask_addr, 0);
3779
3780                                bnx2x_link_attn(bp);
3781                        }
3782
3783                        /* handle unicore attn? */
3784                }
3785                if (asserted & ATTN_SW_TIMER_4_FUNC)
3786                        DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3787
3788                if (asserted & GPIO_2_FUNC)
3789                        DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3790
3791                if (asserted & GPIO_3_FUNC)
3792                        DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3793
3794                if (asserted & GPIO_4_FUNC)
3795                        DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3796
3797                if (port == 0) {
3798                        if (asserted & ATTN_GENERAL_ATTN_1) {
3799                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3800                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3801                        }
3802                        if (asserted & ATTN_GENERAL_ATTN_2) {
3803                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3804                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3805                        }
3806                        if (asserted & ATTN_GENERAL_ATTN_3) {
3807                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3808                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3809                        }
3810                } else {
3811                        if (asserted & ATTN_GENERAL_ATTN_4) {
3812                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3813                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3814                        }
3815                        if (asserted & ATTN_GENERAL_ATTN_5) {
3816                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3817                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3818                        }
3819                        if (asserted & ATTN_GENERAL_ATTN_6) {
3820                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3821                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3822                        }
3823                }
3824
3825        } /* if hardwired */
3826
3827        if (bp->common.int_block == INT_BLOCK_HC)
3828                reg_addr = (HC_REG_COMMAND_REG + port*32 +
3829                            COMMAND_REG_ATTN_BITS_SET);
3830        else
3831                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3832
3833        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3834           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3835        REG_WR(bp, reg_addr, asserted);
3836
3837        /* now set back the mask */
3838        if (asserted & ATTN_NIG_FOR_FUNC) {
3839                /* Verify that IGU ack through BAR was written before restoring
3840                 * NIG mask. This loop should exit after 2-3 iterations max.
3841                 */
3842                if (bp->common.int_block != INT_BLOCK_HC) {
3843                        u32 cnt = 0, igu_acked;
3844                        do {
3845                                igu_acked = REG_RD(bp,
3846                                                   IGU_REG_ATTENTION_ACK_BITS);
3847                        } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3848                                 (++cnt < MAX_IGU_ATTN_ACK_TO));
3849                        if (!igu_acked)
3850                                DP(NETIF_MSG_HW,
3851                                   "Failed to verify IGU ack on time\n");
3852                        barrier();
3853                }
3854                REG_WR(bp, nig_int_mask_addr, nig_mask);
3855                bnx2x_release_phy_lock(bp);
3856        }
3857}
3858
3859static void bnx2x_fan_failure(struct bnx2x *bp)
3860{
3861        int port = BP_PORT(bp);
3862        u32 ext_phy_config;
3863        /* mark the failure */
3864        ext_phy_config =
3865                SHMEM_RD(bp,
3866                         dev_info.port_hw_config[port].external_phy_config);
3867
3868        ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3869        ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3870        SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3871                 ext_phy_config);
3872
3873        /* log the failure */
3874        netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3875                            "Please contact OEM Support for assistance\n");
3876
3877        /* Schedule device reset (unload)
3878         * This is due to some boards consuming sufficient power when driver is
3879         * up to overheat if fan fails.
3880         */
3881        smp_mb__before_clear_bit();
3882        set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3883        smp_mb__after_clear_bit();
3884        schedule_delayed_work(&bp->sp_rtnl_task, 0);
3885}
3886
3887static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3888{
3889        int port = BP_PORT(bp);
3890        int reg_offset;
3891        u32 val;
3892
3893        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3894                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3895
3896        if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3897
3898                val = REG_RD(bp, reg_offset);
3899                val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3900                REG_WR(bp, reg_offset, val);
3901
3902                BNX2X_ERR("SPIO5 hw attention\n");
3903
3904                /* Fan failure attention */
3905                bnx2x_hw_reset_phy(&bp->link_params);
3906                bnx2x_fan_failure(bp);
3907        }
3908
3909        if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3910                bnx2x_acquire_phy_lock(bp);
3911                bnx2x_handle_module_detect_int(&bp->link_params);
3912                bnx2x_release_phy_lock(bp);
3913        }
3914
3915        if (attn & HW_INTERRUT_ASSERT_SET_0) {
3916
3917                val = REG_RD(bp, reg_offset);
3918                val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3919                REG_WR(bp, reg_offset, val);
3920
3921                BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3922                          (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3923                bnx2x_panic();
3924        }
3925}
3926
3927static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3928{
3929        u32 val;
3930
3931        if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3932
3933                val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3934                BNX2X_ERR("DB hw attention 0x%x\n", val);
3935                /* DORQ discard attention */
3936                if (val & 0x2)
3937                        BNX2X_ERR("FATAL error from DORQ\n");
3938        }
3939
3940        if (attn & HW_INTERRUT_ASSERT_SET_1) {
3941
3942                int port = BP_PORT(bp);
3943                int reg_offset;
3944
3945                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3946                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3947
3948                val = REG_RD(bp, reg_offset);
3949                val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3950                REG_WR(bp, reg_offset, val);
3951
3952                BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3953                          (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3954                bnx2x_panic();
3955        }
3956}
3957
3958static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3959{
3960        u32 val;
3961
3962        if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3963
3964                val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3965                BNX2X_ERR("CFC hw attention 0x%x\n", val);
3966                /* CFC error attention */
3967                if (val & 0x2)
3968                        BNX2X_ERR("FATAL error from CFC\n");
3969        }
3970
3971        if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3972                val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3973                BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3974                /* RQ_USDMDP_FIFO_OVERFLOW */
3975                if (val & 0x18000)
3976                        BNX2X_ERR("FATAL error from PXP\n");
3977
3978                if (!CHIP_IS_E1x(bp)) {
3979                        val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3980                        BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3981                }
3982        }
3983
3984        if (attn & HW_INTERRUT_ASSERT_SET_2) {
3985
3986                int port = BP_PORT(bp);
3987                int reg_offset;
3988
3989                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3990                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3991
3992                val = REG_RD(bp, reg_offset);
3993                val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3994                REG_WR(bp, reg_offset, val);
3995
3996                BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3997                          (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3998                bnx2x_panic();
3999        }
4000}
4001
4002static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4003{
4004        u32 val;
4005
4006        if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4007
4008                if (attn & BNX2X_PMF_LINK_ASSERT) {
4009                        int func = BP_FUNC(bp);
4010
4011                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4012                        bnx2x_read_mf_cfg(bp);
4013                        bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4014                                        func_mf_config[BP_ABS_FUNC(bp)].config);
4015                        val = SHMEM_RD(bp,
4016                                       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4017                        if (val & DRV_STATUS_DCC_EVENT_MASK)
4018                                bnx2x_dcc_event(bp,
4019                                            (val & DRV_STATUS_DCC_EVENT_MASK));
4020
4021                        if (val & DRV_STATUS_SET_MF_BW)
4022                                bnx2x_set_mf_bw(bp);
4023
4024                        if (val & DRV_STATUS_DRV_INFO_REQ)
4025                                bnx2x_handle_drv_info_req(bp);
4026
4027                        if (val & DRV_STATUS_VF_DISABLED)
4028                                bnx2x_vf_handle_flr_event(bp);
4029
4030                        if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4031                                bnx2x_pmf_update(bp);
4032
4033                        if (bp->port.pmf &&
4034                            (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4035                                bp->dcbx_enabled > 0)
4036                                /* start dcbx state machine */
4037                                bnx2x_dcbx_set_params(bp,
4038                                        BNX2X_DCBX_STATE_NEG_RECEIVED);
4039                        if (val & DRV_STATUS_AFEX_EVENT_MASK)
4040                                bnx2x_handle_afex_cmd(bp,
4041                                        val & DRV_STATUS_AFEX_EVENT_MASK);
4042                        if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4043                                bnx2x_handle_eee_event(bp);
4044                        if (bp->link_vars.periodic_flags &
4045                            PERIODIC_FLAGS_LINK_EVENT) {
4046                                /*  sync with link */
4047                                bnx2x_acquire_phy_lock(bp);
4048                                bp->link_vars.periodic_flags &=
4049                                        ~PERIODIC_FLAGS_LINK_EVENT;
4050                                bnx2x_release_phy_lock(bp);
4051                                if (IS_MF(bp))
4052                                        bnx2x_link_sync_notify(bp);
4053                                bnx2x_link_report(bp);
4054                        }
4055                        /* Always call it here: bnx2x_link_report() will
4056                         * prevent the link indication duplication.
4057                         */
4058                        bnx2x__link_status_update(bp);
4059                } else if (attn & BNX2X_MC_ASSERT_BITS) {
4060
4061                        BNX2X_ERR("MC assert!\n");
4062                        bnx2x_mc_assert(bp);
4063                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4064                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4065                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4066                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4067                        bnx2x_panic();
4068
4069                } else if (attn & BNX2X_MCP_ASSERT) {
4070
4071                        BNX2X_ERR("MCP assert!\n");
4072                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4073                        bnx2x_fw_dump(bp);
4074
4075                } else
4076                        BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4077        }
4078
4079        if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4080                BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4081                if (attn & BNX2X_GRC_TIMEOUT) {
4082                        val = CHIP_IS_E1(bp) ? 0 :
4083                                        REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4084                        BNX2X_ERR("GRC time-out 0x%08x\n", val);
4085                }
4086                if (attn & BNX2X_GRC_RSV) {
4087                        val = CHIP_IS_E1(bp) ? 0 :
4088                                        REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4089                        BNX2X_ERR("GRC reserved 0x%08x\n", val);
4090                }
4091                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4092        }
4093}
4094
4095/*
4096 * Bits map:
4097 * 0-7   - Engine0 load counter.
4098 * 8-15  - Engine1 load counter.
4099 * 16    - Engine0 RESET_IN_PROGRESS bit.
4100 * 17    - Engine1 RESET_IN_PROGRESS bit.
4101 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4102 *         on the engine
4103 * 19    - Engine1 ONE_IS_LOADED.
4104 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4105 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4106 *         just the one belonging to its engine).
4107 *
4108 */
4109#define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4110
4111#define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4112#define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4113#define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4114#define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4115#define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4116#define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4117#define BNX2X_GLOBAL_RESET_BIT          0x00040000
4118
4119/*
4120 * Set the GLOBAL_RESET bit.
4121 *
4122 * Should be run under rtnl lock
4123 */
4124void bnx2x_set_reset_global(struct bnx2x *bp)
4125{
4126        u32 val;
4127        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4128        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4129        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4130        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4131}
4132
4133/*
4134 * Clear the GLOBAL_RESET bit.
4135 *
4136 * Should be run under rtnl lock
4137 */
4138static void bnx2x_clear_reset_global(struct bnx2x *bp)
4139{
4140        u32 val;
4141        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4142        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4143        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4144        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4145}
4146
4147/*
4148 * Checks the GLOBAL_RESET bit.
4149 *
4150 * should be run under rtnl lock
4151 */
4152static bool bnx2x_reset_is_global(struct bnx2x *bp)
4153{
4154        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4155
4156        DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4157        return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4158}
4159
4160/*
4161 * Clear RESET_IN_PROGRESS bit for the current engine.
4162 *
4163 * Should be run under rtnl lock
4164 */
4165static void bnx2x_set_reset_done(struct bnx2x *bp)
4166{
4167        u32 val;
4168        u32 bit = BP_PATH(bp) ?
4169                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4170        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4171        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4172
4173        /* Clear the bit */
4174        val &= ~bit;
4175        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4176
4177        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4178}
4179
4180/*
4181 * Set RESET_IN_PROGRESS for the current engine.
4182 *
4183 * should be run under rtnl lock
4184 */
4185void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4186{
4187        u32 val;
4188        u32 bit = BP_PATH(bp) ?
4189                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4190        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4191        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4192
4193        /* Set the bit */
4194        val |= bit;
4195        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4196        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4197}
4198
4199/*
4200 * Checks the RESET_IN_PROGRESS bit for the given engine.
4201 * should be run under rtnl lock
4202 */
4203bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4204{
4205        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4206        u32 bit = engine ?
4207                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4208
4209        /* return false if bit is set */
4210        return (val & bit) ? false : true;
4211}
4212
4213/*
4214 * set pf load for the current pf.
4215 *
4216 * should be run under rtnl lock
4217 */
4218void bnx2x_set_pf_load(struct bnx2x *bp)
4219{
4220        u32 val1, val;
4221        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4222                             BNX2X_PATH0_LOAD_CNT_MASK;
4223        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4224                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4225
4226        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4227        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4228
4229        DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4230
4231        /* get the current counter value */
4232        val1 = (val & mask) >> shift;
4233
4234        /* set bit of that PF */
4235        val1 |= (1 << bp->pf_num);
4236
4237        /* clear the old value */
4238        val &= ~mask;
4239
4240        /* set the new one */
4241        val |= ((val1 << shift) & mask);
4242
4243        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4244        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4245}
4246
4247/**
4248 * bnx2x_clear_pf_load - clear pf load mark
4249 *
4250 * @bp:         driver handle
4251 *
4252 * Should be run under rtnl lock.
4253 * Decrements the load counter for the current engine. Returns
4254 * whether other functions are still loaded
4255 */
4256bool bnx2x_clear_pf_load(struct bnx2x *bp)
4257{
4258        u32 val1, val;
4259        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4260                             BNX2X_PATH0_LOAD_CNT_MASK;
4261        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4262                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4263
4264        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4265        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4266        DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4267
4268        /* get the current counter value */
4269        val1 = (val & mask) >> shift;
4270
4271        /* clear bit of that PF */
4272        val1 &= ~(1 << bp->pf_num);
4273
4274        /* clear the old value */
4275        val &= ~mask;
4276
4277        /* set the new one */
4278        val |= ((val1 << shift) & mask);
4279
4280        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4281        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4282        return val1 != 0;
4283}
4284
4285/*
4286 * Read the load status for the current engine.
4287 *
4288 * should be run under rtnl lock
4289 */
4290static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4291{
4292        u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4293                             BNX2X_PATH0_LOAD_CNT_MASK);
4294        u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4295                             BNX2X_PATH0_LOAD_CNT_SHIFT);
4296        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4297
4298        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4299
4300        val = (val & mask) >> shift;
4301
4302        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4303           engine, val);
4304
4305        return val != 0;
4306}
4307
4308static void _print_parity(struct bnx2x *bp, u32 reg)
4309{
4310        pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4311}
4312
4313static void _print_next_block(int idx, const char *blk)
4314{
4315        pr_cont("%s%s", idx ? ", " : "", blk);
4316}
4317
4318static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4319                                            int *par_num, bool print)
4320{
4321        u32 cur_bit;
4322        bool res;
4323        int i;
4324
4325        res = false;
4326
4327        for (i = 0; sig; i++) {
4328                cur_bit = (0x1UL << i);
4329                if (sig & cur_bit) {
4330                        res |= true; /* Each bit is real error! */
4331
4332                        if (print) {
4333                                switch (cur_bit) {
4334                                case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4335                                        _print_next_block((*par_num)++, "BRB");
4336                                        _print_parity(bp,
4337                                                      BRB1_REG_BRB1_PRTY_STS);
4338                                        break;
4339                                case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4340                                        _print_next_block((*par_num)++,
4341                                                          "PARSER");
4342                                        _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4343                                        break;
4344                                case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4345                                        _print_next_block((*par_num)++, "TSDM");
4346                                        _print_parity(bp,
4347                                                      TSDM_REG_TSDM_PRTY_STS);
4348                                        break;
4349                                case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4350                                        _print_next_block((*par_num)++,
4351                                                          "SEARCHER");
4352                                        _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4353                                        break;
4354                                case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4355                                        _print_next_block((*par_num)++, "TCM");
4356                                        _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4357                                        break;
4358                                case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4359                                        _print_next_block((*par_num)++,
4360                                                          "TSEMI");
4361                                        _print_parity(bp,
4362                                                      TSEM_REG_TSEM_PRTY_STS_0);
4363                                        _print_parity(bp,
4364                                                      TSEM_REG_TSEM_PRTY_STS_1);
4365                                        break;
4366                                case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4367                                        _print_next_block((*par_num)++, "XPB");
4368                                        _print_parity(bp, GRCBASE_XPB +
4369                                                          PB_REG_PB_PRTY_STS);
4370                                        break;
4371                                }
4372                        }
4373
4374                        /* Clear the bit */
4375                        sig &= ~cur_bit;
4376                }
4377        }
4378
4379        return res;
4380}
4381
4382static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4383                                            int *par_num, bool *global,
4384                                            bool print)
4385{
4386        u32 cur_bit;
4387        bool res;
4388        int i;
4389
4390        res = false;
4391
4392        for (i = 0; sig; i++) {
4393                cur_bit = (0x1UL << i);
4394                if (sig & cur_bit) {
4395                        res |= true; /* Each bit is real error! */
4396                        switch (cur_bit) {
4397                        case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4398                                if (print) {
4399                                        _print_next_block((*par_num)++, "PBF");
4400                                        _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4401                                }
4402                                break;
4403                        case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4404                                if (print) {
4405                                        _print_next_block((*par_num)++, "QM");
4406                                        _print_parity(bp, QM_REG_QM_PRTY_STS);
4407                                }
4408                                break;
4409                        case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4410                                if (print) {
4411                                        _print_next_block((*par_num)++, "TM");
4412                                        _print_parity(bp, TM_REG_TM_PRTY_STS);
4413                                }
4414                                break;
4415                        case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4416                                if (print) {
4417                                        _print_next_block((*par_num)++, "XSDM");
4418                                        _print_parity(bp,
4419                                                      XSDM_REG_XSDM_PRTY_STS);
4420                                }
4421                                break;
4422                        case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4423                                if (print) {
4424                                        _print_next_block((*par_num)++, "XCM");
4425                                        _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4426                                }
4427                                break;
4428                        case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4429                                if (print) {
4430                                        _print_next_block((*par_num)++,
4431                                                          "XSEMI");
4432                                        _print_parity(bp,
4433                                                      XSEM_REG_XSEM_PRTY_STS_0);
4434                                        _print_parity(bp,
4435                                                      XSEM_REG_XSEM_PRTY_STS_1);
4436                                }
4437                                break;
4438                        case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4439                                if (print) {
4440                                        _print_next_block((*par_num)++,
4441                                                          "DOORBELLQ");
4442                                        _print_parity(bp,
4443                                                      DORQ_REG_DORQ_PRTY_STS);
4444                                }
4445                                break;
4446                        case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4447                                if (print) {
4448                                        _print_next_block((*par_num)++, "NIG");
4449                                        if (CHIP_IS_E1x(bp)) {
4450                                                _print_parity(bp,
4451                                                        NIG_REG_NIG_PRTY_STS);
4452                                        } else {
4453                                                _print_parity(bp,
4454                                                        NIG_REG_NIG_PRTY_STS_0);
4455                                                _print_parity(bp,
4456                                                        NIG_REG_NIG_PRTY_STS_1);
4457                                        }
4458                                }
4459                                break;
4460                        case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4461                                if (print)
4462                                        _print_next_block((*par_num)++,
4463                                                          "VAUX PCI CORE");
4464                                *global = true;
4465                                break;
4466                        case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4467                                if (print) {
4468                                        _print_next_block((*par_num)++,
4469                                                          "DEBUG");
4470                                        _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4471                                }
4472                                break;
4473                        case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4474                                if (print) {
4475                                        _print_next_block((*par_num)++, "USDM");
4476                                        _print_parity(bp,
4477                                                      USDM_REG_USDM_PRTY_STS);
4478                                }
4479                                break;
4480                        case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4481                                if (print) {
4482                                        _print_next_block((*par_num)++, "UCM");
4483                                        _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4484                                }
4485                                break;
4486                        case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4487                                if (print) {
4488                                        _print_next_block((*par_num)++,
4489                                                          "USEMI");
4490                                        _print_parity(bp,
4491                                                      USEM_REG_USEM_PRTY_STS_0);
4492                                        _print_parity(bp,
4493                                                      USEM_REG_USEM_PRTY_STS_1);
4494                                }
4495                                break;
4496                        case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4497                                if (print) {
4498                                        _print_next_block((*par_num)++, "UPB");
4499                                        _print_parity(bp, GRCBASE_UPB +
4500                                                          PB_REG_PB_PRTY_STS);
4501                                }
4502                                break;
4503                        case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4504                                if (print) {
4505                                        _print_next_block((*par_num)++, "CSDM");
4506                                        _print_parity(bp,
4507                                                      CSDM_REG_CSDM_PRTY_STS);
4508                                }
4509                                break;
4510                        case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4511                                if (print) {
4512                                        _print_next_block((*par_num)++, "CCM");
4513                                        _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4514                                }
4515                                break;
4516                        }
4517
4518                        /* Clear the bit */
4519                        sig &= ~cur_bit;
4520                }
4521        }
4522
4523        return res;
4524}
4525
4526static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4527                                            int *par_num, bool print)
4528{
4529        u32 cur_bit;
4530        bool res;
4531        int i;
4532
4533        res = false;
4534
4535        for (i = 0; sig; i++) {
4536                cur_bit = (0x1UL << i);
4537                if (sig & cur_bit) {
4538                        res |= true; /* Each bit is real error! */
4539                        if (print) {
4540                                switch (cur_bit) {
4541                                case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4542                                        _print_next_block((*par_num)++,
4543                                                          "CSEMI");
4544                                        _print_parity(bp,
4545                                                      CSEM_REG_CSEM_PRTY_STS_0);
4546                                        _print_parity(bp,
4547                                                      CSEM_REG_CSEM_PRTY_STS_1);
4548                                        break;
4549                                case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4550                                        _print_next_block((*par_num)++, "PXP");
4551                                        _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4552                                        _print_parity(bp,
4553                                                      PXP2_REG_PXP2_PRTY_STS_0);
4554                                        _print_parity(bp,
4555                                                      PXP2_REG_PXP2_PRTY_STS_1);
4556                                        break;
4557                                case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4558                                        _print_next_block((*par_num)++,
4559                                                          "PXPPCICLOCKCLIENT");
4560                                        break;
4561                                case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4562                                        _print_next_block((*par_num)++, "CFC");
4563                                        _print_parity(bp,
4564                                                      CFC_REG_CFC_PRTY_STS);
4565                                        break;
4566                                case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4567                                        _print_next_block((*par_num)++, "CDU");
4568                                        _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4569                                        break;
4570                                case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4571                                        _print_next_block((*par_num)++, "DMAE");
4572                                        _print_parity(bp,
4573                                                      DMAE_REG_DMAE_PRTY_STS);
4574                                        break;
4575                                case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4576                                        _print_next_block((*par_num)++, "IGU");
4577                                        if (CHIP_IS_E1x(bp))
4578                                                _print_parity(bp,
4579                                                        HC_REG_HC_PRTY_STS);
4580                                        else
4581                                                _print_parity(bp,
4582                                                        IGU_REG_IGU_PRTY_STS);
4583                                        break;
4584                                case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4585                                        _print_next_block((*par_num)++, "MISC");
4586                                        _print_parity(bp,
4587                                                      MISC_REG_MISC_PRTY_STS);
4588                                        break;
4589                                }
4590                        }
4591
4592                        /* Clear the bit */
4593                        sig &= ~cur_bit;
4594                }
4595        }
4596
4597        return res;
4598}
4599
4600static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4601                                            int *par_num, bool *global,
4602                                            bool print)
4603{
4604        bool res = false;
4605        u32 cur_bit;
4606        int i;
4607
4608        for (i = 0; sig; i++) {
4609                cur_bit = (0x1UL << i);
4610                if (sig & cur_bit) {
4611                        switch (cur_bit) {
4612                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4613                                if (print)
4614                                        _print_next_block((*par_num)++,
4615                                                          "MCP ROM");
4616                                *global = true;
4617                                res |= true;
4618                                break;
4619                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4620                                if (print)
4621                                        _print_next_block((*par_num)++,
4622                                                          "MCP UMP RX");
4623                                *global = true;
4624                                res |= true;
4625                                break;
4626                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4627                                if (print)
4628                                        _print_next_block((*par_num)++,
4629                                                          "MCP UMP TX");
4630                                *global = true;
4631                                res |= true;
4632                                break;
4633                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4634                                if (print)
4635                                        _print_next_block((*par_num)++,
4636                                                          "MCP SCPAD");
4637                                /* clear latched SCPAD PATIRY from MCP */
4638                                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4639                                       1UL << 10);
4640                                break;
4641                        }
4642
4643                        /* Clear the bit */
4644                        sig &= ~cur_bit;
4645                }
4646        }
4647
4648        return res;
4649}
4650
4651static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4652                                            int *par_num, bool print)
4653{
4654        u32 cur_bit;
4655        bool res;
4656        int i;
4657
4658        res = false;
4659
4660        for (i = 0; sig; i++) {
4661                cur_bit = (0x1UL << i);
4662                if (sig & cur_bit) {
4663                        res |= true; /* Each bit is real error! */
4664                        if (print) {
4665                                switch (cur_bit) {
4666                                case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4667                                        _print_next_block((*par_num)++,
4668                                                          "PGLUE_B");
4669                                        _print_parity(bp,
4670                                                      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4671                                        break;
4672                                case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4673                                        _print_next_block((*par_num)++, "ATC");
4674                                        _print_parity(bp,
4675                                                      ATC_REG_ATC_PRTY_STS);
4676                                        break;
4677                                }
4678                        }
4679                        /* Clear the bit */
4680                        sig &= ~cur_bit;
4681                }
4682        }
4683
4684        return res;
4685}
4686
4687static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4688                              u32 *sig)
4689{
4690        bool res = false;
4691
4692        if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4693            (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4694            (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4695            (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4696            (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4697                int par_num = 0;
4698                DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4699                                 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4700                          sig[0] & HW_PRTY_ASSERT_SET_0,
4701                          sig[1] & HW_PRTY_ASSERT_SET_1,
4702                          sig[2] & HW_PRTY_ASSERT_SET_2,
4703                          sig[3] & HW_PRTY_ASSERT_SET_3,
4704                          sig[4] & HW_PRTY_ASSERT_SET_4);
4705                if (print)
4706                        netdev_err(bp->dev,
4707                                   "Parity errors detected in blocks: ");
4708                res |= bnx2x_check_blocks_with_parity0(bp,
4709                        sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4710                res |= bnx2x_check_blocks_with_parity1(bp,
4711                        sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4712                res |= bnx2x_check_blocks_with_parity2(bp,
4713                        sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4714                res |= bnx2x_check_blocks_with_parity3(bp,
4715                        sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4716                res |= bnx2x_check_blocks_with_parity4(bp,
4717                        sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4718
4719                if (print)
4720                        pr_cont("\n");
4721        }
4722
4723        return res;
4724}
4725
4726/**
4727 * bnx2x_chk_parity_attn - checks for parity attentions.
4728 *
4729 * @bp:         driver handle
4730 * @global:     true if there was a global attention
4731 * @print:      show parity attention in syslog
4732 */
4733bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4734{
4735        struct attn_route attn = { {0} };
4736        int port = BP_PORT(bp);
4737
4738        attn.sig[0] = REG_RD(bp,
4739                MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4740                             port*4);
4741        attn.sig[1] = REG_RD(bp,
4742                MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4743                             port*4);
4744        attn.sig[2] = REG_RD(bp,
4745                MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4746                             port*4);
4747        attn.sig[3] = REG_RD(bp,
4748                MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4749                             port*4);
4750        /* Since MCP attentions can't be disabled inside the block, we need to
4751         * read AEU registers to see whether they're currently disabled
4752         */
4753        attn.sig[3] &= ((REG_RD(bp,
4754                                !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4755                                      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4756                         MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4757                        ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4758
4759        if (!CHIP_IS_E1x(bp))
4760                attn.sig[4] = REG_RD(bp,
4761                        MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4762                                     port*4);
4763
4764        return bnx2x_parity_attn(bp, global, print, attn.sig);
4765}
4766
4767static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4768{
4769        u32 val;
4770        if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4771
4772                val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4773                BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4774                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4775                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4776                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4777                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4778                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4779                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4780                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4781                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4782                if (val &
4783                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4784                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4785                if (val &
4786                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4787                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4788                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4789                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4790                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4791                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4792                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4793                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4794        }
4795        if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4796                val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4797                BNX2X_ERR("ATC hw attention 0x%x\n", val);
4798                if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4799                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4800                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4801                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4802                if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4803                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4804                if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4805                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4806                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4807                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4808                if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4809                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4810        }
4811
4812        if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4813                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4814                BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4815                (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4816                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4817        }
4818}
4819
4820static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4821{
4822        struct attn_route attn, *group_mask;
4823        int port = BP_PORT(bp);
4824        int index;
4825        u32 reg_addr;
4826        u32 val;
4827        u32 aeu_mask;
4828        bool global = false;
4829
4830        /* need to take HW lock because MCP or other port might also
4831           try to handle this event */
4832        bnx2x_acquire_alr(bp);
4833
4834        if (bnx2x_chk_parity_attn(bp, &global, true)) {
4835#ifndef BNX2X_STOP_ON_ERROR
4836                bp->recovery_state = BNX2X_RECOVERY_INIT;
4837                schedule_delayed_work(&bp->sp_rtnl_task, 0);
4838                /* Disable HW interrupts */
4839                bnx2x_int_disable(bp);
4840                /* In case of parity errors don't handle attentions so that
4841                 * other function would "see" parity errors.
4842                 */
4843#else
4844                bnx2x_panic();
4845#endif
4846                bnx2x_release_alr(bp);
4847                return;
4848        }
4849
4850        attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4851        attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4852        attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4853        attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4854        if (!CHIP_IS_E1x(bp))
4855                attn.sig[4] =
4856                      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4857        else
4858                attn.sig[4] = 0;
4859
4860        DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4861           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4862
4863        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4864                if (deasserted & (1 << index)) {
4865                        group_mask = &bp->attn_group[index];
4866
4867                        DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4868                           index,
4869                           group_mask->sig[0], group_mask->sig[1],
4870                           group_mask->sig[2], group_mask->sig[3],
4871                           group_mask->sig[4]);
4872
4873                        bnx2x_attn_int_deasserted4(bp,
4874                                        attn.sig[4] & group_mask->sig[4]);
4875                        bnx2x_attn_int_deasserted3(bp,
4876                                        attn.sig[3] & group_mask->sig[3]);
4877                        bnx2x_attn_int_deasserted1(bp,
4878                                        attn.sig[1] & group_mask->sig[1]);
4879                        bnx2x_attn_int_deasserted2(bp,
4880                                        attn.sig[2] & group_mask->sig[2]);
4881                        bnx2x_attn_int_deasserted0(bp,
4882                                        attn.sig[0] & group_mask->sig[0]);
4883                }
4884        }
4885
4886        bnx2x_release_alr(bp);
4887
4888        if (bp->common.int_block == INT_BLOCK_HC)
4889                reg_addr = (HC_REG_COMMAND_REG + port*32 +
4890                            COMMAND_REG_ATTN_BITS_CLR);
4891        else
4892                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4893
4894        val = ~deasserted;
4895        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4896           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4897        REG_WR(bp, reg_addr, val);
4898
4899        if (~bp->attn_state & deasserted)
4900                BNX2X_ERR("IGU ERROR\n");
4901
4902        reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4903                          MISC_REG_AEU_MASK_ATTN_FUNC_0;
4904
4905        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4906        aeu_mask = REG_RD(bp, reg_addr);
4907
4908        DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4909           aeu_mask, deasserted);
4910        aeu_mask |= (deasserted & 0x3ff);
4911        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4912
4913        REG_WR(bp, reg_addr, aeu_mask);
4914        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4915
4916        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4917        bp->attn_state &= ~deasserted;
4918        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4919}
4920
4921static void bnx2x_attn_int(struct bnx2x *bp)
4922{
4923        /* read local copy of bits */
4924        u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4925                                                                attn_bits);
4926        u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4927                                                                attn_bits_ack);
4928        u32 attn_state = bp->attn_state;
4929
4930        /* look for changed bits */
4931        u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4932        u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4933
4934        DP(NETIF_MSG_HW,
4935           "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4936           attn_bits, attn_ack, asserted, deasserted);
4937
4938        if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4939                BNX2X_ERR("BAD attention state\n");
4940
4941        /* handle bits that were raised */
4942        if (asserted)
4943                bnx2x_attn_int_asserted(bp, asserted);
4944
4945        if (deasserted)
4946                bnx2x_attn_int_deasserted(bp, deasserted);
4947}
4948
4949void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4950                      u16 index, u8 op, u8 update)
4951{
4952        u32 igu_addr = bp->igu_base_addr;
4953        igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4954        bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4955                             igu_addr);
4956}
4957
4958static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4959{
4960        /* No memory barriers */
4961        storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4962        mmiowb(); /* keep prod updates ordered */
4963}
4964
4965static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4966                                      union event_ring_elem *elem)
4967{
4968        u8 err = elem->message.error;
4969
4970        if (!bp->cnic_eth_dev.starting_cid  ||
4971            (cid < bp->cnic_eth_dev.starting_cid &&
4972            cid != bp->cnic_eth_dev.iscsi_l2_cid))
4973                return 1;
4974
4975        DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4976
4977        if (unlikely(err)) {
4978
4979                BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4980                          cid);
4981                bnx2x_panic_dump(bp, false);
4982        }
4983        bnx2x_cnic_cfc_comp(bp, cid, err);
4984        return 0;
4985}
4986
4987static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4988{
4989        struct bnx2x_mcast_ramrod_params rparam;
4990        int rc;
4991
4992        memset(&rparam, 0, sizeof(rparam));
4993
4994        rparam.mcast_obj = &bp->mcast_obj;
4995
4996        netif_addr_lock_bh(bp->dev);
4997
4998        /* Clear pending state for the last command */
4999        bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5000
5001        /* If there are pending mcast commands - send them */
5002        if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5003                rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5004                if (rc < 0)
5005                        BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5006                                  rc);
5007        }
5008
5009        netif_addr_unlock_bh(bp->dev);
5010}
5011
5012static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5013                                            union event_ring_elem *elem)
5014{
5015        unsigned long ramrod_flags = 0;
5016        int rc = 0;
5017        u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5018        struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5019
5020        /* Always push next commands out, don't wait here */
5021        __set_bit(RAMROD_CONT, &ramrod_flags);
5022
5023        switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5024                            >> BNX2X_SWCID_SHIFT) {
5025        case BNX2X_FILTER_MAC_PENDING:
5026                DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5027                if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5028                        vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5029                else
5030                        vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5031
5032                break;
5033        case BNX2X_FILTER_MCAST_PENDING:
5034                DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5035                /* This is only relevant for 57710 where multicast MACs are
5036                 * configured as unicast MACs using the same ramrod.
5037                 */
5038                bnx2x_handle_mcast_eqe(bp);
5039                return;
5040        default:
5041                BNX2X_ERR("Unsupported classification command: %d\n",
5042                          elem->message.data.eth_event.echo);
5043                return;
5044        }
5045
5046        rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5047
5048        if (rc < 0)
5049                BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5050        else if (rc > 0)
5051                DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5052}
5053
5054static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5055
5056static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5057{
5058        netif_addr_lock_bh(bp->dev);
5059
5060        clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5061
5062        /* Send rx_mode command again if was requested */
5063        if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5064                bnx2x_set_storm_rx_mode(bp);
5065        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5066                                    &bp->sp_state))
5067                bnx2x_set_iscsi_eth_rx_mode(bp, true);
5068        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5069                                    &bp->sp_state))
5070                bnx2x_set_iscsi_eth_rx_mode(bp, false);
5071
5072        netif_addr_unlock_bh(bp->dev);
5073}
5074
5075static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5076                                              union event_ring_elem *elem)
5077{
5078        if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5079                DP(BNX2X_MSG_SP,
5080                   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5081                   elem->message.data.vif_list_event.func_bit_map);
5082                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5083                        elem->message.data.vif_list_event.func_bit_map);
5084        } else if (elem->message.data.vif_list_event.echo ==
5085                   VIF_LIST_RULE_SET) {
5086                DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5087                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5088        }
5089}
5090
5091/* called with rtnl_lock */
5092static void bnx2x_after_function_update(struct bnx2x *bp)
5093{
5094        int q, rc;
5095        struct bnx2x_fastpath *fp;
5096        struct bnx2x_queue_state_params queue_params = {NULL};
5097        struct bnx2x_queue_update_params *q_update_params =
5098                &queue_params.params.update;
5099
5100        /* Send Q update command with afex vlan removal values for all Qs */
5101        queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5102
5103        /* set silent vlan removal values according to vlan mode */
5104        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5105                  &q_update_params->update_flags);
5106        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5107                  &q_update_params->update_flags);
5108        __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5109
5110        /* in access mode mark mask and value are 0 to strip all vlans */
5111        if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5112                q_update_params->silent_removal_value = 0;
5113                q_update_params->silent_removal_mask = 0;
5114        } else {
5115                q_update_params->silent_removal_value =
5116                        (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5117                q_update_params->silent_removal_mask = VLAN_VID_MASK;
5118        }
5119
5120        for_each_eth_queue(bp, q) {
5121                /* Set the appropriate Queue object */
5122                fp = &bp->fp[q];
5123                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5124
5125                /* send the ramrod */
5126                rc = bnx2x_queue_state_change(bp, &queue_params);
5127                if (rc < 0)
5128                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5129                                  q);
5130        }
5131
5132        if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5133                fp = &bp->fp[FCOE_IDX(bp)];
5134                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5135
5136                /* clear pending completion bit */
5137                __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5138
5139                /* mark latest Q bit */
5140                smp_mb__before_clear_bit();
5141                set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5142                smp_mb__after_clear_bit();
5143
5144                /* send Q update ramrod for FCoE Q */
5145                rc = bnx2x_queue_state_change(bp, &queue_params);
5146                if (rc < 0)
5147                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5148                                  q);
5149        } else {
5150                /* If no FCoE ring - ACK MCP now */
5151                bnx2x_link_report(bp);
5152                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5153        }
5154}
5155
5156static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5157        struct bnx2x *bp, u32 cid)
5158{
5159        DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5160
5161        if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5162                return &bnx2x_fcoe_sp_obj(bp, q_obj);
5163        else
5164                return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5165}
5166
5167static void bnx2x_eq_int(struct bnx2x *bp)
5168{
5169        u16 hw_cons, sw_cons, sw_prod;
5170        union event_ring_elem *elem;
5171        u8 echo;
5172        u32 cid;
5173        u8 opcode;
5174        int rc, spqe_cnt = 0;
5175        struct bnx2x_queue_sp_obj *q_obj;
5176        struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5177        struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5178
5179        hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5180
5181        /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5182         * when we get the next-page we need to adjust so the loop
5183         * condition below will be met. The next element is the size of a
5184         * regular element and hence incrementing by 1
5185         */
5186        if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5187                hw_cons++;
5188
5189        /* This function may never run in parallel with itself for a
5190         * specific bp, thus there is no need in "paired" read memory
5191         * barrier here.
