linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2013 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/pci.h>
  29#include <linux/delay.h>
  30#include <linux/sched.h>
  31#include <linux/netdevice.h>
  32
  33#include "ixgbe.h"
  34#include "ixgbe_common.h"
  35#include "ixgbe_phy.h"
  36
  37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  43                                        u16 count);
  44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  48
  49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  50static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  51static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  52                                             u16 words, u16 *data);
  53static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  54                                             u16 words, u16 *data);
  55static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  56                                                 u16 offset);
  57static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  58
  59/**
  60 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  61 *  control
  62 *  @hw: pointer to hardware structure
  63 *
  64 *  There are several phys that do not support autoneg flow control. This
  65 *  function check the device id to see if the associated phy supports
  66 *  autoneg flow control.
  67 **/
  68bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  69{
  70        bool supported = false;
  71        ixgbe_link_speed speed;
  72        bool link_up;
  73
  74        switch (hw->phy.media_type) {
  75        case ixgbe_media_type_fiber_fixed:
  76        case ixgbe_media_type_fiber:
  77                hw->mac.ops.check_link(hw, &speed, &link_up, false);
  78                /* if link is down, assume supported */
  79                if (link_up)
  80                        supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
  81                                true : false;
  82                else
  83                        supported = true;
  84                break;
  85        case ixgbe_media_type_backplane:
  86                supported = true;
  87                break;
  88        case ixgbe_media_type_copper:
  89                /* only some copper devices support flow control autoneg */
  90                switch (hw->device_id) {
  91                case IXGBE_DEV_ID_82599_T3_LOM:
  92                case IXGBE_DEV_ID_X540T:
  93                case IXGBE_DEV_ID_X540T1:
  94                        supported = true;
  95                        break;
  96                default:
  97                        break;
  98                }
  99        default:
 100                break;
 101        }
 102
 103        return supported;
 104}
 105
 106/**
 107 *  ixgbe_setup_fc - Set up flow control
 108 *  @hw: pointer to hardware structure
 109 *
 110 *  Called at init time to set up flow control.
 111 **/
 112static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
 113{
 114        s32 ret_val = 0;
 115        u32 reg = 0, reg_bp = 0;
 116        u16 reg_cu = 0;
 117        bool got_lock = false;
 118
 119        /*
 120         * Validate the requested mode.  Strict IEEE mode does not allow
 121         * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 122         */
 123        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 124                hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 125                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 126                goto out;
 127        }
 128
 129        /*
 130         * 10gig parts do not have a word in the EEPROM to determine the
 131         * default flow control setting, so we explicitly set it to full.
 132         */
 133        if (hw->fc.requested_mode == ixgbe_fc_default)
 134                hw->fc.requested_mode = ixgbe_fc_full;
 135
 136        /*
 137         * Set up the 1G and 10G flow control advertisement registers so the
 138         * HW will be able to do fc autoneg once the cable is plugged in.  If
 139         * we link at 10G, the 1G advertisement is harmless and vice versa.
 140         */
 141        switch (hw->phy.media_type) {
 142        case ixgbe_media_type_fiber_fixed:
 143        case ixgbe_media_type_fiber:
 144        case ixgbe_media_type_backplane:
 145                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 146                reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 147                break;
 148        case ixgbe_media_type_copper:
 149                hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 150                                        MDIO_MMD_AN, &reg_cu);
 151                break;
 152        default:
 153                break;
 154        }
 155
 156        /*
 157         * The possible values of fc.requested_mode are:
 158         * 0: Flow control is completely disabled
 159         * 1: Rx flow control is enabled (we can receive pause frames,
 160         *    but not send pause frames).
 161         * 2: Tx flow control is enabled (we can send pause frames but
 162         *    we do not support receiving pause frames).
 163         * 3: Both Rx and Tx flow control (symmetric) are enabled.
 164         * other: Invalid.
 165         */
 166        switch (hw->fc.requested_mode) {
 167        case ixgbe_fc_none:
 168                /* Flow control completely disabled by software override. */
 169                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 170                if (hw->phy.media_type == ixgbe_media_type_backplane)
 171                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 172                                    IXGBE_AUTOC_ASM_PAUSE);
 173                else if (hw->phy.media_type == ixgbe_media_type_copper)
 174                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 175                break;
 176        case ixgbe_fc_tx_pause:
 177                /*
 178                 * Tx Flow control is enabled, and Rx Flow control is
 179                 * disabled by software override.
 180                 */
 181                reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 182                reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 183                if (hw->phy.media_type == ixgbe_media_type_backplane) {
 184                        reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 185                        reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 186                } else if (hw->phy.media_type == ixgbe_media_type_copper) {
 187                        reg_cu |= IXGBE_TAF_ASM_PAUSE;
 188                        reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 189                }
 190                break;
 191        case ixgbe_fc_rx_pause:
 192                /*
 193                 * Rx Flow control is enabled and Tx Flow control is
 194                 * disabled by software override. Since there really
 195                 * isn't a way to advertise that we are capable of RX
 196                 * Pause ONLY, we will advertise that we support both
 197                 * symmetric and asymmetric Rx PAUSE, as such we fall
 198                 * through to the fc_full statement.  Later, we will
 199                 * disable the adapter's ability to send PAUSE frames.
 200                 */
 201        case ixgbe_fc_full:
 202                /* Flow control (both Rx and Tx) is enabled by SW override. */
 203                reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 204                if (hw->phy.media_type == ixgbe_media_type_backplane)
 205                        reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 206                                  IXGBE_AUTOC_ASM_PAUSE;
 207                else if (hw->phy.media_type == ixgbe_media_type_copper)
 208                        reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 209                break;
 210        default:
 211                hw_dbg(hw, "Flow control param set incorrectly\n");
 212                ret_val = IXGBE_ERR_CONFIG;
 213                goto out;
 214                break;
 215        }
 216
 217        if (hw->mac.type != ixgbe_mac_X540) {
 218                /*
 219                 * Enable auto-negotiation between the MAC & PHY;
 220                 * the MAC will advertise clause 37 flow control.
 221                 */
 222                IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 223                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 224
 225                /* Disable AN timeout */
 226                if (hw->fc.strict_ieee)
 227                        reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 228
 229                IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 230                hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 231        }
 232
 233        /*
 234         * AUTOC restart handles negotiation of 1G and 10G on backplane
 235         * and copper. There is no need to set the PCS1GCTL register.
 236         *
 237         */
 238        if (hw->phy.media_type == ixgbe_media_type_backplane) {
 239                /* Need the SW/FW semaphore around AUTOC writes if 82599 and
 240                 * LESM is on, likewise reset_pipeline requries the lock as
 241                 * it also writes AUTOC.
