linux/drivers/net/ethernet/broadcom/sb1250-mac.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 *
  18 *
  19 * This driver is designed for the Broadcom SiByte SOC built-in
  20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
  21 *
  22 * Updated to the driver model and the PHY abstraction layer
  23 * by Maciej W. Rozycki.
  24 */
  25
  26#include <linux/bug.h>
  27#include <linux/module.h>
  28#include <linux/kernel.h>
  29#include <linux/string.h>
  30#include <linux/timer.h>
  31#include <linux/errno.h>
  32#include <linux/ioport.h>
  33#include <linux/slab.h>
  34#include <linux/interrupt.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/bitops.h>
  39#include <linux/err.h>
  40#include <linux/ethtool.h>
  41#include <linux/mii.h>
  42#include <linux/phy.h>
  43#include <linux/platform_device.h>
  44#include <linux/prefetch.h>
  45
  46#include <asm/cache.h>
  47#include <asm/io.h>
  48#include <asm/processor.h>      /* Processor type for cache alignment. */
  49
  50/* Operational parameters that usually are not changed. */
  51
  52#define CONFIG_SBMAC_COALESCE
  53
  54/* Time in jiffies before concluding the transmitter is hung. */
  55#define TX_TIMEOUT  (2*HZ)
  56
  57
  58MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  59MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  60
  61/* A few user-configurable values which may be modified when a driver
  62   module is loaded. */
  63
  64/* 1 normal messages, 0 quiet .. 7 verbose. */
  65static int debug = 1;
  66module_param(debug, int, S_IRUGO);
  67MODULE_PARM_DESC(debug, "Debug messages");
  68
  69#ifdef CONFIG_SBMAC_COALESCE
  70static int int_pktcnt_tx = 255;
  71module_param(int_pktcnt_tx, int, S_IRUGO);
  72MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  73
  74static int int_timeout_tx = 255;
  75module_param(int_timeout_tx, int, S_IRUGO);
  76MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  77
  78static int int_pktcnt_rx = 64;
  79module_param(int_pktcnt_rx, int, S_IRUGO);
  80MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  81
  82static int int_timeout_rx = 64;
  83module_param(int_timeout_rx, int, S_IRUGO);
  84MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  85#endif
  86
  87#include <asm/sibyte/board.h>
  88#include <asm/sibyte/sb1250.h>
  89#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  90#include <asm/sibyte/bcm1480_regs.h>
  91#include <asm/sibyte/bcm1480_int.h>
  92#define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
  93#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  94#include <asm/sibyte/sb1250_regs.h>
  95#include <asm/sibyte/sb1250_int.h>
  96#else
  97#error invalid SiByte MAC configuration
  98#endif
  99#include <asm/sibyte/sb1250_scd.h>
 100#include <asm/sibyte/sb1250_mac.h>
 101#include <asm/sibyte/sb1250_dma.h>
 102
 103#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
 104#define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
 105#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
 106#define UNIT_INT(n)             (K_INT_MAC_0 + (n))
 107#else
 108#error invalid SiByte MAC configuration
 109#endif
 110
 111#ifdef K_INT_PHY
 112#define SBMAC_PHY_INT                   K_INT_PHY
 113#else
 114#define SBMAC_PHY_INT                   PHY_POLL
 115#endif
 116
 117/**********************************************************************
 118 *  Simple types
 119 ********************************************************************* */
 120
 121enum sbmac_speed {
 122        sbmac_speed_none = 0,
 123        sbmac_speed_10 = SPEED_10,
 124        sbmac_speed_100 = SPEED_100,
 125        sbmac_speed_1000 = SPEED_1000,
 126};
 127
 128enum sbmac_duplex {
 129        sbmac_duplex_none = -1,
 130        sbmac_duplex_half = DUPLEX_HALF,
 131        sbmac_duplex_full = DUPLEX_FULL,
 132};
 133
 134enum sbmac_fc {
 135        sbmac_fc_none,
 136        sbmac_fc_disabled,
 137        sbmac_fc_frame,
 138        sbmac_fc_collision,
 139        sbmac_fc_carrier,
 140};
 141
 142enum sbmac_state {
 143        sbmac_state_uninit,
 144        sbmac_state_off,
 145        sbmac_state_on,
 146        sbmac_state_broken,
 147};
 148
 149
 150/**********************************************************************
 151 *  Macros
 152 ********************************************************************* */
 153
 154
 155#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 156                          (d)->sbdma_dscrtable : (d)->f+1)
 157
 158
 159#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
 160
 161#define SBMAC_MAX_TXDESCR       256
 162#define SBMAC_MAX_RXDESCR       256
 163
 164#define ENET_PACKET_SIZE        1518
 165/*#define ENET_PACKET_SIZE      9216 */
 166
 167/**********************************************************************
 168 *  DMA Descriptor structure
 169 ********************************************************************* */
 170
 171struct sbdmadscr {
 172        uint64_t  dscr_a;
 173        uint64_t  dscr_b;
 174};
 175
 176/**********************************************************************
 177 *  DMA Controller structure
 178 ********************************************************************* */
 179
 180struct sbmacdma {
 181
 182        /*
 183         * This stuff is used to identify the channel and the registers
 184         * associated with it.
 185         */
 186        struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
 187                                                   MAC */
 188        int                     sbdma_channel;  /* channel number */
 189        int                     sbdma_txdir;    /* direction (1=transmit) */
 190        int                     sbdma_maxdescr; /* total # of descriptors
 191                                                   in ring */
 192#ifdef CONFIG_SBMAC_COALESCE
 193        int                     sbdma_int_pktcnt;
 194                                                /* # descriptors rx/tx
 195                                                   before interrupt */
 196        int                     sbdma_int_timeout;
 197                                                /* # usec rx/tx interrupt */
 198#endif
 199        void __iomem            *sbdma_config0; /* DMA config register 0 */
 200        void __iomem            *sbdma_config1; /* DMA config register 1 */
 201        void __iomem            *sbdma_dscrbase;
 202                                                /* descriptor base address */
 203        void __iomem            *sbdma_dscrcnt; /* descriptor count register */
 204        void __iomem            *sbdma_curdscr; /* current descriptor
 205                                                   address */
 206        void __iomem            *sbdma_oodpktlost;
 207                                                /* pkt drop (rx only) */
 208
 209        /*
 210         * This stuff is for maintenance of the ring
 211         */
 212        void                    *sbdma_dscrtable_unaligned;
 213        struct sbdmadscr        *sbdma_dscrtable;
 214                                                /* base of descriptor table */
 215        struct sbdmadscr        *sbdma_dscrtable_end;
 216                                                /* end of descriptor table */
 217        struct sk_buff          **sbdma_ctxtable;
 218                                                /* context table, one
 219                                                   per descr */
 220        dma_addr_t              sbdma_dscrtable_phys;
 221                                                /* and also the phys addr */
 222        struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
 223        struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
 224                                                   to remove */
 225};
 226
 227
 228/**********************************************************************
 229 *  Ethernet softc structure
 230 ********************************************************************* */
 231
 232struct sbmac_softc {
 233
 234        /*
 235         * Linux-specific things
 236         */
 237        struct net_device       *sbm_dev;       /* pointer to linux device */
 238        struct napi_struct      napi;
 239        struct phy_device       *phy_dev;       /* the associated PHY device */
 240        struct mii_bus          *mii_bus;       /* the MII bus */
 241        int                     phy_irq[PHY_MAX_ADDR];
 242        spinlock_t              sbm_lock;       /* spin lock */
 243        int                     sbm_devflags;   /* current device flags */
 244
 245        /*
 246         * Controller-specific things
 247         */
 248        void __iomem            *sbm_base;      /* MAC's base address */
 249        enum sbmac_state        sbm_state;      /* current state */
 250
 251        void __iomem            *sbm_macenable; /* MAC Enable Register */
 252        void __iomem            *sbm_maccfg;    /* MAC Config Register */
 253        void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
 254        void __iomem            *sbm_framecfg;  /* Frame Config Register */
 255        void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
 256        void __iomem            *sbm_isr;       /* Interrupt Status Register */
 257        void __iomem            *sbm_imr;       /* Interrupt Mask Register */
 258        void __iomem            *sbm_mdio;      /* MDIO Register */
 259
 260        enum sbmac_speed        sbm_speed;      /* current speed */
 261        enum sbmac_duplex       sbm_duplex;     /* current duplex */
 262        enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
 263        int                     sbm_pause;      /* current pause setting */
 264        int                     sbm_link;       /* current link state */
 265
 266        unsigned char           sbm_hwaddr[ETH_ALEN];
 267
 268        struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
 269        struct sbmacdma         sbm_rxdma;
 270        int                     rx_hw_checksum;
 271        int                     sbe_idx;
 272};
 273
 274
 275/**********************************************************************
 276 *  Externs
 277 ********************************************************************* */
 278
 279/**********************************************************************
 280 *  Prototypes
 281 ********************************************************************* */
 282
 283static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 284                          int txrx, int maxdescr);
 285static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 286static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 287                               struct sk_buff *m);
 288static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 289static void sbdma_emptyring(struct sbmacdma *d);
 290static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 291static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 292                            int work_to_do, int poll);
 293static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 294                             int poll);
 295static int sbmac_initctx(struct sbmac_softc *s);
 296static void sbmac_channel_start(struct sbmac_softc *s);
 297static void sbmac_channel_stop(struct sbmac_softc *s);
 298static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 299                                                enum sbmac_state);
 300static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 301static uint64_t sbmac_addr2reg(unsigned char *ptr);
 302static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 303static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 304static void sbmac_setmulti(struct sbmac_softc *sc);
 305static int sbmac_init(struct platform_device *pldev, long long base);
 306static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 307static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 308                            enum sbmac_fc fc);
 309
 310static int sbmac_open(struct net_device *dev);
 311static void sbmac_tx_timeout (struct net_device *dev);
 312static void sbmac_set_rx_mode(struct net_device *dev);
 313static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 314static int sbmac_close(struct net_device *dev);
 315static int sbmac_poll(struct napi_struct *napi, int budget);
 316
 317static void sbmac_mii_poll(struct net_device *dev);
 318static int sbmac_mii_probe(struct net_device *dev);
 319
 320static void sbmac_mii_sync(void __iomem *sbm_mdio);
 321static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 322                               int bitcnt);
 323static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 324static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 325                           u16 val);
 326
 327
 328/**********************************************************************
 329 *  Globals
 330 ********************************************************************* */
 331
 332static char sbmac_string[] = "sb1250-mac";
 333
 334static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 335
 336
 337/**********************************************************************
 338 *  MDIO constants
 339 ********************************************************************* */
 340
 341#define MII_COMMAND_START       0x01
 342#define MII_COMMAND_READ        0x02
 343#define MII_COMMAND_WRITE       0x01
 344#define MII_COMMAND_ACK         0x02
 345
 346#define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
 347
 348#define ENABLE          1
 349#define DISABLE         0
 350
 351/**********************************************************************
 352 *  SBMAC_MII_SYNC(sbm_mdio)
 353 *
 354 *  Synchronize with the MII - send a pattern of bits to the MII
 355 *  that will guarantee that it is ready to accept a command.