5192         */
5193        sw_cons = bp->eq_cons;
5194        sw_prod = bp->eq_prod;
5195
5196        DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5197                        hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5198
5199        for (; sw_cons != hw_cons;
5200              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5201
5202                elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5203
5204                rc = bnx2x_iov_eq_sp_event(bp, elem);
5205                if (!rc) {
5206                        DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5207                           rc);
5208                        goto next_spqe;
5209                }
5210
5211                /* elem CID originates from FW; actually LE */
5212                cid = SW_CID((__force __le32)
5213                             elem->message.data.cfc_del_event.cid);
5214                opcode = elem->message.opcode;
5215
5216                /* handle eq element */
5217                switch (opcode) {
5218                case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5219                        DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5220                        bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5221                        continue;
5222
5223                case EVENT_RING_OPCODE_STAT_QUERY:
5224                        DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5225                           "got statistics comp event %d\n",
5226                           bp->stats_comp++);
5227                        /* nothing to do with stats comp */
5228                        goto next_spqe;
5229
5230                case EVENT_RING_OPCODE_CFC_DEL:
5231                        /* handle according to cid range */
5232                        /*
5233                         * we may want to verify here that the bp state is
5234                         * HALTING
5235                         */
5236                        DP(BNX2X_MSG_SP,
5237                           "got delete ramrod for MULTI[%d]\n", cid);
5238
5239                        if (CNIC_LOADED(bp) &&
5240                            !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5241                                goto next_spqe;
5242
5243                        q_obj = bnx2x_cid_to_q_obj(bp, cid);
5244
5245                        if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5246                                break;
5247
5248                        goto next_spqe;
5249
5250                case EVENT_RING_OPCODE_STOP_TRAFFIC:
5251                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5252                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5253                        if (f_obj->complete_cmd(bp, f_obj,
5254                                                BNX2X_F_CMD_TX_STOP))
5255                                break;
5256                        goto next_spqe;
5257
5258                case EVENT_RING_OPCODE_START_TRAFFIC:
5259                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5260                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5261                        if (f_obj->complete_cmd(bp, f_obj,
5262                                                BNX2X_F_CMD_TX_START))
5263                                break;
5264                        goto next_spqe;
5265
5266                case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5267                        echo = elem->message.data.function_update_event.echo;
5268                        if (echo == SWITCH_UPDATE) {
5269                                DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5270                                   "got FUNC_SWITCH_UPDATE ramrod\n");
5271                                if (f_obj->complete_cmd(
5272                                        bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5273                                        break;
5274
5275                        } else {
5276                                DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5277                                   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5278                                f_obj->complete_cmd(bp, f_obj,
5279                                                    BNX2X_F_CMD_AFEX_UPDATE);
5280
5281                                /* We will perform the Queues update from
5282                                 * sp_rtnl task as all Queue SP operations
5283                                 * should run under rtnl_lock.
5284                                 */
5285                                smp_mb__before_clear_bit();
5286                                set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5287                                        &bp->sp_rtnl_state);
5288                                smp_mb__after_clear_bit();
5289
5290                                schedule_delayed_work(&bp->sp_rtnl_task, 0);
5291                        }
5292
5293                        goto next_spqe;
5294
5295                case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5296                        f_obj->complete_cmd(bp, f_obj,
5297                                            BNX2X_F_CMD_AFEX_VIFLISTS);
5298                        bnx2x_after_afex_vif_lists(bp, elem);
5299                        goto next_spqe;
5300                case EVENT_RING_OPCODE_FUNCTION_START:
5301                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5302                           "got FUNC_START ramrod\n");
5303                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5304                                break;
5305
5306                        goto next_spqe;
5307
5308                case EVENT_RING_OPCODE_FUNCTION_STOP:
5309                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5310                           "got FUNC_STOP ramrod\n");
5311                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5312                                break;
5313
5314                        goto next_spqe;
5315                }
5316
5317                switch (opcode | bp->state) {
5318                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5319                      BNX2X_STATE_OPEN):
5320                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5321                      BNX2X_STATE_OPENING_WAIT4_PORT):
5322                        cid = elem->message.data.eth_event.echo &
5323                                BNX2X_SWCID_MASK;
5324                        DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5325                           cid);
5326                        rss_raw->clear_pending(rss_raw);
5327                        break;
5328
5329                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5330                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5331                case (EVENT_RING_OPCODE_SET_MAC |
5332                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5333                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5334                      BNX2X_STATE_OPEN):
5335                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5336                      BNX2X_STATE_DIAG):
5337                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5338                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5339                        DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5340                        bnx2x_handle_classification_eqe(bp, elem);
5341                        break;
5342
5343                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5344                      BNX2X_STATE_OPEN):
5345                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5346                      BNX2X_STATE_DIAG):
5347                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5348                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5349                        DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5350                        bnx2x_handle_mcast_eqe(bp);
5351                        break;
5352
5353                case (EVENT_RING_OPCODE_FILTERS_RULES |
5354                      BNX2X_STATE_OPEN):
5355                case (EVENT_RING_OPCODE_FILTERS_RULES |
5356                      BNX2X_STATE_DIAG):
5357                case (EVENT_RING_OPCODE_FILTERS_RULES |
5358                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5359                        DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5360                        bnx2x_handle_rx_mode_eqe(bp);
5361                        break;
5362                default:
5363                        /* unknown event log error and continue */
5364                        BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5365                                  elem->message.opcode, bp->state);
5366                }
5367next_spqe:
5368                spqe_cnt++;
5369        } /* for */
5370
5371        smp_mb__before_atomic_inc();
5372        atomic_add(spqe_cnt, &bp->eq_spq_left);
5373
5374        bp->eq_cons = sw_cons;
5375        bp->eq_prod = sw_prod;
5376        /* Make sure that above mem writes were issued towards the memory */
5377        smp_wmb();
5378
5379        /* update producer */
5380        bnx2x_update_eq_prod(bp, bp->eq_prod);
5381}
5382
5383static void bnx2x_sp_task(struct work_struct *work)
5384{
5385        struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5386
5387        DP(BNX2X_MSG_SP, "sp task invoked\n");
5388
5389        /* make sure the atomic interrupt_occurred has been written */
5390        smp_rmb();
5391        if (atomic_read(&bp->interrupt_occurred)) {
5392
5393                /* what work needs to be performed? */
5394                u16 status = bnx2x_update_dsb_idx(bp);
5395
5396                DP(BNX2X_MSG_SP, "status %x\n", status);
5397                DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5398                atomic_set(&bp->interrupt_occurred, 0);
5399
5400                /* HW attentions */
5401                if (status & BNX2X_DEF_SB_ATT_IDX) {
5402                        bnx2x_attn_int(bp);
5403                        status &= ~BNX2X_DEF_SB_ATT_IDX;
5404                }
5405
5406                /* SP events: STAT_QUERY and others */
5407                if (status & BNX2X_DEF_SB_IDX) {
5408                        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5409
5410                if (FCOE_INIT(bp) &&
5411                            (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5412                                /* Prevent local bottom-halves from running as
5413                                 * we are going to change the local NAPI list.
5414                                 */
5415                                local_bh_disable();
5416                                napi_schedule(&bnx2x_fcoe(bp, napi));
5417                                local_bh_enable();
5418                        }
5419
5420                        /* Handle EQ completions */
5421                        bnx2x_eq_int(bp);
5422                        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5423                                     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5424
5425                        status &= ~BNX2X_DEF_SB_IDX;
5426                }
5427
5428                /* if status is non zero then perhaps something went wrong */
5429                if (unlikely(status))
5430                        DP(BNX2X_MSG_SP,
5431                           "got an unknown interrupt! (status 0x%x)\n", status);
5432
5433                /* ack status block only if something was actually handled */
5434                bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5435                             le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5436        }
5437
5438        /* must be called after the EQ processing (since eq leads to sriov
5439         * ramrod completion flows).
5440         * This flow may have been scheduled by the arrival of a ramrod
5441         * completion, or by the sriov code rescheduling itself.
5442         */
5443        bnx2x_iov_sp_task(bp);
5444
5445        /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5446        if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5447                               &bp->sp_state)) {
5448                bnx2x_link_report(bp);
5449                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5450        }
5451}
5452
5453irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5454{
5455        struct net_device *dev = dev_instance;
5456        struct bnx2x *bp = netdev_priv(dev);
5457
5458        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5459                     IGU_INT_DISABLE, 0);
5460
5461#ifdef BNX2X_STOP_ON_ERROR
5462        if (unlikely(bp->panic))
5463                return IRQ_HANDLED;
5464#endif
5465
5466        if (CNIC_LOADED(bp)) {
5467                struct cnic_ops *c_ops;
5468
5469                rcu_read_lock();
5470                c_ops = rcu_dereference(bp->cnic_ops);
5471                if (c_ops)
5472                        c_ops->cnic_handler(bp->cnic_data, NULL);
5473                rcu_read_unlock();
5474        }
5475
5476        /* schedule sp task to perform default status block work, ack
5477         * attentions and enable interrupts.
5478         */
5479        bnx2x_schedule_sp_task(bp);
5480
5481        return IRQ_HANDLED;
5482}
5483
5484/* end of slow path */
5485
5486void bnx2x_drv_pulse(struct bnx2x *bp)
5487{
5488        SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5489                 bp->fw_drv_pulse_wr_seq);
5490}
5491
5492static void bnx2x_timer(unsigned long data)
5493{
5494        struct bnx2x *bp = (struct bnx2x *) data;
5495
5496        if (!netif_running(bp->dev))
5497                return;
5498
5499        if (IS_PF(bp) &&
5500            !BP_NOMCP(bp)) {
5501                int mb_idx = BP_FW_MB_IDX(bp);
5502                u16 drv_pulse;
5503                u16 mcp_pulse;
5504
5505                ++bp->fw_drv_pulse_wr_seq;
5506                bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5507                drv_pulse = bp->fw_drv_pulse_wr_seq;
5508                bnx2x_drv_pulse(bp);
5509
5510                mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5511                             MCP_PULSE_SEQ_MASK);
5512                /* The delta between driver pulse and mcp response
5513                 * should not get too big. If the MFW is more than 5 pulses
5514                 * behind, we should worry about it enough to generate an error
5515                 * log.
5516                 */
5517                if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5518                        BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5519                                  drv_pulse, mcp_pulse);
5520        }
5521
5522        if (bp->state == BNX2X_STATE_OPEN)
5523                bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5524
5525        /* sample pf vf bulletin board for new posts from pf */
5526        if (IS_VF(bp))
5527                bnx2x_timer_sriov(bp);
5528
5529        mod_timer(&bp->timer, jiffies + bp->current_interval);
5530}
5531
5532/* end of Statistics */
5533
5534/* nic init */
5535
5536/*
5537 * nic init service functions
5538 */
5539
5540static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5541{
5542        u32 i;
5543        if (!(len%4) && !(addr%4))
5544                for (i = 0; i < len; i += 4)
5545                        REG_WR(bp, addr + i, fill);
5546        else
5547                for (i = 0; i < len; i++)
5548                        REG_WR8(bp, addr + i, fill);
5549}
5550
5551/* helper: writes FP SP data to FW - data_size in dwords */
5552static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5553                                int fw_sb_id,
5554                                u32 *sb_data_p,
5555                                u32 data_size)
5556{
5557        int index;
5558        for (index = 0; index < data_size; index++)
5559                REG_WR(bp, BAR_CSTRORM_INTMEM +
5560                        CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5561                        sizeof(u32)*index,
5562                        *(sb_data_p + index));
5563}
5564
5565static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5566{
5567        u32 *sb_data_p;
5568        u32 data_size = 0;
5569        struct hc_status_block_data_e2 sb_data_e2;
5570        struct hc_status_block_data_e1x sb_data_e1x;
5571
5572        /* disable the function first */
5573        if (!CHIP_IS_E1x(bp)) {
5574                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5575                sb_data_e2.common.state = SB_DISABLED;
5576                sb_data_e2.common.p_func.vf_valid = false;
5577                sb_data_p = (u32 *)&sb_data_e2;
5578                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5579        } else {
5580                memset(&sb_data_e1x, 0,
5581                       sizeof(struct hc_status_block_data_e1x));
5582                sb_data_e1x.common.state = SB_DISABLED;
5583                sb_data_e1x.common.p_func.vf_valid = false;
5584                sb_data_p = (u32 *)&sb_data_e1x;
5585                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5586        }
5587        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5588
5589        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5590                        CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5591                        CSTORM_STATUS_BLOCK_SIZE);
5592        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5593                        CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5594                        CSTORM_SYNC_BLOCK_SIZE);
5595}
5596
5597/* helper:  writes SP SB data to FW */
5598static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5599                struct hc_sp_status_block_data *sp_sb_data)
5600{
5601        int func = BP_FUNC(bp);
5602        int i;
5603        for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5604                REG_WR(bp, BAR_CSTRORM_INTMEM +
5605                        CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5606                        i*sizeof(u32),
5607                        *((u32 *)sp_sb_data + i));
5608}
5609
5610static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5611{
5612        int func = BP_FUNC(bp);
5613        struct hc_sp_status_block_data sp_sb_data;
5614        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5615
5616        sp_sb_data.state = SB_DISABLED;
5617        sp_sb_data.p_func.vf_valid = false;
5618
5619        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5620
5621        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5622                        CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5623                        CSTORM_SP_STATUS_BLOCK_SIZE);
5624        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5625                        CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5626                        CSTORM_SP_SYNC_BLOCK_SIZE);
5627}
5628
5629static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5630                                           int igu_sb_id, int igu_seg_id)
5631{
5632        hc_sm->igu_sb_id = igu_sb_id;
5633        hc_sm->igu_seg_id = igu_seg_id;
5634        hc_sm->timer_value = 0xFF;
5635        hc_sm->time_to_expire = 0xFFFFFFFF;
5636}
5637
5638/* allocates state machine ids. */
5639static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5640{
5641        /* zero out state machine indices */
5642        /* rx indices */
5643        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5644
5645        /* tx indices */
5646        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5647        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5648        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5649        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5650
5651        /* map indices */
5652        /* rx indices */
5653        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5654                SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5655
5656        /* tx indices */
5657        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5658                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5659        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5660                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5661        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5662                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5663        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5664                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5665}
5666
5667void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5668                          u8 vf_valid, int fw_sb_id, int igu_sb_id)
5669{
5670        int igu_seg_id;
5671
5672        struct hc_status_block_data_e2 sb_data_e2;
5673        struct hc_status_block_data_e1x sb_data_e1x;
5674        struct hc_status_block_sm  *hc_sm_p;
5675        int data_size;
5676        u32 *sb_data_p;
5677
5678        if (CHIP_INT_MODE_IS_BC(bp))
5679                igu_seg_id = HC_SEG_ACCESS_NORM;
5680        else
5681                igu_seg_id = IGU_SEG_ACCESS_NORM;
5682
5683        bnx2x_zero_fp_sb(bp, fw_sb_id);
5684
5685        if (!CHIP_IS_E1x(bp)) {
5686                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5687                sb_data_e2.common.state = SB_ENABLED;
5688                sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5689                sb_data_e2.common.p_func.vf_id = vfid;
5690                sb_data_e2.common.p_func.vf_valid = vf_valid;
5691                sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5692                sb_data_e2.common.same_igu_sb_1b = true;
5693                sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5694                sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5695                hc_sm_p = sb_data_e2.common.state_machine;
5696                sb_data_p = (u32 *)&sb_data_e2;
5697                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5698                bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5699        } else {
5700                memset(&sb_data_e1x, 0,
5701                       sizeof(struct hc_status_block_data_e1x));
5702                sb_data_e1x.common.state = SB_ENABLED;
5703                sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5704                sb_data_e1x.common.p_func.vf_id = 0xff;
5705                sb_data_e1x.common.p_func.vf_valid = false;
5706                sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5707                sb_data_e1x.common.same_igu_sb_1b = true;
5708                sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5709                sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5710                hc_sm_p = sb_data_e1x.common.state_machine;
5711                sb_data_p = (u32 *)&sb_data_e1x;
5712                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5713                bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5714        }
5715
5716        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5717                                       igu_sb_id, igu_seg_id);
5718        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5719                                       igu_sb_id, igu_seg_id);
5720
5721        DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5722
5723        /* write indices to HW - PCI guarantees endianity of regpairs */
5724        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5725}
5726
5727static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5728                                     u16 tx_usec, u16 rx_usec)
5729{
5730        bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5731                                    false, rx_usec);
5732        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5733                                       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5734                                       tx_usec);
5735        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5736                                       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5737                                       tx_usec);
5738        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5739                                       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5740                                       tx_usec);
5741}
5742
5743static void bnx2x_init_def_sb(struct bnx2x *bp)
5744{
5745        struct host_sp_status_block *def_sb = bp->def_status_blk;
5746        dma_addr_t mapping = bp->def_status_blk_mapping;
5747        int igu_sp_sb_index;
5748        int igu_seg_id;
5749        int port = BP_PORT(bp);
5750        int func = BP_FUNC(bp);
5751        int reg_offset, reg_offset_en5;
5752        u64 section;
5753        int index;
5754        struct hc_sp_status_block_data sp_sb_data;
5755        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5756
5757        if (CHIP_INT_MODE_IS_BC(bp)) {
5758                igu_sp_sb_index = DEF_SB_IGU_ID;
5759                igu_seg_id = HC_SEG_ACCESS_DEF;
5760        } else {
5761                igu_sp_sb_index = bp->igu_dsb_id;
5762                igu_seg_id = IGU_SEG_ACCESS_DEF;
5763        }
5764
5765        /* ATTN */
5766        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5767                                            atten_status_block);
5768        def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5769
5770        bp->attn_state = 0;
5771
5772        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5773                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5774        reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5775                                 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5776        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5777                int sindex;
5778                /* take care of sig[0]..sig[4] */
5779                for (sindex = 0; sindex < 4; sindex++)
5780                        bp->attn_group[index].sig[sindex] =
5781                           REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5782
5783                if (!CHIP_IS_E1x(bp))
5784                        /*
5785                         * enable5 is separate from the rest of the registers,
5786                         * and therefore the address skip is 4
5787                         * and not 16 between the different groups
5788                         */
5789                        bp->attn_group[index].sig[4] = REG_RD(bp,
5790                                        reg_offset_en5 + 0x4*index);
5791                else
5792                        bp->attn_group[index].sig[4] = 0;
5793        }
5794
5795        if (bp->common.int_block == INT_BLOCK_HC) {
5796                reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5797                                     HC_REG_ATTN_MSG0_ADDR_L);
5798
5799                REG_WR(bp, reg_offset, U64_LO(section));
5800                REG_WR(bp, reg_offset + 4, U64_HI(section));
5801        } else if (!CHIP_IS_E1x(bp)) {
5802                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5803                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5804        }
5805
5806        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5807                                            sp_sb);
5808
5809        bnx2x_zero_sp_sb(bp);
5810
5811        /* PCI guarantees endianity of regpairs */
5812        sp_sb_data.state                = SB_ENABLED;
5813        sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5814        sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5815        sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5816        sp_sb_data.igu_seg_id           = igu_seg_id;
5817        sp_sb_data.p_func.pf_id         = func;
5818        sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5819        sp_sb_data.p_func.vf_id         = 0xff;
5820
5821        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5822
5823        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5824}
5825
5826void bnx2x_update_coalesce(struct bnx2x *bp)
5827{
5828        int i;
5829
5830        for_each_eth_queue(bp, i)
5831                bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5832                                         bp->tx_ticks, bp->rx_ticks);
5833}
5834
5835static void bnx2x_init_sp_ring(struct bnx2x *bp)
5836{
5837        spin_lock_init(&bp->spq_lock);
5838        atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5839
5840        bp->spq_prod_idx = 0;
5841        bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5842        bp->spq_prod_bd = bp->spq;
5843        bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5844}
5845
5846static void bnx2x_init_eq_ring(struct bnx2x *bp)
5847{
5848        int i;
5849        for (i = 1; i <= NUM_EQ_PAGES; i++) {
5850                union event_ring_elem *elem =
5851                        &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5852
5853                elem->next_page.addr.hi =
5854                        cpu_to_le32(U64_HI(bp->eq_mapping +
5855                                   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5856                elem->next_page.addr.lo =
5857                        cpu_to_le32(U64_LO(bp->eq_mapping +
5858                                   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5859        }
5860        bp->eq_cons = 0;
5861        bp->eq_prod = NUM_EQ_DESC;
5862        bp->eq_cons_sb = BNX2X_EQ_INDEX;
5863        /* we want a warning message before it gets wrought... */
5864        atomic_set(&bp->eq_spq_left,
5865                min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5866}
5867
5868/* called with netif_addr_lock_bh() */
5869static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5870                               unsigned long rx_mode_flags,
5871                               unsigned long rx_accept_flags,
5872                               unsigned long tx_accept_flags,
5873                               unsigned long ramrod_flags)
5874{
5875        struct bnx2x_rx_mode_ramrod_params ramrod_param;
5876        int rc;
5877
5878        memset(&ramrod_param, 0, sizeof(ramrod_param));
5879
5880        /* Prepare ramrod parameters */
5881        ramrod_param.cid = 0;
5882        ramrod_param.cl_id = cl_id;
5883        ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5884        ramrod_param.func_id = BP_FUNC(bp);
5885
5886        ramrod_param.pstate = &bp->sp_state;
5887        ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5888
5889        ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5890        ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5891
5892        set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5893
5894        ramrod_param.ramrod_flags = ramrod_flags;
5895        ramrod_param.rx_mode_flags = rx_mode_flags;
5896
5897        ramrod_param.rx_accept_flags = rx_accept_flags;
5898        ramrod_param.tx_accept_flags = tx_accept_flags;
5899
5900        rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5901        if (rc < 0) {
5902                BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5903                return rc;
5904        }
5905
5906        return 0;
5907}
5908
5909static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5910                                   unsigned long *rx_accept_flags,
5911                                   unsigned long *tx_accept_flags)
5912{
5913        /* Clear the flags first */
5914        *rx_accept_flags = 0;
5915        *tx_accept_flags = 0;
5916
5917        switch (rx_mode) {
5918        case BNX2X_RX_MODE_NONE:
5919                /*
5920                 * 'drop all' supersedes any accept flags that may have been
5921                 * passed to the function.
5922                 */
5923                break;
5924        case BNX2X_RX_MODE_NORMAL:
5925                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5926                __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5927                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5928
5929                /* internal switching mode */
5930                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5931                __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5932                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5933
5934                break;
5935        case BNX2X_RX_MODE_ALLMULTI:
5936                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5937                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5938                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5939
5940                /* internal switching mode */
5941                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5942                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5943                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5944
5945                break;
5946        case BNX2X_RX_MODE_PROMISC:
5947                /* According to definition of SI mode, iface in promisc mode
5948                 * should receive matched and unmatched (in resolution of port)
5949                 * unicast packets.
5950                 */
5951                __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5952                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5953                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5954                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5955
5956                /* internal switching mode */
5957                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5958                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5959
5960                if (IS_MF_SI(bp))
5961                        __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5962                else
5963                        __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5964
5965                break;
5966        default:
5967                BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5968                return -EINVAL;
5969        }
5970
5971        /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5972        if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5973                __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5974                __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5975        }
5976
5977        return 0;
5978}
5979
5980/* called with netif_addr_lock_bh() */
5981static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5982{
5983        unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5984        unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5985        int rc;
5986
5987        if (!NO_FCOE(bp))
5988                /* Configure rx_mode of FCoE Queue */
5989                __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5990
5991        rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5992                                     &tx_accept_flags);
5993        if (rc)
5994                return rc;
5995
5996        __set_bit(RAMROD_RX, &ramrod_flags);
5997        __set_bit(RAMROD_TX, &ramrod_flags);
5998
5999        return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6000                                   rx_accept_flags, tx_accept_flags,
6001                                   ramrod_flags);
6002}
6003
6004static void bnx2x_init_internal_common(struct bnx2x *bp)
6005{
6006        int i;
6007
6008        if (IS_MF_SI(bp))
6009                /*
6010                 * In switch independent mode, the TSTORM needs to accept
6011                 * packets that failed classification, since approximate match
6012                 * mac addresses aren't written to NIG LLH
6013                 */
6014                REG_WR8(bp, BAR_TSTRORM_INTMEM +
6015                            TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
6016        else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
6017                REG_WR8(bp, BAR_TSTRORM_INTMEM +
6018                            TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
6019
6020        /* Zero this manually as its initialization is
6021           currently missing in the initTool */
6022        for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6023                REG_WR(bp, BAR_USTRORM_INTMEM +
6024                       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6025        if (!CHIP_IS_E1x(bp)) {
6026                REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6027                        CHIP_INT_MODE_IS_BC(bp) ?
6028                        HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6029        }
6030}
6031
6032static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6033{
6034        switch (load_code) {
6035        case FW_MSG_CODE_DRV_LOAD_COMMON:
6036        case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6037                bnx2x_init_internal_common(bp);
6038                /* no break */
6039
6040        case FW_MSG_CODE_DRV_LOAD_PORT:
6041                /* nothing to do */
6042                /* no break */
6043
6044        case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6045                /* internal memory per function is
6046                   initialized inside bnx2x_pf_init */
6047                break;
6048
6049        default:
6050                BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6051                break;
6052        }
6053}
6054
6055static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6056{
6057        return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6058}
6059
6060static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6061{
6062        return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6063}
6064
6065static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6066{
6067        if (CHIP_IS_E1x(fp->bp))
6068                return BP_L_ID(fp->bp) + fp->index;
6069        else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6070                return bnx2x_fp_igu_sb_id(fp);
6071}
6072
6073static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6074{
6075        struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6076        u8 cos;
6077        unsigned long q_type = 0;
6078        u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6079        fp->rx_queue = fp_idx;
6080        fp->cid = fp_idx;
6081        fp->cl_id = bnx2x_fp_cl_id(fp);
6082        fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6083        fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6084        /* qZone id equals to FW (per path) client id */
6085        fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6086
6087        /* init shortcut */
6088        fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6089
6090        /* Setup SB indices */
6091        fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6092
6093        /* Configure Queue State object */
6094        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6095        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6096
6097        BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6098
6099        /* init tx data */
6100        for_each_cos_in_tx_queue(fp, cos) {
6101                bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6102                                  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6103                                  FP_COS_TO_TXQ(fp, cos, bp),
6104                                  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6105                cids[cos] = fp->txdata_ptr[cos]->cid;
6106        }
6107
6108        /* nothing more for vf to do here */
6109        if (IS_VF(bp))
6110                return;
6111
6112        bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6113                      fp->fw_sb_id, fp->igu_sb_id);
6114        bnx2x_update_fpsb_idx(fp);
6115        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6116                             fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6117                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6118
6119        /**
6120         * Configure classification DBs: Always enable Tx switching
6121         */
6122        bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6123
6124        DP(NETIF_MSG_IFUP,
6125           "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6126           fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6127           fp->igu_sb_id);
6128}
6129
6130static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6131{
6132        int i;
6133
6134        for (i = 1; i <= NUM_TX_RINGS; i++) {
6135                struct eth_tx_next_bd *tx_next_bd =
6136                        &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6137
6138                tx_next_bd->addr_hi =
6139                        cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6140                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6141                tx_next_bd->addr_lo =
6142                        cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6143                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6144        }
6145
6146        *txdata->tx_cons_sb = cpu_to_le16(0);
6147
6148        SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6149        txdata->tx_db.data.zero_fill1 = 0;
6150        txdata->tx_db.data.prod = 0;
6151
6152        txdata->tx_pkt_prod = 0;
6153        txdata->tx_pkt_cons = 0;
6154        txdata->tx_bd_prod = 0;
6155        txdata->tx_bd_cons = 0;
6156        txdata->tx_pkt = 0;
6157}
6158
6159static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6160{
6161        int i;
6162
6163        for_each_tx_queue_cnic(bp, i)
6164                bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6165}
6166
6167static void bnx2x_init_tx_rings(struct bnx2x *bp)
6168{
6169        int i;
6170        u8 cos;
6171
6172        for_each_eth_queue(bp, i)
6173                for_each_cos_in_tx_queue(&bp->fp[i], cos)
6174                        bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6175}
6176
6177static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6178{
6179        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6180        unsigned long q_type = 0;
6181
6182        bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6183        bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6184                                                     BNX2X_FCOE_ETH_CL_ID_IDX);
6185        bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6186        bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6187        bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6188        bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6189        bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6190                          fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6191                          fp);
6192
6193        DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6194
6195        /* qZone id equals to FW (per path) client id */
6196        bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6197        /* init shortcut */
6198        bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6199                bnx2x_rx_ustorm_prods_offset(fp);
6200
6201        /* Configure Queue State object */
6202        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6203        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6204
6205        /* No multi-CoS for FCoE L2 client */
6206        BUG_ON(fp->max_cos != 1);
6207
6208        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6209                             &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6210                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6211
6212        DP(NETIF_MSG_IFUP,
6213           "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6214           fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6215           fp->igu_sb_id);
6216}
6217
6218void bnx2x_nic_init_cnic(struct bnx2x *bp)
6219{
6220        if (!NO_FCOE(bp))
6221                bnx2x_init_fcoe_fp(bp);
6222
6223        bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6224                      BNX2X_VF_ID_INVALID, false,
6225                      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6226
6227        /* ensure status block indices were read */
6228        rmb();
6229        bnx2x_init_rx_rings_cnic(bp);
6230        bnx2x_init_tx_rings_cnic(bp);
6231
6232        /* flush all */
6233        mb();
6234        mmiowb();
6235}
6236
6237void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6238{
6239        int i;
6240
6241        /* Setup NIC internals and enable interrupts */
6242        for_each_eth_queue(bp, i)
6243                bnx2x_init_eth_fp(bp, i);
6244
6245        /* ensure status block indices were read */
6246        rmb();
6247        bnx2x_init_rx_rings(bp);
6248        bnx2x_init_tx_rings(bp);
6249
6250        if (IS_PF(bp)) {
6251                /* Initialize MOD_ABS interrupts */
6252                bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6253                                       bp->common.shmem_base,
6254                                       bp->common.shmem2_base, BP_PORT(bp));
6255
6256                /* initialize the default status block and sp ring */
6257                bnx2x_init_def_sb(bp);
6258                bnx2x_update_dsb_idx(bp);
6259                bnx2x_init_sp_ring(bp);
6260        } else {
6261                bnx2x_memset_stats(bp);
6262        }
6263}
6264
6265void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6266{
6267        bnx2x_init_eq_ring(bp);
6268        bnx2x_init_internal(bp, load_code);
6269        bnx2x_pf_init(bp);
6270        bnx2x_stats_init(bp);
6271
6272        /* flush all before enabling interrupts */
6273        mb();
6274        mmiowb();
6275
6276        bnx2x_int_enable(bp);
6277
6278        /* Check for SPIO5 */
6279        bnx2x_attn_int_deasserted0(bp,
6280                REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6281                                   AEU_INPUTS_ATTN_BITS_SPIO5);
6282}
6283
6284/* gzip service functions */
6285static int bnx2x_gunzip_init(struct bnx2x *bp)
6286{
6287        bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6288                                            &bp->gunzip_mapping, GFP_KERNEL);
6289        if (bp->gunzip_buf  == NULL)
6290                goto gunzip_nomem1;
6291
6292        bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6293        if (bp->strm  == NULL)
6294                goto gunzip_nomem2;
6295
6296        bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6297        if (bp->strm->workspace == NULL)
6298                goto gunzip_nomem3;
6299
6300        return 0;
6301
6302gunzip_nomem3:
6303        kfree(bp->strm);
6304        bp->strm = NULL;
6305
6306gunzip_nomem2:
6307        dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6308                          bp->gunzip_mapping);
6309        bp->gunzip_buf = NULL;
6310
6311gunzip_nomem1:
6312        BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6313        return -ENOMEM;
6314}
6315
6316static void bnx2x_gunzip_end(struct bnx2x *bp)
6317{
6318        if (bp->strm) {
6319                vfree(bp->strm->workspace);
6320                kfree(bp->strm);
6321                bp->strm = NULL;
6322        }
6323
6324        if (bp->gunzip_buf) {
6325                dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6326                                  bp->gunzip_mapping);
6327                bp->gunzip_buf = NULL;
6328        }
6329}
6330
6331static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6332{
6333        int n, rc;
6334
6335        /* check gzip header */
6336        if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6337                BNX2X_ERR("Bad gzip header\n");
6338                return -EINVAL;
6339        }
6340
6341        n = 10;
6342
6343#define FNAME                           0x8
6344
6345        if (zbuf[3] & FNAME)
6346                while ((zbuf[n++] != 0) && (n < len));
6347
6348        bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6349        bp->strm->avail_in = len - n;
6350        bp->strm->next_out = bp->gunzip_buf;
6351        bp->strm->avail_out = FW_BUF_SIZE;
6352
6353        rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6354        if (rc != Z_OK)
6355                return rc;
6356
6357        rc = zlib_inflate(bp->strm, Z_FINISH);
6358        if ((rc != Z_OK) && (rc != Z_STREAM_END))
6359                netdev_err(bp->dev, "Firmware decompression error: %s\n",
6360                           bp->strm->msg);
6361
6362        bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6363        if (bp->gunzip_outlen & 0x3)
6364                netdev_err(bp->dev,
6365                           "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6366                                bp->gunzip_outlen);
6367        bp->gunzip_outlen >>= 2;
6368
6369        zlib_inflateEnd(bp->strm);
6370
6371        if (rc == Z_STREAM_END)
6372                return 0;
6373
6374        return rc;
6375}
6376
6377/* nic load/unload */
6378
6379/*
6380 * General service functions
6381 */
6382
6383/* send a NIG loopback debug packet */
6384static void bnx2x_lb_pckt(struct bnx2x *bp)
6385{
6386        u32 wb_write[3];
6387
6388        /* Ethernet source and destination addresses */
6389        wb_write[0] = 0x55555555;
6390        wb_write[1] = 0x55555555;
6391        wb_write[2] = 0x20;             /* SOP */
6392        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6393
6394        /* NON-IP protocol */
6395        wb_write[0] = 0x09000000;
6396        wb_write[1] = 0x55555555;
6397        wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6398        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6399}
6400
6401/* some of the internal memories
6402 * are not directly readable from the driver
6403 * to test them we send debug packets
6404 */
6405static int bnx2x_int_mem_test(struct bnx2x *bp)
6406{
6407        int factor;
6408        int count, i;
6409        u32 val = 0;
6410
6411        if (CHIP_REV_IS_FPGA(bp))
6412                factor = 120;
6413        else if (CHIP_REV_IS_EMUL(bp))
6414                factor = 200;
6415        else
6416                factor = 1;
6417
6418        /* Disable inputs of parser neighbor blocks */
6419        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6420        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6421        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6422        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6423
6424        /*  Write 0 to parser credits for CFC search request */
6425        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6426
6427        /* send Ethernet packet */
6428        bnx2x_lb_pckt(bp);
6429
6430        /* TODO do i reset NIG statistic? */
6431        /* Wait until NIG register shows 1 packet of size 0x10 */
6432        count = 1000 * factor;
6433        while (count) {
6434
6435                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6436                val = *bnx2x_sp(bp, wb_data[0]);
6437                if (val == 0x10)
6438                        break;
6439
6440                usleep_range(10000, 20000);
6441                count--;
6442        }
6443        if (val != 0x10) {
6444                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6445                return -1;
6446        }
6447
6448        /* Wait until PRS register shows 1 packet */
6449        count = 1000 * factor;
6450        while (count) {
6451                val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6452                if (val == 1)
6453                        break;
6454
6455                usleep_range(10000, 20000);
6456                count--;
6457        }
6458        if (val != 0x1) {
6459                BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6460                return -2;
6461        }
6462
6463        /* Reset and init BRB, PRS */
6464        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6465        msleep(50);
6466        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6467        msleep(50);
6468        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6469        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6470
6471        DP(NETIF_MSG_HW, "part2\n");
6472
6473        /* Disable inputs of parser neighbor blocks */
6474        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6475        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6476        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6477        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6478
6479        /* Write 0 to parser credits for CFC search request */
6480        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6481
6482        /* send 10 Ethernet packets */
6483        for (i = 0; i < 10; i++)
6484                bnx2x_lb_pckt(bp);
6485
6486        /* Wait until NIG register shows 10 + 1
6487           packets of size 11*0x10 = 0xb0 */
6488        count = 1000 * factor;
6489        while (count) {
6490
6491                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6492                val = *bnx2x_sp(bp, wb_data[0]);
6493                if (val == 0xb0)
6494                        break;
6495
6496                usleep_range(10000, 20000);
6497                count--;
6498        }
6499        if (val != 0xb0) {
6500                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6501                return -3;
6502        }
6503
6504        /* Wait until PRS register shows 2 packets */
6505        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6506        if (val != 2)
6507                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6508
6509        /* Write 1 to parser credits for CFC search request */
6510        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6511
6512        /* Wait until PRS register shows 3 packets */
6513        msleep(10 * factor);
6514        /* Wait until NIG register shows 1 packet of size 0x10 */
6515        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6516        if (val != 3)
6517                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6518
6519        /* clear NIG EOP FIFO */
6520        for (i = 0; i < 11; i++)
6521                REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6522        val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6523        if (val != 1) {
6524                BNX2X_ERR("clear of NIG failed\n");
6525                return -4;
6526        }
6527
6528        /* Reset and init BRB, PRS, NIG */
6529        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6530        msleep(50);
6531        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6532        msleep(50);
6533        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6534        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6535        if (!CNIC_SUPPORT(bp))
6536                /* set NIC mode */
6537                REG_WR(bp, PRS_REG_NIC_MODE, 1);
6538
6539        /* Enable inputs of parser neighbor blocks */
6540        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6541        REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6542        REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6543        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6544
6545        DP(NETIF_MSG_HW, "done\n");
6546
6547        return 0; /* OK */
6548}
6549
6550static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6551{
6552        u32 val;
6553
6554        REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6555        if (!CHIP_IS_E1x(bp))
6556                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6557        else
6558                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6559        REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6560        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6561        /*
6562         * mask read length error interrupts in brb for parser
6563         * (parsing unit and 'checksum and crc' unit)
6564         * these errors are legal (PU reads fixed length and CAC can cause
6565         * read length error on truncated packets)
6566         */
6567        REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6568        REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6569        REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6570        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6571        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6572        REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6573/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6574/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6575        REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6576        REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6577        REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6578/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6579/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6580        REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6581        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6582        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6583        REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6584/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6585/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6586
6587        val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6588                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6589                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6590        if (!CHIP_IS_E1x(bp))
6591                val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6592                        PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6593        REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6594
6595        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6596        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6597        REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6598/*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6599
6600        if (!CHIP_IS_E1x(bp))
6601                /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6602                REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6603
6604        REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6605        REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6606/*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6607        REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6608}
6609
6610static void bnx2x_reset_common(struct bnx2x *bp)
6611{
6612        u32 val = 0x1400;
6613
6614        /* reset_common */
6615        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6616               0xd3ffff7f);
6617
6618        if (CHIP_IS_E3(bp)) {
6619                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6620                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6621        }
6622
6623        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6624}
6625
6626static void bnx2x_setup_dmae(struct bnx2x *bp)
6627{
6628        bp->dmae_ready = 0;
6629        spin_lock_init(&bp->dmae_lock);
6630}
6631
6632static void bnx2x_init_pxp(struct bnx2x *bp)
6633{
6634        u16 devctl;
6635        int r_order, w_order;
6636
6637        pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6638        DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6639        w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6640        if (bp->mrrs == -1)
6641                r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6642        else {
6643                DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6644                r_order = bp->mrrs;
6645        }
6646
6647        bnx2x_init_pxp_arb(bp, r_order, w_order);
6648}
6649
6650static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6651{
6652        int is_required;
6653        u32 val;
6654        int port;
6655
6656        if (BP_NOMCP(bp))
6657                return;
6658
6659        is_required = 0;
6660        val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6661              SHARED_HW_CFG_FAN_FAILURE_MASK;
6662
6663        if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6664                is_required = 1;
6665
6666        /*
6667         * The fan failure mechanism is usually related to the PHY type since
6668         * the power consumption of the board is affected by the PHY. Currently,
6669         * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6670         */
6671        else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6672                for (port = PORT_0; port < PORT_MAX; port++) {
6673                        is_required |=
6674                                bnx2x_fan_failure_det_req(
6675                                        bp,
6676                                        bp->common.shmem_base,
6677                                        bp->common.shmem2_base,
6678                                        port);
6679                }
6680
6681        DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6682
6683        if (is_required == 0)
6684                return;
6685
6686        /* Fan failure is indicated by SPIO 5 */
6687        bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6688
6689        /* set to active low mode */
6690        val = REG_RD(bp, MISC_REG_SPIO_INT);
6691        val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6692        REG_WR(bp, MISC_REG_SPIO_INT, val);
6693
6694        /* enable interrupt to signal the IGU */
6695        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6696        val |= MISC_SPIO_SPIO5;
6697        REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6698}
6699
6700void bnx2x_pf_disable(struct bnx2x *bp)
6701{
6702        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6703        val &= ~IGU_PF_CONF_FUNC_EN;
6704
6705        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6706        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6707        REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6708}
6709
6710static void bnx2x__common_init_phy(struct bnx2x *bp)
6711{
6712        u32 shmem_base[2], shmem2_base[2];
6713        /* Avoid common init in case MFW supports LFA */
6714        if (SHMEM2_RD(bp, size) >
6715            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6716                return;
6717        shmem_base[0] =  bp->common.shmem_base;
6718        shmem2_base[0] = bp->common.shmem2_base;
6719        if (!CHIP_IS_E1x(bp)) {
6720                shmem_base[1] =
6721                        SHMEM2_RD(bp, other_shmem_base_addr);
6722                shmem2_base[1] =
6723                        SHMEM2_RD(bp, other_shmem2_base_addr);
6724        }
6725        bnx2x_acquire_phy_lock(bp);
6726        bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6727                              bp->common.chip_id);
6728        bnx2x_release_phy_lock(bp);
6729}
6730
6731/**
6732 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6733 *
6734 * @bp:         driver handle
6735 */
6736static int bnx2x_init_hw_common(struct bnx2x *bp)
6737{
6738        u32 val;
6739
6740        DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6741
6742        /*
6743         * take the RESET lock to protect undi_unload flow from accessing
6744         * registers while we're resetting the chip
6745         */
6746        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6747
6748        bnx2x_reset_common(bp);
6749        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6750
6751        val = 0xfffc;
6752        if (CHIP_IS_E3(bp)) {
6753                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6754                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6755        }
6756        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6757
6758        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6759
6760        bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6761
6762        if (!CHIP_IS_E1x(bp)) {
6763                u8 abs_func_id;
6764
6765                /**
6766                 * 4-port mode or 2-port mode we need to turn of master-enable
6767                 * for everyone, after that, turn it back on for self.