 242                 */
 243                if ((hw->mac.type == ixgbe_mac_82599EB) &&
 244                    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
 245                        ret_val = hw->mac.ops.acquire_swfw_sync(hw,
 246                                                        IXGBE_GSSR_MAC_CSR_SM);
 247                        if (ret_val)
 248                                goto out;
 249
 250                        got_lock = true;
 251                }
 252
 253                IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
 254
 255                if (hw->mac.type == ixgbe_mac_82599EB)
 256                        ixgbe_reset_pipeline_82599(hw);
 257
 258                if (got_lock)
 259                        hw->mac.ops.release_swfw_sync(hw,
 260                                                      IXGBE_GSSR_MAC_CSR_SM);
 261
 262        } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 263                    ixgbe_device_supports_autoneg_fc(hw)) {
 264                hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 265                                      MDIO_MMD_AN, reg_cu);
 266        }
 267
 268        hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 269out:
 270        return ret_val;
 271}
 272
 273/**
 274 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 275 *  @hw: pointer to hardware structure
 276 *
 277 *  Starts the hardware by filling the bus info structure and media type, clears
 278 *  all on chip counters, initializes receive address registers, multicast
 279 *  table, VLAN filter table, calls routine to set up link and flow control
 280 *  settings, and leaves transmit and receive units disabled and uninitialized
 281 **/
 282s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 283{
 284        u32 ctrl_ext;
 285
 286        /* Set the media type */
 287        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 288
 289        /* Identify the PHY */
 290        hw->phy.ops.identify(hw);
 291
 292        /* Clear the VLAN filter table */
 293        hw->mac.ops.clear_vfta(hw);
 294
 295        /* Clear statistics registers */
 296        hw->mac.ops.clear_hw_cntrs(hw);
 297
 298        /* Set No Snoop Disable */
 299        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 300        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 301        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 302        IXGBE_WRITE_FLUSH(hw);
 303
 304        /* Setup flow control */
 305        ixgbe_setup_fc(hw);
 306
 307        /* Clear adapter stopped flag */
 308        hw->adapter_stopped = false;
 309
 310        return 0;
 311}
 312
 313/**
 314 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 315 *  @hw: pointer to hw structure
 316 *
 317 * Performs the init sequence common to the second generation
 318 * of 10 GbE devices.
 319 * Devices in the second generation:
 320 *     82599
 321 *     X540
 322 **/
 323s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 324{
 325        u32 i;
 326        u32 regval;
 327
 328        /* Clear the rate limiters */
 329        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 330                IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 331                IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 332        }
 333        IXGBE_WRITE_FLUSH(hw);
 334
 335        /* Disable relaxed ordering */
 336        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 337                regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 338                regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 339                IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 340        }
 341
 342        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 343                regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 344                regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 345                            IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 346                IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 347        }
 348
 349        return 0;
 350}
 351
 352/**
 353 *  ixgbe_init_hw_generic - Generic hardware initialization
 354 *  @hw: pointer to hardware structure
 355 *
 356 *  Initialize the hardware by resetting the hardware, filling the bus info
 357 *  structure and media type, clears all on chip counters, initializes receive
 358 *  address registers, multicast table, VLAN filter table, calls routine to set
 359 *  up link and flow control settings, and leaves transmit and receive units
 360 *  disabled and uninitialized
 361 **/
 362s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 363{
 364        s32 status;
 365
 366        /* Reset the hardware */
 367        status = hw->mac.ops.reset_hw(hw);
 368
 369        if (status == 0) {
 370                /* Start the HW */
 371                status = hw->mac.ops.start_hw(hw);
 372        }
 373
 374        return status;
 375}
 376
 377/**
 378 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 379 *  @hw: pointer to hardware structure
 380 *
 381 *  Clears all hardware statistics counters by reading them from the hardware
 382 *  Statistics counters are clear on read.
 383 **/
 384s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 385{
 386        u16 i = 0;
 387
 388        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 389        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 390        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 391        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 392        for (i = 0; i < 8; i++)
 393                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 394
 395        IXGBE_READ_REG(hw, IXGBE_MLFC);
 396        IXGBE_READ_REG(hw, IXGBE_MRFC);
 397        IXGBE_READ_REG(hw, IXGBE_RLEC);
 398        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 399        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 400        if (hw->mac.type >= ixgbe_mac_82599EB) {
 401                IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 402                IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 403        } else {
 404                IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 405                IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 406        }
 407
 408        for (i = 0; i < 8; i++) {
 409                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 410                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 411                if (hw->mac.type >= ixgbe_mac_82599EB) {
 412                        IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 413                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 414                } else {
 415                        IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 416                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 417                }
 418        }
 419        if (hw->mac.type >= ixgbe_mac_82599EB)
 420                for (i = 0; i < 8; i++)
 421                        IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 422        IXGBE_READ_REG(hw, IXGBE_PRC64);
 423        IXGBE_READ_REG(hw, IXGBE_PRC127);
 424        IXGBE_READ_REG(hw, IXGBE_PRC255);
 425        IXGBE_READ_REG(hw, IXGBE_PRC511);
 426        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 427        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 428        IXGBE_READ_REG(hw, IXGBE_GPRC);
 429        IXGBE_READ_REG(hw, IXGBE_BPRC);
 430        IXGBE_READ_REG(hw, IXGBE_MPRC);
 431        IXGBE_READ_REG(hw, IXGBE_GPTC);
 432        IXGBE_READ_REG(hw, IXGBE_GORCL);
 433        IXGBE_READ_REG(hw, IXGBE_GORCH);
 434        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 435        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 436        if (hw->mac.type == ixgbe_mac_82598EB)
 437                for (i = 0; i < 8; i++)
 438                        IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 439        IXGBE_READ_REG(hw, IXGBE_RUC);
 440        IXGBE_READ_REG(hw, IXGBE_RFC);
 441        IXGBE_READ_REG(hw, IXGBE_ROC);
 442        IXGBE_READ_REG(hw, IXGBE_RJC);
 443        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 444        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 445        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 446        IXGBE_READ_REG(hw, IXGBE_TORL);
 447        IXGBE_READ_REG(hw, IXGBE_TORH);
 448        IXGBE_READ_REG(hw, IXGBE_TPR);
 449        IXGBE_READ_REG(hw, IXGBE_TPT);
 450        IXGBE_READ_REG(hw, IXGBE_PTC64);
 451        IXGBE_READ_REG(hw, IXGBE_PTC127);
 452        IXGBE_READ_REG(hw, IXGBE_PTC255);
 453        IXGBE_READ_REG(hw, IXGBE_PTC511);
 454        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 455        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 456        IXGBE_READ_REG(hw, IXGBE_MPTC);
 457        IXGBE_READ_REG(hw, IXGBE_BPTC);
 458        for (i = 0; i < 16; i++) {
 459                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 460                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 461                if (hw->mac.type >= ixgbe_mac_82599EB) {
 462                        IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 463                        IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 464                        IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 465                        IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 466                        IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 467                } else {
 468                        IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 469                        IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 470                }
 471        }
 472
 473        if (hw->mac.type == ixgbe_mac_X540) {
 474                if (hw->phy.id == 0)
 475                        hw->phy.ops.identify(hw);
 476                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 477                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 478                hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 479                hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 480        }
 481
 482        return 0;
 483}
 484
 485/**
 486 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 487 *  @hw: pointer to hardware structure
 488 *  @pba_num: stores the part number string from the EEPROM
 489 *  @pba_num_size: part number string buffer length
 490 *
 491 *  Reads the part number string from the EEPROM.