 356 *
 357 *  Input parameters:
 358 *         sbm_mdio - address of the MAC's MDIO register
 359 *
 360 *  Return value:
 361 *         nothing
 362 ********************************************************************* */
 363
 364static void sbmac_mii_sync(void __iomem *sbm_mdio)
 365{
 366        int cnt;
 367        uint64_t bits;
 368        int mac_mdio_genc;
 369
 370        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 371
 372        bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 373
 374        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 375
 376        for (cnt = 0; cnt < 32; cnt++) {
 377                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 378                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 379        }
 380}
 381
 382/**********************************************************************
 383 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 384 *
 385 *  Send some bits to the MII.  The bits to be sent are right-
 386 *  justified in the 'data' parameter.
 387 *
 388 *  Input parameters:
 389 *         sbm_mdio - address of the MAC's MDIO register
 390 *         data     - data to send
 391 *         bitcnt   - number of bits to send
 392 ********************************************************************* */
 393
 394static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 395                               int bitcnt)
 396{
 397        int i;
 398        uint64_t bits;
 399        unsigned int curmask;
 400        int mac_mdio_genc;
 401
 402        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 403
 404        bits = M_MAC_MDIO_DIR_OUTPUT;
 405        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 406
 407        curmask = 1 << (bitcnt - 1);
 408
 409        for (i = 0; i < bitcnt; i++) {
 410                if (data & curmask)
 411                        bits |= M_MAC_MDIO_OUT;
 412                else bits &= ~M_MAC_MDIO_OUT;
 413                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 414                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 415                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 416                curmask >>= 1;
 417        }
 418}
 419
 420
 421
 422/**********************************************************************
 423 *  SBMAC_MII_READ(bus, phyaddr, regidx)
 424 *  Read a PHY register.
 425 *
 426 *  Input parameters:
 427 *         bus     - MDIO bus handle
 428 *         phyaddr - PHY's address
 429 *         regnum  - index of register to read
 430 *
 431 *  Return value:
 432 *         value read, or 0xffff if an error occurred.
 433 ********************************************************************* */
 434
 435static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 436{
 437        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 438        void __iomem *sbm_mdio = sc->sbm_mdio;
 439        int idx;
 440        int error;
 441        int regval;
 442        int mac_mdio_genc;
 443
 444        /*
 445         * Synchronize ourselves so that the PHY knows the next
 446         * thing coming down is a command
 447         */
 448        sbmac_mii_sync(sbm_mdio);
 449
 450        /*
 451         * Send the data to the PHY.  The sequence is
 452         * a "start" command (2 bits)
 453         * a "read" command (2 bits)
 454         * the PHY addr (5 bits)
 455         * the register index (5 bits)
 456         */
 457        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 458        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 459        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 460        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 461
 462        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 463
 464        /*
 465         * Switch the port around without a clock transition.
 466         */
 467        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 468
 469        /*
 470         * Send out a clock pulse to signal we want the status
 471         */
 472        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 473                     sbm_mdio);
 474        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 475
 476        /*
 477         * If an error occurred, the PHY will signal '1' back
 478         */
 479        error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 480
 481        /*
 482         * Issue an 'idle' clock pulse, but keep the direction
 483         * the same.
 484         */
 485        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 486                     sbm_mdio);
 487        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 488
 489        regval = 0;
 490
 491        for (idx = 0; idx < 16; idx++) {
 492                regval <<= 1;
 493
 494                if (error == 0) {
 495                        if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 496                                regval |= 1;
 497                }
 498
 499                __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 500                             sbm_mdio);
 501                __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 502        }
 503
 504        /* Switch back to output */
 505        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 506
 507        if (error == 0)
 508                return regval;
 509        return 0xffff;
 510}
 511
 512
 513/**********************************************************************
 514 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 515 *
 516 *  Write a value to a PHY register.
 517 *
 518 *  Input parameters:
 519 *         bus     - MDIO bus handle
 520 *         phyaddr - PHY to use
 521 *         regidx  - register within the PHY
 522 *         regval  - data to write to register
 523 *
 524 *  Return value:
 525 *         0 for success
 526 ********************************************************************* */
 527
 528static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 529                           u16 regval)
 530{
 531        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 532        void __iomem *sbm_mdio = sc->sbm_mdio;
 533        int mac_mdio_genc;
 534
 535        sbmac_mii_sync(sbm_mdio);
 536
 537        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 538        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 539        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 540        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 541        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 542        sbmac_mii_senddata(sbm_mdio, regval, 16);
 543
 544        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 545
 546        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 547
 548        return 0;
 549}
 550
 551
 552
 553/**********************************************************************
 554 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 555 *
 556 *  Initialize a DMA channel context.  Since there are potentially
 557 *  eight DMA channels per MAC, it's nice to do this in a standard
 558 *  way.
 559 *
 560 *  Input parameters:
 561 *         d - struct sbmacdma (DMA channel context)
 562 *         s - struct sbmac_softc (pointer to a MAC)
 563 *         chan - channel number (0..1 right now)
 564 *         txrx - Identifies DMA_TX or DMA_RX for channel direction
 565 *      maxdescr - number of descriptors
 566 *
 567 *  Return value:
 568 *         nothing
 569 ********************************************************************* */
 570
 571static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 572                          int txrx, int maxdescr)
 573{
 574#ifdef CONFIG_SBMAC_COALESCE
 575        int int_pktcnt, int_timeout;
 576#endif
 577
 578        /*
 579         * Save away interesting stuff in the structure
 580         */
 581
 582        d->sbdma_eth       = s;
 583        d->sbdma_channel   = chan;
 584        d->sbdma_txdir     = txrx;
 585
 586#if 0
 587        /* RMON clearing */
 588        s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 589#endif
 590
 591        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 592        __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 593        __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 594        __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 595        __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 596        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 597        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 598        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 599        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 600        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 601        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 602        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 603        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 604        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 605        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 606        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 607        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 608        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 609        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 610        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 611        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 612
 613        /*
 614         * initialize register pointers
 615         */
 616
 617        d->sbdma_config0 =
 618                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 619        d->sbdma_config1 =
 620                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 621        d->sbdma_dscrbase =
 622                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 623        d->sbdma_dscrcnt =
 624                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 625        d->sbdma_curdscr =
 626                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 627        if (d->sbdma_txdir)
 628                d->sbdma_oodpktlost = NULL;
 629        else
 630                d->sbdma_oodpktlost =
 631                        s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 632
 633        /*
 634         * Allocate memory for the ring
 635         */
 636
 637        d->sbdma_maxdescr = maxdescr;
 638
 639        d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 640                                               sizeof(*d->sbdma_dscrtable),
 641                                               GFP_KERNEL);
 642
 643        /*
 644         * The descriptor table must be aligned to at least 16 bytes or the
 645         * MAC will corrupt it.
 646         */
 647        d->sbdma_dscrtable = (struct sbdmadscr *)
 648                             ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 649                                   sizeof(*d->sbdma_dscrtable));
 650
 651        d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 652
 653        d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 654
 655        /*
 656         * And context table
 657         */
 658
 659        d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 660                                    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 661
 662#ifdef CONFIG_SBMAC_COALESCE
 663        /*
 664         * Setup Rx/Tx DMA coalescing defaults
 665         */
 666
 667        int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 668        if ( int_pktcnt ) {
 669                d->sbdma_int_pktcnt = int_pktcnt;
 670        } else {
 671                d->sbdma_int_pktcnt = 1;
 672        }
 673
 674        int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 675        if ( int_timeout ) {
 676                d->sbdma_int_timeout = int_timeout;
 677        } else {
 678                d->sbdma_int_timeout = 0;
 679        }
 680#endif
 681
 682}
 683
 684/**********************************************************************
 685 *  SBDMA_CHANNEL_START(d)
 686 *
 687 *  Initialize the hardware registers for a DMA channel.