6768                 * so, we disregard multi-function or not, and always disable
6769                 * for all functions on the given path, this means 0,2,4,6 for
6770                 * path 0 and 1,3,5,7 for path 1
6771                 */
6772                for (abs_func_id = BP_PATH(bp);
6773                     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6774                        if (abs_func_id == BP_ABS_FUNC(bp)) {
6775                                REG_WR(bp,
6776                                    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6777                                    1);
6778                                continue;
6779                        }
6780
6781                        bnx2x_pretend_func(bp, abs_func_id);
6782                        /* clear pf enable */
6783                        bnx2x_pf_disable(bp);
6784                        bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6785                }
6786        }
6787
6788        bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6789        if (CHIP_IS_E1(bp)) {
6790                /* enable HW interrupt from PXP on USDM overflow
6791                   bit 16 on INT_MASK_0 */
6792                REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6793        }
6794
6795        bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6796        bnx2x_init_pxp(bp);
6797
6798#ifdef __BIG_ENDIAN
6799        REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6800        REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6801        REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6802        REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6803        REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6804        /* make sure this value is 0 */
6805        REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6806
6807/*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6808        REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6809        REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6810        REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6811        REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6812#endif
6813
6814        bnx2x_ilt_init_page_size(bp, INITOP_SET);
6815
6816        if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6817                REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6818
6819        /* let the HW do it's magic ... */
6820        msleep(100);
6821        /* finish PXP init */
6822        val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6823        if (val != 1) {
6824                BNX2X_ERR("PXP2 CFG failed\n");
6825                return -EBUSY;
6826        }
6827        val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6828        if (val != 1) {
6829                BNX2X_ERR("PXP2 RD_INIT failed\n");
6830                return -EBUSY;
6831        }
6832
6833        /* Timers bug workaround E2 only. We need to set the entire ILT to
6834         * have entries with value "0" and valid bit on.
6835         * This needs to be done by the first PF that is loaded in a path
6836         * (i.e. common phase)
6837         */
6838        if (!CHIP_IS_E1x(bp)) {
6839/* In E2 there is a bug in the timers block that can cause function 6 / 7
6840 * (i.e. vnic3) to start even if it is marked as "scan-off".
6841 * This occurs when a different function (func2,3) is being marked
6842 * as "scan-off". Real-life scenario for example: if a driver is being
6843 * load-unloaded while func6,7 are down. This will cause the timer to access
6844 * the ilt, translate to a logical address and send a request to read/write.
6845 * Since the ilt for the function that is down is not valid, this will cause
6846 * a translation error which is unrecoverable.
6847 * The Workaround is intended to make sure that when this happens nothing fatal
6848 * will occur. The workaround:
6849 *      1.  First PF driver which loads on a path will:
6850 *              a.  After taking the chip out of reset, by using pretend,
6851 *                  it will write "0" to the following registers of
6852 *                  the other vnics.
6853 *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6854 *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6855 *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6856 *                  And for itself it will write '1' to
6857 *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6858 *                  dmae-operations (writing to pram for example.)
6859 *                  note: can be done for only function 6,7 but cleaner this
6860 *                        way.
6861 *              b.  Write zero+valid to the entire ILT.
6862 *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6863 *                  VNIC3 (of that port). The range allocated will be the
6864 *                  entire ILT. This is needed to prevent  ILT range error.
6865 *      2.  Any PF driver load flow:
6866 *              a.  ILT update with the physical addresses of the allocated
6867 *                  logical pages.
6868 *              b.  Wait 20msec. - note that this timeout is needed to make
6869 *                  sure there are no requests in one of the PXP internal
6870 *                  queues with "old" ILT addresses.
6871 *              c.  PF enable in the PGLC.
6872 *              d.  Clear the was_error of the PF in the PGLC. (could have
6873 *                  occurred while driver was down)
6874 *              e.  PF enable in the CFC (WEAK + STRONG)
6875 *              f.  Timers scan enable
6876 *      3.  PF driver unload flow:
6877 *              a.  Clear the Timers scan_en.
6878 *              b.  Polling for scan_on=0 for that PF.
6879 *              c.  Clear the PF enable bit in the PXP.
6880 *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6881 *              e.  Write zero+valid to all ILT entries (The valid bit must
6882 *                  stay set)
6883 *              f.  If this is VNIC 3 of a port then also init
6884 *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6885 *                  to the last entry in the ILT.
6886 *
6887 *      Notes:
6888 *      Currently the PF error in the PGLC is non recoverable.
6889 *      In the future the there will be a recovery routine for this error.
6890 *      Currently attention is masked.
6891 *      Having an MCP lock on the load/unload process does not guarantee that
6892 *      there is no Timer disable during Func6/7 enable. This is because the
6893 *      Timers scan is currently being cleared by the MCP on FLR.
6894 *      Step 2.d can be done only for PF6/7 and the driver can also check if
6895 *      there is error before clearing it. But the flow above is simpler and
6896 *      more general.
6897 *      All ILT entries are written by zero+valid and not just PF6/7
6898 *      ILT entries since in the future the ILT entries allocation for
6899 *      PF-s might be dynamic.
6900 */
6901                struct ilt_client_info ilt_cli;
6902                struct bnx2x_ilt ilt;
6903                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6904                memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6905
6906                /* initialize dummy TM client */
6907                ilt_cli.start = 0;
6908                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6909                ilt_cli.client_num = ILT_CLIENT_TM;
6910
6911                /* Step 1: set zeroes to all ilt page entries with valid bit on
6912                 * Step 2: set the timers first/last ilt entry to point
6913                 * to the entire range to prevent ILT range error for 3rd/4th
6914                 * vnic (this code assumes existence of the vnic)
6915                 *
6916                 * both steps performed by call to bnx2x_ilt_client_init_op()
6917                 * with dummy TM client
6918                 *
6919                 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6920                 * and his brother are split registers
6921                 */
6922                bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6923                bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6924                bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6925
6926                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6927                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6928                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6929        }
6930
6931        REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6932        REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6933
6934        if (!CHIP_IS_E1x(bp)) {
6935                int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6936                                (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6937                bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6938
6939                bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6940
6941                /* let the HW do it's magic ... */
6942                do {
6943                        msleep(200);
6944                        val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6945                } while (factor-- && (val != 1));
6946
6947                if (val != 1) {
6948                        BNX2X_ERR("ATC_INIT failed\n");
6949                        return -EBUSY;
6950                }
6951        }
6952
6953        bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6954
6955        bnx2x_iov_init_dmae(bp);
6956
6957        /* clean the DMAE memory */
6958        bp->dmae_ready = 1;
6959        bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6960
6961        bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6962
6963        bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6964
6965        bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6966
6967        bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6968
6969        bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6970        bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6971        bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6972        bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6973
6974        bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6975
6976        /* QM queues pointers table */
6977        bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6978
6979        /* soft reset pulse */
6980        REG_WR(bp, QM_REG_SOFT_RESET, 1);
6981        REG_WR(bp, QM_REG_SOFT_RESET, 0);
6982
6983        if (CNIC_SUPPORT(bp))
6984                bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6985
6986        bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6987
6988        if (!CHIP_REV_IS_SLOW(bp))
6989                /* enable hw interrupt from doorbell Q */
6990                REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6991
6992        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6993
6994        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6995        REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6996
6997        if (!CHIP_IS_E1(bp))
6998                REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6999
7000        if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7001                if (IS_MF_AFEX(bp)) {
7002                        /* configure that VNTag and VLAN headers must be
7003                         * received in afex mode
7004                         */
7005                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7006                        REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7007                        REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7008                        REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7009                        REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7010                } else {
7011                        /* Bit-map indicating which L2 hdrs may appear
7012                         * after the basic Ethernet header
7013                         */
7014                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7015                               bp->path_has_ovlan ? 7 : 6);
7016                }
7017        }
7018
7019        bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7020        bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7021        bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7022        bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7023
7024        if (!CHIP_IS_E1x(bp)) {
7025                /* reset VFC memories */
7026                REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7027                           VFC_MEMORIES_RST_REG_CAM_RST |
7028                           VFC_MEMORIES_RST_REG_RAM_RST);
7029                REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7030                           VFC_MEMORIES_RST_REG_CAM_RST |
7031                           VFC_MEMORIES_RST_REG_RAM_RST);
7032
7033                msleep(20);
7034        }
7035
7036        bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7037        bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7038        bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7039        bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7040
7041        /* sync semi rtc */
7042        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7043               0x80000000);
7044        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7045               0x80000000);
7046
7047        bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7048        bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7049        bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7050
7051        if (!CHIP_IS_E1x(bp)) {
7052                if (IS_MF_AFEX(bp)) {
7053                        /* configure that VNTag and VLAN headers must be
7054                         * sent in afex mode
7055                         */
7056                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7057                        REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7058                        REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7059                        REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7060                        REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7061                } else {
7062                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7063                               bp->path_has_ovlan ? 7 : 6);
7064                }
7065        }
7066
7067        REG_WR(bp, SRC_REG_SOFT_RST, 1);
7068
7069        bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7070
7071        if (CNIC_SUPPORT(bp)) {
7072                REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7073                REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7074                REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7075                REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7076                REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7077                REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7078                REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7079                REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7080                REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7081                REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7082        }
7083        REG_WR(bp, SRC_REG_SOFT_RST, 0);
7084
7085        if (sizeof(union cdu_context) != 1024)
7086                /* we currently assume that a context is 1024 bytes */
7087                dev_alert(&bp->pdev->dev,
7088                          "please adjust the size of cdu_context(%ld)\n",
7089                          (long)sizeof(union cdu_context));
7090
7091        bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7092        val = (4 << 24) + (0 << 12) + 1024;
7093        REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7094
7095        bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7096        REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7097        /* enable context validation interrupt from CFC */
7098        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7099
7100        /* set the thresholds to prevent CFC/CDU race */
7101        REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7102
7103        bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7104
7105        if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7106                REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7107
7108        bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7109        bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7110
7111        /* Reset PCIE errors for debug */
7112        REG_WR(bp, 0x2814, 0xffffffff);
7113        REG_WR(bp, 0x3820, 0xffffffff);
7114
7115        if (!CHIP_IS_E1x(bp)) {
7116                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7117                           (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7118                                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7119                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7120                           (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7121                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7122                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7123                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7124                           (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7125                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7126                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7127        }
7128
7129        bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7130        if (!CHIP_IS_E1(bp)) {
7131                /* in E3 this done in per-port section */
7132                if (!CHIP_IS_E3(bp))
7133                        REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7134        }
7135        if (CHIP_IS_E1H(bp))
7136                /* not applicable for E2 (and above ...) */
7137                REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7138
7139        if (CHIP_REV_IS_SLOW(bp))
7140                msleep(200);
7141
7142        /* finish CFC init */
7143        val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7144        if (val != 1) {
7145                BNX2X_ERR("CFC LL_INIT failed\n");
7146                return -EBUSY;
7147        }
7148        val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7149        if (val != 1) {
7150                BNX2X_ERR("CFC AC_INIT failed\n");
7151                return -EBUSY;
7152        }
7153        val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7154        if (val != 1) {
7155                BNX2X_ERR("CFC CAM_INIT failed\n");
7156                return -EBUSY;
7157        }
7158        REG_WR(bp, CFC_REG_DEBUG0, 0);
7159
7160        if (CHIP_IS_E1(bp)) {
7161                /* read NIG statistic
7162                   to see if this is our first up since powerup */
7163                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7164                val = *bnx2x_sp(bp, wb_data[0]);
7165
7166                /* do internal memory self test */
7167                if ((val == 0) && bnx2x_int_mem_test(bp)) {
7168                        BNX2X_ERR("internal mem self test failed\n");
7169                        return -EBUSY;
7170                }
7171        }
7172
7173        bnx2x_setup_fan_failure_detection(bp);
7174
7175        /* clear PXP2 attentions */
7176        REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7177
7178        bnx2x_enable_blocks_attention(bp);
7179        bnx2x_enable_blocks_parity(bp);
7180
7181        if (!BP_NOMCP(bp)) {
7182                if (CHIP_IS_E1x(bp))
7183                        bnx2x__common_init_phy(bp);
7184        } else
7185                BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7186
7187        return 0;
7188}
7189
7190/**
7191 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7192 *
7193 * @bp:         driver handle
7194 */
7195static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7196{
7197        int rc = bnx2x_init_hw_common(bp);
7198
7199        if (rc)
7200                return rc;
7201
7202        /* In E2 2-PORT mode, same ext phy is used for the two paths */
7203        if (!BP_NOMCP(bp))
7204                bnx2x__common_init_phy(bp);
7205
7206        return 0;
7207}
7208
7209static int bnx2x_init_hw_port(struct bnx2x *bp)
7210{
7211        int port = BP_PORT(bp);
7212        int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7213        u32 low, high;
7214        u32 val, reg;
7215
7216        DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7217
7218        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7219
7220        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7221        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7222        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7223
7224        /* Timers bug workaround: disables the pf_master bit in pglue at
7225         * common phase, we need to enable it here before any dmae access are
7226         * attempted. Therefore we manually added the enable-master to the
7227         * port phase (it also happens in the function phase)
7228         */
7229        if (!CHIP_IS_E1x(bp))
7230                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7231
7232        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7233        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7234        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7235        bnx2x_init_block(bp, BLOCK_QM, init_phase);
7236
7237        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7238        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7239        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7240        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7241
7242        /* QM cid (connection) count */
7243        bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7244
7245        if (CNIC_SUPPORT(bp)) {
7246                bnx2x_init_block(bp, BLOCK_TM, init_phase);
7247                REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7248                REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7249        }
7250
7251        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7252
7253        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7254
7255        if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7256
7257                if (IS_MF(bp))
7258                        low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7259                else if (bp->dev->mtu > 4096) {
7260                        if (bp->flags & ONE_PORT_FLAG)
7261                                low = 160;
7262                        else {
7263                                val = bp->dev->mtu;
7264                                /* (24*1024 + val*4)/256 */
7265                                low = 96 + (val/64) +
7266                                                ((val % 64) ? 1 : 0);
7267                        }
7268                } else
7269                        low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7270                high = low + 56;        /* 14*1024/256 */
7271                REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7272                REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7273        }
7274
7275        if (CHIP_MODE_IS_4_PORT(bp))
7276                REG_WR(bp, (BP_PORT(bp) ?
7277                            BRB1_REG_MAC_GUARANTIED_1 :
7278                            BRB1_REG_MAC_GUARANTIED_0), 40);
7279
7280        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7281        if (CHIP_IS_E3B0(bp)) {
7282                if (IS_MF_AFEX(bp)) {
7283                        /* configure headers for AFEX mode */
7284                        REG_WR(bp, BP_PORT(bp) ?
7285                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7286                               PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7287                        REG_WR(bp, BP_PORT(bp) ?
7288                               PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7289                               PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7290                        REG_WR(bp, BP_PORT(bp) ?
7291                               PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7292                               PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7293                } else {
7294                        /* Ovlan exists only if we are in multi-function +
7295                         * switch-dependent mode, in switch-independent there
7296                         * is no ovlan headers
7297                         */
7298                        REG_WR(bp, BP_PORT(bp) ?
7299                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7300                               PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7301                               (bp->path_has_ovlan ? 7 : 6));
7302                }
7303        }
7304
7305        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7306        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7307        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7308        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7309
7310        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7311        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7312        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7313        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7314
7315        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7316        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7317
7318        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7319
7320        if (CHIP_IS_E1x(bp)) {
7321                /* configure PBF to work without PAUSE mtu 9000 */
7322                REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7323
7324                /* update threshold */
7325                REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7326                /* update init credit */
7327                REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7328
7329                /* probe changes */
7330                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7331                udelay(50);
7332                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7333        }
7334
7335        if (CNIC_SUPPORT(bp))
7336                bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7337
7338        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7339        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7340
7341        if (CHIP_IS_E1(bp)) {
7342                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7343                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7344        }
7345        bnx2x_init_block(bp, BLOCK_HC, init_phase);
7346
7347        bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7348
7349        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7350        /* init aeu_mask_attn_func_0/1:
7351         *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7352         *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7353         *             bits 4-7 are used for "per vn group attention" */
7354        val = IS_MF(bp) ? 0xF7 : 0x7;
7355        /* Enable DCBX attention for all but E1 */
7356        val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7357        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7358
7359        /* SCPAD_PARITY should NOT trigger close the gates */
7360        reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7361        REG_WR(bp, reg,
7362               REG_RD(bp, reg) &
7363               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7364
7365        reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7366        REG_WR(bp, reg,
7367               REG_RD(bp, reg) &
7368               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7369
7370        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7371
7372        if (!CHIP_IS_E1x(bp)) {
7373                /* Bit-map indicating which L2 hdrs may appear after the
7374                 * basic Ethernet header
7375                 */
7376                if (IS_MF_AFEX(bp))
7377                        REG_WR(bp, BP_PORT(bp) ?
7378                               NIG_REG_P1_HDRS_AFTER_BASIC :
7379                               NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7380                else
7381                        REG_WR(bp, BP_PORT(bp) ?
7382                               NIG_REG_P1_HDRS_AFTER_BASIC :
7383                               NIG_REG_P0_HDRS_AFTER_BASIC,
7384                               IS_MF_SD(bp) ? 7 : 6);
7385
7386                if (CHIP_IS_E3(bp))
7387                        REG_WR(bp, BP_PORT(bp) ?
7388                                   NIG_REG_LLH1_MF_MODE :
7389                                   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7390        }
7391        if (!CHIP_IS_E3(bp))
7392                REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7393
7394        if (!CHIP_IS_E1(bp)) {
7395                /* 0x2 disable mf_ov, 0x1 enable */
7396                REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7397                       (IS_MF_SD(bp) ? 0x1 : 0x2));
7398
7399                if (!CHIP_IS_E1x(bp)) {
7400                        val = 0;
7401                        switch (bp->mf_mode) {
7402                        case MULTI_FUNCTION_SD:
7403                                val = 1;
7404                                break;
7405                        case MULTI_FUNCTION_SI:
7406                        case MULTI_FUNCTION_AFEX:
7407                                val = 2;
7408                                break;
7409                        }
7410
7411                        REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7412                                                  NIG_REG_LLH0_CLS_TYPE), val);
7413                }
7414                {
7415                        REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7416                        REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7417                        REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7418                }
7419        }
7420
7421        /* If SPIO5 is set to generate interrupts, enable it for this port */
7422        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7423        if (val & MISC_SPIO_SPIO5) {
7424                u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7425                                       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7426                val = REG_RD(bp, reg_addr);
7427                val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7428                REG_WR(bp, reg_addr, val);
7429        }
7430
7431        return 0;
7432}
7433
7434static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7435{
7436        int reg;
7437        u32 wb_write[2];
7438
7439        if (CHIP_IS_E1(bp))
7440                reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7441        else
7442                reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7443
7444        wb_write[0] = ONCHIP_ADDR1(addr);
7445        wb_write[1] = ONCHIP_ADDR2(addr);
7446        REG_WR_DMAE(bp, reg, wb_write, 2);
7447}
7448
7449void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7450{
7451        u32 data, ctl, cnt = 100;
7452        u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7453        u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7454        u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7455        u32 sb_bit =  1 << (idu_sb_id%32);
7456        u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7457        u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7458
7459        /* Not supported in BC mode */
7460        if (CHIP_INT_MODE_IS_BC(bp))
7461                return;
7462
7463        data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7464                        << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7465                IGU_REGULAR_CLEANUP_SET                         |
7466                IGU_REGULAR_BCLEANUP;
7467
7468        ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7469              func_encode << IGU_CTRL_REG_FID_SHIFT             |
7470              IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7471
7472        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7473                         data, igu_addr_data);
7474        REG_WR(bp, igu_addr_data, data);
7475        mmiowb();
7476        barrier();
7477        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7478                          ctl, igu_addr_ctl);
7479        REG_WR(bp, igu_addr_ctl, ctl);
7480        mmiowb();
7481        barrier();
7482
7483        /* wait for clean up to finish */
7484        while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7485                msleep(20);
7486
7487        if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7488                DP(NETIF_MSG_HW,
7489                   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7490                          idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7491        }
7492}
7493
7494static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7495{
7496        bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7497}
7498
7499static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7500{
7501        u32 i, base = FUNC_ILT_BASE(func);
7502        for (i = base; i < base + ILT_PER_FUNC; i++)
7503                bnx2x_ilt_wr(bp, i, 0);
7504}
7505
7506static void bnx2x_init_searcher(struct bnx2x *bp)
7507{
7508        int port = BP_PORT(bp);
7509        bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7510        /* T1 hash bits value determines the T1 number of entries */
7511        REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7512}
7513
7514static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7515{
7516        int rc;
7517        struct bnx2x_func_state_params func_params = {NULL};
7518        struct bnx2x_func_switch_update_params *switch_update_params =
7519                &func_params.params.switch_update;
7520
7521        /* Prepare parameters for function state transitions */
7522        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7523        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7524
7525        func_params.f_obj = &bp->func_obj;
7526        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7527
7528        /* Function parameters */
7529        switch_update_params->suspend = suspend;
7530
7531        rc = bnx2x_func_state_change(bp, &func_params);
7532
7533        return rc;
7534}
7535
7536static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7537{
7538        int rc, i, port = BP_PORT(bp);
7539        int vlan_en = 0, mac_en[NUM_MACS];
7540
7541        /* Close input from network */
7542        if (bp->mf_mode == SINGLE_FUNCTION) {
7543                bnx2x_set_rx_filter(&bp->link_params, 0);
7544        } else {
7545                vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7546                                   NIG_REG_LLH0_FUNC_EN);
7547                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7548                          NIG_REG_LLH0_FUNC_EN, 0);
7549                for (i = 0; i < NUM_MACS; i++) {
7550                        mac_en[i] = REG_RD(bp, port ?
7551                                             (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7552                                              4 * i) :
7553                                             (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7554                                              4 * i));
7555                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7556                                              4 * i) :
7557                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7558                }
7559        }
7560
7561        /* Close BMC to host */
7562        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7563               NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7564
7565        /* Suspend Tx switching to the PF. Completion of this ramrod
7566         * further guarantees that all the packets of that PF / child
7567         * VFs in BRB were processed by the Parser, so it is safe to
7568         * change the NIC_MODE register.
7569         */
7570        rc = bnx2x_func_switch_update(bp, 1);
7571        if (rc) {
7572                BNX2X_ERR("Can't suspend tx-switching!\n");
7573                return rc;
7574        }
7575
7576        /* Change NIC_MODE register */
7577        REG_WR(bp, PRS_REG_NIC_MODE, 0);
7578
7579        /* Open input from network */
7580        if (bp->mf_mode == SINGLE_FUNCTION) {
7581                bnx2x_set_rx_filter(&bp->link_params, 1);
7582        } else {
7583                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7584                          NIG_REG_LLH0_FUNC_EN, vlan_en);
7585                for (i = 0; i < NUM_MACS; i++) {
7586                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7587                                              4 * i) :
7588                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7589                                  mac_en[i]);
7590                }
7591        }
7592
7593        /* Enable BMC to host */
7594        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7595               NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7596
7597        /* Resume Tx switching to the PF */
7598        rc = bnx2x_func_switch_update(bp, 0);
7599        if (rc) {
7600                BNX2X_ERR("Can't resume tx-switching!\n");
7601                return rc;
7602        }
7603
7604        DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7605        return 0;
7606}
7607
7608int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7609{
7610        int rc;
7611
7612        bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7613
7614        if (CONFIGURE_NIC_MODE(bp)) {
7615                /* Configure searcher as part of function hw init */
7616                bnx2x_init_searcher(bp);
7617
7618                /* Reset NIC mode */
7619                rc = bnx2x_reset_nic_mode(bp);
7620                if (rc)
7621                        BNX2X_ERR("Can't change NIC mode!\n");
7622                return rc;
7623        }
7624
7625        return 0;
7626}
7627
7628static int bnx2x_init_hw_func(struct bnx2x *bp)
7629{
7630        int port = BP_PORT(bp);
7631        int func = BP_FUNC(bp);
7632        int init_phase = PHASE_PF0 + func;
7633        struct bnx2x_ilt *ilt = BP_ILT(bp);
7634        u16 cdu_ilt_start;
7635        u32 addr, val;
7636        u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7637        int i, main_mem_width, rc;
7638
7639        DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7640
7641        /* FLR cleanup - hmmm */
7642        if (!CHIP_IS_E1x(bp)) {
7643                rc = bnx2x_pf_flr_clnup(bp);
7644                if (rc) {
7645                        bnx2x_fw_dump(bp);
7646                        return rc;
7647                }
7648        }
7649
7650        /* set MSI reconfigure capability */
7651        if (bp->common.int_block == INT_BLOCK_HC) {
7652                addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7653                val = REG_RD(bp, addr);
7654                val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7655                REG_WR(bp, addr, val);
7656        }
7657
7658        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7659        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7660
7661        ilt = BP_ILT(bp);
7662        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7663
7664        if (IS_SRIOV(bp))
7665                cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7666        cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7667
7668        /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7669         * those of the VFs, so start line should be reset
7670         */
7671        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7672        for (i = 0; i < L2_ILT_LINES(bp); i++) {
7673                ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7674                ilt->lines[cdu_ilt_start + i].page_mapping =
7675                        bp->context[i].cxt_mapping;
7676                ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7677        }
7678
7679        bnx2x_ilt_init_op(bp, INITOP_SET);
7680
7681        if (!CONFIGURE_NIC_MODE(bp)) {
7682                bnx2x_init_searcher(bp);
7683                REG_WR(bp, PRS_REG_NIC_MODE, 0);
7684                DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7685        } else {
7686                /* Set NIC mode */
7687                REG_WR(bp, PRS_REG_NIC_MODE, 1);
7688                DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7689        }
7690
7691        if (!CHIP_IS_E1x(bp)) {
7692                u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7693
7694                /* Turn on a single ISR mode in IGU if driver is going to use
7695                 * INT#x or MSI
7696                 */
7697                if (!(bp->flags & USING_MSIX_FLAG))
7698                        pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7699                /*
7700                 * Timers workaround bug: function init part.
7701                 * Need to wait 20msec after initializing ILT,
7702                 * needed to make sure there are no requests in
7703                 * one of the PXP internal queues with "old" ILT addresses
7704                 */
7705                msleep(20);
7706                /*
7707                 * Master enable - Due to WB DMAE writes performed before this
7708                 * register is re-initialized as part of the regular function
7709                 * init
7710                 */
7711                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7712                /* Enable the function in IGU */
7713                REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7714        }
7715
7716        bp->dmae_ready = 1;
7717
7718        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7719
7720        if (!CHIP_IS_E1x(bp))
7721                REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7722
7723        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7724        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7725        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7726        bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7727        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7728        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7729        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7730        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7731        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7732        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7733        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7734        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7735        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7736
7737        if (!CHIP_IS_E1x(bp))
7738                REG_WR(bp, QM_REG_PF_EN, 1);
7739
7740        if (!CHIP_IS_E1x(bp)) {
7741                REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7742                REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7743                REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7744                REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7745        }
7746        bnx2x_init_block(bp, BLOCK_QM, init_phase);
7747
7748        bnx2x_init_block(bp, BLOCK_TM, init_phase);
7749        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7750        REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7751
7752        bnx2x_iov_init_dq(bp);
7753
7754        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7755        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7756        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7757        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7758        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7759        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7760        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7761        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7762        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7763        if (!CHIP_IS_E1x(bp))
7764                REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7765
7766        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7767
7768        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7769
7770        if (!CHIP_IS_E1x(bp))
7771                REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7772
7773        if (IS_MF(bp)) {
7774                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7775                REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7776        }
7777
7778        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7779
7780        /* HC init per function */
7781        if (bp->common.int_block == INT_BLOCK_HC) {
7782                if (CHIP_IS_E1H(bp)) {
7783                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7784
7785                        REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7786                        REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7787                }
7788                bnx2x_init_block(bp, BLOCK_HC, init_phase);
7789
7790        } else {
7791                int num_segs, sb_idx, prod_offset;
7792
7793                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7794
7795                if (!CHIP_IS_E1x(bp)) {
7796                        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7797                        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7798                }
7799
7800                bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7801
7802                if (!CHIP_IS_E1x(bp)) {
7803                        int dsb_idx = 0;
7804                        /**
7805                         * Producer memory:
7806                         * E2 mode: address 0-135 match to the mapping memory;
7807                         * 136 - PF0 default prod; 137 - PF1 default prod;
7808                         * 138 - PF2 default prod; 139 - PF3 default prod;
7809                         * 140 - PF0 attn prod;    141 - PF1 attn prod;
7810                         * 142 - PF2 attn prod;    143 - PF3 attn prod;
7811                         * 144-147 reserved.