 492 **/
 493s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 494                                  u32 pba_num_size)
 495{
 496        s32 ret_val;
 497        u16 data;
 498        u16 pba_ptr;
 499        u16 offset;
 500        u16 length;
 501
 502        if (pba_num == NULL) {
 503                hw_dbg(hw, "PBA string buffer was null\n");
 504                return IXGBE_ERR_INVALID_ARGUMENT;
 505        }
 506
 507        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 508        if (ret_val) {
 509                hw_dbg(hw, "NVM Read Error\n");
 510                return ret_val;
 511        }
 512
 513        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 514        if (ret_val) {
 515                hw_dbg(hw, "NVM Read Error\n");
 516                return ret_val;
 517        }
 518
 519        /*
 520         * if data is not ptr guard the PBA must be in legacy format which
 521         * means pba_ptr is actually our second data word for the PBA number
 522         * and we can decode it into an ascii string
 523         */
 524        if (data != IXGBE_PBANUM_PTR_GUARD) {
 525                hw_dbg(hw, "NVM PBA number is not stored as string\n");
 526
 527                /* we will need 11 characters to store the PBA */
 528                if (pba_num_size < 11) {
 529                        hw_dbg(hw, "PBA string buffer too small\n");
 530                        return IXGBE_ERR_NO_SPACE;
 531                }
 532
 533                /* extract hex string from data and pba_ptr */
 534                pba_num[0] = (data >> 12) & 0xF;
 535                pba_num[1] = (data >> 8) & 0xF;
 536                pba_num[2] = (data >> 4) & 0xF;
 537                pba_num[3] = data & 0xF;
 538                pba_num[4] = (pba_ptr >> 12) & 0xF;
 539                pba_num[5] = (pba_ptr >> 8) & 0xF;
 540                pba_num[6] = '-';
 541                pba_num[7] = 0;
 542                pba_num[8] = (pba_ptr >> 4) & 0xF;
 543                pba_num[9] = pba_ptr & 0xF;
 544
 545                /* put a null character on the end of our string */
 546                pba_num[10] = '\0';
 547
 548                /* switch all the data but the '-' to hex char */
 549                for (offset = 0; offset < 10; offset++) {
 550                        if (pba_num[offset] < 0xA)
 551                                pba_num[offset] += '0';
 552                        else if (pba_num[offset] < 0x10)
 553                                pba_num[offset] += 'A' - 0xA;
 554                }
 555
 556                return 0;
 557        }
 558
 559        ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 560        if (ret_val) {
 561                hw_dbg(hw, "NVM Read Error\n");
 562                return ret_val;
 563        }
 564
 565        if (length == 0xFFFF || length == 0) {
 566                hw_dbg(hw, "NVM PBA number section invalid length\n");
 567                return IXGBE_ERR_PBA_SECTION;
 568        }
 569
 570        /* check if pba_num buffer is big enough */
 571        if (pba_num_size  < (((u32)length * 2) - 1)) {
 572                hw_dbg(hw, "PBA string buffer too small\n");
 573                return IXGBE_ERR_NO_SPACE;
 574        }
 575
 576        /* trim pba length from start of string */
 577        pba_ptr++;
 578        length--;
 579
 580        for (offset = 0; offset < length; offset++) {
 581                ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 582                if (ret_val) {
 583                        hw_dbg(hw, "NVM Read Error\n");
 584                        return ret_val;
 585                }
 586                pba_num[offset * 2] = (u8)(data >> 8);
 587                pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 588        }
 589        pba_num[offset * 2] = '\0';
 590
 591        return 0;
 592}
 593
 594/**
 595 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 596 *  @hw: pointer to hardware structure
 597 *  @mac_addr: Adapter MAC address
 598 *
 599 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 600 *  A reset of the adapter must be performed prior to calling this function
 601 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 602 **/
 603s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 604{
 605        u32 rar_high;
 606        u32 rar_low;
 607        u16 i;
 608
 609        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 610        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 611
 612        for (i = 0; i < 4; i++)
 613                mac_addr[i] = (u8)(rar_low >> (i*8));
 614
 615        for (i = 0; i < 2; i++)
 616                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 617
 618        return 0;
 619}
 620
 621enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 622{
 623        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 624        case IXGBE_PCI_LINK_WIDTH_1:
 625                return ixgbe_bus_width_pcie_x1;
 626        case IXGBE_PCI_LINK_WIDTH_2:
 627                return ixgbe_bus_width_pcie_x2;
 628        case IXGBE_PCI_LINK_WIDTH_4:
 629                return ixgbe_bus_width_pcie_x4;
 630        case IXGBE_PCI_LINK_WIDTH_8:
 631                return ixgbe_bus_width_pcie_x8;
 632        default:
 633                return ixgbe_bus_width_unknown;
 634        }
 635}
 636
 637enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 638{
 639        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 640        case IXGBE_PCI_LINK_SPEED_2500:
 641                return ixgbe_bus_speed_2500;
 642        case IXGBE_PCI_LINK_SPEED_5000:
 643                return ixgbe_bus_speed_5000;
 644        case IXGBE_PCI_LINK_SPEED_8000:
 645                return ixgbe_bus_speed_8000;
 646        default:
 647                return ixgbe_bus_speed_unknown;
 648        }
 649}
 650
 651/**
 652 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 653 *  @hw: pointer to hardware structure
 654 *
 655 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 656 **/
 657s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 658{
 659        struct ixgbe_adapter *adapter = hw->back;
 660        struct ixgbe_mac_info *mac = &hw->mac;
 661        u16 link_status;
 662
 663        hw->bus.type = ixgbe_bus_type_pci_express;
 664
 665        /* Get the negotiated link width and speed from PCI config space */
 666        pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
 667                             &link_status);
 668
 669        hw->bus.width = ixgbe_convert_bus_width(link_status);
 670        hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 671
 672        mac->ops.set_lan_id(hw);
 673
 674        return 0;
 675}
 676
 677/**
 678 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 679 *  @hw: pointer to the HW structure
 680 *
 681 *  Determines the LAN function id by reading memory-mapped registers
 682 *  and swaps the port value if requested.
 683 **/
 684void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 685{
 686        struct ixgbe_bus_info *bus = &hw->bus;
 687        u32 reg;
 688
 689        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 690        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 691        bus->lan_id = bus->func;
 692
 693        /* check for a port swap */
 694        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 695        if (reg & IXGBE_FACTPS_LFS)
 696                bus->func ^= 0x1;
 697}
 698
 699/**
 700 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 701 *  @hw: pointer to hardware structure
 702 *
 703 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 704 *  disables transmit and receive units. The adapter_stopped flag is used by
 705 *  the shared code and drivers to determine if the adapter is in a stopped
 706 *  state and should not touch the hardware.