 688 *
 689 *  Input parameters:
 690 *         d - DMA channel to init (context must be previously init'd
 691 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 692 *
 693 *  Return value:
 694 *         nothing
 695 ********************************************************************* */
 696
 697static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 698{
 699        /*
 700         * Turn on the DMA channel
 701         */
 702
 703#ifdef CONFIG_SBMAC_COALESCE
 704        __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 705                       0, d->sbdma_config1);
 706        __raw_writeq(M_DMA_EOP_INT_EN |
 707                       V_DMA_RINGSZ(d->sbdma_maxdescr) |
 708                       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 709                       0, d->sbdma_config0);
 710#else
 711        __raw_writeq(0, d->sbdma_config1);
 712        __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 713                       0, d->sbdma_config0);
 714#endif
 715
 716        __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 717
 718        /*
 719         * Initialize ring pointers
 720         */
 721
 722        d->sbdma_addptr = d->sbdma_dscrtable;
 723        d->sbdma_remptr = d->sbdma_dscrtable;
 724}
 725
 726/**********************************************************************
 727 *  SBDMA_CHANNEL_STOP(d)
 728 *
 729 *  Initialize the hardware registers for a DMA channel.
 730 *
 731 *  Input parameters:
 732 *         d - DMA channel to init (context must be previously init'd
 733 *
 734 *  Return value:
 735 *         nothing
 736 ********************************************************************* */
 737
 738static void sbdma_channel_stop(struct sbmacdma *d)
 739{
 740        /*
 741         * Turn off the DMA channel
 742         */
 743
 744        __raw_writeq(0, d->sbdma_config1);
 745
 746        __raw_writeq(0, d->sbdma_dscrbase);
 747
 748        __raw_writeq(0, d->sbdma_config0);
 749
 750        /*
 751         * Zero ring pointers
 752         */
 753
 754        d->sbdma_addptr = NULL;
 755        d->sbdma_remptr = NULL;
 756}
 757
 758static inline void sbdma_align_skb(struct sk_buff *skb,
 759                                   unsigned int power2, unsigned int offset)
 760{
 761        unsigned char *addr = skb->data;
 762        unsigned char *newaddr = PTR_ALIGN(addr, power2);
 763
 764        skb_reserve(skb, newaddr - addr + offset);
 765}
 766
 767
 768/**********************************************************************
 769 *  SBDMA_ADD_RCVBUFFER(d,sb)
 770 *
 771 *  Add a buffer to the specified DMA channel.   For receive channels,
 772 *  this queues a buffer for inbound packets.
 773 *
 774 *  Input parameters:
 775 *         sc - softc structure
 776 *          d - DMA channel descriptor
 777 *         sb - sk_buff to add, or NULL if we should allocate one
 778 *
 779 *  Return value:
 780 *         0 if buffer could not be added (ring is full)
 781 *         1 if buffer added successfully
 782 ********************************************************************* */
 783
 784
 785static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 786                               struct sk_buff *sb)
 787{
 788        struct net_device *dev = sc->sbm_dev;
 789        struct sbdmadscr *dsc;
 790        struct sbdmadscr *nextdsc;
 791        struct sk_buff *sb_new = NULL;
 792        int pktsize = ENET_PACKET_SIZE;
 793
 794        /* get pointer to our current place in the ring */
 795
 796        dsc = d->sbdma_addptr;
 797        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 798
 799        /*
 800         * figure out if the ring is full - if the next descriptor
 801         * is the same as the one that we're going to remove from
 802         * the ring, the ring is full
 803         */
 804
 805        if (nextdsc == d->sbdma_remptr) {
 806                return -ENOSPC;
 807        }
 808
 809        /*
 810         * Allocate a sk_buff if we don't already have one.
 811         * If we do have an sk_buff, reset it so that it's empty.
 812         *
 813         * Note: sk_buffs don't seem to be guaranteed to have any sort
 814         * of alignment when they are allocated.  Therefore, allocate enough
 815         * extra space to make sure that:
 816         *
 817         *    1. the data does not start in the middle of a cache line.
 818         *    2. The data does not end in the middle of a cache line
 819         *    3. The buffer can be aligned such that the IP addresses are
 820         *       naturally aligned.
 821         *
 822         *  Remember, the SOCs MAC writes whole cache lines at a time,
 823         *  without reading the old contents first.  So, if the sk_buff's
 824         *  data portion starts in the middle of a cache line, the SOC
 825         *  DMA will trash the beginning (and ending) portions.
 826         */
 827
 828        if (sb == NULL) {
 829                sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 830                                               SMP_CACHE_BYTES * 2 +
 831                                               NET_IP_ALIGN);
 832                if (sb_new == NULL)
 833                        return -ENOBUFS;
 834
 835                sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 836        }
 837        else {
 838                sb_new = sb;
 839                /*
 840                 * nothing special to reinit buffer, it's already aligned
 841                 * and sb->data already points to a good place.
 842                 */
 843        }
 844
 845        /*
 846         * fill in the descriptor
 847         */
 848
 849#ifdef CONFIG_SBMAC_COALESCE
 850        /*
 851         * Do not interrupt per DMA transfer.
 852         */
 853        dsc->dscr_a = virt_to_phys(sb_new->data) |
 854                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 855#else
 856        dsc->dscr_a = virt_to_phys(sb_new->data) |
 857                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 858                M_DMA_DSCRA_INTERRUPT;
 859#endif
 860
 861        /* receiving: no options */
 862        dsc->dscr_b = 0;
 863
 864        /*
 865         * fill in the context
 866         */
 867
 868        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 869
 870        /*
 871         * point at next packet
 872         */
 873
 874        d->sbdma_addptr = nextdsc;
 875
 876        /*
 877         * Give the buffer to the DMA engine.
 878         */
 879
 880        __raw_writeq(1, d->sbdma_dscrcnt);
 881
 882        return 0;                                       /* we did it */
 883}
 884
 885/**********************************************************************
 886 *  SBDMA_ADD_TXBUFFER(d,sb)
 887 *
 888 *  Add a transmit buffer to the specified DMA channel, causing a
 889 *  transmit to start.
 890 *
 891 *  Input parameters:
 892 *         d - DMA channel descriptor
 893 *         sb - sk_buff to add
 894 *
 895 *  Return value:
 896 *         0 transmit queued successfully
 897 *         otherwise error code
 898 ********************************************************************* */
 899
 900
 901static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 902{
 903        struct sbdmadscr *dsc;
 904        struct sbdmadscr *nextdsc;
 905        uint64_t phys;
 906        uint64_t ncb;
 907        int length;
 908
 909        /* get pointer to our current place in the ring */
 910
 911        dsc = d->sbdma_addptr;
 912        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 913
 914        /*
 915         * figure out if the ring is full - if the next descriptor
 916         * is the same as the one that we're going to remove from
 917         * the ring, the ring is full
 918         */
 919
 920        if (nextdsc == d->sbdma_remptr) {
 921                return -ENOSPC;
 922        }
 923
 924        /*
 925         * Under Linux, it's not necessary to copy/coalesce buffers
 926         * like it is on NetBSD.  We think they're all contiguous,
 927         * but that may not be true for GBE.
 928         */
 929
 930        length = sb->len;
 931
 932        /*
 933         * fill in the descriptor.  Note that the number of cache
 934         * blocks in the descriptor is the number of blocks
 935         * *spanned*, so we need to add in the offset (if any)
 936         * while doing the calculation.
 937         */
 938
 939        phys = virt_to_phys(sb->data);
 940        ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 941
 942        dsc->dscr_a = phys |
 943                V_DMA_DSCRA_A_SIZE(ncb) |
 944#ifndef CONFIG_SBMAC_COALESCE
 945                M_DMA_DSCRA_INTERRUPT |
 946#endif
 947                M_DMA_ETHTX_SOP;
 948
 949        /* transmitting: set outbound options and length */
 950
 951        dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 952                V_DMA_DSCRB_PKT_SIZE(length);
 953
 954        /*
 955         * fill in the context
 956         */
 957
 958        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 959
 960        /*
 961         * point at next packet
 962         */
 963
 964        d->sbdma_addptr = nextdsc;
 965
 966        /*
 967         * Give the buffer to the DMA engine.
 968         */
 969
 970        __raw_writeq(1, d->sbdma_dscrcnt);
 971
 972        return 0;                                       /* we did it */
 973}
 974
 975
 976
 977
 978/**********************************************************************
 979 *  SBDMA_EMPTYRING(d)
 980 *
 981 *  Free all allocated sk_buffs on the specified DMA channel;
 982 *
 983 *  Input parameters:
 984 *         d  - DMA channel
 985 *
 986 *  Return value:
 987 *         nothing
 988 ********************************************************************* */
 989
 990static void sbdma_emptyring(struct sbmacdma *d)
 991{
 992        int idx;
 993        struct sk_buff *sb;
 994
 995        for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
 996                sb = d->sbdma_ctxtable[idx];
 997                if (sb) {
 998                        dev_kfree_skb(sb);
 999                        d->sbdma_ctxtable[idx] = NULL;
1000                }
1001        }
1002}
1003
1004
1005/**********************************************************************
1006 *  SBDMA_FILLRING(d)
1007 *
1008 *  Fill the specified DMA channel (must be receive channel)
1009 *  with sk_buffs
1010 *
1011 *  Input parameters:
1012 *         sc - softc structure
1013 *          d - DMA channel
1014 *
1015 *  Return value:
1016 *         nothing
1017 ********************************************************************* */
1018
1019static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1020{
1021        int idx;
1022
1023        for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1024                if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1025                        break;
1026        }
1027}
1028
1029#ifdef CONFIG_NET_POLL_CONTROLLER
1030static void sbmac_netpoll(struct net_device *netdev)
1031{
1032        struct sbmac_softc *sc = netdev_priv(netdev);
1033        int irq = sc->sbm_dev->irq;
1034
1035        __raw_writeq(0, sc->sbm_imr);
1036
1037        sbmac_intr(irq, netdev);
1038
1039#ifdef CONFIG_SBMAC_COALESCE
1040        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1041        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1042        sc->sbm_imr);
1043#else
1044        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1045        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1046#endif
1047}
1048#endif
1049
1050/**********************************************************************
1051 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1052 *
1053 *  Process "completed" receive buffers on the specified DMA channel.