7812                         *
7813                         * E1.5 mode - In backward compatible mode;
7814                         * for non default SB; each even line in the memory
7815                         * holds the U producer and each odd line hold
7816                         * the C producer. The first 128 producers are for
7817                         * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7818                         * producers are for the DSB for each PF.
7819                         * Each PF has five segments: (the order inside each
7820                         * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7821                         * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7822                         * 144-147 attn prods;
7823                         */
7824                        /* non-default-status-blocks */
7825                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7826                                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7827                        for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7828                                prod_offset = (bp->igu_base_sb + sb_idx) *
7829                                        num_segs;
7830
7831                                for (i = 0; i < num_segs; i++) {
7832                                        addr = IGU_REG_PROD_CONS_MEMORY +
7833                                                        (prod_offset + i) * 4;
7834                                        REG_WR(bp, addr, 0);
7835                                }
7836                                /* send consumer update with value 0 */
7837                                bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7838                                             USTORM_ID, 0, IGU_INT_NOP, 1);
7839                                bnx2x_igu_clear_sb(bp,
7840                                                   bp->igu_base_sb + sb_idx);
7841                        }
7842
7843                        /* default-status-blocks */
7844                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7845                                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7846
7847                        if (CHIP_MODE_IS_4_PORT(bp))
7848                                dsb_idx = BP_FUNC(bp);
7849                        else
7850                                dsb_idx = BP_VN(bp);
7851
7852                        prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7853                                       IGU_BC_BASE_DSB_PROD + dsb_idx :
7854                                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7855
7856                        /*
7857                         * igu prods come in chunks of E1HVN_MAX (4) -
7858                         * does not matters what is the current chip mode
7859                         */
7860                        for (i = 0; i < (num_segs * E1HVN_MAX);
7861                             i += E1HVN_MAX) {
7862                                addr = IGU_REG_PROD_CONS_MEMORY +
7863                                                        (prod_offset + i)*4;
7864                                REG_WR(bp, addr, 0);
7865                        }
7866                        /* send consumer update with 0 */
7867                        if (CHIP_INT_MODE_IS_BC(bp)) {
7868                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
7869                                             USTORM_ID, 0, IGU_INT_NOP, 1);
7870                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
7871                                             CSTORM_ID, 0, IGU_INT_NOP, 1);
7872                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
7873                                             XSTORM_ID, 0, IGU_INT_NOP, 1);
7874                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
7875                                             TSTORM_ID, 0, IGU_INT_NOP, 1);
7876                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
7877                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
7878                        } else {
7879                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
7880                                             USTORM_ID, 0, IGU_INT_NOP, 1);
7881                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
7882                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
7883                        }
7884                        bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7885
7886                        /* !!! These should become driver const once
7887                           rf-tool supports split-68 const */
7888                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7889                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7890                        REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7891                        REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7892                        REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7893                        REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7894                }
7895        }
7896
7897        /* Reset PCIE errors for debug */
7898        REG_WR(bp, 0x2114, 0xffffffff);
7899        REG_WR(bp, 0x2120, 0xffffffff);
7900
7901        if (CHIP_IS_E1x(bp)) {
7902                main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7903                main_mem_base = HC_REG_MAIN_MEMORY +
7904                                BP_PORT(bp) * (main_mem_size * 4);
7905                main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7906                main_mem_width = 8;
7907
7908                val = REG_RD(bp, main_mem_prty_clr);
7909                if (val)
7910                        DP(NETIF_MSG_HW,
7911                           "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7912                           val);
7913
7914                /* Clear "false" parity errors in MSI-X table */
7915                for (i = main_mem_base;
7916                     i < main_mem_base + main_mem_size * 4;
7917                     i += main_mem_width) {
7918                        bnx2x_read_dmae(bp, i, main_mem_width / 4);
7919                        bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7920                                         i, main_mem_width / 4);
7921                }
7922                /* Clear HC parity attention */
7923                REG_RD(bp, main_mem_prty_clr);
7924        }
7925
7926#ifdef BNX2X_STOP_ON_ERROR
7927        /* Enable STORMs SP logging */
7928        REG_WR8(bp, BAR_USTRORM_INTMEM +
7929               USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7930        REG_WR8(bp, BAR_TSTRORM_INTMEM +
7931               TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7932        REG_WR8(bp, BAR_CSTRORM_INTMEM +
7933               CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7934        REG_WR8(bp, BAR_XSTRORM_INTMEM +
7935               XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7936#endif
7937
7938        bnx2x_phy_probe(&bp->link_params);
7939
7940        return 0;
7941}
7942
7943void bnx2x_free_mem_cnic(struct bnx2x *bp)
7944{
7945        bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7946
7947        if (!CHIP_IS_E1x(bp))
7948                BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7949                               sizeof(struct host_hc_status_block_e2));
7950        else
7951                BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7952                               sizeof(struct host_hc_status_block_e1x));
7953
7954        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7955}
7956
7957void bnx2x_free_mem(struct bnx2x *bp)
7958{
7959        int i;
7960
7961        BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7962                       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7963
7964        if (IS_VF(bp))
7965                return;
7966
7967        BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7968                       sizeof(struct host_sp_status_block));
7969
7970        BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7971                       sizeof(struct bnx2x_slowpath));
7972
7973        for (i = 0; i < L2_ILT_LINES(bp); i++)
7974                BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7975                               bp->context[i].size);
7976        bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7977
7978        BNX2X_FREE(bp->ilt->lines);
7979
7980        BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7981
7982        BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7983                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7984
7985        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7986
7987        bnx2x_iov_free_mem(bp);
7988}
7989
7990int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7991{
7992        if (!CHIP_IS_E1x(bp))
7993                /* size = the status block + ramrod buffers */
7994                BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7995                                sizeof(struct host_hc_status_block_e2));
7996        else
7997                BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7998                                &bp->cnic_sb_mapping,
7999                                sizeof(struct
8000                                       host_hc_status_block_e1x));
8001
8002        if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
8003                /* allocate searcher T2 table, as it wasn't allocated before */
8004                BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8005
8006        /* write address to which L5 should insert its values */
8007        bp->cnic_eth_dev.addr_drv_info_to_mcp =
8008                &bp->slowpath->drv_info_to_mcp;
8009
8010        if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8011                goto alloc_mem_err;
8012
8013        return 0;
8014
8015alloc_mem_err:
8016        bnx2x_free_mem_cnic(bp);
8017        BNX2X_ERR("Can't allocate memory\n");
8018        return -ENOMEM;
8019}
8020
8021int bnx2x_alloc_mem(struct bnx2x *bp)
8022{
8023        int i, allocated, context_size;
8024
8025        if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
8026                /* allocate searcher T2 table */
8027                BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8028
8029        BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
8030                        sizeof(struct host_sp_status_block));
8031
8032        BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
8033                        sizeof(struct bnx2x_slowpath));
8034
8035        /* Allocate memory for CDU context:
8036         * This memory is allocated separately and not in the generic ILT
8037         * functions because CDU differs in few aspects:
8038         * 1. There are multiple entities allocating memory for context -
8039         * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8040         * its own ILT lines.
8041         * 2. Since CDU page-size is not a single 4KB page (which is the case
8042         * for the other ILT clients), to be efficient we want to support
8043         * allocation of sub-page-size in the last entry.
8044         * 3. Context pointers are used by the driver to pass to FW / update
8045         * the context (for the other ILT clients the pointers are used just to
8046         * free the memory during unload).
8047         */
8048        context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8049
8050        for (i = 0, allocated = 0; allocated < context_size; i++) {
8051                bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8052                                          (context_size - allocated));
8053                BNX2X_PCI_ALLOC(bp->context[i].vcxt,
8054                                &bp->context[i].cxt_mapping,
8055                                bp->context[i].size);
8056                allocated += bp->context[i].size;
8057        }
8058        BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
8059
8060        if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8061                goto alloc_mem_err;
8062
8063        if (bnx2x_iov_alloc_mem(bp))
8064                goto alloc_mem_err;
8065
8066        /* Slow path ring */
8067        BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
8068
8069        /* EQ */
8070        BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
8071                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8072
8073        return 0;
8074
8075alloc_mem_err:
8076        bnx2x_free_mem(bp);
8077        BNX2X_ERR("Can't allocate memory\n");
8078        return -ENOMEM;
8079}
8080
8081/*
8082 * Init service functions
8083 */
8084
8085int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8086                      struct bnx2x_vlan_mac_obj *obj, bool set,
8087                      int mac_type, unsigned long *ramrod_flags)
8088{
8089        int rc;
8090        struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8091
8092        memset(&ramrod_param, 0, sizeof(ramrod_param));
8093
8094        /* Fill general parameters */
8095        ramrod_param.vlan_mac_obj = obj;
8096        ramrod_param.ramrod_flags = *ramrod_flags;
8097
8098        /* Fill a user request section if needed */
8099        if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8100                memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8101
8102                __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8103
8104                /* Set the command: ADD or DEL */
8105                if (set)
8106                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8107                else
8108                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8109        }
8110
8111        rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8112
8113        if (rc == -EEXIST) {
8114                DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8115                /* do not treat adding same MAC as error */
8116                rc = 0;
8117        } else if (rc < 0)
8118                BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8119
8120        return rc;
8121}
8122
8123int bnx2x_del_all_macs(struct bnx2x *bp,
8124                       struct bnx2x_vlan_mac_obj *mac_obj,
8125                       int mac_type, bool wait_for_comp)
8126{
8127        int rc;
8128        unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8129
8130        /* Wait for completion of requested */
8131        if (wait_for_comp)
8132                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8133
8134        /* Set the mac type of addresses we want to clear */
8135        __set_bit(mac_type, &vlan_mac_flags);
8136
8137        rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8138        if (rc < 0)
8139                BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8140
8141        return rc;
8142}
8143
8144int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8145{
8146        if (is_zero_ether_addr(bp->dev->dev_addr) &&
8147            (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8148                DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8149                   "Ignoring Zero MAC for STORAGE SD mode\n");
8150                return 0;
8151        }
8152
8153        if (IS_PF(bp)) {
8154                unsigned long ramrod_flags = 0;
8155
8156                DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8157                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8158                return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8159                                         &bp->sp_objs->mac_obj, set,
8160                                         BNX2X_ETH_MAC, &ramrod_flags);
8161        } else { /* vf */
8162                return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8163                                             bp->fp->index, true);
8164        }
8165}
8166
8167int bnx2x_setup_leading(struct bnx2x *bp)
8168{
8169        if (IS_PF(bp))
8170                return bnx2x_setup_queue(bp, &bp->fp[0], true);
8171        else /* VF */
8172                return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8173}
8174
8175/**
8176 * bnx2x_set_int_mode - configure interrupt mode
8177 *
8178 * @bp:         driver handle
8179 *
8180 * In case of MSI-X it will also try to enable MSI-X.
8181 */
8182int bnx2x_set_int_mode(struct bnx2x *bp)
8183{
8184        int rc = 0;
8185
8186        if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8187                BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8188                return -EINVAL;
8189        }
8190
8191        switch (int_mode) {
8192        case BNX2X_INT_MODE_MSIX:
8193                /* attempt to enable msix */
8194                rc = bnx2x_enable_msix(bp);
8195
8196                /* msix attained */
8197                if (!rc)
8198                        return 0;
8199
8200                /* vfs use only msix */
8201                if (rc && IS_VF(bp))
8202                        return rc;
8203
8204                /* failed to enable multiple MSI-X */
8205                BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8206                               bp->num_queues,
8207                               1 + bp->num_cnic_queues);
8208
8209                /* falling through... */
8210        case BNX2X_INT_MODE_MSI:
8211                bnx2x_enable_msi(bp);
8212
8213                /* falling through... */
8214        case BNX2X_INT_MODE_INTX:
8215                bp->num_ethernet_queues = 1;
8216                bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8217                BNX2X_DEV_INFO("set number of queues to 1\n");
8218                break;
8219        default:
8220                BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8221                return -EINVAL;
8222        }
8223        return 0;
8224}
8225
8226/* must be called prior to any HW initializations */
8227static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8228{
8229        if (IS_SRIOV(bp))
8230                return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8231        return L2_ILT_LINES(bp);
8232}
8233
8234void bnx2x_ilt_set_info(struct bnx2x *bp)
8235{
8236        struct ilt_client_info *ilt_client;
8237        struct bnx2x_ilt *ilt = BP_ILT(bp);
8238        u16 line = 0;
8239
8240        ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8241        DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8242
8243        /* CDU */
8244        ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8245        ilt_client->client_num = ILT_CLIENT_CDU;
8246        ilt_client->page_size = CDU_ILT_PAGE_SZ;
8247        ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8248        ilt_client->start = line;
8249        line += bnx2x_cid_ilt_lines(bp);
8250
8251        if (CNIC_SUPPORT(bp))
8252                line += CNIC_ILT_LINES;
8253        ilt_client->end = line - 1;
8254
8255        DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8256           ilt_client->start,
8257           ilt_client->end,
8258           ilt_client->page_size,
8259           ilt_client->flags,
8260           ilog2(ilt_client->page_size >> 12));
8261
8262        /* QM */
8263        if (QM_INIT(bp->qm_cid_count)) {
8264                ilt_client = &ilt->clients[ILT_CLIENT_QM];
8265                ilt_client->client_num = ILT_CLIENT_QM;
8266                ilt_client->page_size = QM_ILT_PAGE_SZ;
8267                ilt_client->flags = 0;
8268                ilt_client->start = line;
8269
8270                /* 4 bytes for each cid */
8271                line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8272                                                         QM_ILT_PAGE_SZ);
8273
8274                ilt_client->end = line - 1;
8275
8276                DP(NETIF_MSG_IFUP,
8277                   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8278                   ilt_client->start,
8279                   ilt_client->end,
8280                   ilt_client->page_size,
8281                   ilt_client->flags,
8282                   ilog2(ilt_client->page_size >> 12));
8283        }
8284
8285        if (CNIC_SUPPORT(bp)) {
8286                /* SRC */
8287                ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8288                ilt_client->client_num = ILT_CLIENT_SRC;
8289                ilt_client->page_size = SRC_ILT_PAGE_SZ;
8290                ilt_client->flags = 0;
8291                ilt_client->start = line;
8292                line += SRC_ILT_LINES;
8293                ilt_client->end = line - 1;
8294
8295                DP(NETIF_MSG_IFUP,
8296                   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8297                   ilt_client->start,
8298                   ilt_client->end,
8299                   ilt_client->page_size,
8300                   ilt_client->flags,
8301                   ilog2(ilt_client->page_size >> 12));
8302
8303                /* TM */
8304                ilt_client = &ilt->clients[ILT_CLIENT_TM];
8305                ilt_client->client_num = ILT_CLIENT_TM;
8306                ilt_client->page_size = TM_ILT_PAGE_SZ;
8307                ilt_client->flags = 0;
8308                ilt_client->start = line;
8309                line += TM_ILT_LINES;
8310                ilt_client->end = line - 1;
8311
8312                DP(NETIF_MSG_IFUP,
8313                   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8314                   ilt_client->start,
8315                   ilt_client->end,
8316                   ilt_client->page_size,
8317                   ilt_client->flags,
8318                   ilog2(ilt_client->page_size >> 12));
8319        }
8320
8321        BUG_ON(line > ILT_MAX_LINES);
8322}
8323
8324/**
8325 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8326 *
8327 * @bp:                 driver handle
8328 * @fp:                 pointer to fastpath
8329 * @init_params:        pointer to parameters structure
8330 *
8331 * parameters configured:
8332 *      - HC configuration
8333 *      - Queue's CDU context
8334 */
8335static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8336        struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8337{
8338        u8 cos;
8339        int cxt_index, cxt_offset;
8340
8341        /* FCoE Queue uses Default SB, thus has no HC capabilities */
8342        if (!IS_FCOE_FP(fp)) {
8343                __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8344                __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8345
8346                /* If HC is supported, enable host coalescing in the transition
8347                 * to INIT state.
8348                 */
8349                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8350                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8351
8352                /* HC rate */
8353                init_params->rx.hc_rate = bp->rx_ticks ?
8354                        (1000000 / bp->rx_ticks) : 0;
8355                init_params->tx.hc_rate = bp->tx_ticks ?
8356                        (1000000 / bp->tx_ticks) : 0;
8357
8358                /* FW SB ID */
8359                init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8360                        fp->fw_sb_id;
8361
8362                /*
8363                 * CQ index among the SB indices: FCoE clients uses the default
8364                 * SB, therefore it's different.
8365                 */
8366                init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8367                init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8368        }
8369
8370        /* set maximum number of COSs supported by this queue */
8371        init_params->max_cos = fp->max_cos;
8372
8373        DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8374            fp->index, init_params->max_cos);
8375
8376        /* set the context pointers queue object */
8377        for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8378                cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8379                cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8380                                ILT_PAGE_CIDS);
8381                init_params->cxts[cos] =
8382                        &bp->context[cxt_index].vcxt[cxt_offset].eth;
8383        }
8384}
8385
8386static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8387                        struct bnx2x_queue_state_params *q_params,
8388                        struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8389                        int tx_index, bool leading)
8390{
8391        memset(tx_only_params, 0, sizeof(*tx_only_params));
8392
8393        /* Set the command */
8394        q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8395
8396        /* Set tx-only QUEUE flags: don't zero statistics */
8397        tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8398
8399        /* choose the index of the cid to send the slow path on */
8400        tx_only_params->cid_index = tx_index;
8401
8402        /* Set general TX_ONLY_SETUP parameters */
8403        bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8404
8405        /* Set Tx TX_ONLY_SETUP parameters */
8406        bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8407
8408        DP(NETIF_MSG_IFUP,
8409           "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8410           tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8411           q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8412           tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8413
8414        /* send the ramrod */
8415        return bnx2x_queue_state_change(bp, q_params);
8416}
8417
8418/**
8419 * bnx2x_setup_queue - setup queue
8420 *
8421 * @bp:         driver handle
8422 * @fp:         pointer to fastpath
8423 * @leading:    is leading
8424 *
8425 * This function performs 2 steps in a Queue state machine
8426 *      actually: 1) RESET->INIT 2) INIT->SETUP
8427 */
8428
8429int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8430                       bool leading)
8431{
8432        struct bnx2x_queue_state_params q_params = {NULL};
8433        struct bnx2x_queue_setup_params *setup_params =
8434                                                &q_params.params.setup;
8435        struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8436                                                &q_params.params.tx_only;
8437        int rc;
8438        u8 tx_index;
8439
8440        DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8441
8442        /* reset IGU state skip FCoE L2 queue */
8443        if (!IS_FCOE_FP(fp))
8444                bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8445                             IGU_INT_ENABLE, 0);
8446
8447        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8448        /* We want to wait for completion in this context */
8449        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8450
8451        /* Prepare the INIT parameters */
8452        bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8453
8454        /* Set the command */
8455        q_params.cmd = BNX2X_Q_CMD_INIT;
8456
8457        /* Change the state to INIT */
8458        rc = bnx2x_queue_state_change(bp, &q_params);
8459        if (rc) {
8460                BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8461                return rc;
8462        }
8463
8464        DP(NETIF_MSG_IFUP, "init complete\n");
8465
8466        /* Now move the Queue to the SETUP state... */
8467        memset(setup_params, 0, sizeof(*setup_params));
8468
8469        /* Set QUEUE flags */
8470        setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8471
8472        /* Set general SETUP parameters */
8473        bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8474                                FIRST_TX_COS_INDEX);
8475
8476        bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8477                            &setup_params->rxq_params);
8478
8479        bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8480                           FIRST_TX_COS_INDEX);
8481
8482        /* Set the command */
8483        q_params.cmd = BNX2X_Q_CMD_SETUP;
8484
8485        if (IS_FCOE_FP(fp))
8486                bp->fcoe_init = true;
8487
8488        /* Change the state to SETUP */
8489        rc = bnx2x_queue_state_change(bp, &q_params);
8490        if (rc) {
8491                BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8492                return rc;
8493        }
8494
8495        /* loop through the relevant tx-only indices */
8496        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8497              tx_index < fp->max_cos;
8498              tx_index++) {
8499
8500                /* prepare and send tx-only ramrod*/
8501                rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8502                                          tx_only_params, tx_index, leading);
8503                if (rc) {
8504                        BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8505                                  fp->index, tx_index);
8506                        return rc;
8507                }
8508        }
8509
8510        return rc;
8511}
8512
8513static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8514{
8515        struct bnx2x_fastpath *fp = &bp->fp[index];
8516        struct bnx2x_fp_txdata *txdata;
8517        struct bnx2x_queue_state_params q_params = {NULL};
8518        int rc, tx_index;
8519
8520        DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8521
8522        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8523        /* We want to wait for completion in this context */
8524        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8525
8526        /* close tx-only connections */
8527        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8528             tx_index < fp->max_cos;
8529             tx_index++){
8530
8531                /* ascertain this is a normal queue*/
8532                txdata = fp->txdata_ptr[tx_index];
8533
8534                DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8535                                                        txdata->txq_index);
8536
8537                /* send halt terminate on tx-only connection */
8538                q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8539                memset(&q_params.params.terminate, 0,
8540                       sizeof(q_params.params.terminate));
8541                q_params.params.terminate.cid_index = tx_index;
8542
8543                rc = bnx2x_queue_state_change(bp, &q_params);
8544                if (rc)
8545                        return rc;
8546
8547                /* send halt terminate on tx-only connection */
8548                q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8549                memset(&q_params.params.cfc_del, 0,
8550                       sizeof(q_params.params.cfc_del));
8551                q_params.params.cfc_del.cid_index = tx_index;
8552                rc = bnx2x_queue_state_change(bp, &q_params);
8553                if (rc)
8554                        return rc;
8555        }
8556        /* Stop the primary connection: */
8557        /* ...halt the connection */
8558        q_params.cmd = BNX2X_Q_CMD_HALT;
8559        rc = bnx2x_queue_state_change(bp, &q_params);
8560        if (rc)
8561                return rc;
8562
8563        /* ...terminate the connection */
8564        q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8565        memset(&q_params.params.terminate, 0,
8566               sizeof(q_params.params.terminate));
8567        q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8568        rc = bnx2x_queue_state_change(bp, &q_params);
8569        if (rc)
8570                return rc;
8571        /* ...delete cfc entry */
8572        q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8573        memset(&q_params.params.cfc_del, 0,
8574               sizeof(q_params.params.cfc_del));
8575        q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8576        return bnx2x_queue_state_change(bp, &q_params);
8577}
8578
8579static void bnx2x_reset_func(struct bnx2x *bp)
8580{
8581        int port = BP_PORT(bp);
8582        int func = BP_FUNC(bp);
8583        int i;
8584
8585        /* Disable the function in the FW */
8586        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8587        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8588        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8589        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8590
8591        /* FP SBs */
8592        for_each_eth_queue(bp, i) {
8593                struct bnx2x_fastpath *fp = &bp->fp[i];
8594                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8595                           CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8596                           SB_DISABLED);
8597        }
8598
8599        if (CNIC_LOADED(bp))
8600                /* CNIC SB */
8601                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8602                        CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8603                        (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8604
8605        /* SP SB */
8606        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8607                CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8608                SB_DISABLED);
8609
8610        for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8611                REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8612                       0);
8613
8614        /* Configure IGU */
8615        if (bp->common.int_block == INT_BLOCK_HC) {
8616                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8617                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8618        } else {
8619                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8620                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8621        }
8622
8623        if (CNIC_LOADED(bp)) {
8624                /* Disable Timer scan */
8625                REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8626                /*
8627                 * Wait for at least 10ms and up to 2 second for the timers
8628                 * scan to complete
8629                 */
8630                for (i = 0; i < 200; i++) {
8631                        usleep_range(10000, 20000);
8632                        if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8633                                break;
8634                }
8635        }
8636        /* Clear ILT */
8637        bnx2x_clear_func_ilt(bp, func);
8638
8639        /* Timers workaround bug for E2: if this is vnic-3,
8640         * we need to set the entire ilt range for this timers.
8641         */
8642        if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8643                struct ilt_client_info ilt_cli;
8644                /* use dummy TM client */
8645                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8646                ilt_cli.start = 0;
8647                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8648                ilt_cli.client_num = ILT_CLIENT_TM;
8649
8650                bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8651        }
8652
8653        /* this assumes that reset_port() called before reset_func()*/
8654        if (!CHIP_IS_E1x(bp))
8655                bnx2x_pf_disable(bp);
8656
8657        bp->dmae_ready = 0;
8658}
8659
8660static void bnx2x_reset_port(struct bnx2x *bp)
8661{
8662        int port = BP_PORT(bp);
8663        u32 val;
8664
8665        /* Reset physical Link */
8666        bnx2x__link_reset(bp);
8667
8668        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8669
8670        /* Do not rcv packets to BRB */
8671        REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8672        /* Do not direct rcv packets that are not for MCP to the BRB */
8673        REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8674                           NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8675
8676        /* Configure AEU */
8677        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8678
8679        msleep(100);
8680        /* Check for BRB port occupancy */
8681        val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8682        if (val)
8683                DP(NETIF_MSG_IFDOWN,
8684                   "BRB1 is not empty  %d blocks are occupied\n", val);
8685
8686        /* TODO: Close Doorbell port? */
8687}
8688
8689static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8690{
8691        struct bnx2x_func_state_params func_params = {NULL};
8692
8693        /* Prepare parameters for function state transitions */
8694        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8695
8696        func_params.f_obj = &bp->func_obj;
8697        func_params.cmd = BNX2X_F_CMD_HW_RESET;
8698
8699        func_params.params.hw_init.load_phase = load_code;
8700
8701        return bnx2x_func_state_change(bp, &func_params);
8702}
8703
8704static int bnx2x_func_stop(struct bnx2x *bp)
8705{
8706        struct bnx2x_func_state_params func_params = {NULL};
8707        int rc;
8708
8709        /* Prepare parameters for function state transitions */
8710        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8711        func_params.f_obj = &bp->func_obj;
8712        func_params.cmd = BNX2X_F_CMD_STOP;
8713
8714        /*
8715         * Try to stop the function the 'good way'. If fails (in case
8716         * of a parity error during bnx2x_chip_cleanup()) and we are
8717         * not in a debug mode, perform a state transaction in order to
8718         * enable further HW_RESET transaction.
8719         */
8720        rc = bnx2x_func_state_change(bp, &func_params);
8721        if (rc) {
8722#ifdef BNX2X_STOP_ON_ERROR
8723                return rc;
8724#else
8725                BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8726                __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8727                return bnx2x_func_state_change(bp, &func_params);
8728#endif
8729        }
8730
8731        return 0;
8732}
8733
8734/**
8735 * bnx2x_send_unload_req - request unload mode from the MCP.
8736 *
8737 * @bp:                 driver handle
8738 * @unload_mode:        requested function's unload mode
8739 *
8740 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8741 */
8742u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8743{
8744        u32 reset_code = 0;
8745        int port = BP_PORT(bp);
8746
8747        /* Select the UNLOAD request mode */
8748        if (unload_mode == UNLOAD_NORMAL)
8749                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8750
8751        else if (bp->flags & NO_WOL_FLAG)
8752                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8753
8754        else if (bp->wol) {
8755                u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8756                u8 *mac_addr = bp->dev->dev_addr;
8757                struct pci_dev *pdev = bp->pdev;
8758                u32 val;
8759                u16 pmc;
8760
8761                /* The mac address is written to entries 1-4 to
8762                 * preserve entry 0 which is used by the PMF
8763                 */
8764                u8 entry = (BP_VN(bp) + 1)*8;
8765
8766                val = (mac_addr[0] << 8) | mac_addr[1];
8767                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8768
8769                val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8770                      (mac_addr[4] << 8) | mac_addr[5];
8771                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8772
8773                /* Enable the PME and clear the status */
8774                pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8775                pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8776                pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8777
8778                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8779
8780        } else
8781                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8782
8783        /* Send the request to the MCP */
8784        if (!BP_NOMCP(bp))
8785                reset_code = bnx2x_fw_command(bp, reset_code, 0);
8786        else {
8787                int path = BP_PATH(bp);
8788
8789                DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8790                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8791                   bnx2x_load_count[path][2]);
8792                bnx2x_load_count[path][0]--;
8793                bnx2x_load_count[path][1 + port]--;
8794                DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8795                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8796                   bnx2x_load_count[path][2]);
8797                if (bnx2x_load_count[path][0] == 0)
8798                        reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8799                else if (bnx2x_load_count[path][1 + port] == 0)
8800                        reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8801                else
8802                        reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8803        }
8804
8805        return reset_code;
8806}
8807
8808/**
8809 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8810 *
8811 * @bp:         driver handle
8812 * @keep_link:          true iff link should be kept up
8813 */
8814void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8815{
8816        u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8817
8818        /* Report UNLOAD_DONE to MCP */
8819        if (!BP_NOMCP(bp))
8820                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8821}
8822
8823static int bnx2x_func_wait_started(struct bnx2x *bp)
8824{
8825        int tout = 50;
8826        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8827
8828        if (!bp->port.pmf)
8829                return 0;
8830
8831        /*
8832         * (assumption: No Attention from MCP at this stage)
8833         * PMF probably in the middle of TX disable/enable transaction
8834         * 1. Sync IRS for default SB
8835         * 2. Sync SP queue - this guarantees us that attention handling started
8836         * 3. Wait, that TX disable/enable transaction completes
8837         *
8838         * 1+2 guarantee that if DCBx attention was scheduled it already changed
8839         * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8840         * received completion for the transaction the state is TX_STOPPED.
8841         * State will return to STARTED after completion of TX_STOPPED-->STARTED
8842         * transaction.
8843         */
8844
8845        /* make sure default SB ISR is done */
8846        if (msix)
8847                synchronize_irq(bp->msix_table[0].vector);
8848        else
8849                synchronize_irq(bp->pdev->irq);
8850
8851        flush_workqueue(bnx2x_wq);
8852
8853        while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8854                                BNX2X_F_STATE_STARTED && tout--)
8855                msleep(20);
8856
8857        if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8858                                                BNX2X_F_STATE_STARTED) {
8859#ifdef BNX2X_STOP_ON_ERROR
8860                BNX2X_ERR("Wrong function state\n");
8861                return -EBUSY;
8862#else
8863                /*
8864                 * Failed to complete the transaction in a "good way"
8865                 * Force both transactions with CLR bit
8866                 */
8867                struct bnx2x_func_state_params func_params = {NULL};
8868
8869                DP(NETIF_MSG_IFDOWN,
8870                   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8871
8872                func_params.f_obj = &bp->func_obj;
8873                __set_bit(RAMROD_DRV_CLR_ONLY,
8874                                        &func_params.ramrod_flags);
8875
8876                /* STARTED-->TX_ST0PPED */
8877                func_params.cmd = BNX2X_F_CMD_TX_STOP;
8878                bnx2x_func_state_change(bp, &func_params);
8879
8880                /* TX_ST0PPED-->STARTED */
8881                func_params.cmd = BNX2X_F_CMD_TX_START;
8882                return bnx2x_func_state_change(bp, &func_params);
8883#endif
8884        }
8885
8886        return 0;
8887}
8888
8889void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8890{
8891        int port = BP_PORT(bp);
8892        int i, rc = 0;
8893        u8 cos;
8894        struct bnx2x_mcast_ramrod_params rparam = {NULL};
8895        u32 reset_code;
8896
8897        /* Wait until tx fastpath tasks complete */
8898        for_each_tx_queue(bp, i) {
8899                struct bnx2x_fastpath *fp = &bp->fp[i];
8900
8901                for_each_cos_in_tx_queue(fp, cos)
8902                        rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8903#ifdef BNX2X_STOP_ON_ERROR
8904                if (rc)
8905                        return;
8906#endif
8907        }
8908
8909        /* Give HW time to discard old tx messages */
8910        usleep_range(1000, 2000);
8911
8912        /* Clean all ETH MACs */
8913        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8914                                false);
8915        if (rc < 0)
8916                BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8917
8918        /* Clean up UC list  */
8919        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8920                                true);
8921        if (rc < 0)
8922                BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8923                          rc);
8924
8925        /* Disable LLH */
8926        if (!CHIP_IS_E1(bp))
8927                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8928
8929        /* Set "drop all" (stop Rx).
8930         * We need to take a netif_addr_lock() here in order to prevent
8931         * a race between the completion code and this code.
8932         */
8933        netif_addr_lock_bh(bp->dev);
8934        /* Schedule the rx_mode command */
8935        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8936                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8937        else
8938                bnx2x_set_storm_rx_mode(bp);
8939
8940        /* Cleanup multicast configuration */
8941        rparam.mcast_obj = &bp->mcast_obj;
8942        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8943        if (rc < 0)
8944                BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8945
8946        netif_addr_unlock_bh(bp->dev);
8947
8948        bnx2x_iov_chip_cleanup(bp);
8949
8950        /*
8951         * Send the UNLOAD_REQUEST to the MCP. This will return if
8952         * this function should perform FUNC, PORT or COMMON HW
8953         * reset.
8954         */
8955        reset_code = bnx2x_send_unload_req(bp, unload_mode);
8956
8957        /*
8958         * (assumption: No Attention from MCP at this stage)
8959         * PMF probably in the middle of TX disable/enable transaction
8960         */
8961        rc = bnx2x_func_wait_started(bp);
8962        if (rc) {
8963                BNX2X_ERR("bnx2x_func_wait_started failed\n");
8964#ifdef BNX2X_STOP_ON_ERROR
8965                return;
8966#endif
8967        }
8968
8969        /* Close multi and leading connections
8970         * Completions for ramrods are collected in a synchronous way
8971         */
8972        for_each_eth_queue(bp, i)
8973                if (bnx2x_stop_queue(bp, i))
8974#ifdef BNX2X_STOP_ON_ERROR
8975                        return;
8976#else
8977                        goto unload_error;
8978#endif
8979
8980        if (CNIC_LOADED(bp)) {
8981                for_each_cnic_queue(bp, i)
8982                        if (bnx2x_stop_queue(bp, i))
8983#ifdef BNX2X_STOP_ON_ERROR
8984                                return;
8985#else
8986                                goto unload_error;
8987#endif
8988        }
8989
8990        /* If SP settings didn't get completed so far - something
8991         * very wrong has happen.
8992         */
8993        if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8994                BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8995
8996#ifndef BNX2X_STOP_ON_ERROR
8997unload_error:
8998#endif
8999        rc = bnx2x_func_stop(bp);
9000        if (rc) {
9001                BNX2X_ERR("Function stop failed!\n");
9002#ifdef BNX2X_STOP_ON_ERROR
9003                return;
9004#endif
9005        }
9006
9007        /* Disable HW interrupts, NAPI */
9008        bnx2x_netif_stop(bp, 1);
9009        /* Delete all NAPI objects */
9010        bnx2x_del_all_napi(bp);
9011        if (CNIC_LOADED(bp))
9012                bnx2x_del_all_napi_cnic(bp);
9013
9014        /* Release IRQs */
9015        bnx2x_free_irq(bp);
9016
9017        /* Reset the chip */
9018        rc = bnx2x_reset_hw(bp, reset_code);
9019        if (rc)
9020                BNX2X_ERR("HW_RESET failed\n");
9021
9022        /* Report UNLOAD_DONE to MCP */
9023        bnx2x_send_unload_done(bp, keep_link);
9024}
9025
9026void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9027{
9028        u32 val;
9029
9030        DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9031
9032        if (CHIP_IS_E1(bp)) {
9033                int port = BP_PORT(bp);
9034                u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9035                        MISC_REG_AEU_MASK_ATTN_FUNC_0;
9036
9037                val = REG_RD(bp, addr);
9038                val &= ~(0x300);
9039                REG_WR(bp, addr, val);
9040        } else {
9041                val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9042                val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9043                         MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9044                REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9045        }
9046}
9047
9048/* Close gates #2, #3 and #4: */
9049static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9050{
9051        u32 val;
9052
9053        /* Gates #2 and #4a are closed/opened for "not E1" only */
9054        if (!CHIP_IS_E1(bp)) {
9055                /* #4 */
9056                REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9057                /* #2 */
9058                REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9059        }
9060
9061        /* #3 */
9062        if (CHIP_IS_E1x(bp)) {
9063                /* Prevent interrupts from HC on both ports */
9064                val = REG_RD(bp, HC_REG_CONFIG_1);
9065                REG_WR(bp, HC_REG_CONFIG_1,
9066                       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9067                       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9068
9069                val = REG_RD(bp, HC_REG_CONFIG_0);
9070                REG_WR(bp, HC_REG_CONFIG_0,
9071                       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9072                       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9073        } else {
9074                /* Prevent incoming interrupts in IGU */
9075                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9076
9077                REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9078                       (!close) ?
9079                       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9080                       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9081        }
9082
9083        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9084                close ? "closing" : "opening");
9085        mmiowb();
9086}
9087
9088#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9089
9090static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9091{
9092        /* Do some magic... */
9093        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9094        *magic_val = val & SHARED_MF_CLP_MAGIC;
9095        MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9096}
9097
9098/**
9099 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9100 *
9101 * @bp:         driver handle
9102 * @magic_val:  old value of the `magic' bit.