 707 **/
 708s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 709{
 710        u32 reg_val;
 711        u16 i;
 712
 713        /*
 714         * Set the adapter_stopped flag so other driver functions stop touching
 715         * the hardware
 716         */
 717        hw->adapter_stopped = true;
 718
 719        /* Disable the receive unit */
 720        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
 721
 722        /* Clear interrupt mask to stop interrupts from being generated */
 723        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 724
 725        /* Clear any pending interrupts, flush previous writes */
 726        IXGBE_READ_REG(hw, IXGBE_EICR);
 727
 728        /* Disable the transmit unit.  Each queue must be disabled. */
 729        for (i = 0; i < hw->mac.max_tx_queues; i++)
 730                IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 731
 732        /* Disable the receive unit by stopping each queue */
 733        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 734                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 735                reg_val &= ~IXGBE_RXDCTL_ENABLE;
 736                reg_val |= IXGBE_RXDCTL_SWFLSH;
 737                IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 738        }
 739
 740        /* flush all queues disables */
 741        IXGBE_WRITE_FLUSH(hw);
 742        usleep_range(1000, 2000);
 743
 744        /*
 745         * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 746         * access and verify no pending requests
 747         */
 748        return ixgbe_disable_pcie_master(hw);
 749}
 750
 751/**
 752 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 753 *  @hw: pointer to hardware structure
 754 *  @index: led number to turn on
 755 **/
 756s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 757{
 758        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 759
 760        /* To turn on the LED, set mode to ON. */
 761        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 762        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 763        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 764        IXGBE_WRITE_FLUSH(hw);
 765
 766        return 0;
 767}
 768
 769/**
 770 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 771 *  @hw: pointer to hardware structure
 772 *  @index: led number to turn off
 773 **/
 774s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 775{
 776        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 777
 778        /* To turn off the LED, set mode to OFF. */
 779        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 780        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 781        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 782        IXGBE_WRITE_FLUSH(hw);
 783
 784        return 0;
 785}
 786
 787/**
 788 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 789 *  @hw: pointer to hardware structure
 790 *
 791 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 792 *  ixgbe_hw struct in order to set up EEPROM access.
 793 **/
 794s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 795{
 796        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 797        u32 eec;
 798        u16 eeprom_size;
 799
 800        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 801                eeprom->type = ixgbe_eeprom_none;
 802                /* Set default semaphore delay to 10ms which is a well
 803                 * tested value */
 804                eeprom->semaphore_delay = 10;
 805                /* Clear EEPROM page size, it will be initialized as needed */
 806                eeprom->word_page_size = 0;
 807
 808                /*
 809                 * Check for EEPROM present first.
 810                 * If not present leave as none
 811                 */
 812                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 813                if (eec & IXGBE_EEC_PRES) {
 814                        eeprom->type = ixgbe_eeprom_spi;
 815
 816                        /*
 817                         * SPI EEPROM is assumed here.  This code would need to
 818                         * change if a future EEPROM is not SPI.
 819                         */
 820                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 821                                            IXGBE_EEC_SIZE_SHIFT);
 822                        eeprom->word_size = 1 << (eeprom_size +
 823                                                  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 824                }
 825
 826                if (eec & IXGBE_EEC_ADDR_SIZE)
 827                        eeprom->address_bits = 16;
 828                else
 829                        eeprom->address_bits = 8;
 830                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 831                          "%d\n", eeprom->type, eeprom->word_size,
 832                          eeprom->address_bits);
 833        }
 834
 835        return 0;
 836}
 837
 838/**
 839 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 840 *  @hw: pointer to hardware structure
 841 *  @offset: offset within the EEPROM to write
 842 *  @words: number of words
 843 *  @data: 16 bit word(s) to write to EEPROM
 844 *
 845 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 846 **/
 847s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 848                                               u16 words, u16 *data)
 849{
 850        s32 status = 0;
 851        u16 i, count;
 852
 853        hw->eeprom.ops.init_params(hw);
 854
 855        if (words == 0) {
 856                status = IXGBE_ERR_INVALID_ARGUMENT;
 857                goto out;
 858        }
 859
 860        if (offset + words > hw->eeprom.word_size) {
 861                status = IXGBE_ERR_EEPROM;
 862                goto out;
 863        }
 864
 865        /*
 866         * The EEPROM page size cannot be queried from the chip. We do lazy
 867         * initialization. It is worth to do that when we write large buffer.
 868         */
 869        if ((hw->eeprom.word_page_size == 0) &&
 870            (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 871                ixgbe_detect_eeprom_page_size_generic(hw, offset);
 872
 873        /*
 874         * We cannot hold synchronization semaphores for too long
 875         * to avoid other entity starvation. However it is more efficient
 876         * to read in bursts than synchronizing access for each word.
 877         */
 878        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 879                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 880                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 881                status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 882                                                            count, &data[i]);
 883
 884                if (status != 0)
 885                        break;
 886        }
 887
 888out:
 889        return status;
 890}
 891
 892/**
 893 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 894 *  @hw: pointer to hardware structure
 895 *  @offset: offset within the EEPROM to be written to
 896 *  @words: number of word(s)
 897 *  @data: 16 bit word(s) to be written to the EEPROM
 898 *
 899 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 900 *  EEPROM will most likely contain an invalid checksum.
 901 **/
 902static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 903                                              u16 words, u16 *data)
 904{
 905        s32 status;
 906        u16 word;
 907        u16 page_size;
 908        u16 i;
 909        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 910
 911        /* Prepare the EEPROM for writing  */
 912        status = ixgbe_acquire_eeprom(hw);
 913
 914        if (status == 0) {
 915                if (ixgbe_ready_eeprom(hw) != 0) {
 916                        ixgbe_release_eeprom(hw);
 917                        status = IXGBE_ERR_EEPROM;
 918                }
 919        }
 920
 921        if (status == 0) {
 922                for (i = 0; i < words; i++) {
 923                        ixgbe_standby_eeprom(hw);
 924
 925                        /*  Send the WRITE ENABLE command (8 bit opcode )  */
 926                        ixgbe_shift_out_eeprom_bits(hw,
 927                                                  IXGBE_EEPROM_WREN_OPCODE_SPI,
 928                                                  IXGBE_EEPROM_OPCODE_BITS);
 929
 930                        ixgbe_standby_eeprom(hw);
 931
 932                        /*
 933                         * Some SPI eeproms use the 8th address bit embedded
 934                         * in the opcode
 935                         */
 936                        if ((hw->eeprom.address_bits == 8) &&
 937                            ((offset + i) >= 128))
 938                                write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 939
 940                        /* Send the Write command (8-bit opcode + addr) */
 941                        ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 942                                                    IXGBE_EEPROM_OPCODE_BITS);
 943                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 944                                                    hw->eeprom.address_bits);
 945
 946                        page_size = hw->eeprom.word_page_size;
 947
 948                        /* Send the data in burst via SPI*/
 949                        do {
 950                                word = data[i];
 951                                word = (word >> 8) | (word << 8);
 952                                ixgbe_shift_out_eeprom_bits(hw, word, 16);
 953
 954                                if (page_size == 0)
 955                                        break;
 956
 957                                /* do not wrap around page */
 958                                if (((offset + i) & (page_size - 1)) ==
 959                                    (page_size - 1))
 960                                        break;
 961                        } while (++i < words);
 962
 963                        ixgbe_standby_eeprom(hw);
 964                        usleep_range(10000, 20000);
 965                }
 966                /* Done with writing - release the EEPROM */
 967                ixgbe_release_eeprom(hw);
 968        }
 969
 970        return status;
 971}
 972
 973/**
 974 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 975 *  @hw: pointer to hardware structure
 976 *  @offset: offset within the EEPROM to be written to
 977 *  @data: 16 bit word to be written to the EEPROM
 978 *
 979 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 980 *  EEPROM will most likely contain an invalid checksum.