1054 *
1055 *  Input parameters:
1056 *            sc - softc structure
1057 *             d - DMA channel context
1058 *    work_to_do - no. of packets to process before enabling interrupt
1059 *                 again (for NAPI)
1060 *          poll - 1: using polling (for NAPI)
1061 *
1062 *  Return value:
1063 *         nothing
1064 ********************************************************************* */
1065
1066static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1067                            int work_to_do, int poll)
1068{
1069        struct net_device *dev = sc->sbm_dev;
1070        int curidx;
1071        int hwidx;
1072        struct sbdmadscr *dsc;
1073        struct sk_buff *sb;
1074        int len;
1075        int work_done = 0;
1076        int dropped = 0;
1077
1078        prefetch(d);
1079
1080again:
1081        /* Check if the HW dropped any frames */
1082        dev->stats.rx_fifo_errors
1083            += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1084        __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1085
1086        while (work_to_do-- > 0) {
1087                /*
1088                 * figure out where we are (as an index) and where
1089                 * the hardware is (also as an index)
1090                 *
1091                 * This could be done faster if (for example) the
1092                 * descriptor table was page-aligned and contiguous in
1093                 * both virtual and physical memory -- you could then
1094                 * just compare the low-order bits of the virtual address
1095                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1096                 */
1097
1098                dsc = d->sbdma_remptr;
1099                curidx = dsc - d->sbdma_dscrtable;
1100
1101                prefetch(dsc);
1102                prefetch(&d->sbdma_ctxtable[curidx]);
1103
1104                hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1105                         d->sbdma_dscrtable_phys) /
1106                        sizeof(*d->sbdma_dscrtable);
1107
1108                /*
1109                 * If they're the same, that means we've processed all
1110                 * of the descriptors up to (but not including) the one that
1111                 * the hardware is working on right now.
1112                 */
1113
1114                if (curidx == hwidx)
1115                        goto done;
1116
1117                /*
1118                 * Otherwise, get the packet's sk_buff ptr back
1119                 */
1120
1121                sb = d->sbdma_ctxtable[curidx];
1122                d->sbdma_ctxtable[curidx] = NULL;
1123
1124                len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1125
1126                /*
1127                 * Check packet status.  If good, process it.
1128                 * If not, silently drop it and put it back on the
1129                 * receive ring.
1130                 */
1131
1132                if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1133
1134                        /*
1135                         * Add a new buffer to replace the old one.  If we fail
1136                         * to allocate a buffer, we're going to drop this
1137                         * packet and put it right back on the receive ring.
1138                         */
1139
1140                        if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1141                                     -ENOBUFS)) {
1142                                dev->stats.rx_dropped++;
1143                                /* Re-add old buffer */
1144                                sbdma_add_rcvbuffer(sc, d, sb);
1145                                /* No point in continuing at the moment */
1146                                printk(KERN_ERR "dropped packet (1)\n");
1147                                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1148                                goto done;
1149                        } else {
1150                                /*
1151                                 * Set length into the packet
1152                                 */
1153                                skb_put(sb,len);
1154
1155                                /*
1156                                 * Buffer has been replaced on the
1157                                 * receive ring.  Pass the buffer to
1158                                 * the kernel
1159                                 */
1160                                sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1161                                /* Check hw IPv4/TCP checksum if supported */
1162                                if (sc->rx_hw_checksum == ENABLE) {
1163                                        if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1164                                            !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1165                                                sb->ip_summed = CHECKSUM_UNNECESSARY;
1166                                                /* don't need to set sb->csum */
1167                                        } else {
1168                                                skb_checksum_none_assert(sb);
1169                                        }
1170                                }
1171                                prefetch(sb->data);
1172                                prefetch((const void *)(((char *)sb->data)+32));
1173                                if (poll)
1174                                        dropped = netif_receive_skb(sb);
1175                                else
1176                                        dropped = netif_rx(sb);
1177
1178                                if (dropped == NET_RX_DROP) {
1179                                        dev->stats.rx_dropped++;
1180                                        d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1181                                        goto done;
1182                                }
1183                                else {
1184                                        dev->stats.rx_bytes += len;
1185                                        dev->stats.rx_packets++;
1186                                }
1187                        }
1188                } else {
1189                        /*
1190                         * Packet was mangled somehow.  Just drop it and
1191                         * put it back on the receive ring.
1192                         */
1193                        dev->stats.rx_errors++;
1194                        sbdma_add_rcvbuffer(sc, d, sb);
1195                }
1196
1197
1198                /*
1199                 * .. and advance to the next buffer.
1200                 */
1201
1202                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1203                work_done++;
1204        }
1205        if (!poll) {
1206                work_to_do = 32;
1207                goto again; /* collect fifo drop statistics again */
1208        }
1209done:
1210        return work_done;
1211}
1212
1213/**********************************************************************
1214 *  SBDMA_TX_PROCESS(sc,d)
1215 *
1216 *  Process "completed" transmit buffers on the specified DMA channel.
1217 *  This is normally called within the interrupt service routine.
1218 *  Note that this isn't really ideal for priority channels, since
1219 *  it processes all of the packets on a given channel before
1220 *  returning.
1221 *
1222 *  Input parameters:
1223 *      sc - softc structure
1224 *       d - DMA channel context
1225 *    poll - 1: using polling (for NAPI)
1226 *
1227 *  Return value:
1228 *         nothing
1229 ********************************************************************* */
1230
1231static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1232                             int poll)
1233{
1234        struct net_device *dev = sc->sbm_dev;
1235        int curidx;
1236        int hwidx;
1237        struct sbdmadscr *dsc;
1238        struct sk_buff *sb;
1239        unsigned long flags;
1240        int packets_handled = 0;
1241
1242        spin_lock_irqsave(&(sc->sbm_lock), flags);
1243
1244        if (d->sbdma_remptr == d->sbdma_addptr)
1245          goto end_unlock;
1246
1247        hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1248                 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1249
1250        for (;;) {
1251                /*
1252                 * figure out where we are (as an index) and where
1253                 * the hardware is (also as an index)
1254                 *
1255                 * This could be done faster if (for example) the
1256                 * descriptor table was page-aligned and contiguous in
1257                 * both virtual and physical memory -- you could then
1258                 * just compare the low-order bits of the virtual address
1259                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1260                 */
1261
1262                curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1263
1264                /*
1265                 * If they're the same, that means we've processed all
1266                 * of the descriptors up to (but not including) the one that
1267                 * the hardware is working on right now.
1268                 */
1269
1270                if (curidx == hwidx)
1271                        break;
1272
1273                /*
1274                 * Otherwise, get the packet's sk_buff ptr back
1275                 */
1276
1277                dsc = &(d->sbdma_dscrtable[curidx]);
1278                sb = d->sbdma_ctxtable[curidx];
1279                d->sbdma_ctxtable[curidx] = NULL;
1280
1281                /*
1282                 * Stats
1283                 */
1284
1285                dev->stats.tx_bytes += sb->len;
1286                dev->stats.tx_packets++;
1287
1288                /*
1289                 * for transmits, we just free buffers.
1290                 */
1291
1292                dev_kfree_skb_irq(sb);
1293
1294                /*
1295                 * .. and advance to the next buffer.
1296                 */
1297
1298                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1299
1300                packets_handled++;
1301
1302        }
1303
1304        /*
1305         * Decide if we should wake up the protocol or not.
1306         * Other drivers seem to do this when we reach a low
1307         * watermark on the transmit queue.
1308         */
1309
1310        if (packets_handled)
1311                netif_wake_queue(d->sbdma_eth->sbm_dev);
1312
1313end_unlock:
1314        spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1315
1316}
1317
1318
1319
1320/**********************************************************************
1321 *  SBMAC_INITCTX(s)
1322 *
1323 *  Initialize an Ethernet context structure - this is called
1324 *  once per MAC on the 1250.  Memory is allocated here, so don't
1325 *  call it again from inside the ioctl routines that bring the
1326 *  interface up/down
1327 *
1328 *  Input parameters:
1329 *         s - sbmac context structure
1330 *
1331 *  Return value:
1332 *         0
1333 ********************************************************************* */
1334
1335static int sbmac_initctx(struct sbmac_softc *s)
1336{
1337
1338        /*
1339         * figure out the addresses of some ports
1340         */
1341
1342        s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1343        s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1344        s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1345        s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1346        s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1347        s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1348        s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1349        s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1350
1351        /*
1352         * Initialize the DMA channels.  Right now, only one per MAC is used
1353         * Note: Only do this _once_, as it allocates memory from the kernel!