9103 */
9104static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9105{
9106        /* Restore the `magic' bit value... */
9107        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9108        MF_CFG_WR(bp, shared_mf_config.clp_mb,
9109                (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9110}
9111
9112/**
9113 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9114 *
9115 * @bp:         driver handle
9116 * @magic_val:  old value of 'magic' bit.
9117 *
9118 * Takes care of CLP configurations.
9119 */
9120static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9121{
9122        u32 shmem;
9123        u32 validity_offset;
9124
9125        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9126
9127        /* Set `magic' bit in order to save MF config */
9128        if (!CHIP_IS_E1(bp))
9129                bnx2x_clp_reset_prep(bp, magic_val);
9130
9131        /* Get shmem offset */
9132        shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9133        validity_offset =
9134                offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9135
9136        /* Clear validity map flags */
9137        if (shmem > 0)
9138                REG_WR(bp, shmem + validity_offset, 0);
9139}
9140
9141#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9142#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9143
9144/**
9145 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9146 *
9147 * @bp: driver handle
9148 */
9149static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9150{
9151        /* special handling for emulation and FPGA,
9152           wait 10 times longer */
9153        if (CHIP_REV_IS_SLOW(bp))
9154                msleep(MCP_ONE_TIMEOUT*10);
9155        else
9156                msleep(MCP_ONE_TIMEOUT);
9157}
9158
9159/*
9160 * initializes bp->common.shmem_base and waits for validity signature to appear
9161 */
9162static int bnx2x_init_shmem(struct bnx2x *bp)
9163{
9164        int cnt = 0;
9165        u32 val = 0;
9166
9167        do {
9168                bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9169                if (bp->common.shmem_base) {
9170                        val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9171                        if (val & SHR_MEM_VALIDITY_MB)
9172                                return 0;
9173                }
9174
9175                bnx2x_mcp_wait_one(bp);
9176
9177        } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9178
9179        BNX2X_ERR("BAD MCP validity signature\n");
9180
9181        return -ENODEV;
9182}
9183
9184static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9185{
9186        int rc = bnx2x_init_shmem(bp);
9187
9188        /* Restore the `magic' bit value */
9189        if (!CHIP_IS_E1(bp))
9190                bnx2x_clp_reset_done(bp, magic_val);
9191
9192        return rc;
9193}
9194
9195static void bnx2x_pxp_prep(struct bnx2x *bp)
9196{
9197        if (!CHIP_IS_E1(bp)) {
9198                REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9199                REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9200                mmiowb();
9201        }
9202}
9203
9204/*
9205 * Reset the whole chip except for:
9206 *      - PCIE core
9207 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9208 *              one reset bit)
9209 *      - IGU
9210 *      - MISC (including AEU)
9211 *      - GRC
9212 *      - RBCN, RBCP
9213 */
9214static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9215{
9216        u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9217        u32 global_bits2, stay_reset2;
9218
9219        /*
9220         * Bits that have to be set in reset_mask2 if we want to reset 'global'
9221         * (per chip) blocks.
9222         */
9223        global_bits2 =
9224                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9225                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9226
9227        /* Don't reset the following blocks.
9228         * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9229         *            reset, as in 4 port device they might still be owned
9230         *            by the MCP (there is only one leader per path).
9231         */
9232        not_reset_mask1 =
9233                MISC_REGISTERS_RESET_REG_1_RST_HC |
9234                MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9235                MISC_REGISTERS_RESET_REG_1_RST_PXP;
9236
9237        not_reset_mask2 =
9238                MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9239                MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9240                MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9241                MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9242                MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9243                MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9244                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9245                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9246                MISC_REGISTERS_RESET_REG_2_RST_ATC |
9247                MISC_REGISTERS_RESET_REG_2_PGLC |
9248                MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9249                MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9250                MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9251                MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9252                MISC_REGISTERS_RESET_REG_2_UMAC0 |
9253                MISC_REGISTERS_RESET_REG_2_UMAC1;
9254
9255        /*
9256         * Keep the following blocks in reset:
9257         *  - all xxMACs are handled by the bnx2x_link code.
9258         */
9259        stay_reset2 =
9260                MISC_REGISTERS_RESET_REG_2_XMAC |
9261                MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9262
9263        /* Full reset masks according to the chip */
9264        reset_mask1 = 0xffffffff;
9265
9266        if (CHIP_IS_E1(bp))
9267                reset_mask2 = 0xffff;
9268        else if (CHIP_IS_E1H(bp))
9269                reset_mask2 = 0x1ffff;
9270        else if (CHIP_IS_E2(bp))
9271                reset_mask2 = 0xfffff;
9272        else /* CHIP_IS_E3 */
9273                reset_mask2 = 0x3ffffff;
9274
9275        /* Don't reset global blocks unless we need to */
9276        if (!global)
9277                reset_mask2 &= ~global_bits2;
9278
9279        /*
9280         * In case of attention in the QM, we need to reset PXP
9281         * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9282         * because otherwise QM reset would release 'close the gates' shortly
9283         * before resetting the PXP, then the PSWRQ would send a write
9284         * request to PGLUE. Then when PXP is reset, PGLUE would try to
9285         * read the payload data from PSWWR, but PSWWR would not
9286         * respond. The write queue in PGLUE would stuck, dmae commands
9287         * would not return. Therefore it's important to reset the second
9288         * reset register (containing the
9289         * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9290         * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9291         * bit).
9292         */
9293        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9294               reset_mask2 & (~not_reset_mask2));
9295
9296        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9297               reset_mask1 & (~not_reset_mask1));
9298
9299        barrier();
9300        mmiowb();
9301
9302        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9303               reset_mask2 & (~stay_reset2));
9304
9305        barrier();
9306        mmiowb();
9307
9308        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9309        mmiowb();
9310}
9311
9312/**
9313 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9314 * It should get cleared in no more than 1s.
9315 *
9316 * @bp: driver handle
9317 *
9318 * It should get cleared in no more than 1s. Returns 0 if
9319 * pending writes bit gets cleared.
9320 */
9321static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9322{
9323        u32 cnt = 1000;
9324        u32 pend_bits = 0;
9325
9326        do {
9327                pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9328
9329                if (pend_bits == 0)
9330                        break;
9331
9332                usleep_range(1000, 2000);
9333        } while (cnt-- > 0);
9334
9335        if (cnt <= 0) {
9336                BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9337                          pend_bits);
9338                return -EBUSY;
9339        }
9340
9341        return 0;
9342}
9343
9344static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9345{
9346        int cnt = 1000;
9347        u32 val = 0;
9348        u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9349        u32 tags_63_32 = 0;
9350
9351        /* Empty the Tetris buffer, wait for 1s */
9352        do {
9353                sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9354                blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9355                port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9356                port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9357                pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9358                if (CHIP_IS_E3(bp))
9359                        tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9360
9361                if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9362                    ((port_is_idle_0 & 0x1) == 0x1) &&
9363                    ((port_is_idle_1 & 0x1) == 0x1) &&
9364                    (pgl_exp_rom2 == 0xffffffff) &&
9365                    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9366                        break;
9367                usleep_range(1000, 2000);
9368        } while (cnt-- > 0);
9369
9370        if (cnt <= 0) {
9371                BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9372                BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9373                          sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9374                          pgl_exp_rom2);
9375                return -EAGAIN;
9376        }
9377
9378        barrier();
9379
9380        /* Close gates #2, #3 and #4 */
9381        bnx2x_set_234_gates(bp, true);
9382
9383        /* Poll for IGU VQs for 57712 and newer chips */
9384        if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9385                return -EAGAIN;
9386
9387        /* TBD: Indicate that "process kill" is in progress to MCP */
9388
9389        /* Clear "unprepared" bit */
9390        REG_WR(bp, MISC_REG_UNPREPARED, 0);
9391        barrier();
9392
9393        /* Make sure all is written to the chip before the reset */
9394        mmiowb();
9395
9396        /* Wait for 1ms to empty GLUE and PCI-E core queues,
9397         * PSWHST, GRC and PSWRD Tetris buffer.
9398         */
9399        usleep_range(1000, 2000);
9400
9401        /* Prepare to chip reset: */
9402        /* MCP */
9403        if (global)
9404                bnx2x_reset_mcp_prep(bp, &val);
9405
9406        /* PXP */
9407        bnx2x_pxp_prep(bp);
9408        barrier();
9409
9410        /* reset the chip */
9411        bnx2x_process_kill_chip_reset(bp, global);
9412        barrier();
9413
9414        /* clear errors in PGB */
9415        if (!CHIP_IS_E1x(bp))
9416                REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9417
9418        /* Recover after reset: */
9419        /* MCP */
9420        if (global && bnx2x_reset_mcp_comp(bp, val))
9421                return -EAGAIN;
9422
9423        /* TBD: Add resetting the NO_MCP mode DB here */
9424
9425        /* Open the gates #2, #3 and #4 */
9426        bnx2x_set_234_gates(bp, false);
9427
9428        /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9429         * reset state, re-enable attentions. */
9430
9431        return 0;
9432}
9433
9434static int bnx2x_leader_reset(struct bnx2x *bp)
9435{
9436        int rc = 0;
9437        bool global = bnx2x_reset_is_global(bp);
9438        u32 load_code;
9439
9440        /* if not going to reset MCP - load "fake" driver to reset HW while
9441         * driver is owner of the HW
9442         */
9443        if (!global && !BP_NOMCP(bp)) {
9444                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9445                                             DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9446                if (!load_code) {
9447                        BNX2X_ERR("MCP response failure, aborting\n");
9448                        rc = -EAGAIN;
9449                        goto exit_leader_reset;
9450                }
9451                if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9452                    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9453                        BNX2X_ERR("MCP unexpected resp, aborting\n");
9454                        rc = -EAGAIN;
9455                        goto exit_leader_reset2;
9456                }
9457                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9458                if (!load_code) {
9459                        BNX2X_ERR("MCP response failure, aborting\n");
9460                        rc = -EAGAIN;
9461                        goto exit_leader_reset2;
9462                }
9463        }
9464
9465        /* Try to recover after the failure */
9466        if (bnx2x_process_kill(bp, global)) {
9467                BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9468                          BP_PATH(bp));
9469                rc = -EAGAIN;
9470                goto exit_leader_reset2;
9471        }
9472
9473        /*
9474         * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9475         * state.
9476         */
9477        bnx2x_set_reset_done(bp);
9478        if (global)
9479                bnx2x_clear_reset_global(bp);
9480
9481exit_leader_reset2:
9482        /* unload "fake driver" if it was loaded */
9483        if (!global && !BP_NOMCP(bp)) {
9484                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9485                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9486        }
9487exit_leader_reset:
9488        bp->is_leader = 0;
9489        bnx2x_release_leader_lock(bp);
9490        smp_mb();
9491        return rc;
9492}
9493
9494static void bnx2x_recovery_failed(struct bnx2x *bp)
9495{
9496        netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9497
9498        /* Disconnect this device */
9499        netif_device_detach(bp->dev);
9500
9501        /*
9502         * Block ifup for all function on this engine until "process kill"
9503         * or power cycle.
9504         */
9505        bnx2x_set_reset_in_progress(bp);
9506
9507        /* Shut down the power */
9508        bnx2x_set_power_state(bp, PCI_D3hot);
9509
9510        bp->recovery_state = BNX2X_RECOVERY_FAILED;
9511
9512        smp_mb();
9513}
9514
9515/*
9516 * Assumption: runs under rtnl lock. This together with the fact
9517 * that it's called only from bnx2x_sp_rtnl() ensure that it
9518 * will never be called when netif_running(bp->dev) is false.
9519 */
9520static void bnx2x_parity_recover(struct bnx2x *bp)
9521{
9522        bool global = false;
9523        u32 error_recovered, error_unrecovered;
9524        bool is_parity;
9525
9526        DP(NETIF_MSG_HW, "Handling parity\n");
9527        while (1) {
9528                switch (bp->recovery_state) {
9529                case BNX2X_RECOVERY_INIT:
9530                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9531                        is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9532                        WARN_ON(!is_parity);
9533
9534                        /* Try to get a LEADER_LOCK HW lock */
9535                        if (bnx2x_trylock_leader_lock(bp)) {
9536                                bnx2x_set_reset_in_progress(bp);
9537                                /*
9538                                 * Check if there is a global attention and if
9539                                 * there was a global attention, set the global
9540                                 * reset bit.
9541                                 */
9542
9543                                if (global)
9544                                        bnx2x_set_reset_global(bp);
9545
9546                                bp->is_leader = 1;
9547                        }
9548
9549                        /* Stop the driver */
9550                        /* If interface has been removed - break */
9551                        if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9552                                return;
9553
9554                        bp->recovery_state = BNX2X_RECOVERY_WAIT;
9555
9556                        /* Ensure "is_leader", MCP command sequence and
9557                         * "recovery_state" update values are seen on other
9558                         * CPUs.
9559                         */
9560                        smp_mb();
9561                        break;
9562
9563                case BNX2X_RECOVERY_WAIT:
9564                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9565                        if (bp->is_leader) {
9566                                int other_engine = BP_PATH(bp) ? 0 : 1;
9567                                bool other_load_status =
9568                                        bnx2x_get_load_status(bp, other_engine);
9569                                bool load_status =
9570                                        bnx2x_get_load_status(bp, BP_PATH(bp));
9571                                global = bnx2x_reset_is_global(bp);
9572
9573                                /*
9574                                 * In case of a parity in a global block, let
9575                                 * the first leader that performs a
9576                                 * leader_reset() reset the global blocks in
9577                                 * order to clear global attentions. Otherwise
9578                                 * the gates will remain closed for that
9579                                 * engine.
9580                                 */
9581                                if (load_status ||
9582                                    (global && other_load_status)) {
9583                                        /* Wait until all other functions get
9584                                         * down.
9585                                         */
9586                                        schedule_delayed_work(&bp->sp_rtnl_task,
9587                                                                HZ/10);
9588                                        return;
9589                                } else {
9590                                        /* If all other functions got down -
9591                                         * try to bring the chip back to
9592                                         * normal. In any case it's an exit
9593                                         * point for a leader.
9594                                         */
9595                                        if (bnx2x_leader_reset(bp)) {
9596                                                bnx2x_recovery_failed(bp);
9597                                                return;
9598                                        }
9599
9600                                        /* If we are here, means that the
9601                                         * leader has succeeded and doesn't
9602                                         * want to be a leader any more. Try
9603                                         * to continue as a none-leader.
9604                                         */
9605                                        break;
9606                                }
9607                        } else { /* non-leader */
9608                                if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9609                                        /* Try to get a LEADER_LOCK HW lock as
9610                                         * long as a former leader may have
9611                                         * been unloaded by the user or
9612                                         * released a leadership by another
9613                                         * reason.
9614                                         */
9615                                        if (bnx2x_trylock_leader_lock(bp)) {
9616                                                /* I'm a leader now! Restart a
9617                                                 * switch case.
9618                                                 */
9619                                                bp->is_leader = 1;
9620                                                break;
9621                                        }
9622
9623                                        schedule_delayed_work(&bp->sp_rtnl_task,
9624                                                                HZ/10);
9625                                        return;
9626
9627                                } else {
9628                                        /*
9629                                         * If there was a global attention, wait
9630                                         * for it to be cleared.
9631                                         */
9632                                        if (bnx2x_reset_is_global(bp)) {
9633                                                schedule_delayed_work(
9634                                                        &bp->sp_rtnl_task,
9635                                                        HZ/10);
9636                                                return;
9637                                        }
9638
9639                                        error_recovered =
9640                                          bp->eth_stats.recoverable_error;
9641                                        error_unrecovered =
9642                                          bp->eth_stats.unrecoverable_error;
9643                                        bp->recovery_state =
9644                                                BNX2X_RECOVERY_NIC_LOADING;
9645                                        if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9646                                                error_unrecovered++;
9647                                                netdev_err(bp->dev,
9648                                                           "Recovery failed. Power cycle needed\n");
9649                                                /* Disconnect this device */
9650                                                netif_device_detach(bp->dev);
9651                                                /* Shut down the power */
9652                                                bnx2x_set_power_state(
9653                                                        bp, PCI_D3hot);
9654                                                smp_mb();
9655                                        } else {
9656                                                bp->recovery_state =
9657                                                        BNX2X_RECOVERY_DONE;
9658                                                error_recovered++;
9659                                                smp_mb();
9660                                        }
9661                                        bp->eth_stats.recoverable_error =
9662                                                error_recovered;
9663                                        bp->eth_stats.unrecoverable_error =
9664                                                error_unrecovered;
9665
9666                                        return;
9667                                }
9668                        }
9669                default:
9670                        return;
9671                }
9672        }
9673}
9674
9675static int bnx2x_close(struct net_device *dev);
9676
9677/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9678 * scheduled on a general queue in order to prevent a dead lock.
9679 */
9680static void bnx2x_sp_rtnl_task(struct work_struct *work)
9681{
9682        struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9683
9684        rtnl_lock();
9685
9686        if (!netif_running(bp->dev)) {
9687                rtnl_unlock();
9688                return;
9689        }
9690
9691        if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9692#ifdef BNX2X_STOP_ON_ERROR
9693                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9694                          "you will need to reboot when done\n");
9695                goto sp_rtnl_not_reset;
9696#endif
9697                /*
9698                 * Clear all pending SP commands as we are going to reset the
9699                 * function anyway.
9700                 */
9701                bp->sp_rtnl_state = 0;
9702                smp_mb();
9703
9704                bnx2x_parity_recover(bp);
9705
9706                rtnl_unlock();
9707                return;
9708        }
9709
9710        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9711#ifdef BNX2X_STOP_ON_ERROR
9712                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9713                          "you will need to reboot when done\n");
9714                goto sp_rtnl_not_reset;
9715#endif
9716
9717                /*
9718                 * Clear all pending SP commands as we are going to reset the
9719                 * function anyway.
9720                 */
9721                bp->sp_rtnl_state = 0;
9722                smp_mb();
9723
9724                bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9725                bnx2x_nic_load(bp, LOAD_NORMAL);
9726
9727                rtnl_unlock();
9728                return;
9729        }
9730#ifdef BNX2X_STOP_ON_ERROR
9731sp_rtnl_not_reset:
9732#endif
9733        if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9734                bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9735        if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9736                bnx2x_after_function_update(bp);
9737        /*
9738         * in case of fan failure we need to reset id if the "stop on error"
9739         * debug flag is set, since we trying to prevent permanent overheating
9740         * damage
9741         */
9742        if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9743                DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9744                netif_device_detach(bp->dev);
9745                bnx2x_close(bp->dev);
9746                rtnl_unlock();
9747                return;
9748        }
9749
9750        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9751                DP(BNX2X_MSG_SP,
9752                   "sending set mcast vf pf channel message from rtnl sp-task\n");
9753                bnx2x_vfpf_set_mcast(bp->dev);
9754        }
9755        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9756                               &bp->sp_rtnl_state)){
9757                if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9758                        bnx2x_tx_disable(bp);
9759                        BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9760                }
9761        }
9762
9763        if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9764                DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9765                bnx2x_set_rx_mode_inner(bp);
9766        }
9767
9768        if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9769                               &bp->sp_rtnl_state))
9770                bnx2x_pf_set_vfs_vlan(bp);
9771
9772        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9773                bnx2x_dcbx_stop_hw_tx(bp);
9774                bnx2x_dcbx_resume_hw_tx(bp);
9775        }
9776
9777        /* work which needs rtnl lock not-taken (as it takes the lock itself and
9778         * can be called from other contexts as well)
9779         */
9780        rtnl_unlock();
9781
9782        /* enable SR-IOV if applicable */
9783        if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9784                                               &bp->sp_rtnl_state)) {
9785                bnx2x_disable_sriov(bp);
9786                bnx2x_enable_sriov(bp);
9787        }
9788}
9789
9790static void bnx2x_period_task(struct work_struct *work)
9791{
9792        struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9793
9794        if (!netif_running(bp->dev))
9795                goto period_task_exit;
9796
9797        if (CHIP_REV_IS_SLOW(bp)) {
9798                BNX2X_ERR("period task called on emulation, ignoring\n");
9799                goto period_task_exit;
9800        }
9801
9802        bnx2x_acquire_phy_lock(bp);
9803        /*
9804         * The barrier is needed to ensure the ordering between the writing to
9805         * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9806         * the reading here.
9807         */
9808        smp_mb();
9809        if (bp->port.pmf) {
9810                bnx2x_period_func(&bp->link_params, &bp->link_vars);
9811
9812                /* Re-queue task in 1 sec */
9813                queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9814        }
9815
9816        bnx2x_release_phy_lock(bp);
9817period_task_exit:
9818        return;
9819}
9820
9821/*
9822 * Init service functions
9823 */
9824
9825static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9826{
9827        u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9828        u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9829        return base + (BP_ABS_FUNC(bp)) * stride;
9830}
9831
9832static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9833                                        struct bnx2x_mac_vals *vals)
9834{
9835        u32 val, base_addr, offset, mask, reset_reg;
9836        bool mac_stopped = false;
9837        u8 port = BP_PORT(bp);
9838
9839        /* reset addresses as they also mark which values were changed */
9840        vals->bmac_addr = 0;
9841        vals->umac_addr = 0;
9842        vals->xmac_addr = 0;
9843        vals->emac_addr = 0;
9844
9845        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9846
9847        if (!CHIP_IS_E3(bp)) {
9848                val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9849                mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9850                if ((mask & reset_reg) && val) {
9851                        u32 wb_data[2];
9852                        BNX2X_DEV_INFO("Disable bmac Rx\n");
9853                        base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9854                                                : NIG_REG_INGRESS_BMAC0_MEM;
9855                        offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9856                                                : BIGMAC_REGISTER_BMAC_CONTROL;
9857
9858                        /*
9859                         * use rd/wr since we cannot use dmae. This is safe
9860                         * since MCP won't access the bus due to the request
9861                         * to unload, and no function on the path can be
9862                         * loaded at this time.
9863                         */
9864                        wb_data[0] = REG_RD(bp, base_addr + offset);
9865                        wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9866                        vals->bmac_addr = base_addr + offset;
9867                        vals->bmac_val[0] = wb_data[0];
9868                        vals->bmac_val[1] = wb_data[1];
9869                        wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9870                        REG_WR(bp, vals->bmac_addr, wb_data[0]);
9871                        REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9872                }
9873                BNX2X_DEV_INFO("Disable emac Rx\n");
9874                vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9875                vals->emac_val = REG_RD(bp, vals->emac_addr);
9876                REG_WR(bp, vals->emac_addr, 0);
9877                mac_stopped = true;
9878        } else {
9879                if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9880                        BNX2X_DEV_INFO("Disable xmac Rx\n");
9881                        base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9882                        val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9883                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9884                               val & ~(1 << 1));
9885                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9886                               val | (1 << 1));
9887                        vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9888                        vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9889                        REG_WR(bp, vals->xmac_addr, 0);
9890                        mac_stopped = true;
9891                }
9892                mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9893                if (mask & reset_reg) {
9894                        BNX2X_DEV_INFO("Disable umac Rx\n");
9895                        base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9896                        vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9897                        vals->umac_val = REG_RD(bp, vals->umac_addr);
9898                        REG_WR(bp, vals->umac_addr, 0);
9899                        mac_stopped = true;
9900                }
9901        }
9902
9903        if (mac_stopped)
9904                msleep(20);
9905}
9906
9907#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9908#define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9909#define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9910#define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9911
9912#define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
9913#define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
9914#define BCM_5710_UNDI_FW_MF_VERS        (0x05)
9915#define BNX2X_PREV_UNDI_MF_PORT(p)      (0x1a150c + ((p) << 4))
9916#define BNX2X_PREV_UNDI_MF_FUNC(f)      (0x1a184c + ((f) << 4))
9917static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
9918{
9919        u8 major, minor, version;
9920        u32 fw;
9921
9922        /* Must check that FW is loaded */
9923        if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
9924             MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
9925                BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
9926                return false;
9927        }
9928
9929        /* Read Currently loaded FW version */
9930        fw = REG_RD(bp, XSEM_REG_PRAM);
9931        major = fw & 0xff;
9932        minor = (fw >> 0x8) & 0xff;
9933        version = (fw >> 0x10) & 0xff;
9934        BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
9935                       fw, major, minor, version);
9936
9937        if (major > BCM_5710_UNDI_FW_MF_MAJOR)
9938                return true;
9939
9940        if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9941            (minor > BCM_5710_UNDI_FW_MF_MINOR))
9942                return true;
9943
9944        if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9945            (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
9946            (version >= BCM_5710_UNDI_FW_MF_VERS))
9947                return true;
9948
9949        return false;
9950}
9951
9952static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
9953{
9954        int i;
9955
9956        /* Due to legacy (FW) code, the first function on each engine has a
9957         * different offset macro from the rest of the functions.
9958         * Setting this for all 8 functions is harmless regardless of whether
9959         * this is actually a multi-function device.
9960         */
9961        for (i = 0; i < 2; i++)
9962                REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
9963
9964        for (i = 2; i < 8; i++)
9965                REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
9966
9967        BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
9968}
9969
9970static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9971{
9972        u16 rcq, bd;
9973        u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9974
9975        rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9976        bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9977
9978        tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9979        REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9980
9981        BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9982                       port, bd, rcq);
9983}
9984
9985static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9986{
9987        u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9988                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9989        if (!rc) {
9990                BNX2X_ERR("MCP response failure, aborting\n");
9991                return -EBUSY;
9992        }
9993
9994        return 0;
9995}
9996
9997static struct bnx2x_prev_path_list *
9998                bnx2x_prev_path_get_entry(struct bnx2x *bp)
9999{
10000        struct bnx2x_prev_path_list *tmp_list;
10001
10002        list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10003                if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10004                    bp->pdev->bus->number == tmp_list->bus &&
10005                    BP_PATH(bp) == tmp_list->path)
10006                        return tmp_list;
10007
10008        return NULL;
10009}
10010
10011static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10012{
10013        struct bnx2x_prev_path_list *tmp_list;
10014        int rc;
10015
10016        rc = down_interruptible(&bnx2x_prev_sem);
10017        if (rc) {
10018                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10019                return rc;
10020        }
10021
10022        tmp_list = bnx2x_prev_path_get_entry(bp);
10023        if (tmp_list) {
10024                tmp_list->aer = 1;
10025                rc = 0;
10026        } else {
10027                BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10028                          BP_PATH(bp));
10029        }
10030
10031        up(&bnx2x_prev_sem);
10032
10033        return rc;
10034}
10035
10036static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10037{
10038        struct bnx2x_prev_path_list *tmp_list;
10039        bool rc = false;
10040
10041        if (down_trylock(&bnx2x_prev_sem))
10042                return false;
10043
10044        tmp_list = bnx2x_prev_path_get_entry(bp);
10045        if (tmp_list) {
10046                if (tmp_list->aer) {
10047                        DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10048                           BP_PATH(bp));
10049                } else {
10050                        rc = true;
10051                        BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10052                                       BP_PATH(bp));
10053                }
10054        }
10055
10056        up(&bnx2x_prev_sem);
10057
10058        return rc;
10059}
10060
10061bool bnx2x_port_after_undi(struct bnx2x *bp)
10062{
10063        struct bnx2x_prev_path_list *entry;
10064        bool val;
10065
10066        down(&bnx2x_prev_sem);
10067
10068        entry = bnx2x_prev_path_get_entry(bp);
10069        val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10070
10071        up(&bnx2x_prev_sem);
10072
10073        return val;
10074}
10075
10076static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10077{
10078        struct bnx2x_prev_path_list *tmp_list;
10079        int rc;
10080
10081        rc = down_interruptible(&bnx2x_prev_sem);
10082        if (rc) {
10083                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10084                return rc;
10085        }
10086
10087        /* Check whether the entry for this path already exists */
10088        tmp_list = bnx2x_prev_path_get_entry(bp);
10089        if (tmp_list) {
10090                if (!tmp_list->aer) {
10091                        BNX2X_ERR("Re-Marking the path.\n");
10092                } else {
10093                        DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10094                           BP_PATH(bp));
10095                        tmp_list->aer = 0;
10096                }
10097                up(&bnx2x_prev_sem);
10098                return 0;
10099        }
10100        up(&bnx2x_prev_sem);
10101
10102        /* Create an entry for this path and add it */
10103        tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10104        if (!tmp_list) {
10105                BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10106                return -ENOMEM;
10107        }
10108
10109        tmp_list->bus = bp->pdev->bus->number;
10110        tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10111        tmp_list->path = BP_PATH(bp);
10112        tmp_list->aer = 0;
10113        tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10114
10115        rc = down_interruptible(&bnx2x_prev_sem);
10116        if (rc) {
10117                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10118                kfree(tmp_list);
10119        } else {
10120                DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10121                   BP_PATH(bp));
10122                list_add(&tmp_list->list, &bnx2x_prev_list);
10123                up(&bnx2x_prev_sem);
10124        }
10125
10126        return rc;
10127}
10128
10129static int bnx2x_do_flr(struct bnx2x *bp)
10130{
10131        struct pci_dev *dev = bp->pdev;
10132
10133        if (CHIP_IS_E1x(bp)) {
10134                BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10135                return -EINVAL;
10136        }
10137
10138        /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10139        if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10140                BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10141                          bp->common.bc_ver);
10142                return -EINVAL;
10143        }
10144
10145        if (!pci_wait_for_pending_transaction(dev))
10146                dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10147
10148        BNX2X_DEV_INFO("Initiating FLR\n");
10149        bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10150
10151        return 0;
10152}
10153
10154static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10155{
10156        int rc;
10157
10158        BNX2X_DEV_INFO("Uncommon unload Flow\n");
10159
10160        /* Test if previous unload process was already finished for this path */
10161        if (bnx2x_prev_is_path_marked(bp))
10162                return bnx2x_prev_mcp_done(bp);
10163
10164        BNX2X_DEV_INFO("Path is unmarked\n");
10165
10166        /* If function has FLR capabilities, and existing FW version matches
10167         * the one required, then FLR will be sufficient to clean any residue
10168         * left by previous driver
10169         */
10170        rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10171
10172        if (!rc) {
10173                /* fw version is good */
10174                BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10175                rc = bnx2x_do_flr(bp);
10176        }
10177
10178        if (!rc) {
10179                /* FLR was performed */
10180                BNX2X_DEV_INFO("FLR successful\n");
10181                return 0;
10182        }
10183
10184        BNX2X_DEV_INFO("Could not FLR\n");
10185
10186        /* Close the MCP request, return failure*/
10187        rc = bnx2x_prev_mcp_done(bp);
10188        if (!rc)
10189                rc = BNX2X_PREV_WAIT_NEEDED;
10190
10191        return rc;
10192}
10193
10194static int bnx2x_prev_unload_common(struct bnx2x *bp)
10195{
10196        u32 reset_reg, tmp_reg = 0, rc;
10197        bool prev_undi = false;
10198        struct bnx2x_mac_vals mac_vals;
10199
10200        /* It is possible a previous function received 'common' answer,
10201         * but hasn't loaded yet, therefore creating a scenario of
10202         * multiple functions receiving 'common' on the same path.
10203         */
10204        BNX2X_DEV_INFO("Common unload Flow\n");
10205
10206        memset(&mac_vals, 0, sizeof(mac_vals));
10207
10208        if (bnx2x_prev_is_path_marked(bp))
10209                return bnx2x_prev_mcp_done(bp);
10210
10211        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10212
10213        /* Reset should be performed after BRB is emptied */
10214        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10215                u32 timer_count = 1000;
10216
10217                /* Close the MAC Rx to prevent BRB from filling up */
10218                bnx2x_prev_unload_close_mac(bp, &mac_vals);
10219
10220                /* close LLH filters towards the BRB */
10221                bnx2x_set_rx_filter(&bp->link_params, 0);
10222
10223                /* Check if the UNDI driver was previously loaded
10224                 * UNDI driver initializes CID offset for normal bell to 0x7
10225                 */
10226                if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10227                        tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10228                        if (tmp_reg == 0x7) {
10229                                BNX2X_DEV_INFO("UNDI previously loaded\n");
10230                                prev_undi = true;
10231                                /* clear the UNDI indication */
10232                                REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10233                                /* clear possible idle check errors */
10234                                REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10235                        }
10236                }
10237                if (!CHIP_IS_E1x(bp))
10238                        /* block FW from writing to host */
10239                        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10240
10241                /* wait until BRB is empty */
10242                tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10243                while (timer_count) {
10244                        u32 prev_brb = tmp_reg;
10245
10246                        tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10247                        if (!tmp_reg)
10248                                break;
10249
10250                        BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10251
10252                        /* reset timer as long as BRB actually gets emptied */
10253                        if (prev_brb > tmp_reg)
10254                                timer_count = 1000;
10255                        else
10256                                timer_count--;
10257
10258                        /* New UNDI FW supports MF and contains better
10259                         * cleaning methods - might be redundant but harmless.
10260                         */
10261                        if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10262                                bnx2x_prev_unload_undi_mf(bp);
10263                        } else if (prev_undi) {
10264                                /* If UNDI resides in memory,
10265                                 * manually increment it
10266                                 */
10267                                bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10268                        }
10269                        udelay(10);
10270                }
10271
10272                if (!timer_count)
10273                        BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10274        }
10275
10276        /* No packets are in the pipeline, path is ready for reset */
10277        bnx2x_reset_common(bp);
10278
10279        if (mac_vals.xmac_addr)
10280                REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10281        if (mac_vals.umac_addr)
10282                REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10283        if (mac_vals.emac_addr)
10284                REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10285        if (mac_vals.bmac_addr) {
10286                REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10287                REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10288        }
10289
10290        rc = bnx2x_prev_mark_path(bp, prev_undi);
10291        if (rc) {
10292                bnx2x_prev_mcp_done(bp);
10293                return rc;
10294        }
10295
10296        return bnx2x_prev_mcp_done(bp);
10297}
10298
10299/* previous driver DMAE transaction may have occurred when pre-boot stage ended
10300 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10301 * the addresses of the transaction, resulting in was-error bit set in the pci
10302 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10303 * to clear the interrupt which detected this from the pglueb and the was done
10304 * bit
10305 */
10306static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10307{
10308        if (!CHIP_IS_E1x(bp)) {
10309                u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10310                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10311                        DP(BNX2X_MSG_SP,
10312                           "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10313                        REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10314                               1 << BP_FUNC(bp));
10315                }
10316        }
10317}
10318
10319static int bnx2x_prev_unload(struct bnx2x *bp)
10320{
10321        int time_counter = 10;
10322        u32 rc, fw, hw_lock_reg, hw_lock_val;
10323        BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10324
10325        /* clear hw from errors which may have resulted from an interrupted
10326         * dmae transaction.