 981 **/
 982s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 983{
 984        s32 status;
 985
 986        hw->eeprom.ops.init_params(hw);
 987
 988        if (offset >= hw->eeprom.word_size) {
 989                status = IXGBE_ERR_EEPROM;
 990                goto out;
 991        }
 992
 993        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 994
 995out:
 996        return status;
 997}
 998
 999/**
1000 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1001 *  @hw: pointer to hardware structure
1002 *  @offset: offset within the EEPROM to be read
1003 *  @words: number of word(s)
1004 *  @data: read 16 bit words(s) from EEPROM
1005 *
1006 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1007 **/
1008s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1009                                              u16 words, u16 *data)
1010{
1011        s32 status = 0;
1012        u16 i, count;
1013
1014        hw->eeprom.ops.init_params(hw);
1015
1016        if (words == 0) {
1017                status = IXGBE_ERR_INVALID_ARGUMENT;
1018                goto out;
1019        }
1020
1021        if (offset + words > hw->eeprom.word_size) {
1022                status = IXGBE_ERR_EEPROM;
1023                goto out;
1024        }
1025
1026        /*
1027         * We cannot hold synchronization semaphores for too long
1028         * to avoid other entity starvation. However it is more efficient
1029         * to read in bursts than synchronizing access for each word.
1030         */
1031        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1032                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1033                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1034
1035                status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1036                                                           count, &data[i]);
1037
1038                if (status != 0)
1039                        break;
1040        }
1041
1042out:
1043        return status;
1044}
1045
1046/**
1047 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1048 *  @hw: pointer to hardware structure
1049 *  @offset: offset within the EEPROM to be read
1050 *  @words: number of word(s)
1051 *  @data: read 16 bit word(s) from EEPROM
1052 *
1053 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1054 **/
1055static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1056                                             u16 words, u16 *data)
1057{
1058        s32 status;
1059        u16 word_in;
1060        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1061        u16 i;
1062
1063        /* Prepare the EEPROM for reading  */
1064        status = ixgbe_acquire_eeprom(hw);
1065
1066        if (status == 0) {
1067                if (ixgbe_ready_eeprom(hw) != 0) {
1068                        ixgbe_release_eeprom(hw);
1069                        status = IXGBE_ERR_EEPROM;
1070                }
1071        }
1072
1073        if (status == 0) {
1074                for (i = 0; i < words; i++) {
1075                        ixgbe_standby_eeprom(hw);
1076                        /*
1077                         * Some SPI eeproms use the 8th address bit embedded
1078                         * in the opcode
1079                         */
1080                        if ((hw->eeprom.address_bits == 8) &&
1081                            ((offset + i) >= 128))
1082                                read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1083
1084                        /* Send the READ command (opcode + addr) */
1085                        ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1086                                                    IXGBE_EEPROM_OPCODE_BITS);
1087                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1088                                                    hw->eeprom.address_bits);
1089
1090                        /* Read the data. */
1091                        word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1092                        data[i] = (word_in >> 8) | (word_in << 8);
1093                }
1094
1095                /* End this read operation */
1096                ixgbe_release_eeprom(hw);
1097        }
1098
1099        return status;
1100}
1101
1102/**
1103 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1104 *  @hw: pointer to hardware structure
1105 *  @offset: offset within the EEPROM to be read
1106 *  @data: read 16 bit value from EEPROM
1107 *
1108 *  Reads 16 bit value from EEPROM through bit-bang method
1109 **/
1110s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1111                                       u16 *data)
1112{
1113        s32 status;
1114
1115        hw->eeprom.ops.init_params(hw);
1116
1117        if (offset >= hw->eeprom.word_size) {
1118                status = IXGBE_ERR_EEPROM;
1119                goto out;
1120        }
1121
1122        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1123
1124out:
1125        return status;
1126}
1127
1128/**
1129 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1130 *  @hw: pointer to hardware structure
1131 *  @offset: offset of word in the EEPROM to read
1132 *  @words: number of word(s)
1133 *  @data: 16 bit word(s) from the EEPROM
1134 *
1135 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1136 **/
1137s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1138                                   u16 words, u16 *data)
1139{
1140        u32 eerd;
1141        s32 status = 0;
1142        u32 i;
1143
1144        hw->eeprom.ops.init_params(hw);
1145
1146        if (words == 0) {
1147                status = IXGBE_ERR_INVALID_ARGUMENT;
1148                goto out;
1149        }
1150
1151        if (offset >= hw->eeprom.word_size) {
1152                status = IXGBE_ERR_EEPROM;
1153                goto out;
1154        }
1155
1156        for (i = 0; i < words; i++) {
1157                eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1158                       IXGBE_EEPROM_RW_REG_START;
1159
1160                IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1161                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1162
1163                if (status == 0) {
1164                        data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1165                                   IXGBE_EEPROM_RW_REG_DATA);
1166                } else {
1167                        hw_dbg(hw, "Eeprom read timed out\n");
1168                        goto out;
1169                }
1170        }
1171out:
1172        return status;
1173}
1174
1175/**
1176 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1177 *  @hw: pointer to hardware structure
1178 *  @offset: offset within the EEPROM to be used as a scratch pad
1179 *
1180 *  Discover EEPROM page size by writing marching data at given offset.
1181 *  This function is called only when we are writing a new large buffer
1182 *  at given offset so the data would be overwritten anyway.
1183 **/
1184static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1185                                                 u16 offset)
1186{
1187        u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1188        s32 status = 0;
1189        u16 i;
1190
1191        for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1192                data[i] = i;
1193
1194        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1195        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1196                                             IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1197        hw->eeprom.word_page_size = 0;
1198        if (status != 0)
1199                goto out;
1200
1201        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1202        if (status != 0)
1203                goto out;
1204
1205        /*
1206         * When writing in burst more than the actual page size
1207         * EEPROM address wraps around current page.
1208         */
1209        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1210
1211        hw_dbg(hw, "Detected EEPROM page size = %d words.",
1212               hw->eeprom.word_page_size);
1213out:
1214        return status;
1215}
1216
1217/**
1218 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1219 *  @hw: pointer to hardware structure
1220 *  @offset: offset of  word in the EEPROM to read
1221 *  @data: word read from the EEPROM
1222 *
1223 *  Reads a 16 bit word from the EEPROM using the EERD register.