1354         */
1355
1356        sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1357        sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1358
1359        /*
1360         * initial state is OFF
1361         */
1362
1363        s->sbm_state = sbmac_state_off;
1364
1365        return 0;
1366}
1367
1368
1369static void sbdma_uninitctx(struct sbmacdma *d)
1370{
1371        if (d->sbdma_dscrtable_unaligned) {
1372                kfree(d->sbdma_dscrtable_unaligned);
1373                d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1374        }
1375
1376        if (d->sbdma_ctxtable) {
1377                kfree(d->sbdma_ctxtable);
1378                d->sbdma_ctxtable = NULL;
1379        }
1380}
1381
1382
1383static void sbmac_uninitctx(struct sbmac_softc *sc)
1384{
1385        sbdma_uninitctx(&(sc->sbm_txdma));
1386        sbdma_uninitctx(&(sc->sbm_rxdma));
1387}
1388
1389
1390/**********************************************************************
1391 *  SBMAC_CHANNEL_START(s)
1392 *
1393 *  Start packet processing on this MAC.
1394 *
1395 *  Input parameters:
1396 *         s - sbmac structure
1397 *
1398 *  Return value:
1399 *         nothing
1400 ********************************************************************* */
1401
1402static void sbmac_channel_start(struct sbmac_softc *s)
1403{
1404        uint64_t reg;
1405        void __iomem *port;
1406        uint64_t cfg,fifo,framecfg;
1407        int idx, th_value;
1408
1409        /*
1410         * Don't do this if running
1411         */
1412
1413        if (s->sbm_state == sbmac_state_on)
1414                return;
1415
1416        /*
1417         * Bring the controller out of reset, but leave it off.
1418         */
1419
1420        __raw_writeq(0, s->sbm_macenable);
1421
1422        /*
1423         * Ignore all received packets
1424         */
1425
1426        __raw_writeq(0, s->sbm_rxfilter);
1427
1428        /*
1429         * Calculate values for various control registers.
1430         */
1431
1432        cfg = M_MAC_RETRY_EN |
1433                M_MAC_TX_HOLD_SOP_EN |
1434                V_MAC_TX_PAUSE_CNT_16K |
1435                M_MAC_AP_STAT_EN |
1436                M_MAC_FAST_SYNC |
1437                M_MAC_SS_EN |
1438                0;
1439
1440        /*
1441         * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1442         * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1443         * Use a larger RD_THRSH for gigabit
1444         */
1445        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1446                th_value = 28;
1447        else
1448                th_value = 64;
1449
1450        fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1451                ((s->sbm_speed == sbmac_speed_1000)
1452                 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1453                V_MAC_TX_RL_THRSH(4) |
1454                V_MAC_RX_PL_THRSH(4) |
1455                V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1456                V_MAC_RX_RL_THRSH(8) |
1457                0;
1458
1459        framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1460                V_MAC_MAX_FRAMESZ_DEFAULT |
1461                V_MAC_BACKOFF_SEL(1);
1462
1463        /*
1464         * Clear out the hash address map
1465         */
1466
1467        port = s->sbm_base + R_MAC_HASH_BASE;
1468        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1469                __raw_writeq(0, port);
1470                port += sizeof(uint64_t);
1471        }
1472
1473        /*
1474         * Clear out the exact-match table
1475         */
1476
1477        port = s->sbm_base + R_MAC_ADDR_BASE;
1478        for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1479                __raw_writeq(0, port);
1480                port += sizeof(uint64_t);
1481        }
1482
1483        /*
1484         * Clear out the DMA Channel mapping table registers
1485         */
1486
1487        port = s->sbm_base + R_MAC_CHUP0_BASE;
1488        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1489                __raw_writeq(0, port);
1490                port += sizeof(uint64_t);
1491        }
1492
1493
1494        port = s->sbm_base + R_MAC_CHLO0_BASE;
1495        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1496                __raw_writeq(0, port);
1497                port += sizeof(uint64_t);
1498        }
1499
1500        /*
1501         * Program the hardware address.  It goes into the hardware-address
1502         * register as well as the first filter register.
1503         */
1504
1505        reg = sbmac_addr2reg(s->sbm_hwaddr);
1506
1507        port = s->sbm_base + R_MAC_ADDR_BASE;
1508        __raw_writeq(reg, port);
1509        port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1510
1511#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1512        /*
1513         * Pass1 SOCs do not receive packets addressed to the
1514         * destination address in the R_MAC_ETHERNET_ADDR register.
1515         * Set the value to zero.
1516         */
1517        __raw_writeq(0, port);
1518#else
1519        __raw_writeq(reg, port);
1520#endif
1521
1522        /*
1523         * Set the receive filter for no packets, and write values
1524         * to the various config registers
1525         */
1526
1527        __raw_writeq(0, s->sbm_rxfilter);
1528        __raw_writeq(0, s->sbm_imr);
1529        __raw_writeq(framecfg, s->sbm_framecfg);
1530        __raw_writeq(fifo, s->sbm_fifocfg);
1531        __raw_writeq(cfg, s->sbm_maccfg);
1532
1533        /*
1534         * Initialize DMA channels (rings should be ok now)
1535         */
1536
1537        sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1538        sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1539
1540        /*
1541         * Configure the speed, duplex, and flow control
1542         */
1543
1544        sbmac_set_speed(s,s->sbm_speed);
1545        sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1546
1547        /*
1548         * Fill the receive ring
1549         */
1550
1551        sbdma_fillring(s, &(s->sbm_rxdma));
1552
1553        /*
1554         * Turn on the rest of the bits in the enable register
1555         */
1556
1557#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1558        __raw_writeq(M_MAC_RXDMA_EN0 |
1559                       M_MAC_TXDMA_EN0, s->sbm_macenable);
1560#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1561        __raw_writeq(M_MAC_RXDMA_EN0 |
1562                       M_MAC_TXDMA_EN0 |
1563                       M_MAC_RX_ENABLE |
1564                       M_MAC_TX_ENABLE, s->sbm_macenable);
1565#else
1566#error invalid SiByte MAC configuration
1567#endif
1568
1569#ifdef CONFIG_SBMAC_COALESCE
1570        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1571                       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1572#else
1573        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1574                       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1575#endif
1576
1577        /*
1578         * Enable receiving unicasts and broadcasts
1579         */
1580
1581        __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1582
1583        /*
1584         * we're running now.
1585         */
1586
1587        s->sbm_state = sbmac_state_on;
1588
1589        /*
1590         * Program multicast addresses
1591         */
1592
1593        sbmac_setmulti(s);
1594
1595        /*
1596         * If channel was in promiscuous mode before, turn that on
1597         */
1598
1599        if (s->sbm_devflags & IFF_PROMISC) {
1600                sbmac_promiscuous_mode(s,1);
1601        }
1602
1603}
1604
1605
1606/**********************************************************************
1607 *  SBMAC_CHANNEL_STOP(s)
1608 *
1609 *  Stop packet processing on this MAC.