10327         */
10328        bnx2x_prev_interrupted_dmae(bp);
10329
10330        /* Release previously held locks */
10331        hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10332                      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10333                      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10334
10335        hw_lock_val = REG_RD(bp, hw_lock_reg);
10336        if (hw_lock_val) {
10337                if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10338                        BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10339                        REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10340                               (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10341                }
10342
10343                BNX2X_DEV_INFO("Release Previously held hw lock\n");
10344                REG_WR(bp, hw_lock_reg, 0xffffffff);
10345        } else
10346                BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10347
10348        if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10349                BNX2X_DEV_INFO("Release previously held alr\n");
10350                bnx2x_release_alr(bp);
10351        }
10352
10353        do {
10354                int aer = 0;
10355                /* Lock MCP using an unload request */
10356                fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10357                if (!fw) {
10358                        BNX2X_ERR("MCP response failure, aborting\n");
10359                        rc = -EBUSY;
10360                        break;
10361                }
10362
10363                rc = down_interruptible(&bnx2x_prev_sem);
10364                if (rc) {
10365                        BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10366                                  rc);
10367                } else {
10368                        /* If Path is marked by EEH, ignore unload status */
10369                        aer = !!(bnx2x_prev_path_get_entry(bp) &&
10370                                 bnx2x_prev_path_get_entry(bp)->aer);
10371                        up(&bnx2x_prev_sem);
10372                }
10373
10374                if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10375                        rc = bnx2x_prev_unload_common(bp);
10376                        break;
10377                }
10378
10379                /* non-common reply from MCP might require looping */
10380                rc = bnx2x_prev_unload_uncommon(bp);
10381                if (rc != BNX2X_PREV_WAIT_NEEDED)
10382                        break;
10383
10384                msleep(20);
10385        } while (--time_counter);
10386
10387        if (!time_counter || rc) {
10388                BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10389                rc = -EPROBE_DEFER;
10390        }
10391
10392        /* Mark function if its port was used to boot from SAN */
10393        if (bnx2x_port_after_undi(bp))
10394                bp->link_params.feature_config_flags |=
10395                        FEATURE_CONFIG_BOOT_FROM_SAN;
10396
10397        BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10398
10399        return rc;
10400}
10401
10402static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10403{
10404        u32 val, val2, val3, val4, id, boot_mode;
10405        u16 pmc;
10406
10407        /* Get the chip revision id and number. */
10408        /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10409        val = REG_RD(bp, MISC_REG_CHIP_NUM);
10410        id = ((val & 0xffff) << 16);
10411        val = REG_RD(bp, MISC_REG_CHIP_REV);
10412        id |= ((val & 0xf) << 12);
10413
10414        /* Metal is read from PCI regs, but we can't access >=0x400 from
10415         * the configuration space (so we need to reg_rd)
10416         */
10417        val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10418        id |= (((val >> 24) & 0xf) << 4);
10419        val = REG_RD(bp, MISC_REG_BOND_ID);
10420        id |= (val & 0xf);
10421        bp->common.chip_id = id;
10422
10423        /* force 57811 according to MISC register */
10424        if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10425                if (CHIP_IS_57810(bp))
10426                        bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10427                                (bp->common.chip_id & 0x0000FFFF);
10428                else if (CHIP_IS_57810_MF(bp))
10429                        bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10430                                (bp->common.chip_id & 0x0000FFFF);
10431                bp->common.chip_id |= 0x1;
10432        }
10433
10434        /* Set doorbell size */
10435        bp->db_size = (1 << BNX2X_DB_SHIFT);
10436
10437        if (!CHIP_IS_E1x(bp)) {
10438                val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10439                if ((val & 1) == 0)
10440                        val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10441                else
10442                        val = (val >> 1) & 1;
10443                BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10444                                                       "2_PORT_MODE");
10445                bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10446                                                 CHIP_2_PORT_MODE;
10447
10448                if (CHIP_MODE_IS_4_PORT(bp))
10449                        bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10450                else
10451                        bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10452        } else {
10453                bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10454                bp->pfid = bp->pf_num;                  /* 0..7 */
10455        }
10456
10457        BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10458
10459        bp->link_params.chip_id = bp->common.chip_id;
10460        BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10461
10462        val = (REG_RD(bp, 0x2874) & 0x55);
10463        if ((bp->common.chip_id & 0x1) ||
10464            (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10465                bp->flags |= ONE_PORT_FLAG;
10466                BNX2X_DEV_INFO("single port device\n");
10467        }
10468
10469        val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10470        bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10471                                 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10472        BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10473                       bp->common.flash_size, bp->common.flash_size);
10474
10475        bnx2x_init_shmem(bp);
10476
10477        bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10478                                        MISC_REG_GENERIC_CR_1 :
10479                                        MISC_REG_GENERIC_CR_0));
10480
10481        bp->link_params.shmem_base = bp->common.shmem_base;
10482        bp->link_params.shmem2_base = bp->common.shmem2_base;
10483        if (SHMEM2_RD(bp, size) >
10484            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10485                bp->link_params.lfa_base =
10486                REG_RD(bp, bp->common.shmem2_base +
10487                       (u32)offsetof(struct shmem2_region,
10488                                     lfa_host_addr[BP_PORT(bp)]));
10489        else
10490                bp->link_params.lfa_base = 0;
10491        BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10492                       bp->common.shmem_base, bp->common.shmem2_base);
10493
10494        if (!bp->common.shmem_base) {
10495                BNX2X_DEV_INFO("MCP not active\n");
10496                bp->flags |= NO_MCP_FLAG;
10497                return;
10498        }
10499
10500        bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10501        BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10502
10503        bp->link_params.hw_led_mode = ((bp->common.hw_config &
10504                                        SHARED_HW_CFG_LED_MODE_MASK) >>
10505                                       SHARED_HW_CFG_LED_MODE_SHIFT);
10506
10507        bp->link_params.feature_config_flags = 0;
10508        val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10509        if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10510                bp->link_params.feature_config_flags |=
10511                                FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10512        else
10513                bp->link_params.feature_config_flags &=
10514                                ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10515
10516        val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10517        bp->common.bc_ver = val;
10518        BNX2X_DEV_INFO("bc_ver %X\n", val);
10519        if (val < BNX2X_BC_VER) {
10520                /* for now only warn
10521                 * later we might need to enforce this */
10522                BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10523                          BNX2X_BC_VER, val);
10524        }
10525        bp->link_params.feature_config_flags |=
10526                                (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10527                                FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10528
10529        bp->link_params.feature_config_flags |=
10530                (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10531                FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10532        bp->link_params.feature_config_flags |=
10533                (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10534                FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10535        bp->link_params.feature_config_flags |=
10536                (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10537                FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10538
10539        bp->link_params.feature_config_flags |=
10540                (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10541                FEATURE_CONFIG_MT_SUPPORT : 0;
10542
10543        bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10544                        BC_SUPPORTS_PFC_STATS : 0;
10545
10546        bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10547                        BC_SUPPORTS_FCOE_FEATURES : 0;
10548
10549        bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10550                        BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10551
10552        bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10553                        BC_SUPPORTS_RMMOD_CMD : 0;
10554
10555        boot_mode = SHMEM_RD(bp,
10556                        dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10557                        PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10558        switch (boot_mode) {
10559        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10560                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10561                break;
10562        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10563                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10564                break;
10565        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10566                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10567                break;
10568        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10569                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10570                break;
10571        }
10572
10573        pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10574        bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10575
10576        BNX2X_DEV_INFO("%sWoL capable\n",
10577                       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10578
10579        val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10580        val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10581        val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10582        val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10583
10584        dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10585                 val, val2, val3, val4);
10586}
10587
10588#define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10589#define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10590
10591static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10592{
10593        int pfid = BP_FUNC(bp);
10594        int igu_sb_id;
10595        u32 val;
10596        u8 fid, igu_sb_cnt = 0;
10597
10598        bp->igu_base_sb = 0xff;
10599        if (CHIP_INT_MODE_IS_BC(bp)) {
10600                int vn = BP_VN(bp);
10601                igu_sb_cnt = bp->igu_sb_cnt;
10602                bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10603                        FP_SB_MAX_E1x;
10604
10605                bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10606                        (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10607
10608                return 0;
10609        }
10610
10611        /* IGU in normal mode - read CAM */
10612        for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10613             igu_sb_id++) {
10614                val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10615                if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10616                        continue;
10617                fid = IGU_FID(val);
10618                if ((fid & IGU_FID_ENCODE_IS_PF)) {
10619                        if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10620                                continue;
10621                        if (IGU_VEC(val) == 0)
10622                                /* default status block */
10623                                bp->igu_dsb_id = igu_sb_id;
10624                        else {
10625                                if (bp->igu_base_sb == 0xff)
10626                                        bp->igu_base_sb = igu_sb_id;
10627                                igu_sb_cnt++;
10628                        }
10629                }
10630        }
10631
10632#ifdef CONFIG_PCI_MSI
10633        /* Due to new PF resource allocation by MFW T7.4 and above, it's
10634         * optional that number of CAM entries will not be equal to the value
10635         * advertised in PCI.
10636         * Driver should use the minimal value of both as the actual status
10637         * block count
10638         */
10639        bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10640#endif
10641
10642        if (igu_sb_cnt == 0) {
10643                BNX2X_ERR("CAM configuration error\n");
10644                return -EINVAL;
10645        }
10646
10647        return 0;
10648}
10649
10650static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10651{
10652        int cfg_size = 0, idx, port = BP_PORT(bp);
10653
10654        /* Aggregation of supported attributes of all external phys */
10655        bp->port.supported[0] = 0;
10656        bp->port.supported[1] = 0;
10657        switch (bp->link_params.num_phys) {
10658        case 1:
10659                bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10660                cfg_size = 1;
10661                break;
10662        case 2:
10663                bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10664                cfg_size = 1;
10665                break;
10666        case 3:
10667                if (bp->link_params.multi_phy_config &
10668                    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10669                        bp->port.supported[1] =
10670                                bp->link_params.phy[EXT_PHY1].supported;
10671                        bp->port.supported[0] =
10672                                bp->link_params.phy[EXT_PHY2].supported;
10673                } else {
10674                        bp->port.supported[0] =
10675                                bp->link_params.phy[EXT_PHY1].supported;
10676                        bp->port.supported[1] =
10677                                bp->link_params.phy[EXT_PHY2].supported;
10678                }
10679                cfg_size = 2;
10680                break;
10681        }
10682
10683        if (!(bp->port.supported[0] || bp->port.supported[1])) {
10684                BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10685                           SHMEM_RD(bp,
10686                           dev_info.port_hw_config[port].external_phy_config),
10687                           SHMEM_RD(bp,
10688                           dev_info.port_hw_config[port].external_phy_config2));
10689                        return;
10690        }
10691
10692        if (CHIP_IS_E3(bp))
10693                bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10694        else {
10695                switch (switch_cfg) {
10696                case SWITCH_CFG_1G:
10697                        bp->port.phy_addr = REG_RD(
10698                                bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10699                        break;
10700                case SWITCH_CFG_10G:
10701                        bp->port.phy_addr = REG_RD(
10702                                bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10703                        break;
10704                default:
10705                        BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10706                                  bp->port.link_config[0]);
10707                        return;
10708                }
10709        }
10710        BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10711        /* mask what we support according to speed_cap_mask per configuration */
10712        for (idx = 0; idx < cfg_size; idx++) {
10713                if (!(bp->link_params.speed_cap_mask[idx] &
10714                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10715                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10716
10717                if (!(bp->link_params.speed_cap_mask[idx] &
10718                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10719                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10720
10721                if (!(bp->link_params.speed_cap_mask[idx] &
10722                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10723                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10724
10725                if (!(bp->link_params.speed_cap_mask[idx] &
10726                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10727                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10728
10729                if (!(bp->link_params.speed_cap_mask[idx] &
10730                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10731                        bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10732                                                     SUPPORTED_1000baseT_Full);
10733
10734                if (!(bp->link_params.speed_cap_mask[idx] &
10735                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10736                        bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10737
10738                if (!(bp->link_params.speed_cap_mask[idx] &
10739                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10740                        bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10741
10742                if (!(bp->link_params.speed_cap_mask[idx] &
10743                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10744                        bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10745        }
10746
10747        BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10748                       bp->port.supported[1]);
10749}
10750
10751static void bnx2x_link_settings_requested(struct bnx2x *bp)
10752{
10753        u32 link_config, idx, cfg_size = 0;
10754        bp->port.advertising[0] = 0;
10755        bp->port.advertising[1] = 0;
10756        switch (bp->link_params.num_phys) {
10757        case 1:
10758        case 2:
10759                cfg_size = 1;
10760                break;
10761        case 3:
10762                cfg_size = 2;
10763                break;
10764        }
10765        for (idx = 0; idx < cfg_size; idx++) {
10766                bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10767                link_config = bp->port.link_config[idx];
10768                switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10769                case PORT_FEATURE_LINK_SPEED_AUTO:
10770                        if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10771                                bp->link_params.req_line_speed[idx] =
10772                                        SPEED_AUTO_NEG;
10773                                bp->port.advertising[idx] |=
10774                                        bp->port.supported[idx];
10775                                if (bp->link_params.phy[EXT_PHY1].type ==
10776                                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10777                                        bp->port.advertising[idx] |=
10778                                        (SUPPORTED_100baseT_Half |
10779                                         SUPPORTED_100baseT_Full);
10780                        } else {
10781                                /* force 10G, no AN */
10782                                bp->link_params.req_line_speed[idx] =
10783                                        SPEED_10000;
10784                                bp->port.advertising[idx] |=
10785                                        (ADVERTISED_10000baseT_Full |
10786                                         ADVERTISED_FIBRE);
10787                                continue;
10788                        }
10789                        break;
10790
10791                case PORT_FEATURE_LINK_SPEED_10M_FULL:
10792                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10793                                bp->link_params.req_line_speed[idx] =
10794                                        SPEED_10;
10795                                bp->port.advertising[idx] |=
10796                                        (ADVERTISED_10baseT_Full |
10797                                         ADVERTISED_TP);
10798                        } else {
10799                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10800                                            link_config,
10801                                    bp->link_params.speed_cap_mask[idx]);
10802                                return;
10803                        }
10804                        break;
10805
10806                case PORT_FEATURE_LINK_SPEED_10M_HALF:
10807                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10808                                bp->link_params.req_line_speed[idx] =
10809                                        SPEED_10;
10810                                bp->link_params.req_duplex[idx] =
10811                                        DUPLEX_HALF;
10812                                bp->port.advertising[idx] |=
10813                                        (ADVERTISED_10baseT_Half |
10814                                         ADVERTISED_TP);
10815                        } else {
10816                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10817                                            link_config,
10818                                          bp->link_params.speed_cap_mask[idx]);
10819                                return;
10820                        }
10821                        break;
10822
10823                case PORT_FEATURE_LINK_SPEED_100M_FULL:
10824                        if (bp->port.supported[idx] &
10825                            SUPPORTED_100baseT_Full) {
10826                                bp->link_params.req_line_speed[idx] =
10827                                        SPEED_100;
10828                                bp->port.advertising[idx] |=
10829                                        (ADVERTISED_100baseT_Full |
10830                                         ADVERTISED_TP);
10831                        } else {
10832                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10833                                            link_config,
10834                                          bp->link_params.speed_cap_mask[idx]);
10835                                return;
10836                        }
10837                        break;
10838
10839                case PORT_FEATURE_LINK_SPEED_100M_HALF:
10840                        if (bp->port.supported[idx] &
10841                            SUPPORTED_100baseT_Half) {
10842                                bp->link_params.req_line_speed[idx] =
10843                                                                SPEED_100;
10844                                bp->link_params.req_duplex[idx] =
10845                                                                DUPLEX_HALF;
10846                                bp->port.advertising[idx] |=
10847                                        (ADVERTISED_100baseT_Half |
10848                                         ADVERTISED_TP);
10849                        } else {
10850                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10851                                    link_config,
10852                                    bp->link_params.speed_cap_mask[idx]);
10853                                return;
10854                        }
10855                        break;
10856
10857                case PORT_FEATURE_LINK_SPEED_1G:
10858                        if (bp->port.supported[idx] &
10859                            SUPPORTED_1000baseT_Full) {
10860                                bp->link_params.req_line_speed[idx] =
10861                                        SPEED_1000;
10862                                bp->port.advertising[idx] |=
10863                                        (ADVERTISED_1000baseT_Full |
10864                                         ADVERTISED_TP);
10865                        } else {
10866                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10867                                    link_config,
10868                                    bp->link_params.speed_cap_mask[idx]);
10869                                return;
10870                        }
10871                        break;
10872
10873                case PORT_FEATURE_LINK_SPEED_2_5G:
10874                        if (bp->port.supported[idx] &
10875                            SUPPORTED_2500baseX_Full) {
10876                                bp->link_params.req_line_speed[idx] =
10877                                        SPEED_2500;
10878                                bp->port.advertising[idx] |=
10879                                        (ADVERTISED_2500baseX_Full |
10880                                                ADVERTISED_TP);
10881                        } else {
10882                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10883                                    link_config,
10884                                    bp->link_params.speed_cap_mask[idx]);
10885                                return;
10886                        }
10887                        break;
10888
10889                case PORT_FEATURE_LINK_SPEED_10G_CX4:
10890                        if (bp->port.supported[idx] &
10891                            SUPPORTED_10000baseT_Full) {
10892                                bp->link_params.req_line_speed[idx] =
10893                                        SPEED_10000;
10894                                bp->port.advertising[idx] |=
10895                                        (ADVERTISED_10000baseT_Full |
10896                                                ADVERTISED_FIBRE);
10897                        } else {
10898                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10899                                    link_config,
10900                                    bp->link_params.speed_cap_mask[idx]);
10901                                return;
10902                        }
10903                        break;
10904                case PORT_FEATURE_LINK_SPEED_20G:
10905                        bp->link_params.req_line_speed[idx] = SPEED_20000;
10906
10907                        break;
10908                default:
10909                        BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10910                                  link_config);
10911                                bp->link_params.req_line_speed[idx] =
10912                                                        SPEED_AUTO_NEG;
10913                                bp->port.advertising[idx] =
10914                                                bp->port.supported[idx];
10915                        break;
10916                }
10917
10918                bp->link_params.req_flow_ctrl[idx] = (link_config &
10919                                         PORT_FEATURE_FLOW_CONTROL_MASK);
10920                if (bp->link_params.req_flow_ctrl[idx] ==
10921                    BNX2X_FLOW_CTRL_AUTO) {
10922                        if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10923                                bp->link_params.req_flow_ctrl[idx] =
10924                                                        BNX2X_FLOW_CTRL_NONE;
10925                        else
10926                                bnx2x_set_requested_fc(bp);
10927                }
10928
10929                BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10930                               bp->link_params.req_line_speed[idx],
10931                               bp->link_params.req_duplex[idx],
10932                               bp->link_params.req_flow_ctrl[idx],
10933                               bp->port.advertising[idx]);
10934        }
10935}
10936
10937static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10938{
10939        __be16 mac_hi_be = cpu_to_be16(mac_hi);
10940        __be32 mac_lo_be = cpu_to_be32(mac_lo);
10941        memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10942        memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10943}
10944
10945static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10946{
10947        int port = BP_PORT(bp);
10948        u32 config;
10949        u32 ext_phy_type, ext_phy_config, eee_mode;
10950
10951        bp->link_params.bp = bp;
10952        bp->link_params.port = port;
10953
10954        bp->link_params.lane_config =
10955                SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10956
10957        bp->link_params.speed_cap_mask[0] =
10958                SHMEM_RD(bp,
10959                         dev_info.port_hw_config[port].speed_capability_mask) &
10960                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10961        bp->link_params.speed_cap_mask[1] =
10962                SHMEM_RD(bp,
10963                         dev_info.port_hw_config[port].speed_capability_mask2) &
10964                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10965        bp->port.link_config[0] =
10966                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10967
10968        bp->port.link_config[1] =
10969                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10970
10971        bp->link_params.multi_phy_config =
10972                SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10973        /* If the device is capable of WoL, set the default state according
10974         * to the HW
10975         */
10976        config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10977        bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10978                   (config & PORT_FEATURE_WOL_ENABLED));
10979
10980        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10981            PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10982                bp->flags |= NO_ISCSI_FLAG;
10983        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10984            PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10985                bp->flags |= NO_FCOE_FLAG;
10986
10987        BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10988                       bp->link_params.lane_config,
10989                       bp->link_params.speed_cap_mask[0],
10990                       bp->port.link_config[0]);
10991
10992        bp->link_params.switch_cfg = (bp->port.link_config[0] &
10993                                      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10994        bnx2x_phy_probe(&bp->link_params);
10995        bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10996
10997        bnx2x_link_settings_requested(bp);
10998
10999        /*
11000         * If connected directly, work with the internal PHY, otherwise, work
11001         * with the external PHY
11002         */
11003        ext_phy_config =
11004                SHMEM_RD(bp,
11005                         dev_info.port_hw_config[port].external_phy_config);
11006        ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11007        if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11008                bp->mdio.prtad = bp->port.phy_addr;
11009
11010        else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11011                 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11012                bp->mdio.prtad =
11013                        XGXS_EXT_PHY_ADDR(ext_phy_config);
11014
11015        /* Configure link feature according to nvram value */
11016        eee_mode = (((SHMEM_RD(bp, dev_info.
11017                      port_feature_config[port].eee_power_mode)) &
11018                     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11019                    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11020        if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11021                bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11022                                           EEE_MODE_ENABLE_LPI |
11023                                           EEE_MODE_OUTPUT_TIME;
11024        } else {
11025                bp->link_params.eee_mode = 0;
11026        }
11027}
11028
11029void bnx2x_get_iscsi_info(struct bnx2x *bp)
11030{
11031        u32 no_flags = NO_ISCSI_FLAG;
11032        int port = BP_PORT(bp);
11033        u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11034                                drv_lic_key[port].max_iscsi_conn);
11035
11036        if (!CNIC_SUPPORT(bp)) {
11037                bp->flags |= no_flags;
11038                return;
11039        }
11040
11041        /* Get the number of maximum allowed iSCSI connections */
11042        bp->cnic_eth_dev.max_iscsi_conn =
11043                (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11044                BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11045
11046        BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11047                       bp->cnic_eth_dev.max_iscsi_conn);
11048
11049        /*
11050         * If maximum allowed number of connections is zero -
11051         * disable the feature.
11052         */
11053        if (!bp->cnic_eth_dev.max_iscsi_conn)
11054                bp->flags |= no_flags;
11055}
11056
11057static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11058{
11059        /* Port info */
11060        bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11061                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11062        bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11063                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11064
11065        /* Node info */
11066        bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11067                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11068        bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11069                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11070}
11071
11072static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11073{
11074        u8 count = 0;
11075
11076        if (IS_MF(bp)) {
11077                u8 fid;
11078
11079                /* iterate over absolute function ids for this path: */
11080                for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11081                        if (IS_MF_SD(bp)) {
11082                                u32 cfg = MF_CFG_RD(bp,
11083                                                    func_mf_config[fid].config);
11084
11085                                if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11086                                    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11087                                            FUNC_MF_CFG_PROTOCOL_FCOE))
11088                                        count++;
11089                        } else {
11090                                u32 cfg = MF_CFG_RD(bp,
11091                                                    func_ext_config[fid].
11092                                                                      func_cfg);
11093
11094                                if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11095                                    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11096                                        count++;
11097                        }
11098                }
11099        } else { /* SF */
11100                int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11101
11102                for (port = 0; port < port_cnt; port++) {
11103                        u32 lic = SHMEM_RD(bp,
11104                                           drv_lic_key[port].max_fcoe_conn) ^
11105                                  FW_ENCODE_32BIT_PATTERN;
11106                        if (lic)
11107                                count++;
11108                }
11109        }
11110
11111        return count;
11112}
11113
11114static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11115{
11116        int port = BP_PORT(bp);
11117        int func = BP_ABS_FUNC(bp);
11118        u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11119                                drv_lic_key[port].max_fcoe_conn);
11120        u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11121
11122        if (!CNIC_SUPPORT(bp)) {
11123                bp->flags |= NO_FCOE_FLAG;
11124                return;
11125        }
11126
11127        /* Get the number of maximum allowed FCoE connections */
11128        bp->cnic_eth_dev.max_fcoe_conn =
11129                (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11130                BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11131
11132        /* Calculate the number of maximum allowed FCoE tasks */
11133        bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11134
11135        /* check if FCoE resources must be shared between different functions */
11136        if (num_fcoe_func)
11137                bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11138
11139        /* Read the WWN: */
11140        if (!IS_MF(bp)) {
11141                /* Port info */
11142                bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11143                        SHMEM_RD(bp,
11144                                 dev_info.port_hw_config[port].
11145                                 fcoe_wwn_port_name_upper);
11146                bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11147                        SHMEM_RD(bp,
11148                                 dev_info.port_hw_config[port].
11149                                 fcoe_wwn_port_name_lower);
11150
11151                /* Node info */
11152                bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11153                        SHMEM_RD(bp,
11154                                 dev_info.port_hw_config[port].
11155                                 fcoe_wwn_node_name_upper);
11156                bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11157                        SHMEM_RD(bp,
11158                                 dev_info.port_hw_config[port].
11159                                 fcoe_wwn_node_name_lower);
11160        } else if (!IS_MF_SD(bp)) {
11161                /*
11162                 * Read the WWN info only if the FCoE feature is enabled for
11163                 * this function.
11164                 */
11165                if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11166                        bnx2x_get_ext_wwn_info(bp, func);
11167
11168        } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11169                bnx2x_get_ext_wwn_info(bp, func);
11170        }
11171
11172        BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11173
11174        /*
11175         * If maximum allowed number of connections is zero -
11176         * disable the feature.
11177         */
11178        if (!bp->cnic_eth_dev.max_fcoe_conn)
11179                bp->flags |= NO_FCOE_FLAG;
11180}
11181
11182static void bnx2x_get_cnic_info(struct bnx2x *bp)
11183{
11184        /*
11185         * iSCSI may be dynamically disabled but reading
11186         * info here we will decrease memory usage by driver
11187         * if the feature is disabled for good
11188         */
11189        bnx2x_get_iscsi_info(bp);
11190        bnx2x_get_fcoe_info(bp);
11191}
11192
11193static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11194{
11195        u32 val, val2;
11196        int func = BP_ABS_FUNC(bp);
11197        int port = BP_PORT(bp);
11198        u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11199        u8 *fip_mac = bp->fip_mac;
11200
11201        if (IS_MF(bp)) {
11202                /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11203                 * FCoE MAC then the appropriate feature should be disabled.
11204                 * In non SD mode features configuration comes from struct
11205                 * func_ext_config.
11206                 */
11207                if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11208                        u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11209                        if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11210                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11211                                                 iscsi_mac_addr_upper);
11212                                val = MF_CFG_RD(bp, func_ext_config[func].
11213                                                iscsi_mac_addr_lower);
11214                                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11215                                BNX2X_DEV_INFO
11216                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11217                        } else {
11218                                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11219                        }
11220
11221                        if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11222                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11223                                                 fcoe_mac_addr_upper);
11224                                val = MF_CFG_RD(bp, func_ext_config[func].
11225                                                fcoe_mac_addr_lower);
11226                                bnx2x_set_mac_buf(fip_mac, val, val2);
11227                                BNX2X_DEV_INFO
11228                                        ("Read FCoE L2 MAC: %pM\n", fip_mac);
11229                        } else {
11230                                bp->flags |= NO_FCOE_FLAG;
11231                        }
11232
11233                        bp->mf_ext_config = cfg;
11234
11235                } else { /* SD MODE */
11236                        if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11237                                /* use primary mac as iscsi mac */
11238                                memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11239
11240                                BNX2X_DEV_INFO("SD ISCSI MODE\n");
11241                                BNX2X_DEV_INFO
11242                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11243                        } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11244                                /* use primary mac as fip mac */
11245                                memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11246                                BNX2X_DEV_INFO("SD FCoE MODE\n");
11247                                BNX2X_DEV_INFO
11248                                        ("Read FIP MAC: %pM\n", fip_mac);
11249                        }
11250                }
11251
11252                /* If this is a storage-only interface, use SAN mac as
11253                 * primary MAC. Notice that for SD this is already the case,
11254                 * as the SAN mac was copied from the primary MAC.
11255                 */
11256                if (IS_MF_FCOE_AFEX(bp))
11257                        memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11258        } else {
11259                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11260                                iscsi_mac_upper);
11261                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11262                               iscsi_mac_lower);
11263                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11264
11265                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11266                                fcoe_fip_mac_upper);
11267                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11268                               fcoe_fip_mac_lower);
11269                bnx2x_set_mac_buf(fip_mac, val, val2);
11270        }
11271
11272        /* Disable iSCSI OOO if MAC configuration is invalid. */
11273        if (!is_valid_ether_addr(iscsi_mac)) {
11274                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11275                memset(iscsi_mac, 0, ETH_ALEN);
11276        }
11277
11278        /* Disable FCoE if MAC configuration is invalid. */
11279        if (!is_valid_ether_addr(fip_mac)) {
11280                bp->flags |= NO_FCOE_FLAG;
11281                memset(bp->fip_mac, 0, ETH_ALEN);
11282        }
11283}
11284
11285static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11286{
11287        u32 val, val2;
11288        int func = BP_ABS_FUNC(bp);
11289        int port = BP_PORT(bp);
11290
11291        /* Zero primary MAC configuration */
11292        memset(bp->dev->dev_addr, 0, ETH_ALEN);
11293
11294        if (BP_NOMCP(bp)) {
11295                BNX2X_ERROR("warning: random MAC workaround active\n");
11296                eth_hw_addr_random(bp->dev);
11297        } else if (IS_MF(bp)) {
11298                val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11299                val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11300                if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11301                    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11302                        bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11303
11304                if (CNIC_SUPPORT(bp))
11305                        bnx2x_get_cnic_mac_hwinfo(bp);
11306        } else {
11307                /* in SF read MACs from port configuration */
11308                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11309                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11310                bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11311
11312                if (CNIC_SUPPORT(bp))
11313                        bnx2x_get_cnic_mac_hwinfo(bp);
11314        }
11315
11316        if (!BP_NOMCP(bp)) {
11317                /* Read physical port identifier from shmem */
11318                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11319                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11320                bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11321                bp->flags |= HAS_PHYS_PORT_ID;
11322        }
11323
11324        memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11325
11326        if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11327                dev_err(&bp->pdev->dev,
11328                        "bad Ethernet MAC address configuration: %pM\n"
11329                        "change it manually before bringing up the appropriate network interface\n",
11330                        bp->dev->dev_addr);
11331}
11332
11333static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11334{
11335        int tmp;
11336        u32 cfg;
11337
11338        if (IS_VF(bp))
11339                return 0;
11340
11341        if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11342                /* Take function: tmp = func */
11343                tmp = BP_ABS_FUNC(bp);
11344                cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11345                cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11346        } else {
11347                /* Take port: tmp = port */
11348                tmp = BP_PORT(bp);
11349                cfg = SHMEM_RD(bp,
11350                               dev_info.port_hw_config[tmp].generic_features);
11351                cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11352        }
11353        return cfg;
11354}
11355
11356static int bnx2x_get_hwinfo(struct bnx2x *bp)
11357{
11358        int /*abs*/func = BP_ABS_FUNC(bp);
11359        int vn;
11360        u32 val = 0;
11361        int rc = 0;
11362
11363        bnx2x_get_common_hwinfo(bp);
11364
11365        /*
11366         * initialize IGU parameters
11367         */
11368        if (CHIP_IS_E1x(bp)) {
11369                bp->common.int_block = INT_BLOCK_HC;
11370
11371                bp->igu_dsb_id = DEF_SB_IGU_ID;
11372                bp->igu_base_sb = 0;
11373        } else {
11374                bp->common.int_block = INT_BLOCK_IGU;
11375
11376                /* do not allow device reset during IGU info processing */
11377                bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11378
11379                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11380
11381                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11382                        int tout = 5000;
11383
11384                        BNX2X_DEV_INFO("FORCING Normal Mode\n");
11385
11386                        val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11387                        REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11388                        REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11389
11390                        while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11391                                tout--;
11392                                usleep_range(1000, 2000);
11393                        }
11394
11395                        if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11396                                dev_err(&bp->pdev->dev,
11397                                        "FORCING Normal Mode failed!!!\n");
11398                                bnx2x_release_hw_lock(bp,
11399                                                      HW_LOCK_RESOURCE_RESET);
11400                                return -EPERM;
11401                        }
11402                }
11403
11404                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11405                        BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11406                        bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11407                } else
11408                        BNX2X_DEV_INFO("IGU Normal Mode\n");
11409
11410                rc = bnx2x_get_igu_cam_info(bp);
11411                bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11412                if (rc)
11413                        return rc;
11414        }
11415
11416        /*
11417         * set base FW non-default (fast path) status block id, this value is
11418         * used to initialize the fw_sb_id saved on the fp/queue structure to
11419         * determine the id used by the FW.
11420         */
11421        if (CHIP_IS_E1x(bp))
11422                bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11423        else /*
11424              * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11425              * the same queue are indicated on the same IGU SB). So we prefer
11426              * FW and IGU SBs to be the same value.
11427              */
11428                bp->base_fw_ndsb = bp->igu_base_sb;
11429
11430        BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11431                       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11432                       bp->igu_sb_cnt, bp->base_fw_ndsb);
11433
11434        /*
11435         * Initialize MF configuration
11436         */
11437
11438        bp->mf_ov = 0;
11439        bp->mf_mode = 0;
11440        vn = BP_VN(bp);
11441
11442        if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11443                BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11444                               bp->common.shmem2_base, SHMEM2_RD(bp, size),
11445                              (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11446
11447                if (SHMEM2_HAS(bp, mf_cfg_addr))
11448                        bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11449                else
11450                        bp->common.mf_cfg_base = bp->common.shmem_base +
11451                                offsetof(struct shmem_region, func_mb) +
11452                                E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11453                /*
11454                 * get mf configuration:
11455                 * 1. Existence of MF configuration
11456                 * 2. MAC address must be legal (check only upper bytes)
11457                 *    for  Switch-Independent mode;
11458                 *    OVLAN must be legal for Switch-Dependent mode
11459                 * 3. SF_MODE configures specific MF mode
11460                 */
11461                if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11462                        /* get mf configuration */
11463                        val = SHMEM_RD(bp,
11464                                       dev_info.shared_feature_config.config);
11465                        val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11466
11467                        switch (val) {
11468                        case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11469                                val = MF_CFG_RD(bp, func_mf_config[func].
11470                                                mac_upper);
11471                                /* check for legal mac (upper bytes)*/
11472                                if (val != 0xffff) {
11473                                        bp->mf_mode = MULTI_FUNCTION_SI;
11474                                        bp->mf_config[vn] = MF_CFG_RD(bp,
11475                                                   func_mf_config[func].config);
11476                                } else
11477                                        BNX2X_DEV_INFO("illegal MAC address for SI\n");
11478                                break;
11479                        case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11480                                if ((!CHIP_IS_E1x(bp)) &&
11481                                    (MF_CFG_RD(bp, func_mf_config[func].