1224 **/
1225s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1226{
1227        return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1228}
1229
1230/**
1231 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1232 *  @hw: pointer to hardware structure
1233 *  @offset: offset of  word in the EEPROM to write
1234 *  @words: number of words
1235 *  @data: word(s) write to the EEPROM
1236 *
1237 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1238 **/
1239s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1240                                    u16 words, u16 *data)
1241{
1242        u32 eewr;
1243        s32 status = 0;
1244        u16 i;
1245
1246        hw->eeprom.ops.init_params(hw);
1247
1248        if (words == 0) {
1249                status = IXGBE_ERR_INVALID_ARGUMENT;
1250                goto out;
1251        }
1252
1253        if (offset >= hw->eeprom.word_size) {
1254                status = IXGBE_ERR_EEPROM;
1255                goto out;
1256        }
1257
1258        for (i = 0; i < words; i++) {
1259                eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260                       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261                       IXGBE_EEPROM_RW_REG_START;
1262
1263                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264                if (status != 0) {
1265                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266                        goto out;
1267                }
1268
1269                IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1270
1271                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272                if (status != 0) {
1273                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274                        goto out;
1275                }
1276        }
1277
1278out:
1279        return status;
1280}
1281
1282/**
1283 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1284 *  @hw: pointer to hardware structure
1285 *  @offset: offset of  word in the EEPROM to write
1286 *  @data: word write to the EEPROM
1287 *
1288 *  Write a 16 bit word to the EEPROM using the EEWR register.
1289 **/
1290s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1291{
1292        return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1293}
1294
1295/**
1296 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1297 *  @hw: pointer to hardware structure
1298 *  @ee_reg: EEPROM flag for polling
1299 *
1300 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1301 *  read or write is done respectively.
1302 **/
1303static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1304{
1305        u32 i;
1306        u32 reg;
1307        s32 status = IXGBE_ERR_EEPROM;
1308
1309        for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1310                if (ee_reg == IXGBE_NVM_POLL_READ)
1311                        reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1312                else
1313                        reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1314
1315                if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1316                        status = 0;
1317                        break;
1318                }
1319                udelay(5);
1320        }
1321        return status;
1322}
1323
1324/**
1325 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1326 *  @hw: pointer to hardware structure
1327 *
1328 *  Prepares EEPROM for access using bit-bang method. This function should
1329 *  be called before issuing a command to the EEPROM.
1330 **/
1331static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1332{
1333        s32 status = 0;
1334        u32 eec;
1335        u32 i;
1336
1337        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1338                status = IXGBE_ERR_SWFW_SYNC;
1339
1340        if (status == 0) {
1341                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1342
1343                /* Request EEPROM Access */
1344                eec |= IXGBE_EEC_REQ;
1345                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1346
1347                for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1348                        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1349                        if (eec & IXGBE_EEC_GNT)
1350                                break;
1351                        udelay(5);
1352                }
1353
1354                /* Release if grant not acquired */
1355                if (!(eec & IXGBE_EEC_GNT)) {
1356                        eec &= ~IXGBE_EEC_REQ;
1357                        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1358                        hw_dbg(hw, "Could not acquire EEPROM grant\n");
1359
1360                        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1361                        status = IXGBE_ERR_EEPROM;
1362                }
1363
1364                /* Setup EEPROM for Read/Write */
1365                if (status == 0) {
1366                        /* Clear CS and SK */
1367                        eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1368                        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1369                        IXGBE_WRITE_FLUSH(hw);
1370                        udelay(1);
1371                }
1372        }
1373        return status;
1374}
1375
1376/**
1377 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1378 *  @hw: pointer to hardware structure
1379 *
1380 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1381 **/
1382static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1383{
1384        s32 status = IXGBE_ERR_EEPROM;
1385        u32 timeout = 2000;
1386        u32 i;
1387        u32 swsm;
1388
1389        /* Get SMBI software semaphore between device drivers first */
1390        for (i = 0; i < timeout; i++) {
1391                /*
1392                 * If the SMBI bit is 0 when we read it, then the bit will be
1393                 * set and we have the semaphore
1394                 */
1395                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1396                if (!(swsm & IXGBE_SWSM_SMBI)) {
1397                        status = 0;
1398                        break;
1399                }
1400                udelay(50);
1401        }
1402
1403        if (i == timeout) {
1404                hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1405                       "not granted.\n");
1406                /*
1407                 * this release is particularly important because our attempts
1408                 * above to get the semaphore may have succeeded, and if there
1409                 * was a timeout, we should unconditionally clear the semaphore
1410                 * bits to free the driver to make progress
1411                 */
1412                ixgbe_release_eeprom_semaphore(hw);
1413
1414                udelay(50);
1415                /*
1416                 * one last try
1417                 * If the SMBI bit is 0 when we read it, then the bit will be
1418                 * set and we have the semaphore
1419                 */
1420                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1421                if (!(swsm & IXGBE_SWSM_SMBI))
1422                        status = 0;
1423        }
1424
1425        /* Now get the semaphore between SW/FW through the SWESMBI bit */
1426        if (status == 0) {
1427                for (i = 0; i < timeout; i++) {
1428                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1429
1430                        /* Set the SW EEPROM semaphore bit to request access */
1431                        swsm |= IXGBE_SWSM_SWESMBI;
1432                        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1433
1434                        /*
1435                         * If we set the bit successfully then we got the
1436                         * semaphore.
1437                         */
1438                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1439                        if (swsm & IXGBE_SWSM_SWESMBI)
1440                                break;
1441
1442                        udelay(50);
1443                }
1444
1445                /*
1446                 * Release semaphores and return error if SW EEPROM semaphore
1447                 * was not granted because we don't have access to the EEPROM
1448                 */
1449                if (i >= timeout) {
1450                        hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1451                               "not granted.\n");
1452                        ixgbe_release_eeprom_semaphore(hw);
1453                        status = IXGBE_ERR_EEPROM;
1454                }
1455        } else {
1456                hw_dbg(hw, "Software semaphore SMBI between device drivers "
1457                       "not granted.\n");
1458        }
1459
1460        return status;
1461}
1462
1463/**
1464 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1465 *  @hw: pointer to hardware structure
1466 *
1467 *  This function clears hardware semaphore bits.
1468 **/
1469static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1470{
1471        u32 swsm;
1472
1473        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1474
1475        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1476        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1477        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1478        IXGBE_WRITE_FLUSH(hw);
1479}
1480
1481/**
1482 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1483 *  @hw: pointer to hardware structure
1484 **/
1485static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1486{
1487        s32 status = 0;
1488        u16 i;
1489        u8 spi_stat_reg;
1490
1491        /*
1492         * Read "Status Register" repeatedly until the LSB is cleared.  The
1493         * EEPROM will signal that the command has been completed by clearing
1494         * bit 0 of the internal status register.  If it's not cleared within
1495         * 5 milliseconds, then error out.