1610 *
1611 *  Input parameters:
1612 *         s - sbmac structure
1613 *
1614 *  Return value:
1615 *         nothing
1616 ********************************************************************* */
1617
1618static void sbmac_channel_stop(struct sbmac_softc *s)
1619{
1620        /* don't do this if already stopped */
1621
1622        if (s->sbm_state == sbmac_state_off)
1623                return;
1624
1625        /* don't accept any packets, disable all interrupts */
1626
1627        __raw_writeq(0, s->sbm_rxfilter);
1628        __raw_writeq(0, s->sbm_imr);
1629
1630        /* Turn off ticker */
1631
1632        /* XXX */
1633
1634        /* turn off receiver and transmitter */
1635
1636        __raw_writeq(0, s->sbm_macenable);
1637
1638        /* We're stopped now. */
1639
1640        s->sbm_state = sbmac_state_off;
1641
1642        /*
1643         * Stop DMA channels (rings should be ok now)
1644         */
1645
1646        sbdma_channel_stop(&(s->sbm_rxdma));
1647        sbdma_channel_stop(&(s->sbm_txdma));
1648
1649        /* Empty the receive and transmit rings */
1650
1651        sbdma_emptyring(&(s->sbm_rxdma));
1652        sbdma_emptyring(&(s->sbm_txdma));
1653
1654}
1655
1656/**********************************************************************
1657 *  SBMAC_SET_CHANNEL_STATE(state)
1658 *
1659 *  Set the channel's state ON or OFF
1660 *
1661 *  Input parameters:
1662 *         state - new state
1663 *
1664 *  Return value:
1665 *         old state
1666 ********************************************************************* */
1667static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1668                                                enum sbmac_state state)
1669{
1670        enum sbmac_state oldstate = sc->sbm_state;
1671
1672        /*
1673         * If same as previous state, return
1674         */
1675
1676        if (state == oldstate) {
1677                return oldstate;
1678        }
1679
1680        /*
1681         * If new state is ON, turn channel on
1682         */
1683
1684        if (state == sbmac_state_on) {
1685                sbmac_channel_start(sc);
1686        }
1687        else {
1688                sbmac_channel_stop(sc);
1689        }
1690
1691        /*
1692         * Return previous state
1693         */
1694
1695        return oldstate;
1696}
1697
1698
1699/**********************************************************************
1700 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1701 *
1702 *  Turn on or off promiscuous mode
1703 *
1704 *  Input parameters:
1705 *         sc - softc
1706 *      onoff - 1 to turn on, 0 to turn off
1707 *
1708 *  Return value:
1709 *         nothing
1710 ********************************************************************* */
1711
1712static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1713{
1714        uint64_t reg;
1715
1716        if (sc->sbm_state != sbmac_state_on)
1717                return;
1718
1719        if (onoff) {
1720                reg = __raw_readq(sc->sbm_rxfilter);
1721                reg |= M_MAC_ALLPKT_EN;
1722                __raw_writeq(reg, sc->sbm_rxfilter);
1723        }
1724        else {
1725                reg = __raw_readq(sc->sbm_rxfilter);
1726                reg &= ~M_MAC_ALLPKT_EN;
1727                __raw_writeq(reg, sc->sbm_rxfilter);
1728        }
1729}
1730
1731/**********************************************************************
1732 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1733 *
1734 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1735 *
1736 *  Input parameters:
1737 *         sc - softc
1738 *
1739 *  Return value:
1740 *         nothing
1741 ********************************************************************* */
1742
1743static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1744{
1745        uint64_t reg;
1746
1747        /* Hard code the off set to 15 for now */
1748        reg = __raw_readq(sc->sbm_rxfilter);
1749        reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1750        __raw_writeq(reg, sc->sbm_rxfilter);
1751
1752        /* BCM1250 pass1 didn't have hardware checksum.  Everything
1753           later does.  */
1754        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1755                sc->rx_hw_checksum = DISABLE;
1756        } else {
1757                sc->rx_hw_checksum = ENABLE;
1758        }
1759}
1760
1761
1762/**********************************************************************
1763 *  SBMAC_ADDR2REG(ptr)
1764 *
1765 *  Convert six bytes into the 64-bit register value that
1766 *  we typically write into the SBMAC's address/mcast registers
1767 *
1768 *  Input parameters:
1769 *         ptr - pointer to 6 bytes
1770 *
1771 *  Return value:
1772 *         register value
1773 ********************************************************************* */
1774
1775static uint64_t sbmac_addr2reg(unsigned char *ptr)
1776{
1777        uint64_t reg = 0;
1778
1779        ptr += 6;
1780
1781        reg |= (uint64_t) *(--ptr);
1782        reg <<= 8;
1783        reg |= (uint64_t) *(--ptr);
1784        reg <<= 8;
1785        reg |= (uint64_t) *(--ptr);
1786        reg <<= 8;
1787        reg |= (uint64_t) *(--ptr);
1788        reg <<= 8;
1789        reg |= (uint64_t) *(--ptr);
1790        reg <<= 8;
1791        reg |= (uint64_t) *(--ptr);
1792
1793        return reg;
1794}
1795
1796
1797/**********************************************************************
1798 *  SBMAC_SET_SPEED(s,speed)
1799 *
1800 *  Configure LAN speed for the specified MAC.
1801 *  Warning: must be called when MAC is off!
1802 *
1803 *  Input parameters:
1804 *         s - sbmac structure
1805 *         speed - speed to set MAC to (see enum sbmac_speed)
1806 *
1807 *  Return value:
1808 *         1 if successful
1809 *      0 indicates invalid parameters
1810 ********************************************************************* */
1811
1812static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1813{
1814        uint64_t cfg;
1815        uint64_t framecfg;
1816
1817        /*
1818         * Save new current values
1819         */
1820
1821        s->sbm_speed = speed;
1822
1823        if (s->sbm_state == sbmac_state_on)
1824                return 0;       /* save for next restart */
1825
1826        /*
1827         * Read current register values
1828         */
1829
1830        cfg = __raw_readq(s->sbm_maccfg);
1831        framecfg = __raw_readq(s->sbm_framecfg);
1832
1833        /*
1834         * Mask out the stuff we want to change
1835         */
1836
1837        cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1838        framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1839                      M_MAC_SLOT_SIZE);
1840
1841        /*
1842         * Now add in the new bits
1843         */
1844
1845        switch (speed) {
1846        case sbmac_speed_10:
1847                framecfg |= V_MAC_IFG_RX_10 |
1848                        V_MAC_IFG_TX_10 |
1849                        K_MAC_IFG_THRSH_10 |
1850                        V_MAC_SLOT_SIZE_10;
1851                cfg |= V_MAC_SPEED_SEL_10MBPS;
1852                break;
1853
1854        case sbmac_speed_100:
1855                framecfg |= V_MAC_IFG_RX_100 |
1856                        V_MAC_IFG_TX_100 |
1857                        V_MAC_IFG_THRSH_100 |
1858                        V_MAC_SLOT_SIZE_100;
1859                cfg |= V_MAC_SPEED_SEL_100MBPS ;
1860                break;
1861
1862        case sbmac_speed_1000:
1863                framecfg |= V_MAC_IFG_RX_1000 |
1864                        V_MAC_IFG_TX_1000 |
1865                        V_MAC_IFG_THRSH_1000 |
1866                        V_MAC_SLOT_SIZE_1000;
1867                cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1868                break;
1869
1870        default:
1871                return 0;
1872        }
1873
1874        /*
1875         * Send the bits back to the hardware
1876         */
1877
1878        __raw_writeq(framecfg, s->sbm_framecfg);
1879        __raw_writeq(cfg, s->sbm_maccfg);
1880
1881        return 1;
1882}
1883
1884/**********************************************************************
1885 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1886 *
1887 *  Set Ethernet duplex and flow control options for this MAC
1888 *  Warning: must be called when MAC is off!
1889 *
1890 *  Input parameters:
1891 *         s - sbmac structure
1892 *         duplex - duplex setting (see enum sbmac_duplex)
1893 *         fc - flow control setting (see enum sbmac_fc)
1894 *
1895 *  Return value:
1896 *         1 if ok
1897 *         0 if an invalid parameter combination was specified
1898 ********************************************************************* */
1899
1900static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1901                            enum sbmac_fc fc)
1902{
1903        uint64_t cfg;
1904
1905        /*
1906         * Save new current values
1907         */
1908
1909        s->sbm_duplex = duplex;
1910        s->sbm_fc = fc;
1911
1912        if (s->sbm_state == sbmac_state_on)
1913                return 0;       /* save for next restart */
1914
1915        /*
1916         * Read current register values
1917         */
1918
1919        cfg = __raw_readq(s->sbm_maccfg);
1920
1921        /*
1922         * Mask off the stuff we're about to change
1923         */
1924
1925        cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1926
1927
1928        switch (duplex) {
1929        case sbmac_duplex_half:
1930                switch (fc) {
1931                case sbmac_fc_disabled:
1932                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1933                        break;
1934
1935                case sbmac_fc_collision:
1936                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1937                        break;
1938
1939                case sbmac_fc_carrier:
1940                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1941                        break;
1942
1943                case sbmac_fc_frame:            /* not valid in half duplex */
1944                default:                        /* invalid selection */
1945                        return 0;
1946                }
1947                break;
1948
1949        case sbmac_duplex_full:
1950                switch (fc) {
1951                case sbmac_fc_disabled:
1952                        cfg |= V_MAC_FC_CMD_DISABLED;
1953                        break;
1954
1955                case sbmac_fc_frame:
1956                        cfg |= V_MAC_FC_CMD_ENABLED;
1957                        break;
1958
1959                case sbmac_fc_collision:        /* not valid in full duplex */
1960                case sbmac_fc_carrier:          /* not valid in full duplex */
1961                default:
1962                        return 0;
1963                }
1964                break;
1965        default:
1966                return 0;
1967        }
1968
1969        /*
1970         * Send the bits back to the hardware
1971         */
1972
1973        __raw_writeq(cfg, s->sbm_maccfg);
1974
1975        return 1;
1976}
1977
1978
1979
1980
1981/**********************************************************************
1982 *  SBMAC_INTR()
1983 *
1984 *  Interrupt handler for MAC interrupts
1985 *
1986 *  Input parameters:
1987 *         MAC structure
1988 *
1989 *  Return value:
1990 *         nothing
1991 ********************************************************************* */
1992static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1993{
1994        struct net_device *dev = (struct net_device *) dev_instance;
1995        struct sbmac_softc *sc = netdev_priv(dev);
1996        uint64_t isr;
1997        int handled = 0;
1998
1999        /*
2000         * Read the ISR (this clears the bits in the real
2001         * register, except for counter addr)
2002         */
2003
2004        isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2005
2006        if (isr == 0)
2007                return IRQ_RETVAL(0);
2008        handled = 1;
2009
2010        /*
2011         * Transmits on channel 0
2012         */
2013
2014        if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2015                sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2016
2017        if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2018                if (napi_schedule_prep(&sc->napi)) {
2019                        __raw_writeq(0, sc->sbm_imr);
2020                        __napi_schedule(&sc->napi);
2021                        /* Depend on the exit from poll to reenable intr */
2022                }
2023                else {
2024                        /* may leave some packets behind */
2025                        sbdma_rx_process(sc,&(sc->sbm_rxdma),
2026                                         SBMAC_MAX_RXDESCR * 2, 0);
2027                }
2028        }
2029        return IRQ_RETVAL(handled);
2030}
2031
2032/**********************************************************************
2033 *  SBMAC_START_TX(skb,dev)
2034 *
2035 *  Start output on the specified interface.  Basically, we
2036 *  queue as many buffers as we can until the ring fills up, or
2037 *  we run off the end of the queue, whichever comes first.