11482                                               mac_upper) != 0xffff) &&
11483                                    (SHMEM2_HAS(bp,
11484                                                afex_driver_support))) {
11485                                        bp->mf_mode = MULTI_FUNCTION_AFEX;
11486                                        bp->mf_config[vn] = MF_CFG_RD(bp,
11487                                                func_mf_config[func].config);
11488                                } else {
11489                                        BNX2X_DEV_INFO("can not configure afex mode\n");
11490                                }
11491                                break;
11492                        case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11493                                /* get OV configuration */
11494                                val = MF_CFG_RD(bp,
11495                                        func_mf_config[FUNC_0].e1hov_tag);
11496                                val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11497
11498                                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11499                                        bp->mf_mode = MULTI_FUNCTION_SD;
11500                                        bp->mf_config[vn] = MF_CFG_RD(bp,
11501                                                func_mf_config[func].config);
11502                                } else
11503                                        BNX2X_DEV_INFO("illegal OV for SD\n");
11504                                break;
11505                        case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11506                                bp->mf_config[vn] = 0;
11507                                break;
11508                        default:
11509                                /* Unknown configuration: reset mf_config */
11510                                bp->mf_config[vn] = 0;
11511                                BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11512                        }
11513                }
11514
11515                BNX2X_DEV_INFO("%s function mode\n",
11516                               IS_MF(bp) ? "multi" : "single");
11517
11518                switch (bp->mf_mode) {
11519                case MULTI_FUNCTION_SD:
11520                        val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11521                              FUNC_MF_CFG_E1HOV_TAG_MASK;
11522                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11523                                bp->mf_ov = val;
11524                                bp->path_has_ovlan = true;
11525
11526                                BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11527                                               func, bp->mf_ov, bp->mf_ov);
11528                        } else {
11529                                dev_err(&bp->pdev->dev,
11530                                        "No valid MF OV for func %d, aborting\n",
11531                                        func);
11532                                return -EPERM;
11533                        }
11534                        break;
11535                case MULTI_FUNCTION_AFEX:
11536                        BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11537                        break;
11538                case MULTI_FUNCTION_SI:
11539                        BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11540                                       func);
11541                        break;
11542                default:
11543                        if (vn) {
11544                                dev_err(&bp->pdev->dev,
11545                                        "VN %d is in a single function mode, aborting\n",
11546                                        vn);
11547                                return -EPERM;
11548                        }
11549                        break;
11550                }
11551
11552                /* check if other port on the path needs ovlan:
11553                 * Since MF configuration is shared between ports
11554                 * Possible mixed modes are only
11555                 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11556                 */
11557                if (CHIP_MODE_IS_4_PORT(bp) &&
11558                    !bp->path_has_ovlan &&
11559                    !IS_MF(bp) &&
11560                    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11561                        u8 other_port = !BP_PORT(bp);
11562                        u8 other_func = BP_PATH(bp) + 2*other_port;
11563                        val = MF_CFG_RD(bp,
11564                                        func_mf_config[other_func].e1hov_tag);
11565                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11566                                bp->path_has_ovlan = true;
11567                }
11568        }
11569
11570        /* adjust igu_sb_cnt to MF for E1H */
11571        if (CHIP_IS_E1H(bp) && IS_MF(bp))
11572                bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11573
11574        /* port info */
11575        bnx2x_get_port_hwinfo(bp);
11576
11577        /* Get MAC addresses */
11578        bnx2x_get_mac_hwinfo(bp);
11579
11580        bnx2x_get_cnic_info(bp);
11581
11582        return rc;
11583}
11584
11585static void bnx2x_read_fwinfo(struct bnx2x *bp)
11586{
11587        int cnt, i, block_end, rodi;
11588        char vpd_start[BNX2X_VPD_LEN+1];
11589        char str_id_reg[VENDOR_ID_LEN+1];
11590        char str_id_cap[VENDOR_ID_LEN+1];
11591        char *vpd_data;
11592        char *vpd_extended_data = NULL;
11593        u8 len;
11594
11595        cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11596        memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11597
11598        if (cnt < BNX2X_VPD_LEN)
11599                goto out_not_found;
11600
11601        /* VPD RO tag should be first tag after identifier string, hence
11602         * we should be able to find it in first BNX2X_VPD_LEN chars
11603         */
11604        i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11605                             PCI_VPD_LRDT_RO_DATA);
11606        if (i < 0)
11607                goto out_not_found;
11608
11609        block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11610                    pci_vpd_lrdt_size(&vpd_start[i]);
11611
11612        i += PCI_VPD_LRDT_TAG_SIZE;
11613
11614        if (block_end > BNX2X_VPD_LEN) {
11615                vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11616                if (vpd_extended_data  == NULL)
11617                        goto out_not_found;
11618
11619                /* read rest of vpd image into vpd_extended_data */
11620                memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11621                cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11622                                   block_end - BNX2X_VPD_LEN,
11623                                   vpd_extended_data + BNX2X_VPD_LEN);
11624                if (cnt < (block_end - BNX2X_VPD_LEN))
11625                        goto out_not_found;
11626                vpd_data = vpd_extended_data;
11627        } else
11628                vpd_data = vpd_start;
11629
11630        /* now vpd_data holds full vpd content in both cases */
11631
11632        rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11633                                   PCI_VPD_RO_KEYWORD_MFR_ID);
11634        if (rodi < 0)
11635                goto out_not_found;
11636
11637        len = pci_vpd_info_field_size(&vpd_data[rodi]);
11638
11639        if (len != VENDOR_ID_LEN)
11640                goto out_not_found;
11641
11642        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11643
11644        /* vendor specific info */
11645        snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11646        snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11647        if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11648            !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11649
11650                rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11651                                                PCI_VPD_RO_KEYWORD_VENDOR0);
11652                if (rodi >= 0) {
11653                        len = pci_vpd_info_field_size(&vpd_data[rodi]);
11654
11655                        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11656
11657                        if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11658                                memcpy(bp->fw_ver, &vpd_data[rodi], len);
11659                                bp->fw_ver[len] = ' ';
11660                        }
11661                }
11662                kfree(vpd_extended_data);
11663                return;
11664        }
11665out_not_found:
11666        kfree(vpd_extended_data);
11667        return;
11668}
11669
11670static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11671{
11672        u32 flags = 0;
11673
11674        if (CHIP_REV_IS_FPGA(bp))
11675                SET_FLAGS(flags, MODE_FPGA);
11676        else if (CHIP_REV_IS_EMUL(bp))
11677                SET_FLAGS(flags, MODE_EMUL);
11678        else
11679                SET_FLAGS(flags, MODE_ASIC);
11680
11681        if (CHIP_MODE_IS_4_PORT(bp))
11682                SET_FLAGS(flags, MODE_PORT4);
11683        else
11684                SET_FLAGS(flags, MODE_PORT2);
11685
11686        if (CHIP_IS_E2(bp))
11687                SET_FLAGS(flags, MODE_E2);
11688        else if (CHIP_IS_E3(bp)) {
11689                SET_FLAGS(flags, MODE_E3);
11690                if (CHIP_REV(bp) == CHIP_REV_Ax)
11691                        SET_FLAGS(flags, MODE_E3_A0);
11692                else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11693                        SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11694        }
11695
11696        if (IS_MF(bp)) {
11697                SET_FLAGS(flags, MODE_MF);
11698                switch (bp->mf_mode) {
11699                case MULTI_FUNCTION_SD:
11700                        SET_FLAGS(flags, MODE_MF_SD);
11701                        break;
11702                case MULTI_FUNCTION_SI:
11703                        SET_FLAGS(flags, MODE_MF_SI);
11704                        break;
11705                case MULTI_FUNCTION_AFEX:
11706                        SET_FLAGS(flags, MODE_MF_AFEX);
11707                        break;
11708                }
11709        } else
11710                SET_FLAGS(flags, MODE_SF);
11711
11712#if defined(__LITTLE_ENDIAN)
11713        SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11714#else /*(__BIG_ENDIAN)*/
11715        SET_FLAGS(flags, MODE_BIG_ENDIAN);
11716#endif
11717        INIT_MODE_FLAGS(bp) = flags;
11718}
11719
11720static int bnx2x_init_bp(struct bnx2x *bp)
11721{
11722        int func;
11723        int rc;
11724
11725        mutex_init(&bp->port.phy_mutex);
11726        mutex_init(&bp->fw_mb_mutex);
11727        spin_lock_init(&bp->stats_lock);
11728        sema_init(&bp->stats_sema, 1);
11729
11730        INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11731        INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11732        INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11733        if (IS_PF(bp)) {
11734                rc = bnx2x_get_hwinfo(bp);
11735                if (rc)
11736                        return rc;
11737        } else {
11738                eth_zero_addr(bp->dev->dev_addr);
11739        }
11740
11741        bnx2x_set_modes_bitmap(bp);
11742
11743        rc = bnx2x_alloc_mem_bp(bp);
11744        if (rc)
11745                return rc;
11746
11747        bnx2x_read_fwinfo(bp);
11748
11749        func = BP_FUNC(bp);
11750
11751        /* need to reset chip if undi was active */
11752        if (IS_PF(bp) && !BP_NOMCP(bp)) {
11753                /* init fw_seq */
11754                bp->fw_seq =
11755                        SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11756                                                        DRV_MSG_SEQ_NUMBER_MASK;
11757                BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11758
11759                rc = bnx2x_prev_unload(bp);
11760                if (rc) {
11761                        bnx2x_free_mem_bp(bp);
11762                        return rc;
11763                }
11764        }
11765
11766        if (CHIP_REV_IS_FPGA(bp))
11767                dev_err(&bp->pdev->dev, "FPGA detected\n");
11768
11769        if (BP_NOMCP(bp) && (func == 0))
11770                dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11771
11772        bp->disable_tpa = disable_tpa;
11773        bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11774
11775        /* Set TPA flags */
11776        if (bp->disable_tpa) {
11777                bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11778                bp->dev->features &= ~NETIF_F_LRO;
11779        } else {
11780                bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11781                bp->dev->features |= NETIF_F_LRO;
11782        }
11783
11784        if (CHIP_IS_E1(bp))
11785                bp->dropless_fc = 0;
11786        else
11787                bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11788
11789        bp->mrrs = mrrs;
11790
11791        bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11792        if (IS_VF(bp))
11793                bp->rx_ring_size = MAX_RX_AVAIL;
11794
11795        /* make sure that the numbers are in the right granularity */
11796        bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11797        bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11798
11799        bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11800
11801        init_timer(&bp->timer);
11802        bp->timer.expires = jiffies + bp->current_interval;
11803        bp->timer.data = (unsigned long) bp;
11804        bp->timer.function = bnx2x_timer;
11805
11806        if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11807            SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11808            SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11809            SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11810                bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11811                bnx2x_dcbx_init_params(bp);
11812        } else {
11813                bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11814        }
11815
11816        if (CHIP_IS_E1x(bp))
11817                bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11818        else
11819                bp->cnic_base_cl_id = FP_SB_MAX_E2;
11820
11821        /* multiple tx priority */
11822        if (IS_VF(bp))
11823                bp->max_cos = 1;
11824        else if (CHIP_IS_E1x(bp))
11825                bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11826        else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11827                bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11828        else if (CHIP_IS_E3B0(bp))
11829                bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11830        else
11831                BNX2X_ERR("unknown chip %x revision %x\n",
11832                          CHIP_NUM(bp), CHIP_REV(bp));
11833        BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11834
11835        /* We need at least one default status block for slow-path events,
11836         * second status block for the L2 queue, and a third status block for
11837         * CNIC if supported.
11838         */
11839        if (IS_VF(bp))
11840                bp->min_msix_vec_cnt = 1;
11841        else if (CNIC_SUPPORT(bp))
11842                bp->min_msix_vec_cnt = 3;
11843        else /* PF w/o cnic */
11844                bp->min_msix_vec_cnt = 2;
11845        BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11846
11847        bp->dump_preset_idx = 1;
11848
11849        return rc;
11850}
11851
11852/****************************************************************************
11853* General service functions
11854****************************************************************************/
11855
11856/*
11857 * net_device service functions
11858 */
11859
11860/* called with rtnl_lock */
11861static int bnx2x_open(struct net_device *dev)
11862{
11863        struct bnx2x *bp = netdev_priv(dev);
11864        int rc;
11865
11866        bp->stats_init = true;
11867
11868        netif_carrier_off(dev);
11869
11870        bnx2x_set_power_state(bp, PCI_D0);
11871
11872        /* If parity had happen during the unload, then attentions
11873         * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11874         * want the first function loaded on the current engine to
11875         * complete the recovery.
11876         * Parity recovery is only relevant for PF driver.
11877         */
11878        if (IS_PF(bp)) {
11879                int other_engine = BP_PATH(bp) ? 0 : 1;
11880                bool other_load_status, load_status;
11881                bool global = false;
11882
11883                other_load_status = bnx2x_get_load_status(bp, other_engine);
11884                load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11885                if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11886                    bnx2x_chk_parity_attn(bp, &global, true)) {
11887                        do {
11888                                /* If there are attentions and they are in a
11889                                 * global blocks, set the GLOBAL_RESET bit
11890                                 * regardless whether it will be this function
11891                                 * that will complete the recovery or not.
11892                                 */
11893                                if (global)
11894                                        bnx2x_set_reset_global(bp);
11895
11896                                /* Only the first function on the current
11897                                 * engine should try to recover in open. In case
11898                                 * of attentions in global blocks only the first
11899                                 * in the chip should try to recover.
11900                                 */
11901                                if ((!load_status &&
11902                                     (!global || !other_load_status)) &&
11903                                      bnx2x_trylock_leader_lock(bp) &&
11904                                      !bnx2x_leader_reset(bp)) {
11905                                        netdev_info(bp->dev,
11906                                                    "Recovered in open\n");
11907                                        break;
11908                                }
11909
11910                                /* recovery has failed... */
11911                                bnx2x_set_power_state(bp, PCI_D3hot);
11912                                bp->recovery_state = BNX2X_RECOVERY_FAILED;
11913
11914                                BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11915                                          "If you still see this message after a few retries then power cycle is required.\n");
11916
11917                                return -EAGAIN;
11918                        } while (0);
11919                }
11920        }
11921
11922        bp->recovery_state = BNX2X_RECOVERY_DONE;
11923        rc = bnx2x_nic_load(bp, LOAD_OPEN);
11924        if (rc)
11925                return rc;
11926        return 0;
11927}
11928
11929/* called with rtnl_lock */
11930static int bnx2x_close(struct net_device *dev)
11931{
11932        struct bnx2x *bp = netdev_priv(dev);
11933
11934        /* Unload the driver, release IRQs */
11935        bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11936
11937        return 0;
11938}
11939
11940static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11941                                      struct bnx2x_mcast_ramrod_params *p)
11942{
11943        int mc_count = netdev_mc_count(bp->dev);
11944        struct bnx2x_mcast_list_elem *mc_mac =
11945                kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11946        struct netdev_hw_addr *ha;
11947
11948        if (!mc_mac)
11949                return -ENOMEM;
11950
11951        INIT_LIST_HEAD(&p->mcast_list);
11952
11953        netdev_for_each_mc_addr(ha, bp->dev) {
11954                mc_mac->mac = bnx2x_mc_addr(ha);
11955                list_add_tail(&mc_mac->link, &p->mcast_list);
11956                mc_mac++;
11957        }
11958
11959        p->mcast_list_len = mc_count;
11960
11961        return 0;
11962}
11963
11964static void bnx2x_free_mcast_macs_list(
11965        struct bnx2x_mcast_ramrod_params *p)
11966{
11967        struct bnx2x_mcast_list_elem *mc_mac =
11968                list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11969                                 link);
11970
11971        WARN_ON(!mc_mac);
11972        kfree(mc_mac);
11973}
11974
11975/**
11976 * bnx2x_set_uc_list - configure a new unicast MACs list.
11977 *
11978 * @bp: driver handle
11979 *
11980 * We will use zero (0) as a MAC type for these MACs.
11981 */
11982static int bnx2x_set_uc_list(struct bnx2x *bp)
11983{
11984        int rc;
11985        struct net_device *dev = bp->dev;
11986        struct netdev_hw_addr *ha;
11987        struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11988        unsigned long ramrod_flags = 0;
11989
11990        /* First schedule a cleanup up of old configuration */
11991        rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11992        if (rc < 0) {
11993                BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11994                return rc;
11995        }
11996
11997        netdev_for_each_uc_addr(ha, dev) {
11998                rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11999                                       BNX2X_UC_LIST_MAC, &ramrod_flags);
12000                if (rc == -EEXIST) {
12001                        DP(BNX2X_MSG_SP,
12002                           "Failed to schedule ADD operations: %d\n", rc);
12003                        /* do not treat adding same MAC as error */
12004                        rc = 0;
12005
12006                } else if (rc < 0) {
12007
12008                        BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12009                                  rc);
12010                        return rc;
12011                }
12012        }
12013
12014        /* Execute the pending commands */
12015        __set_bit(RAMROD_CONT, &ramrod_flags);
12016        return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12017                                 BNX2X_UC_LIST_MAC, &ramrod_flags);
12018}
12019
12020static int bnx2x_set_mc_list(struct bnx2x *bp)
12021{
12022        struct net_device *dev = bp->dev;
12023        struct bnx2x_mcast_ramrod_params rparam = {NULL};
12024        int rc = 0;
12025
12026        rparam.mcast_obj = &bp->mcast_obj;
12027
12028        /* first, clear all configured multicast MACs */
12029        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12030        if (rc < 0) {
12031                BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12032                return rc;
12033        }
12034
12035        /* then, configure a new MACs list */
12036        if (netdev_mc_count(dev)) {
12037                rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12038                if (rc) {
12039                        BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12040                                  rc);
12041                        return rc;
12042                }
12043
12044                /* Now add the new MACs */
12045                rc = bnx2x_config_mcast(bp, &rparam,
12046                                        BNX2X_MCAST_CMD_ADD);
12047                if (rc < 0)
12048                        BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12049                                  rc);
12050
12051                bnx2x_free_mcast_macs_list(&rparam);
12052        }
12053
12054        return rc;
12055}
12056
12057/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12058static void bnx2x_set_rx_mode(struct net_device *dev)
12059{
12060        struct bnx2x *bp = netdev_priv(dev);
12061
12062        if (bp->state != BNX2X_STATE_OPEN) {
12063                DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12064                return;
12065        } else {
12066                /* Schedule an SP task to handle rest of change */
12067                DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
12068                smp_mb__before_clear_bit();
12069                set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
12070                smp_mb__after_clear_bit();
12071                schedule_delayed_work(&bp->sp_rtnl_task, 0);
12072        }
12073}
12074
12075void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12076{
12077        u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12078
12079        DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12080
12081        netif_addr_lock_bh(bp->dev);
12082
12083        if (bp->dev->flags & IFF_PROMISC) {
12084                rx_mode = BNX2X_RX_MODE_PROMISC;
12085        } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12086                   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12087                    CHIP_IS_E1(bp))) {
12088                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12089        } else {
12090                if (IS_PF(bp)) {
12091                        /* some multicasts */
12092                        if (bnx2x_set_mc_list(bp) < 0)
12093                                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12094
12095                        /* release bh lock, as bnx2x_set_uc_list might sleep */
12096                        netif_addr_unlock_bh(bp->dev);
12097                        if (bnx2x_set_uc_list(bp) < 0)
12098                                rx_mode = BNX2X_RX_MODE_PROMISC;
12099                        netif_addr_lock_bh(bp->dev);
12100                } else {
12101                        /* configuring mcast to a vf involves sleeping (when we
12102                         * wait for the pf's response).
12103                         */
12104                        smp_mb__before_clear_bit();
12105                        set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
12106                                &bp->sp_rtnl_state);
12107                        smp_mb__after_clear_bit();
12108                        schedule_delayed_work(&bp->sp_rtnl_task, 0);
12109                }
12110        }
12111
12112        bp->rx_mode = rx_mode;
12113        /* handle ISCSI SD mode */
12114        if (IS_MF_ISCSI_SD(bp))
12115                bp->rx_mode = BNX2X_RX_MODE_NONE;
12116
12117        /* Schedule the rx_mode command */
12118        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12119                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12120                netif_addr_unlock_bh(bp->dev);
12121                return;
12122        }
12123
12124        if (IS_PF(bp)) {
12125                bnx2x_set_storm_rx_mode(bp);
12126                netif_addr_unlock_bh(bp->dev);
12127        } else {
12128                /* VF will need to request the PF to make this change, and so
12129                 * the VF needs to release the bottom-half lock prior to the
12130                 * request (as it will likely require sleep on the VF side)
12131                 */
12132                netif_addr_unlock_bh(bp->dev);
12133                bnx2x_vfpf_storm_rx_mode(bp);
12134        }
12135}
12136
12137/* called with rtnl_lock */
12138static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12139                           int devad, u16 addr)
12140{
12141        struct bnx2x *bp = netdev_priv(netdev);
12142        u16 value;
12143        int rc;
12144
12145        DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12146           prtad, devad, addr);
12147
12148        /* The HW expects different devad if CL22 is used */
12149        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12150
12151        bnx2x_acquire_phy_lock(bp);
12152        rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12153        bnx2x_release_phy_lock(bp);
12154        DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12155
12156        if (!rc)
12157                rc = value;
12158        return rc;
12159}
12160
12161/* called with rtnl_lock */
12162static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12163                            u16 addr, u16 value)
12164{
12165        struct bnx2x *bp = netdev_priv(netdev);
12166        int rc;
12167
12168        DP(NETIF_MSG_LINK,
12169           "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12170           prtad, devad, addr, value);
12171
12172        /* The HW expects different devad if CL22 is used */
12173        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12174
12175        bnx2x_acquire_phy_lock(bp);
12176        rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12177        bnx2x_release_phy_lock(bp);
12178        return rc;
12179}
12180
12181/* called with rtnl_lock */
12182static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12183{
12184        struct bnx2x *bp = netdev_priv(dev);
12185        struct mii_ioctl_data *mdio = if_mii(ifr);
12186
12187        DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12188           mdio->phy_id, mdio->reg_num, mdio->val_in);
12189
12190        if (!netif_running(dev))
12191                return -EAGAIN;
12192
12193        return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12194}
12195
12196#ifdef CONFIG_NET_POLL_CONTROLLER
12197static void poll_bnx2x(struct net_device *dev)
12198{
12199        struct bnx2x *bp = netdev_priv(dev);
12200        int i;
12201
12202        for_each_eth_queue(bp, i) {
12203                struct bnx2x_fastpath *fp = &bp->fp[i];
12204                napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12205        }
12206}
12207#endif
12208
12209static int bnx2x_validate_addr(struct net_device *dev)
12210{
12211        struct bnx2x *bp = netdev_priv(dev);
12212
12213        /* query the bulletin board for mac address configured by the PF */
12214        if (IS_VF(bp))
12215                bnx2x_sample_bulletin(bp);
12216
12217        if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12218                BNX2X_ERR("Non-valid Ethernet address\n");
12219                return -EADDRNOTAVAIL;
12220        }
12221        return 0;
12222}
12223
12224static int bnx2x_get_phys_port_id(struct net_device *netdev,
12225                                  struct netdev_phys_port_id *ppid)
12226{
12227        struct bnx2x *bp = netdev_priv(netdev);
12228
12229        if (!(bp->flags & HAS_PHYS_PORT_ID))
12230                return -EOPNOTSUPP;
12231
12232        ppid->id_len = sizeof(bp->phys_port_id);
12233        memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12234
12235        return 0;
12236}
12237
12238static const struct net_device_ops bnx2x_netdev_ops = {
12239        .ndo_open               = bnx2x_open,
12240        .ndo_stop               = bnx2x_close,
12241        .ndo_start_xmit         = bnx2x_start_xmit,
12242        .ndo_select_queue       = bnx2x_select_queue,
12243        .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12244        .ndo_set_mac_address    = bnx2x_change_mac_addr,
12245        .ndo_validate_addr      = bnx2x_validate_addr,
12246        .ndo_do_ioctl           = bnx2x_ioctl,
12247        .ndo_change_mtu         = bnx2x_change_mtu,
12248        .ndo_fix_features       = bnx2x_fix_features,
12249        .ndo_set_features       = bnx2x_set_features,
12250        .ndo_tx_timeout         = bnx2x_tx_timeout,
12251#ifdef CONFIG_NET_POLL_CONTROLLER
12252        .ndo_poll_controller    = poll_bnx2x,
12253#endif
12254        .ndo_setup_tc           = bnx2x_setup_tc,
12255#ifdef CONFIG_BNX2X_SRIOV
12256        .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12257        .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12258        .ndo_get_vf_config      = bnx2x_get_vf_config,
12259#endif
12260#ifdef NETDEV_FCOE_WWNN
12261        .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12262#endif
12263
12264#ifdef CONFIG_NET_RX_BUSY_POLL
12265        .ndo_busy_poll          = bnx2x_low_latency_recv,
12266#endif
12267        .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12268};
12269
12270static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12271{
12272        struct device *dev = &bp->pdev->dev;
12273
12274        if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12275            dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12276                dev_err(dev, "System does not support DMA, aborting\n");
12277                return -EIO;
12278        }
12279
12280        return 0;
12281}
12282
12283static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12284{
12285        if (bp->flags & AER_ENABLED) {
12286                pci_disable_pcie_error_reporting(bp->pdev);
12287                bp->flags &= ~AER_ENABLED;
12288        }
12289}
12290
12291static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12292                          struct net_device *dev, unsigned long board_type)
12293{
12294        int rc;
12295        u32 pci_cfg_dword;
12296        bool chip_is_e1x = (board_type == BCM57710 ||
12297                            board_type == BCM57711 ||
12298                            board_type == BCM57711E);
12299
12300        SET_NETDEV_DEV(dev, &pdev->dev);
12301
12302        bp->dev = dev;
12303        bp->pdev = pdev;
12304
12305        rc = pci_enable_device(pdev);
12306        if (rc) {
12307                dev_err(&bp->pdev->dev,
12308                        "Cannot enable PCI device, aborting\n");
12309                goto err_out;
12310        }
12311
12312        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12313                dev_err(&bp->pdev->dev,
12314                        "Cannot find PCI device base address, aborting\n");
12315                rc = -ENODEV;
12316                goto err_out_disable;
12317        }
12318
12319        if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12320                dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12321                rc = -ENODEV;
12322                goto err_out_disable;
12323        }
12324
12325        pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12326        if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12327            PCICFG_REVESION_ID_ERROR_VAL) {
12328                pr_err("PCI device error, probably due to fan failure, aborting\n");
12329                rc = -ENODEV;
12330                goto err_out_disable;
12331        }
12332
12333        if (atomic_read(&pdev->enable_cnt) == 1) {
12334                rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12335                if (rc) {
12336                        dev_err(&bp->pdev->dev,
12337                                "Cannot obtain PCI resources, aborting\n");
12338                        goto err_out_disable;
12339                }
12340
12341                pci_set_master(pdev);
12342                pci_save_state(pdev);
12343        }
12344
12345        if (IS_PF(bp)) {
12346                if (!pdev->pm_cap) {
12347                        dev_err(&bp->pdev->dev,
12348                                "Cannot find power management capability, aborting\n");
12349                        rc = -EIO;
12350                        goto err_out_release;
12351                }
12352        }
12353
12354        if (!pci_is_pcie(pdev)) {
12355                dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12356                rc = -EIO;
12357                goto err_out_release;
12358        }
12359
12360        rc = bnx2x_set_coherency_mask(bp);
12361        if (rc)
12362                goto err_out_release;
12363
12364        dev->mem_start = pci_resource_start(pdev, 0);
12365        dev->base_addr = dev->mem_start;
12366        dev->mem_end = pci_resource_end(pdev, 0);
12367
12368        dev->irq = pdev->irq;
12369
12370        bp->regview = pci_ioremap_bar(pdev, 0);
12371        if (!bp->regview) {
12372                dev_err(&bp->pdev->dev,
12373                        "Cannot map register space, aborting\n");
12374                rc = -ENOMEM;
12375                goto err_out_release;
12376        }
12377
12378        /* In E1/E1H use pci device function given by kernel.
12379         * In E2/E3 read physical function from ME register since these chips
12380         * support Physical Device Assignment where kernel BDF maybe arbitrary
12381         * (depending on hypervisor).
12382         */
12383        if (chip_is_e1x) {
12384                bp->pf_num = PCI_FUNC(pdev->devfn);
12385        } else {
12386                /* chip is E2/3*/
12387                pci_read_config_dword(bp->pdev,
12388                                      PCICFG_ME_REGISTER, &pci_cfg_dword);
12389                bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12390                                  ME_REG_ABS_PF_NUM_SHIFT);
12391        }
12392        BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12393
12394        /* clean indirect addresses */
12395        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12396                               PCICFG_VENDOR_ID_OFFSET);
12397
12398        /* AER (Advanced Error reporting) configuration */
12399        rc = pci_enable_pcie_error_reporting(pdev);
12400        if (!rc)
12401                bp->flags |= AER_ENABLED;
12402        else
12403                BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12404
12405        /*
12406         * Clean the following indirect addresses for all functions since it
12407         * is not used by the driver.
12408         */
12409        if (IS_PF(bp)) {
12410                REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12411                REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12412                REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12413                REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12414
12415                if (chip_is_e1x) {
12416                        REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12417                        REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12418                        REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12419                        REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12420                }
12421
12422                /* Enable internal target-read (in case we are probed after PF
12423                 * FLR). Must be done prior to any BAR read access. Only for
12424                 * 57712 and up
12425                 */
12426                if (!chip_is_e1x)
12427                        REG_WR(bp,
12428                               PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12429        }
12430
12431        dev->watchdog_timeo = TX_TIMEOUT;
12432
12433        dev->netdev_ops = &bnx2x_netdev_ops;
12434        bnx2x_set_ethtool_ops(bp, dev);
12435
12436        dev->priv_flags |= IFF_UNICAST_FLT;
12437
12438        dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12439                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12440                NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12441                NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12442        if (!CHIP_IS_E1x(bp)) {
12443                dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12444                                    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12445                dev->hw_enc_features =
12446                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12447                        NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12448                        NETIF_F_GSO_IPIP |
12449                        NETIF_F_GSO_SIT |
12450                        NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12451        }
12452
12453        dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12454                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12455
12456        dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12457        dev->features |= NETIF_F_HIGHDMA;
12458
12459        /* Add Loopback capability to the device */
12460        dev->hw_features |= NETIF_F_LOOPBACK;
12461
12462#ifdef BCM_DCBNL
12463        dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12464#endif
12465
12466        /* get_port_hwinfo() will set prtad and mmds properly */
12467        bp->mdio.prtad = MDIO_PRTAD_NONE;
12468        bp->mdio.mmds = 0;
12469        bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12470        bp->mdio.dev = dev;
12471        bp->mdio.mdio_read = bnx2x_mdio_read;
12472        bp->mdio.mdio_write = bnx2x_mdio_write;
12473
12474        return 0;
12475
12476err_out_release:
12477        if (atomic_read(&pdev->enable_cnt) == 1)
12478                pci_release_regions(pdev);
12479
12480err_out_disable:
12481        pci_disable_device(pdev);
12482
12483err_out:
12484        return rc;
12485}
12486
12487static int bnx2x_check_firmware(struct bnx2x *bp)
12488{
12489        const struct firmware *firmware = bp->firmware;
12490        struct bnx2x_fw_file_hdr *fw_hdr;
12491        struct bnx2x_fw_file_section *sections;
12492        u32 offset, len, num_ops;
12493        __be16 *ops_offsets;
12494        int i;
12495        const u8 *fw_ver;
12496
12497        if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12498                BNX2X_ERR("Wrong FW size\n");
12499                return -EINVAL;
12500        }
12501
12502        fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12503        sections = (struct bnx2x_fw_file_section *)fw_hdr;
12504
12505        /* Make sure none of the offsets and sizes make us read beyond
12506         * the end of the firmware data */
12507        for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12508                offset = be32_to_cpu(sections[i].offset);
12509                len = be32_to_cpu(sections[i].len);
12510                if (offset + len > firmware->size) {
12511                        BNX2X_ERR("Section %d length is out of bounds\n", i);
12512                        return -EINVAL;
12513                }
12514        }
12515
12516        /* Likewise for the init_ops offsets */
12517        offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12518        ops_offsets = (__force __be16 *)(firmware->data + offset);
12519        num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12520
12521        for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12522                if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12523                        BNX2X_ERR("Section offset %d is out of bounds\n", i);
12524                        return -EINVAL;
12525                }
12526        }
12527
12528        /* Check FW version */
12529        offset = be32_to_cpu(fw_hdr->fw_version.offset);
12530        fw_ver = firmware->data + offset;
12531        if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12532            (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12533            (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12534            (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12535                BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12536                       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12537                       BCM_5710_FW_MAJOR_VERSION,
12538                       BCM_5710_FW_MINOR_VERSION,
12539                       BCM_5710_FW_REVISION_VERSION,
12540                       BCM_5710_FW_ENGINEERING_VERSION);
12541                return -EINVAL;
12542        }
12543
12544        return 0;
12545}
12546
12547static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12548{
12549        const __be32 *source = (const __be32 *)_source;
12550        u32 *target = (u32 *)_target;
12551        u32 i;
12552
12553        for (i = 0; i < n/4; i++)
12554                target[i] = be32_to_cpu(source[i]);
12555}
12556
12557/*
12558   Ops array is stored in the following format:
12559   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12560 */
12561static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12562{
12563        const __be32 *source = (const __be32 *)_source;
12564        struct raw_op *target = (struct raw_op *)_target;
12565        u32 i, j, tmp;
12566
12567        for (i = 0, j = 0; i < n/8; i++, j += 2) {
12568                tmp = be32_to_cpu(source[j]);
12569                target[i].op = (tmp >> 24) & 0xff;
12570                target[i].offset = tmp & 0xffffff;
12571                target[i].raw_data = be32_to_cpu(source[j + 1]);
12572        }
12573}
12574
12575/* IRO array is stored in the following format:
12576 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12577 */
12578static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12579{
12580        const __be32 *source = (const __be32 *)_source;
12581        struct iro *target = (struct iro *)_target;
12582        u32 i, j, tmp;
12583
12584        for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12585                target[i].base = be32_to_cpu(source[j]);
12586                j++;
12587                tmp = be32_to_cpu(source[j]);
12588                target[i].m1 = (tmp >> 16) & 0xffff;
12589                target[i].m2 = tmp & 0xffff;
12590                j++;
12591                tmp = be32_to_cpu(source[j]);
12592                target[i].m3 = (tmp >> 16) & 0xffff;
12593                target[i].size = tmp & 0xffff;
12594                j++;
12595        }
12596}
12597
12598static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12599{
12600        const __be16 *source = (const __be16 *)_source;
12601        u16 *target = (u16 *)_target;
12602        u32 i;
12603
12604        for (i = 0; i < n/2; i++)
12605                target[i] = be16_to_cpu(source[i]);
12606}
12607
12608#define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12609do {                                                                    \
12610        u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12611        bp->arr = kmalloc(len, GFP_KERNEL);                             \
12612        if (!bp->arr)                                                   \
12613                goto lbl;                                               \
12614        func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12615             (u8 *)bp->arr, len);                                       \
12616} while (0)
12617
12618static int bnx2x_init_firmware(struct bnx2x *bp)
12619{
12620        const char *fw_file_name;
12621        struct bnx2x_fw_file_hdr *fw_hdr;
12622        int rc;
12623
12624        if (bp->firmware)
12625                return 0;
12626
12627        if (CHIP_IS_E1(bp))
12628                fw_file_name = FW_FILE_NAME_E1;
12629        else if (CHIP_IS_E1H(bp))
12630                fw_file_name = FW_FILE_NAME_E1H;
12631        else if (!CHIP_IS_E1x(bp))
12632                fw_file_name = FW_FILE_NAME_E2;
12633        else {
12634                BNX2X_ERR("Unsupported chip revision\n");
12635                return -EINVAL;
12636        }
12637        BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12638
12639        rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12640        if (rc) {
12641                BNX2X_ERR("Can't load firmware file %s\n",
12642                          fw_file_name);
12643                goto request_firmware_exit;
12644        }
12645
12646        rc = bnx2x_check_firmware(bp);
12647        if (rc) {
12648                BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12649                goto request_firmware_exit;
12650        }
12651
12652        fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12653
12654        /* Initialize the pointers to the init arrays */
12655        /* Blob */
12656        BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12657
12658        /* Opcodes */
12659        BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12660
12661        /* Offsets */
12662        BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12663                            be16_to_cpu_n);
12664
12665        /* STORMs firmware */
12666        INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12667                        be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12668        INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12669                        be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12670        INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12671                        be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12672        INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12673                        be32_to_cpu(fw_hdr->usem_pram_data.offset);
12674        INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12675                        be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12676        INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12677                        be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12678        INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12679                        be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12680        INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12681                        be32_to_cpu(fw_hdr->csem_pram_data.offset);
12682        /* IRO */
12683        BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12684
12685        return 0;
12686
12687iro_alloc_err:
12688        kfree(bp->init_ops_offsets);
12689init_offsets_alloc_err:
12690        kfree(bp->init_ops);
12691init_ops_alloc_err:
12692        kfree(bp->init_data);
12693request_firmware_exit:
12694        release_firmware(bp->firmware);
12695        bp->firmware = NULL;
12696
12697        return rc;
12698}
12699
12700static void bnx2x_release_firmware(struct bnx2x *bp)
12701{
12702        kfree(bp->init_ops_offsets);
12703        kfree(bp->init_ops);
12704        kfree(bp->init_data);
12705        release_firmware(bp->firmware);
12706        bp->firmware = NULL;
12707}
12708
12709static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12710        .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12711        .init_hw_cmn      = bnx2x_init_hw_common,
12712        .init_hw_port     = bnx2x_init_hw_port,
12713        .init_hw_func     = bnx2x_init_hw_func,
12714
12715        .reset_hw_cmn     = bnx2x_reset_common,
12716        .reset_hw_port    = bnx2x_reset_port,
12717        .reset_hw_func    = bnx2x_reset_func,
12718
12719        .gunzip_init      = bnx2x_gunzip_init,
12720        .gunzip_end       = bnx2x_gunzip_end,
12721
12722        .init_fw          = bnx2x_init_firmware,
12723        .release_fw       = bnx2x_release_firmware,
12724};
12725
12726void bnx2x__init_func_obj(struct bnx2x *bp)
12727{
12728        /* Prepare DMAE related driver resources */
12729        bnx2x_setup_dmae(bp);
12730
12731        bnx2x_init_func_obj(bp, &bp->func_obj,
12732                            bnx2x_sp(bp, func_rdata),
12733                            bnx2x_sp_mapping(bp, func_rdata),
12734                            bnx2x_sp(bp, func_afex_rdata),
12735                            bnx2x_sp_mapping(bp, func_afex_rdata),
12736                            &bnx2x_func_sp_drv);
12737}
12738
12739/* must be called after sriov-enable */
12740static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12741{
12742        int cid_count = BNX2X_L2_MAX_CID(bp);
12743
12744        if (IS_SRIOV(bp))
12745                cid_count += BNX2X_VF_CIDS;
12746
12747        if (CNIC_SUPPORT(bp))
12748                cid_count += CNIC_CID_MAX;
12749
12750        return roundup(cid_count, QM_CID_ROUND);
12751}
12752
12753/**
12754 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12755 *
12756 * @dev:        pci device
12757 *
12758 */
12759static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12760{
12761        int index;
12762        u16 control = 0;
12763
12764        /*
12765         * If MSI-X is not supported - return number of SBs needed to support
12766         * one fast path queue: one FP queue + SB for CNIC
12767         */
12768        if (!pdev->msix_cap) {
12769                dev_info(&pdev->dev, "no msix capability found\n");
12770                return 1 + cnic_cnt;
12771        }
12772        dev_info(&pdev->dev, "msix capability found\n");
12773
12774        /*
12775         * The value in the PCI configuration space is the index of the last
12776         * entry, namely one less than the actual size of the table, which is
12777         * exactly what we want to return from this function: number of all SBs
12778         * without the default SB.