1496         */
1497        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1498                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1499                                            IXGBE_EEPROM_OPCODE_BITS);
1500                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1501                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1502                        break;
1503
1504                udelay(5);
1505                ixgbe_standby_eeprom(hw);
1506        }
1507
1508        /*
1509         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1510         * devices (and only 0-5mSec on 5V devices)
1511         */
1512        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1513                hw_dbg(hw, "SPI EEPROM Status error\n");
1514                status = IXGBE_ERR_EEPROM;
1515        }
1516
1517        return status;
1518}
1519
1520/**
1521 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1522 *  @hw: pointer to hardware structure
1523 **/
1524static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1525{
1526        u32 eec;
1527
1528        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1529
1530        /* Toggle CS to flush commands */
1531        eec |= IXGBE_EEC_CS;
1532        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1533        IXGBE_WRITE_FLUSH(hw);
1534        udelay(1);
1535        eec &= ~IXGBE_EEC_CS;
1536        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1537        IXGBE_WRITE_FLUSH(hw);
1538        udelay(1);
1539}
1540
1541/**
1542 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1543 *  @hw: pointer to hardware structure
1544 *  @data: data to send to the EEPROM
1545 *  @count: number of bits to shift out
1546 **/
1547static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1548                                        u16 count)
1549{
1550        u32 eec;
1551        u32 mask;
1552        u32 i;
1553
1554        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1555
1556        /*
1557         * Mask is used to shift "count" bits of "data" out to the EEPROM
1558         * one bit at a time.  Determine the starting bit based on count
1559         */
1560        mask = 0x01 << (count - 1);
1561
1562        for (i = 0; i < count; i++) {
1563                /*
1564                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1565                 * "1", and then raising and then lowering the clock (the SK
1566                 * bit controls the clock input to the EEPROM).  A "0" is
1567                 * shifted out to the EEPROM by setting "DI" to "0" and then
1568                 * raising and then lowering the clock.
1569                 */
1570                if (data & mask)
1571                        eec |= IXGBE_EEC_DI;
1572                else
1573                        eec &= ~IXGBE_EEC_DI;
1574
1575                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1576                IXGBE_WRITE_FLUSH(hw);
1577
1578                udelay(1);
1579
1580                ixgbe_raise_eeprom_clk(hw, &eec);
1581                ixgbe_lower_eeprom_clk(hw, &eec);
1582
1583                /*
1584                 * Shift mask to signify next bit of data to shift in to the
1585                 * EEPROM
1586                 */
1587                mask = mask >> 1;
1588        }
1589
1590        /* We leave the "DI" bit set to "0" when we leave this routine. */
1591        eec &= ~IXGBE_EEC_DI;
1592        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1593        IXGBE_WRITE_FLUSH(hw);
1594}
1595
1596/**
1597 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1598 *  @hw: pointer to hardware structure
1599 **/
1600static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1601{
1602        u32 eec;
1603        u32 i;
1604        u16 data = 0;
1605
1606        /*
1607         * In order to read a register from the EEPROM, we need to shift
1608         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1609         * the clock input to the EEPROM (setting the SK bit), and then reading
1610         * the value of the "DO" bit.  During this "shifting in" process the
1611         * "DI" bit should always be clear.
1612         */
1613        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1614
1615        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1616
1617        for (i = 0; i < count; i++) {
1618                data = data << 1;
1619                ixgbe_raise_eeprom_clk(hw, &eec);
1620
1621                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1622
1623                eec &= ~(IXGBE_EEC_DI);
1624                if (eec & IXGBE_EEC_DO)
1625                        data |= 1;
1626
1627                ixgbe_lower_eeprom_clk(hw, &eec);
1628        }
1629
1630        return data;
1631}
1632
1633/**
1634 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1635 *  @hw: pointer to hardware structure
1636 *  @eec: EEC register's current value
1637 **/
1638static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1639{
1640        /*
1641         * Raise the clock input to the EEPROM
1642         * (setting the SK bit), then delay
1643         */
1644        *eec = *eec | IXGBE_EEC_SK;
1645        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1646        IXGBE_WRITE_FLUSH(hw);
1647        udelay(1);
1648}
1649
1650/**
1651 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1652 *  @hw: pointer to hardware structure
1653 *  @eecd: EECD's current value
1654 **/
1655static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1656{
1657        /*
1658         * Lower the clock input to the EEPROM (clearing the SK bit), then
1659         * delay
1660         */
1661        *eec = *eec & ~IXGBE_EEC_SK;
1662        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1663        IXGBE_WRITE_FLUSH(hw);
1664        udelay(1);
1665}
1666
1667/**
1668 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1669 *  @hw: pointer to hardware structure
1670 **/
1671static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1672{
1673        u32 eec;
1674
1675        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1676
1677        eec |= IXGBE_EEC_CS;  /* Pull CS high */
1678        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1679
1680        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1681        IXGBE_WRITE_FLUSH(hw);
1682
1683        udelay(1);
1684
1685        /* Stop requesting EEPROM access */
1686        eec &= ~IXGBE_EEC_REQ;
1687        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1688
1689        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1690
1691        /*
1692         * Delay before attempt to obtain semaphore again to allow FW
1693         * access. semaphore_delay is in ms we need us for usleep_range
1694         */
1695        usleep_range(hw->eeprom.semaphore_delay * 1000,
1696                     hw->eeprom.semaphore_delay * 2000);
1697}
1698
1699/**
1700 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1701 *  @hw: pointer to hardware structure
1702 **/
1703u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1704{
1705        u16 i;
1706        u16 j;
1707        u16 checksum = 0;
1708        u16 length = 0;
1709        u16 pointer = 0;
1710        u16 word = 0;
1711
1712        /* Include 0x0-0x3F in the checksum */
1713        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1714                if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1715                        hw_dbg(hw, "EEPROM read failed\n");
1716                        break;
1717                }
1718                checksum += word;
1719        }
1720
1721        /* Include all data from pointers except for the fw pointer */
1722        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1723                hw->eeprom.ops.read(hw, i, &pointer);
1724
1725                /* Make sure the pointer seems valid */
1726                if (pointer != 0xFFFF && pointer != 0) {
1727                        hw->eeprom.ops.read(hw, pointer, &length);
1728
1729                        if (length != 0xFFFF && length != 0) {
1730                                for (j = pointer+1; j <= pointer+length; j++) {
1731                                        hw->eeprom.ops.read(hw, j, &word);
1732                                        checksum += word;
1733                                }
1734                        }
1735                }
1736        }
1737
1738        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1739
1740        return checksum;
1741}
1742
1743/**
1744 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1745 *  @hw: pointer to hardware structure
1746 *  @checksum_val: calculated checksum
1747 *
1748 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1749 *  caller does not need checksum_val, the value can be NULL.