2038 *
2039 *  Input parameters:
2040 *
2041 *
2042 *  Return value:
2043 *         nothing
2044 ********************************************************************* */
2045static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2046{
2047        struct sbmac_softc *sc = netdev_priv(dev);
2048        unsigned long flags;
2049
2050        /* lock eth irq */
2051        spin_lock_irqsave(&sc->sbm_lock, flags);
2052
2053        /*
2054         * Put the buffer on the transmit ring.  If we
2055         * don't have room, stop the queue.
2056         */
2057
2058        if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2059                /* XXX save skb that we could not send */
2060                netif_stop_queue(dev);
2061                spin_unlock_irqrestore(&sc->sbm_lock, flags);
2062
2063                return NETDEV_TX_BUSY;
2064        }
2065
2066        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2067
2068        return NETDEV_TX_OK;
2069}
2070
2071/**********************************************************************
2072 *  SBMAC_SETMULTI(sc)
2073 *
2074 *  Reprogram the multicast table into the hardware, given
2075 *  the list of multicasts associated with the interface
2076 *  structure.
2077 *
2078 *  Input parameters:
2079 *         sc - softc
2080 *
2081 *  Return value:
2082 *         nothing
2083 ********************************************************************* */
2084
2085static void sbmac_setmulti(struct sbmac_softc *sc)
2086{
2087        uint64_t reg;
2088        void __iomem *port;
2089        int idx;
2090        struct netdev_hw_addr *ha;
2091        struct net_device *dev = sc->sbm_dev;
2092
2093        /*
2094         * Clear out entire multicast table.  We do this by nuking
2095         * the entire hash table and all the direct matches except
2096         * the first one, which is used for our station address
2097         */
2098
2099        for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2100                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2101                __raw_writeq(0, port);
2102        }
2103
2104        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2105                port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2106                __raw_writeq(0, port);
2107        }
2108
2109        /*
2110         * Clear the filter to say we don't want any multicasts.
2111         */
2112
2113        reg = __raw_readq(sc->sbm_rxfilter);
2114        reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2115        __raw_writeq(reg, sc->sbm_rxfilter);
2116
2117        if (dev->flags & IFF_ALLMULTI) {
2118                /*
2119                 * Enable ALL multicasts.  Do this by inverting the
2120                 * multicast enable bit.
2121                 */
2122                reg = __raw_readq(sc->sbm_rxfilter);
2123                reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2124                __raw_writeq(reg, sc->sbm_rxfilter);
2125                return;
2126        }
2127
2128
2129        /*
2130         * Progam new multicast entries.  For now, only use the
2131         * perfect filter.  In the future we'll need to use the
2132         * hash filter if the perfect filter overflows
2133         */
2134
2135        /* XXX only using perfect filter for now, need to use hash
2136         * XXX if the table overflows */
2137
2138        idx = 1;                /* skip station address */
2139        netdev_for_each_mc_addr(ha, dev) {
2140                if (idx == MAC_ADDR_COUNT)
2141                        break;
2142                reg = sbmac_addr2reg(ha->addr);
2143                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2144                __raw_writeq(reg, port);
2145                idx++;
2146        }
2147
2148        /*
2149         * Enable the "accept multicast bits" if we programmed at least one
2150         * multicast.
2151         */
2152
2153        if (idx > 1) {
2154                reg = __raw_readq(sc->sbm_rxfilter);
2155                reg |= M_MAC_MCAST_EN;
2156                __raw_writeq(reg, sc->sbm_rxfilter);
2157        }
2158}
2159
2160static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2161{
2162        if (new_mtu >  ENET_PACKET_SIZE)
2163                return -EINVAL;
2164        _dev->mtu = new_mtu;
2165        pr_info("changing the mtu to %d\n", new_mtu);
2166        return 0;
2167}
2168
2169static const struct net_device_ops sbmac_netdev_ops = {
2170        .ndo_open               = sbmac_open,
2171        .ndo_stop               = sbmac_close,
2172        .ndo_start_xmit         = sbmac_start_tx,
2173        .ndo_set_rx_mode        = sbmac_set_rx_mode,
2174        .ndo_tx_timeout         = sbmac_tx_timeout,
2175        .ndo_do_ioctl           = sbmac_mii_ioctl,
2176        .ndo_change_mtu         = sb1250_change_mtu,
2177        .ndo_validate_addr      = eth_validate_addr,
2178        .ndo_set_mac_address    = eth_mac_addr,
2179#ifdef CONFIG_NET_POLL_CONTROLLER
2180        .ndo_poll_controller    = sbmac_netpoll,
2181#endif
2182};
2183
2184/**********************************************************************
2185 *  SBMAC_INIT(dev)
2186 *
2187 *  Attach routine - init hardware and hook ourselves into linux
2188 *
2189 *  Input parameters:
2190 *         dev - net_device structure
2191 *
2192 *  Return value:
2193 *         status
2194 ********************************************************************* */
2195
2196static int sbmac_init(struct platform_device *pldev, long long base)
2197{
2198        struct net_device *dev = platform_get_drvdata(pldev);
2199        int idx = pldev->id;
2200        struct sbmac_softc *sc = netdev_priv(dev);
2201        unsigned char *eaddr;
2202        uint64_t ea_reg;
2203        int i;
2204        int err;
2205
2206        sc->sbm_dev = dev;
2207        sc->sbe_idx = idx;
2208
2209        eaddr = sc->sbm_hwaddr;
2210
2211        /*
2212         * Read the ethernet address.  The firmware left this programmed
2213         * for us in the ethernet address register for each mac.
2214         */
2215
2216        ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2217        __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2218        for (i = 0; i < 6; i++) {
2219                eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2220                ea_reg >>= 8;
2221        }
2222
2223        for (i = 0; i < 6; i++) {
2224                dev->dev_addr[i] = eaddr[i];
2225        }
2226
2227        /*
2228         * Initialize context (get pointers to registers and stuff), then
2229         * allocate the memory for the descriptor tables.
2230         */
2231
2232        sbmac_initctx(sc);
2233
2234        /*
2235         * Set up Linux device callins
2236         */
2237
2238        spin_lock_init(&(sc->sbm_lock));
2239
2240        dev->netdev_ops = &sbmac_netdev_ops;
2241        dev->watchdog_timeo = TX_TIMEOUT;
2242
2243        netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2244
2245        dev->irq                = UNIT_INT(idx);
2246
2247        /* This is needed for PASS2 for Rx H/W checksum feature */
2248        sbmac_set_iphdr_offset(sc);
2249
2250        sc->mii_bus = mdiobus_alloc();
2251        if (sc->mii_bus == NULL) {
2252                err = -ENOMEM;
2253                goto uninit_ctx;
2254        }
2255
2256        sc->mii_bus->name = sbmac_mdio_string;
2257        snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2258                pldev->name, idx);
2259        sc->mii_bus->priv = sc;
2260        sc->mii_bus->read = sbmac_mii_read;
2261        sc->mii_bus->write = sbmac_mii_write;
2262        sc->mii_bus->irq = sc->phy_irq;
2263        for (i = 0; i < PHY_MAX_ADDR; ++i)
2264                sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2265
2266        sc->mii_bus->parent = &pldev->dev;
2267        /*
2268         * Probe PHY address
2269         */
2270        err = mdiobus_register(sc->mii_bus);
2271        if (err) {
2272                printk(KERN_ERR "%s: unable to register MDIO bus\n",
2273                       dev->name);
2274                goto free_mdio;
2275        }
2276        platform_set_drvdata(pldev, sc->mii_bus);
2277
2278        err = register_netdev(dev);
2279        if (err) {
2280                printk(KERN_ERR "%s.%d: unable to register netdev\n",
2281                       sbmac_string, idx);
2282                goto unreg_mdio;
2283        }
2284
2285        pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2286
2287        if (sc->rx_hw_checksum == ENABLE)
2288                pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2289
2290        /*
2291         * Display Ethernet address (this is called during the config
2292         * process so we need to finish off the config message that
2293         * was being displayed)
2294         */
2295        pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2296               dev->name, base, eaddr);
2297
2298        return 0;
2299unreg_mdio:
2300        mdiobus_unregister(sc->mii_bus);
2301free_mdio:
2302        mdiobus_free(sc->mii_bus);
2303uninit_ctx:
2304        sbmac_uninitctx(sc);
2305        return err;
2306}
2307
2308
2309static int sbmac_open(struct net_device *dev)
2310{
2311        struct sbmac_softc *sc = netdev_priv(dev);
2312        int err;
2313
2314        if (debug > 1)
2315                pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2316
2317        /*
2318         * map/route interrupt (clear status first, in case something
2319         * weird is pending; we haven't initialized the mac registers
2320         * yet)
2321         */
2322
2323        __raw_readq(sc->sbm_isr);
2324        err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2325        if (err) {
2326                printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2327                       dev->irq);
2328                goto out_err;
2329        }
2330
2331        sc->sbm_speed = sbmac_speed_none;
2332        sc->sbm_duplex = sbmac_duplex_none;
2333        sc->sbm_fc = sbmac_fc_none;
2334        sc->sbm_pause = -1;
2335        sc->sbm_link = 0;
2336
2337        /*
2338         * Attach to the PHY
2339         */
2340        err = sbmac_mii_probe(dev);
2341        if (err)
2342                goto out_unregister;
2343
2344        /*
2345         * Turn on the channel
2346         */
2347
2348        sbmac_set_channel_state(sc,sbmac_state_on);
2349
2350        netif_start_queue(dev);
2351