12779         * For VFs there is no default SB, then we return (index+1).
12780         */
12781        pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12782
12783        index = control & PCI_MSIX_FLAGS_QSIZE;
12784
12785        return index;
12786}
12787
12788static int set_max_cos_est(int chip_id)
12789{
12790        switch (chip_id) {
12791        case BCM57710:
12792        case BCM57711:
12793        case BCM57711E:
12794                return BNX2X_MULTI_TX_COS_E1X;
12795        case BCM57712:
12796        case BCM57712_MF:
12797                return BNX2X_MULTI_TX_COS_E2_E3A0;
12798        case BCM57800:
12799        case BCM57800_MF:
12800        case BCM57810:
12801        case BCM57810_MF:
12802        case BCM57840_4_10:
12803        case BCM57840_2_20:
12804        case BCM57840_O:
12805        case BCM57840_MFO:
12806        case BCM57840_MF:
12807        case BCM57811:
12808        case BCM57811_MF:
12809                return BNX2X_MULTI_TX_COS_E3B0;
12810        case BCM57712_VF:
12811        case BCM57800_VF:
12812        case BCM57810_VF:
12813        case BCM57840_VF:
12814        case BCM57811_VF:
12815                return 1;
12816        default:
12817                pr_err("Unknown board_type (%d), aborting\n", chip_id);
12818                return -ENODEV;
12819        }
12820}
12821
12822static int set_is_vf(int chip_id)
12823{
12824        switch (chip_id) {
12825        case BCM57712_VF:
12826        case BCM57800_VF:
12827        case BCM57810_VF:
12828        case BCM57840_VF:
12829        case BCM57811_VF:
12830                return true;
12831        default:
12832                return false;
12833        }
12834}
12835
12836static int bnx2x_init_one(struct pci_dev *pdev,
12837                                    const struct pci_device_id *ent)
12838{
12839        struct net_device *dev = NULL;
12840        struct bnx2x *bp;
12841        enum pcie_link_width pcie_width;
12842        enum pci_bus_speed pcie_speed;
12843        int rc, max_non_def_sbs;
12844        int rx_count, tx_count, rss_count, doorbell_size;
12845        int max_cos_est;
12846        bool is_vf;
12847        int cnic_cnt;
12848
12849        /* An estimated maximum supported CoS number according to the chip
12850         * version.
12851         * We will try to roughly estimate the maximum number of CoSes this chip
12852         * may support in order to minimize the memory allocated for Tx
12853         * netdev_queue's. This number will be accurately calculated during the
12854         * initialization of bp->max_cos based on the chip versions AND chip
12855         * revision in the bnx2x_init_bp().
12856         */
12857        max_cos_est = set_max_cos_est(ent->driver_data);
12858        if (max_cos_est < 0)
12859                return max_cos_est;
12860        is_vf = set_is_vf(ent->driver_data);
12861        cnic_cnt = is_vf ? 0 : 1;
12862
12863        max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12864
12865        /* add another SB for VF as it has no default SB */
12866        max_non_def_sbs += is_vf ? 1 : 0;
12867
12868        /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12869        rss_count = max_non_def_sbs - cnic_cnt;
12870
12871        if (rss_count < 1)
12872                return -EINVAL;
12873
12874        /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12875        rx_count = rss_count + cnic_cnt;
12876
12877        /* Maximum number of netdev Tx queues:
12878         * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12879         */
12880        tx_count = rss_count * max_cos_est + cnic_cnt;
12881
12882        /* dev zeroed in init_etherdev */
12883        dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12884        if (!dev)
12885                return -ENOMEM;
12886
12887        bp = netdev_priv(dev);
12888
12889        bp->flags = 0;
12890        if (is_vf)
12891                bp->flags |= IS_VF_FLAG;
12892
12893        bp->igu_sb_cnt = max_non_def_sbs;
12894        bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12895        bp->msg_enable = debug;
12896        bp->cnic_support = cnic_cnt;
12897        bp->cnic_probe = bnx2x_cnic_probe;
12898
12899        pci_set_drvdata(pdev, dev);
12900
12901        rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12902        if (rc < 0) {
12903                free_netdev(dev);
12904                return rc;
12905        }
12906
12907        BNX2X_DEV_INFO("This is a %s function\n",
12908                       IS_PF(bp) ? "physical" : "virtual");
12909        BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12910        BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12911        BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12912                       tx_count, rx_count);
12913
12914        rc = bnx2x_init_bp(bp);
12915        if (rc)
12916                goto init_one_exit;
12917
12918        /* Map doorbells here as we need the real value of bp->max_cos which
12919         * is initialized in bnx2x_init_bp() to determine the number of
12920         * l2 connections.
12921         */
12922        if (IS_VF(bp)) {
12923                bp->doorbells = bnx2x_vf_doorbells(bp);
12924                rc = bnx2x_vf_pci_alloc(bp);
12925                if (rc)
12926                        goto init_one_exit;
12927        } else {
12928                doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12929                if (doorbell_size > pci_resource_len(pdev, 2)) {
12930                        dev_err(&bp->pdev->dev,
12931                                "Cannot map doorbells, bar size too small, aborting\n");
12932                        rc = -ENOMEM;
12933                        goto init_one_exit;
12934                }
12935                bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12936                                                doorbell_size);
12937        }
12938        if (!bp->doorbells) {
12939                dev_err(&bp->pdev->dev,
12940                        "Cannot map doorbell space, aborting\n");
12941                rc = -ENOMEM;
12942                goto init_one_exit;
12943        }
12944
12945        if (IS_VF(bp)) {
12946                rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12947                if (rc)
12948                        goto init_one_exit;
12949        }
12950
12951        /* Enable SRIOV if capability found in configuration space */
12952        rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12953        if (rc)
12954                goto init_one_exit;
12955
12956        /* calc qm_cid_count */
12957        bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12958        BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12959
12960        /* disable FCOE L2 queue for E1x*/
12961        if (CHIP_IS_E1x(bp))
12962                bp->flags |= NO_FCOE_FLAG;
12963
12964        /* Set bp->num_queues for MSI-X mode*/
12965        bnx2x_set_num_queues(bp);
12966
12967        /* Configure interrupt mode: try to enable MSI-X/MSI if
12968         * needed.
12969         */
12970        rc = bnx2x_set_int_mode(bp);
12971        if (rc) {
12972                dev_err(&pdev->dev, "Cannot set interrupts\n");
12973                goto init_one_exit;
12974        }
12975        BNX2X_DEV_INFO("set interrupts successfully\n");
12976
12977        /* register the net device */
12978        rc = register_netdev(dev);
12979        if (rc) {
12980                dev_err(&pdev->dev, "Cannot register net device\n");
12981                goto init_one_exit;
12982        }
12983        BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12984
12985        if (!NO_FCOE(bp)) {
12986                /* Add storage MAC address */
12987                rtnl_lock();
12988                dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12989                rtnl_unlock();
12990        }
12991        if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
12992            pcie_speed == PCI_SPEED_UNKNOWN ||
12993            pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
12994                BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
12995        else
12996                BNX2X_DEV_INFO(
12997                       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12998                       board_info[ent->driver_data].name,
12999                       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13000                       pcie_width,
13001                       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13002                       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13003                       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13004                       "Unknown",
13005                       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13006
13007        return 0;
13008
13009init_one_exit:
13010        bnx2x_disable_pcie_error_reporting(bp);
13011
13012        if (bp->regview)
13013                iounmap(bp->regview);
13014
13015        if (IS_PF(bp) && bp->doorbells)
13016                iounmap(bp->doorbells);
13017
13018        free_netdev(dev);
13019
13020        if (atomic_read(&pdev->enable_cnt) == 1)
13021                pci_release_regions(pdev);
13022
13023        pci_disable_device(pdev);
13024
13025        return rc;
13026}
13027
13028static void __bnx2x_remove(struct pci_dev *pdev,
13029                           struct net_device *dev,
13030                           struct bnx2x *bp,
13031                           bool remove_netdev)
13032{
13033        /* Delete storage MAC address */
13034        if (!NO_FCOE(bp)) {
13035                rtnl_lock();
13036                dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13037                rtnl_unlock();
13038        }
13039
13040#ifdef BCM_DCBNL
13041        /* Delete app tlvs from dcbnl */
13042        bnx2x_dcbnl_update_applist(bp, true);
13043#endif
13044
13045        if (IS_PF(bp) &&
13046            !BP_NOMCP(bp) &&
13047            (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13048                bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13049
13050        /* Close the interface - either directly or implicitly */
13051        if (remove_netdev) {
13052                unregister_netdev(dev);
13053        } else {
13054                rtnl_lock();
13055                dev_close(dev);
13056                rtnl_unlock();
13057        }
13058
13059        bnx2x_iov_remove_one(bp);
13060
13061        /* Power on: we can't let PCI layer write to us while we are in D3 */
13062        if (IS_PF(bp))
13063                bnx2x_set_power_state(bp, PCI_D0);
13064
13065        /* Disable MSI/MSI-X */
13066        bnx2x_disable_msi(bp);
13067
13068        /* Power off */
13069        if (IS_PF(bp))
13070                bnx2x_set_power_state(bp, PCI_D3hot);
13071
13072        /* Make sure RESET task is not scheduled before continuing */
13073        cancel_delayed_work_sync(&bp->sp_rtnl_task);
13074
13075        /* send message via vfpf channel to release the resources of this vf */
13076        if (IS_VF(bp))
13077                bnx2x_vfpf_release(bp);
13078
13079        /* Assumes no further PCIe PM changes will occur */
13080        if (system_state == SYSTEM_POWER_OFF) {
13081                pci_wake_from_d3(pdev, bp->wol);
13082                pci_set_power_state(pdev, PCI_D3hot);
13083        }
13084
13085        bnx2x_disable_pcie_error_reporting(bp);
13086        if (remove_netdev) {
13087                if (bp->regview)
13088                        iounmap(bp->regview);
13089
13090                /* For vfs, doorbells are part of the regview and were unmapped
13091                 * along with it. FW is only loaded by PF.
13092                 */
13093                if (IS_PF(bp)) {
13094                        if (bp->doorbells)
13095                                iounmap(bp->doorbells);
13096
13097                        bnx2x_release_firmware(bp);
13098                }
13099                bnx2x_free_mem_bp(bp);
13100
13101                free_netdev(dev);
13102
13103                if (atomic_read(&pdev->enable_cnt) == 1)
13104                        pci_release_regions(pdev);
13105
13106                pci_disable_device(pdev);
13107        }
13108}
13109
13110static void bnx2x_remove_one(struct pci_dev *pdev)
13111{
13112        struct net_device *dev = pci_get_drvdata(pdev);
13113        struct bnx2x *bp;
13114
13115        if (!dev) {
13116                dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13117                return;
13118        }
13119        bp = netdev_priv(dev);
13120
13121        __bnx2x_remove(pdev, dev, bp, true);
13122}
13123
13124static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13125{
13126        bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13127
13128        bp->rx_mode = BNX2X_RX_MODE_NONE;
13129
13130        if (CNIC_LOADED(bp))
13131                bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13132
13133        /* Stop Tx */
13134        bnx2x_tx_disable(bp);
13135        /* Delete all NAPI objects */
13136        bnx2x_del_all_napi(bp);
13137        if (CNIC_LOADED(bp))
13138                bnx2x_del_all_napi_cnic(bp);
13139        netdev_reset_tc(bp->dev);
13140
13141        del_timer_sync(&bp->timer);
13142        cancel_delayed_work(&bp->sp_task);
13143        cancel_delayed_work(&bp->period_task);
13144
13145        spin_lock_bh(&bp->stats_lock);
13146        bp->stats_state = STATS_STATE_DISABLED;
13147        spin_unlock_bh(&bp->stats_lock);
13148
13149        bnx2x_save_statistics(bp);
13150
13151        netif_carrier_off(bp->dev);
13152
13153        return 0;
13154}
13155
13156/**
13157 * bnx2x_io_error_detected - called when PCI error is detected
13158 * @pdev: Pointer to PCI device
13159 * @state: The current pci connection state
13160 *
13161 * This function is called after a PCI bus error affecting
13162 * this device has been detected.
13163 */
13164static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13165                                                pci_channel_state_t state)
13166{
13167        struct net_device *dev = pci_get_drvdata(pdev);
13168        struct bnx2x *bp = netdev_priv(dev);
13169
13170        rtnl_lock();
13171
13172        BNX2X_ERR("IO error detected\n");
13173
13174        netif_device_detach(dev);
13175
13176        if (state == pci_channel_io_perm_failure) {
13177                rtnl_unlock();
13178                return PCI_ERS_RESULT_DISCONNECT;
13179        }
13180
13181        if (netif_running(dev))
13182                bnx2x_eeh_nic_unload(bp);
13183
13184        bnx2x_prev_path_mark_eeh(bp);
13185
13186        pci_disable_device(pdev);
13187
13188        rtnl_unlock();
13189
13190        /* Request a slot reset */
13191        return PCI_ERS_RESULT_NEED_RESET;
13192}
13193
13194/**
13195 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13196 * @pdev: Pointer to PCI device
13197 *
13198 * Restart the card from scratch, as if from a cold-boot.
13199 */
13200static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13201{
13202        struct net_device *dev = pci_get_drvdata(pdev);
13203        struct bnx2x *bp = netdev_priv(dev);
13204        int i;
13205
13206        rtnl_lock();
13207        BNX2X_ERR("IO slot reset initializing...\n");
13208        if (pci_enable_device(pdev)) {
13209                dev_err(&pdev->dev,
13210                        "Cannot re-enable PCI device after reset\n");
13211                rtnl_unlock();
13212                return PCI_ERS_RESULT_DISCONNECT;
13213        }
13214
13215        pci_set_master(pdev);
13216        pci_restore_state(pdev);
13217        pci_save_state(pdev);
13218
13219        if (netif_running(dev))
13220                bnx2x_set_power_state(bp, PCI_D0);
13221
13222        if (netif_running(dev)) {
13223                BNX2X_ERR("IO slot reset --> driver unload\n");
13224
13225                /* MCP should have been reset; Need to wait for validity */
13226                bnx2x_init_shmem(bp);
13227
13228                if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13229                        u32 v;
13230
13231                        v = SHMEM2_RD(bp,
13232                                      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13233                        SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13234                                  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13235                }
13236                bnx2x_drain_tx_queues(bp);
13237                bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13238                bnx2x_netif_stop(bp, 1);
13239                bnx2x_free_irq(bp);
13240
13241                /* Report UNLOAD_DONE to MCP */
13242                bnx2x_send_unload_done(bp, true);
13243
13244                bp->sp_state = 0;
13245                bp->port.pmf = 0;
13246
13247                bnx2x_prev_unload(bp);
13248
13249                /* We should have reseted the engine, so It's fair to
13250                 * assume the FW will no longer write to the bnx2x driver.
13251                 */
13252                bnx2x_squeeze_objects(bp);
13253                bnx2x_free_skbs(bp);
13254                for_each_rx_queue(bp, i)
13255                        bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13256                bnx2x_free_fp_mem(bp);
13257                bnx2x_free_mem(bp);
13258
13259                bp->state = BNX2X_STATE_CLOSED;
13260        }
13261
13262        rtnl_unlock();
13263
13264        /* If AER, perform cleanup of the PCIe registers */
13265        if (bp->flags & AER_ENABLED) {
13266                if (pci_cleanup_aer_uncorrect_error_status(pdev))
13267                        BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13268                else
13269                        DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13270        }
13271
13272        return PCI_ERS_RESULT_RECOVERED;
13273}
13274
13275/**
13276 * bnx2x_io_resume - called when traffic can start flowing again
13277 * @pdev: Pointer to PCI device
13278 *
13279 * This callback is called when the error recovery driver tells us that
13280 * its OK to resume normal operation.
13281 */
13282static void bnx2x_io_resume(struct pci_dev *pdev)
13283{
13284        struct net_device *dev = pci_get_drvdata(pdev);
13285        struct bnx2x *bp = netdev_priv(dev);
13286
13287        if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13288                netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13289                return;
13290        }
13291
13292        rtnl_lock();
13293
13294        bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13295                                                        DRV_MSG_SEQ_NUMBER_MASK;
13296
13297        if (netif_running(dev))
13298                bnx2x_nic_load(bp, LOAD_NORMAL);
13299
13300        netif_device_attach(dev);
13301
13302        rtnl_unlock();
13303}
13304
13305static const struct pci_error_handlers bnx2x_err_handler = {
13306        .error_detected = bnx2x_io_error_detected,
13307        .slot_reset     = bnx2x_io_slot_reset,
13308        .resume         = bnx2x_io_resume,
13309};
13310
13311static void bnx2x_shutdown(struct pci_dev *pdev)
13312{
13313        struct net_device *dev = pci_get_drvdata(pdev);
13314        struct bnx2x *bp;
13315
13316        if (!dev)
13317                return;
13318
13319        bp = netdev_priv(dev);
13320        if (!bp)
13321                return;
13322
13323        rtnl_lock();
13324        netif_device_detach(dev);
13325        rtnl_unlock();
13326
13327        /* Don't remove the netdevice, as there are scenarios which will cause
13328         * the kernel to hang, e.g., when trying to remove bnx2i while the
13329         * rootfs is mounted from SAN.
13330         */
13331        __bnx2x_remove(pdev, dev, bp, false);
13332}
13333
13334static struct pci_driver bnx2x_pci_driver = {
13335        .name        = DRV_MODULE_NAME,
13336        .id_table    = bnx2x_pci_tbl,
13337        .probe       = bnx2x_init_one,
13338        .remove      = bnx2x_remove_one,
13339        .suspend     = bnx2x_suspend,
13340        .resume      = bnx2x_resume,
13341        .err_handler = &bnx2x_err_handler,
13342#ifdef CONFIG_BNX2X_SRIOV
13343        .sriov_configure = bnx2x_sriov_configure,
13344#endif
13345        .shutdown    = bnx2x_shutdown,
13346};
13347
13348static int __init bnx2x_init(void)
13349{
13350        int ret;
13351
13352        pr_info("%s", version);
13353
13354        bnx2x_wq = create_singlethread_workqueue("bnx2x");
13355        if (bnx2x_wq == NULL) {
13356                pr_err("Cannot create workqueue\n");
13357                return -ENOMEM;
13358        }
13359
13360        ret = pci_register_driver(&bnx2x_pci_driver);
13361        if (ret) {
13362                pr_err("Cannot register driver\n");
13363                destroy_workqueue(bnx2x_wq);
13364        }
13365        return ret;
13366}
13367
13368static void __exit bnx2x_cleanup(void)
13369{
13370        struct list_head *pos, *q;
13371
13372        pci_unregister_driver(&bnx2x_pci_driver);
13373
13374        destroy_workqueue(bnx2x_wq);
13375
13376        /* Free globally allocated resources */
13377        list_for_each_safe(pos, q, &bnx2x_prev_list) {
13378                struct bnx2x_prev_path_list *tmp =
13379                        list_entry(pos, struct bnx2x_prev_path_list, list);
13380                list_del(pos);
13381                kfree(tmp);
13382        }
13383}
13384
13385void bnx2x_notify_link_changed(struct bnx2x *bp)
13386{
13387        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13388}
13389
13390module_init(bnx2x_init);
13391module_exit(bnx2x_cleanup);
13392
13393/**
13394 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13395 *
13396 * @bp:         driver handle
13397 * @set:        set or clear the CAM entry
13398 *
13399 * This function will wait until the ramrod completion returns.
13400 * Return 0 if success, -ENODEV if ramrod doesn't return.
13401 */
13402static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13403{
13404        unsigned long ramrod_flags = 0;
13405
13406        __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13407        return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13408                                 &bp->iscsi_l2_mac_obj, true,
13409                                 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13410}
13411
13412/* count denotes the number of new completions we have seen */
13413static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13414{
13415        struct eth_spe *spe;
13416        int cxt_index, cxt_offset;
13417
13418#ifdef BNX2X_STOP_ON_ERROR
13419        if (unlikely(bp->panic))
13420                return;
13421#endif
13422
13423        spin_lock_bh(&bp->spq_lock);
13424        BUG_ON(bp->cnic_spq_pending < count);
13425        bp->cnic_spq_pending -= count;
13426
13427        for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13428                u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13429                                & SPE_HDR_CONN_TYPE) >>
13430                                SPE_HDR_CONN_TYPE_SHIFT;
13431                u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13432                                >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13433
13434                /* Set validation for iSCSI L2 client before sending SETUP
13435                 *  ramrod
13436                 */
13437                if (type == ETH_CONNECTION_TYPE) {
13438                        if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13439                                cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13440                                        ILT_PAGE_CIDS;
13441                                cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13442                                        (cxt_index * ILT_PAGE_CIDS);
13443                                bnx2x_set_ctx_validation(bp,
13444                                        &bp->context[cxt_index].
13445                                                         vcxt[cxt_offset].eth,
13446                                        BNX2X_ISCSI_ETH_CID(bp));
13447                        }
13448                }
13449
13450                /*
13451                 * There may be not more than 8 L2, not more than 8 L5 SPEs
13452                 * and in the air. We also check that number of outstanding
13453                 * COMMON ramrods is not more than the EQ and SPQ can
13454                 * accommodate.
13455                 */
13456                if (type == ETH_CONNECTION_TYPE) {
13457                        if (!atomic_read(&bp->cq_spq_left))
13458                                break;
13459                        else
13460                                atomic_dec(&bp->cq_spq_left);
13461                } else if (type == NONE_CONNECTION_TYPE) {
13462                        if (!atomic_read(&bp->eq_spq_left))
13463                                break;
13464                        else
13465                                atomic_dec(&bp->eq_spq_left);
13466                } else if ((type == ISCSI_CONNECTION_TYPE) ||
13467                           (type == FCOE_CONNECTION_TYPE)) {
13468                        if (bp->cnic_spq_pending >=
13469                            bp->cnic_eth_dev.max_kwqe_pending)
13470                                break;
13471                        else
13472                                bp->cnic_spq_pending++;
13473                } else {
13474                        BNX2X_ERR("Unknown SPE type: %d\n", type);
13475                        bnx2x_panic();
13476                        break;
13477                }
13478
13479                spe = bnx2x_sp_get_next(bp);
13480                *spe = *bp->cnic_kwq_cons;
13481
13482                DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13483                   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13484
13485                if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13486                        bp->cnic_kwq_cons = bp->cnic_kwq;
13487                else
13488                        bp->cnic_kwq_cons++;
13489        }
13490        bnx2x_sp_prod_update(bp);
13491        spin_unlock_bh(&bp->spq_lock);
13492}
13493
13494static int bnx2x_cnic_sp_queue(struct net_device *dev,
13495                               struct kwqe_16 *kwqes[], u32 count)
13496{
13497        struct bnx2x *bp = netdev_priv(dev);
13498        int i;
13499
13500#ifdef BNX2X_STOP_ON_ERROR
13501        if (unlikely(bp->panic)) {
13502                BNX2X_ERR("Can't post to SP queue while panic\n");
13503                return -EIO;
13504        }
13505#endif
13506
13507        if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13508            (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13509                BNX2X_ERR("Handling parity error recovery. Try again later\n");
13510                return -EAGAIN;
13511        }
13512
13513        spin_lock_bh(&bp->spq_lock);
13514
13515        for (i = 0; i < count; i++) {
13516                struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13517
13518                if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13519                        break;
13520
13521                *bp->cnic_kwq_prod = *spe;
13522
13523                bp->cnic_kwq_pending++;
13524
13525                DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13526                   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13527                   spe->data.update_data_addr.hi,
13528                   spe->data.update_data_addr.lo,
13529                   bp->cnic_kwq_pending);
13530
13531                if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13532                        bp->cnic_kwq_prod = bp->cnic_kwq;
13533                else
13534                        bp->cnic_kwq_prod++;
13535        }
13536
13537        spin_unlock_bh(&bp->spq_lock);
13538
13539        if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13540                bnx2x_cnic_sp_post(bp, 0);
13541
13542        return i;
13543}
13544
13545static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13546{
13547        struct cnic_ops *c_ops;
13548        int rc = 0;
13549
13550        mutex_lock(&bp->cnic_mutex);
13551        c_ops = rcu_dereference_protected(bp->cnic_ops,
13552                                          lockdep_is_held(&bp->cnic_mutex));
13553        if (c_ops)
13554                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13555        mutex_unlock(&bp->cnic_mutex);
13556
13557        return rc;
13558}
13559
13560static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13561{
13562        struct cnic_ops *c_ops;
13563        int rc = 0;
13564
13565        rcu_read_lock();
13566        c_ops = rcu_dereference(bp->cnic_ops);
13567        if (c_ops)
13568                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13569        rcu_read_unlock();
13570
13571        return rc;
13572}
13573
13574/*
13575 * for commands that have no data
13576 */
13577int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13578{
13579        struct cnic_ctl_info ctl = {0};
13580
13581        ctl.cmd = cmd;
13582
13583        return bnx2x_cnic_ctl_send(bp, &ctl);
13584}
13585
13586static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13587{
13588        struct cnic_ctl_info ctl = {0};
13589
13590        /* first we tell CNIC and only then we count this as a completion */
13591        ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13592        ctl.data.comp.cid = cid;
13593        ctl.data.comp.error = err;
13594
13595        bnx2x_cnic_ctl_send_bh(bp, &ctl);
13596        bnx2x_cnic_sp_post(bp, 0);
13597}
13598
13599/* Called with netif_addr_lock_bh() taken.
13600 * Sets an rx_mode config for an iSCSI ETH client.
13601 * Doesn't block.
13602 * Completion should be checked outside.
13603 */
13604static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13605{
13606        unsigned long accept_flags = 0, ramrod_flags = 0;
13607        u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13608        int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13609
13610        if (start) {
13611                /* Start accepting on iSCSI L2 ring. Accept all multicasts
13612                 * because it's the only way for UIO Queue to accept
13613                 * multicasts (in non-promiscuous mode only one Queue per
13614                 * function will receive multicast packets (leading in our
13615                 * case).
13616                 */
13617                __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13618                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13619                __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13620                __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13621
13622                /* Clear STOP_PENDING bit if START is requested */
13623                clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13624
13625                sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13626        } else
13627                /* Clear START_PENDING bit if STOP is requested */
13628                clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13629
13630        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13631                set_bit(sched_state, &bp->sp_state);
13632        else {
13633                __set_bit(RAMROD_RX, &ramrod_flags);
13634                bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13635                                    ramrod_flags);
13636        }
13637}
13638
13639static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13640{
13641        struct bnx2x *bp = netdev_priv(dev);
13642        int rc = 0;
13643
13644        switch (ctl->cmd) {
13645        case DRV_CTL_CTXTBL_WR_CMD: {
13646                u32 index = ctl->data.io.offset;
13647                dma_addr_t addr = ctl->data.io.dma_addr;
13648
13649                bnx2x_ilt_wr(bp, index, addr);
13650                break;
13651        }
13652
13653        case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13654                int count = ctl->data.credit.credit_count;
13655
13656                bnx2x_cnic_sp_post(bp, count);
13657                break;
13658        }
13659
13660        /* rtnl_lock is held.  */
13661        case DRV_CTL_START_L2_CMD: {
13662                struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13663                unsigned long sp_bits = 0;
13664
13665                /* Configure the iSCSI classification object */
13666                bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13667                                   cp->iscsi_l2_client_id,
13668                                   cp->iscsi_l2_cid, BP_FUNC(bp),
13669                                   bnx2x_sp(bp, mac_rdata),
13670                                   bnx2x_sp_mapping(bp, mac_rdata),
13671                                   BNX2X_FILTER_MAC_PENDING,
13672                                   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13673                                   &bp->macs_pool);
13674
13675                /* Set iSCSI MAC address */
13676                rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13677                if (rc)
13678                        break;
13679
13680                mmiowb();
13681                barrier();
13682
13683                /* Start accepting on iSCSI L2 ring */
13684
13685                netif_addr_lock_bh(dev);
13686                bnx2x_set_iscsi_eth_rx_mode(bp, true);
13687                netif_addr_unlock_bh(dev);
13688
13689                /* bits to wait on */
13690                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13691                __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13692
13693                if (!bnx2x_wait_sp_comp(bp, sp_bits))
13694                        BNX2X_ERR("rx_mode completion timed out!\n");
13695
13696                break;
13697        }
13698
13699        /* rtnl_lock is held.  */
13700        case DRV_CTL_STOP_L2_CMD: {
13701                unsigned long sp_bits = 0;
13702
13703                /* Stop accepting on iSCSI L2 ring */
13704                netif_addr_lock_bh(dev);
13705                bnx2x_set_iscsi_eth_rx_mode(bp, false);
13706                netif_addr_unlock_bh(dev);
13707
13708                /* bits to wait on */
13709                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13710                __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13711
13712                if (!bnx2x_wait_sp_comp(bp, sp_bits))
13713                        BNX2X_ERR("rx_mode completion timed out!\n");
13714
13715                mmiowb();
13716                barrier();
13717
13718                /* Unset iSCSI L2 MAC */
13719                rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13720                                        BNX2X_ISCSI_ETH_MAC, true);
13721                break;
13722        }
13723        case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13724                int count = ctl->data.credit.credit_count;
13725
13726                smp_mb__before_atomic_inc();
13727                atomic_add(count, &bp->cq_spq_left);
13728                smp_mb__after_atomic_inc();
13729                break;
13730        }
13731        case DRV_CTL_ULP_REGISTER_CMD: {
13732                int ulp_type = ctl->data.register_data.ulp_type;
13733
13734                if (CHIP_IS_E3(bp)) {
13735                        int idx = BP_FW_MB_IDX(bp);
13736                        u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13737                        int path = BP_PATH(bp);
13738                        int port = BP_PORT(bp);
13739                        int i;
13740                        u32 scratch_offset;
13741                        u32 *host_addr;
13742
13743                        /* first write capability to shmem2 */
13744                        if (ulp_type == CNIC_ULP_ISCSI)
13745                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13746                        else if (ulp_type == CNIC_ULP_FCOE)
13747                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13748                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13749
13750                        if ((ulp_type != CNIC_ULP_FCOE) ||
13751                            (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13752                            (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13753                                break;
13754
13755                        /* if reached here - should write fcoe capabilities */
13756                        scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13757                        if (!scratch_offset)
13758                                break;
13759                        scratch_offset += offsetof(struct glob_ncsi_oem_data,
13760                                                   fcoe_features[path][port]);
13761                        host_addr = (u32 *) &(ctl->data.register_data.
13762                                              fcoe_features);
13763                        for (i = 0; i < sizeof(struct fcoe_capabilities);
13764                             i += 4)
13765                                REG_WR(bp, scratch_offset + i,
13766                                       *(host_addr + i/4));
13767                }
13768                break;
13769        }
13770
13771        case DRV_CTL_ULP_UNREGISTER_CMD: {
13772                int ulp_type = ctl->data.ulp_type;
13773
13774                if (CHIP_IS_E3(bp)) {
13775                        int idx = BP_FW_MB_IDX(bp);
13776                        u32 cap;
13777
13778                        cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13779                        if (ulp_type == CNIC_ULP_ISCSI)
13780                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13781                        else if (ulp_type == CNIC_ULP_FCOE)
13782                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13783                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13784                }
13785                break;
13786        }
13787
13788        default:
13789                BNX2X_ERR("unknown command %x\n", ctl->cmd);
13790                rc = -EINVAL;
13791        }
13792
13793        return rc;
13794}
13795
13796void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13797{
13798        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13799
13800        if (bp->flags & USING_MSIX_FLAG) {
13801                cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13802                cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13803                cp->irq_arr[0].vector = bp->msix_table[1].vector;
13804        } else {
13805                cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13806                cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13807        }
13808        if (!CHIP_IS_E1x(bp))
13809                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13810        else
13811                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13812
13813        cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13814        cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13815        cp->irq_arr[1].status_blk = bp->def_status_blk;
13816        cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13817        cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13818
13819        cp->num_irq = 2;
13820}
13821
13822void bnx2x_setup_cnic_info(struct bnx2x *bp)
13823{
13824        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13825
13826        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13827                             bnx2x_cid_ilt_lines(bp);
13828        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13829        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13830        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13831
13832        DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13833           BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13834           cp->iscsi_l2_cid);
13835
13836        if (NO_ISCSI_OOO(bp))
13837                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13838}
13839
13840static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13841                               void *data)
13842{
13843        struct bnx2x *bp = netdev_priv(dev);
13844        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13845        int rc;
13846
13847        DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13848
13849        if (ops == NULL) {
13850                BNX2X_ERR("NULL ops received\n");
13851                return -EINVAL;
13852        }
13853
13854        if (!CNIC_SUPPORT(bp)) {
13855                BNX2X_ERR("Can't register CNIC when not supported\n");
13856                return -EOPNOTSUPP;
13857        }
13858
13859        if (!CNIC_LOADED(bp)) {
13860                rc = bnx2x_load_cnic(bp);
13861                if (rc) {
13862                        BNX2X_ERR("CNIC-related load failed\n");
13863                        return rc;
13864                }
13865        }
13866
13867        bp->cnic_enabled = true;
13868
13869        bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13870        if (!bp->cnic_kwq)
13871                return -ENOMEM;
13872
13873        bp->cnic_kwq_cons = bp->cnic_kwq;
13874        bp->cnic_kwq_prod = bp->cnic_kwq;
13875        bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13876
13877        bp->cnic_spq_pending = 0;
13878        bp->cnic_kwq_pending = 0;
13879
13880        bp->cnic_data = data;
13881
13882        cp->num_irq = 0;
13883        cp->drv_state |= CNIC_DRV_STATE_REGD;
13884        cp->iro_arr = bp->iro_arr;
13885
13886        bnx2x_setup_cnic_irq_info(bp);
13887
13888        rcu_assign_pointer(bp->cnic_ops, ops);
13889
13890        return 0;
13891}
13892
13893static int bnx2x_unregister_cnic(struct net_device *dev)
13894{
13895        struct bnx2x *bp = netdev_priv(dev);
13896        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13897
13898        mutex_lock(&bp->cnic_mutex);
13899        cp->drv_state = 0;
13900        RCU_INIT_POINTER(bp->cnic_ops, NULL);
13901        mutex_unlock(&bp->cnic_mutex);
13902        synchronize_rcu();
13903        bp->cnic_enabled = false;
13904        kfree(bp->cnic_kwq);
13905        bp->cnic_kwq = NULL;
13906
13907        return 0;
13908}
13909
13910static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13911{
13912        struct bnx2x *bp = netdev_priv(dev);
13913        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13914
13915        /* If both iSCSI and FCoE are disabled - return NULL in
13916         * order to indicate CNIC that it should not try to work
13917         * with this device.
13918         */
13919        if (NO_ISCSI(bp) && NO_FCOE(bp))
13920                return NULL;
13921
13922        cp->drv_owner = THIS_MODULE;
13923        cp->chip_id = CHIP_ID(bp);
13924        cp->pdev = bp->pdev;
13925        cp->io_base = bp->regview;
13926        cp->io_base2 = bp->doorbells;
13927        cp->max_kwqe_pending = 8;
13928        cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13929        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13930                             bnx2x_cid_ilt_lines(bp);
13931        cp->ctx_tbl_len = CNIC_ILT_LINES;
13932        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13933        cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13934        cp->drv_ctl = bnx2x_drv_ctl;
13935        cp->drv_register_cnic = bnx2x_register_cnic;
13936        cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13937        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13938        cp->iscsi_l2_client_id =
13939                bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13940        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13941
13942        if (NO_ISCSI_OOO(bp))
13943                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13944
13945        if (NO_ISCSI(bp))
13946                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13947
13948        if (NO_FCOE(bp))
13949                cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13950
13951        BNX2X_DEV_INFO(
13952                "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13953           cp->ctx_blk_size,
13954           cp->ctx_tbl_offset,
13955           cp->ctx_tbl_len,
13956           cp->starting_cid);
13957        return cp;
13958}
13959
13960static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13961{
13962        struct bnx2x *bp = fp->bp;
13963        u32 offset = BAR_USTRORM_INTMEM;
13964
13965        if (IS_VF(bp))
13966                return bnx2x_vf_ustorm_prods_offset(bp, fp);
13967        else if (!CHIP_IS_E1x(bp))
13968                offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13969        else
13970                offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13971
13972        return offset;
13973}
13974
13975/* called only on E1H or E2.
13976 * When pretending to be PF, the pretend value is the function number 0...7
13977 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13978 * combination
13979 */
13980int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13981{
13982        u32 pretend_reg;
13983
13984        if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13985                return -1;
13986
13987        /* get my own pretend register */
13988        pretend_reg = bnx2x_get_pretend_reg(bp);
13989        REG_WR(bp, pretend_reg, pretend_func_val);
13990        REG_RD(bp, pretend_reg);
13991        return 0;
13992}
13993