2352        sbmac_set_rx_mode(dev);
2353
2354        phy_start(sc->phy_dev);
2355
2356        napi_enable(&sc->napi);
2357
2358        return 0;
2359
2360out_unregister:
2361        free_irq(dev->irq, dev);
2362out_err:
2363        return err;
2364}
2365
2366static int sbmac_mii_probe(struct net_device *dev)
2367{
2368        struct sbmac_softc *sc = netdev_priv(dev);
2369        struct phy_device *phy_dev;
2370        int i;
2371
2372        for (i = 0; i < PHY_MAX_ADDR; i++) {
2373                phy_dev = sc->mii_bus->phy_map[i];
2374                if (phy_dev)
2375                        break;
2376        }
2377        if (!phy_dev) {
2378                printk(KERN_ERR "%s: no PHY found\n", dev->name);
2379                return -ENXIO;
2380        }
2381
2382        phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll,
2383                              PHY_INTERFACE_MODE_GMII);
2384        if (IS_ERR(phy_dev)) {
2385                printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2386                return PTR_ERR(phy_dev);
2387        }
2388
2389        /* Remove any features not supported by the controller */
2390        phy_dev->supported &= SUPPORTED_10baseT_Half |
2391                              SUPPORTED_10baseT_Full |
2392                              SUPPORTED_100baseT_Half |
2393                              SUPPORTED_100baseT_Full |
2394                              SUPPORTED_1000baseT_Half |
2395                              SUPPORTED_1000baseT_Full |
2396                              SUPPORTED_Autoneg |
2397                              SUPPORTED_MII |
2398                              SUPPORTED_Pause |
2399                              SUPPORTED_Asym_Pause;
2400        phy_dev->advertising = phy_dev->supported;
2401
2402        pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2403                dev->name, phy_dev->drv->name,
2404                dev_name(&phy_dev->dev), phy_dev->irq);
2405
2406        sc->phy_dev = phy_dev;
2407
2408        return 0;
2409}
2410
2411
2412static void sbmac_mii_poll(struct net_device *dev)
2413{
2414        struct sbmac_softc *sc = netdev_priv(dev);
2415        struct phy_device *phy_dev = sc->phy_dev;
2416        unsigned long flags;
2417        enum sbmac_fc fc;
2418        int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2419
2420        link_chg = (sc->sbm_link != phy_dev->link);
2421        speed_chg = (sc->sbm_speed != phy_dev->speed);
2422        duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2423        pause_chg = (sc->sbm_pause != phy_dev->pause);
2424
2425        if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2426                return;                                 /* Hmmm... */
2427
2428        if (!phy_dev->link) {
2429                if (link_chg) {
2430                        sc->sbm_link = phy_dev->link;
2431                        sc->sbm_speed = sbmac_speed_none;
2432                        sc->sbm_duplex = sbmac_duplex_none;
2433                        sc->sbm_fc = sbmac_fc_disabled;
2434                        sc->sbm_pause = -1;
2435                        pr_info("%s: link unavailable\n", dev->name);
2436                }
2437                return;
2438        }
2439
2440        if (phy_dev->duplex == DUPLEX_FULL) {
2441                if (phy_dev->pause)
2442                        fc = sbmac_fc_frame;
2443                else
2444                        fc = sbmac_fc_disabled;
2445        } else
2446                fc = sbmac_fc_collision;
2447        fc_chg = (sc->sbm_fc != fc);
2448
2449        pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2450                phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2451
2452        spin_lock_irqsave(&sc->sbm_lock, flags);
2453
2454        sc->sbm_speed = phy_dev->speed;
2455        sc->sbm_duplex = phy_dev->duplex;
2456        sc->sbm_fc = fc;
2457        sc->sbm_pause = phy_dev->pause;
2458        sc->sbm_link = phy_dev->link;
2459
2460        if ((speed_chg || duplex_chg || fc_chg) &&
2461            sc->sbm_state != sbmac_state_off) {
2462                /*
2463                 * something changed, restart the channel
2464                 */
2465                if (debug > 1)
2466                        pr_debug("%s: restarting channel "
2467                                 "because PHY state changed\n", dev->name);
2468                sbmac_channel_stop(sc);
2469                sbmac_channel_start(sc);
2470        }
2471
2472        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2473}
2474
2475
2476static void sbmac_tx_timeout (struct net_device *dev)
2477{
2478        struct sbmac_softc *sc = netdev_priv(dev);
2479        unsigned long flags;
2480
2481        spin_lock_irqsave(&sc->sbm_lock, flags);
2482
2483
2484        dev->trans_start = jiffies; /* prevent tx timeout */
2485        dev->stats.tx_errors++;
2486
2487        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2488
2489        printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2490}
2491
2492
2493
2494
2495static void sbmac_set_rx_mode(struct net_device *dev)
2496{
2497        unsigned long flags;
2498        struct sbmac_softc *sc = netdev_priv(dev);
2499
2500        spin_lock_irqsave(&sc->sbm_lock, flags);
2501        if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2502                /*
2503                 * Promiscuous changed.
2504                 */
2505
2506                if (dev->flags & IFF_PROMISC) {
2507                        sbmac_promiscuous_mode(sc,1);
2508                }
2509                else {
2510                        sbmac_promiscuous_mode(sc,0);
2511                }
2512        }
2513        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2514
2515        /*
2516         * Program the multicasts.  Do this every time.
2517         */
2518
2519        sbmac_setmulti(sc);
2520
2521}
2522
2523static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2524{
2525        struct sbmac_softc *sc = netdev_priv(dev);
2526
2527        if (!netif_running(dev) || !sc->phy_dev)
2528                return -EINVAL;
2529
2530        return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2531}
2532
2533static int sbmac_close(struct net_device *dev)
2534{
2535        struct sbmac_softc *sc = netdev_priv(dev);
2536
2537        napi_disable(&sc->napi);
2538
2539        phy_stop(sc->phy_dev);
2540
2541        sbmac_set_channel_state(sc, sbmac_state_off);
2542
2543        netif_stop_queue(dev);
2544
2545        if (debug > 1)
2546                pr_debug("%s: Shutting down ethercard\n", dev->name);
2547
2548        phy_disconnect(sc->phy_dev);
2549        sc->phy_dev = NULL;
2550        free_irq(dev->irq, dev);
2551
2552        sbdma_emptyring(&(sc->sbm_txdma));
2553        sbdma_emptyring(&(sc->sbm_rxdma));
2554
2555        return 0;
2556}
2557
2558static int sbmac_poll(struct napi_struct *napi, int budget)
2559{
2560        struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2561        int work_done;
2562
2563        work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2564        sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2565
2566        if (work_done < budget) {
2567                napi_complete(napi);
2568
2569#ifdef CONFIG_SBMAC_COALESCE
2570                __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2571                             ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2572                             sc->sbm_imr);
2573#else
2574                __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2575                             (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2576#endif
2577        }
2578
2579        return work_done;
2580}
2581
2582
2583static int sbmac_probe(struct platform_device *pldev)
2584{
2585        struct net_device *dev;
2586        struct sbmac_softc *sc;
2587        void __iomem *sbm_base;
2588        struct resource *res;
2589        u64 sbmac_orig_hwaddr;
2590        int err;
2591
2592        res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2593        BUG_ON(!res);
2594        sbm_base = ioremap_nocache(res->start, resource_size(res));
2595        if (!sbm_base) {
2596                printk(KERN_ERR "%s: unable to map device registers\n",
2597                       dev_name(&pldev->dev));
2598                err = -ENOMEM;
2599                goto out_out;
2600        }
2601
2602        /*
2603         * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2604         * value for us by the firmware if we're going to use this MAC.
2605         * If we find a zero, skip this MAC.
2606         */
2607        sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2608        pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2609                 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2610        if (sbmac_orig_hwaddr == 0) {
2611                err = 0;
2612                goto out_unmap;
2613        }
2614
2615        /*
2616         * Okay, cool.  Initialize this MAC.
2617         */
2618        dev = alloc_etherdev(sizeof(struct sbmac_softc));
2619        if (!dev) {
2620                err = -ENOMEM;
2621                goto out_unmap;
2622        }
2623
2624        platform_set_drvdata(pldev, dev);
2625        SET_NETDEV_DEV(dev, &pldev->dev);
2626
2627        sc = netdev_priv(dev);
2628        sc->sbm_base = sbm_base;
2629
2630        err = sbmac_init(pldev, res->start);
2631        if (err)
2632                goto out_kfree;
2633
2634        return 0;
2635
2636out_kfree:
2637        free_netdev(dev);
2638        __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2639
2640out_unmap:
2641        iounmap(sbm_base);
2642
2643out_out:
2644        return err;
2645}
2646
2647static int __exit sbmac_remove(struct platform_device *pldev)
2648{
2649        struct net_device *dev = platform_get_drvdata(pldev);
2650        struct sbmac_softc *sc = netdev_priv(dev);
2651
2652        unregister_netdev(dev);
2653        sbmac_uninitctx(sc);
2654        mdiobus_unregister(sc->mii_bus);
2655        mdiobus_free(sc->mii_bus);
2656        iounmap(sc->sbm_base);
2657        free_netdev(dev);
2658
2659        return 0;
2660}
2661
2662static struct platform_driver sbmac_driver = {
2663        .probe = sbmac_probe,
2664        .remove = __exit_p(sbmac_remove),
2665        .driver = {
2666                .name = sbmac_string,
2667                .owner  = THIS_MODULE,
2668        },
2669};
2670
2671module_platform_driver(sbmac_driver);
2672