1750 **/
1751s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1752                                           u16 *checksum_val)
1753{
1754        s32 status;
1755        u16 checksum;
1756        u16 read_checksum = 0;
1757
1758        /*
1759         * Read the first word from the EEPROM. If this times out or fails, do
1760         * not continue or we could be in for a very long wait while every
1761         * EEPROM read fails
1762         */
1763        status = hw->eeprom.ops.read(hw, 0, &checksum);
1764
1765        if (status == 0) {
1766                checksum = hw->eeprom.ops.calc_checksum(hw);
1767
1768                hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1769
1770                /*
1771                 * Verify read checksum from EEPROM is the same as
1772                 * calculated checksum
1773                 */
1774                if (read_checksum != checksum)
1775                        status = IXGBE_ERR_EEPROM_CHECKSUM;
1776
1777                /* If the user cares, return the calculated checksum */
1778                if (checksum_val)
1779                        *checksum_val = checksum;
1780        } else {
1781                hw_dbg(hw, "EEPROM read failed\n");
1782        }
1783
1784        return status;
1785}
1786
1787/**
1788 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1789 *  @hw: pointer to hardware structure
1790 **/
1791s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1792{
1793        s32 status;
1794        u16 checksum;
1795
1796        /*
1797         * Read the first word from the EEPROM. If this times out or fails, do
1798         * not continue or we could be in for a very long wait while every
1799         * EEPROM read fails
1800         */
1801        status = hw->eeprom.ops.read(hw, 0, &checksum);
1802
1803        if (status == 0) {
1804                checksum = hw->eeprom.ops.calc_checksum(hw);
1805                status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1806                                              checksum);
1807        } else {
1808                hw_dbg(hw, "EEPROM read failed\n");
1809        }
1810
1811        return status;
1812}
1813
1814/**
1815 *  ixgbe_set_rar_generic - Set Rx address register
1816 *  @hw: pointer to hardware structure
1817 *  @index: Receive address register to write
1818 *  @addr: Address to put into receive address register
1819 *  @vmdq: VMDq "set" or "pool" index
1820 *  @enable_addr: set flag that address is active
1821 *
1822 *  Puts an ethernet address into a receive address register.
1823 **/
1824s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1825                          u32 enable_addr)
1826{
1827        u32 rar_low, rar_high;
1828        u32 rar_entries = hw->mac.num_rar_entries;
1829
1830        /* Make sure we are using a valid rar index range */
1831        if (index >= rar_entries) {
1832                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1833                return IXGBE_ERR_INVALID_ARGUMENT;
1834        }
1835
1836        /* setup VMDq pool selection before this RAR gets enabled */
1837        hw->mac.ops.set_vmdq(hw, index, vmdq);
1838
1839        /*
1840         * HW expects these in little endian so we reverse the byte
1841         * order from network order (big endian) to little endian
1842         */
1843        rar_low = ((u32)addr[0] |
1844                   ((u32)addr[1] << 8) |
1845                   ((u32)addr[2] << 16) |
1846                   ((u32)addr[3] << 24));
1847        /*
1848         * Some parts put the VMDq setting in the extra RAH bits,
1849         * so save everything except the lower 16 bits that hold part
1850         * of the address and the address valid bit.
1851         */
1852        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1853        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1854        rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1855
1856        if (enable_addr != 0)
1857                rar_high |= IXGBE_RAH_AV;
1858
1859        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1860        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1861
1862        return 0;
1863}
1864
1865/**
1866 *  ixgbe_clear_rar_generic - Remove Rx address register
1867 *  @hw: pointer to hardware structure
1868 *  @index: Receive address register to write
1869 *
1870 *  Clears an ethernet address from a receive address register.
1871 **/
1872s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1873{
1874        u32 rar_high;
1875        u32 rar_entries = hw->mac.num_rar_entries;
1876
1877        /* Make sure we are using a valid rar index range */
1878        if (index >= rar_entries) {
1879                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1880                return IXGBE_ERR_INVALID_ARGUMENT;
1881        }
1882
1883        /*
1884         * Some parts put the VMDq setting in the extra RAH bits,
1885         * so save everything except the lower 16 bits that hold part
1886         * of the address and the address valid bit.
1887         */
1888        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1889        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1890
1891        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1892        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1893
1894        /* clear VMDq pool/queue selection for this RAR */
1895        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1896
1897        return 0;
1898}
1899
1900/**
1901 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1902 *  @hw: pointer to hardware structure
1903 *
1904 *  Places the MAC address in receive address register 0 and clears the rest
1905 *  of the receive address registers. Clears the multicast table. Assumes
1906 *  the receiver is in reset when the routine is called.
1907 **/
1908s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1909{
1910        u32 i;
1911        u32 rar_entries = hw->mac.num_rar_entries;
1912
1913        /*
1914         * If the current mac address is valid, assume it is a software override
1915         * to the permanent address.
1916         * Otherwise, use the permanent address from the eeprom.
1917         */
1918        if (!is_valid_ether_addr(hw->mac.addr)) {
1919                /* Get the MAC address from the RAR0 for later reference */
1920                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1921
1922                hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1923        } else {
1924                /* Setup the receive address. */
1925                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1926                hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1927
1928                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1929
1930                /*  clear VMDq pool/queue selection for RAR 0 */
1931                hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1932        }
1933        hw->addr_ctrl.overflow_promisc = 0;
1934
1935        hw->addr_ctrl.rar_used_count = 1;
1936
1937        /* Zero out the other receive addresses. */
1938        hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1939        for (i = 1; i < rar_entries; i++) {
1940                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1941                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1942        }
1943
1944        /* Clear the MTA */
1945        hw->addr_ctrl.mta_in_use = 0;
1946        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1947
1948        hw_dbg(hw, " Clearing MTA\n");
1949        for (i = 0; i < hw->mac.mcft_size; i++)
1950                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1951
1952        if (hw->mac.ops.init_uta_tables)
1953                hw->mac.ops.init_uta_tables(hw);
1954
1955        return 0;
1956}
1957
1958/**
1959 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1960 *  @hw: pointer to hardware structure
1961 *  @mc_addr: the multicast address
1962 *
1963 *  Extracts the 12 bits, from a multicast address, to determine which
1964 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1965 *  incoming rx multicast addresses, to determine the bit-vector to check in
1966 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1967 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1968 *  to mc_filter_type.
1969 **/
1970static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1971{
1972        u32 vector = 0;
1973
1974        switch (hw->mac.mc_filter_type) {
1975        case 0:   /* use bits [47:36] of the address */
1976                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1977                break;
1978        case 1:   /* use bits [46:35] of the address */
1979                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1980                break;
1981        case 2:   /* use bits [45:34] of the address */
1982                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1983                break;
1984        case 3:   /* use bits [43:32] of the address */
1985                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1986                break;
1987        default:  /* Invalid mc_filter_type */
1988                hw_dbg(hw, "MC filter type param set incorrectly\n");
1989                break;
1990        }
1991
1992        /* vector can only be 12-bits or boundary will be exceeded */
1993        vector &= 0xFFF;
1994        return vector;
1995}
1996
1997/**
1998 *  ixgbe_set_mta - Set bit-vector in multicast table
1999 *  @hw: pointer to hardware structure
2000 *  @hash_value: Multicast address hash value
2001 *
2002 *  Sets the bit-vector in the multicast table.
2003 **/
2004static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2005{
2006        u32 vector;
2007        u32 vector_bit;
2008        u32 vector_reg;
2009
2010        hw->addr_ctrl.mta_in_use++;
2011
2012        vector = ixgbe_mta_vector(hw, mc_addr);
2013        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2014
2015        /*
2016         * The MTA is a register array of 128 32-bit registers. It is treated
2017         * like an array of 4096 bits.  We want to set bit
2018         * BitArray[vector_value]. So we figure out what register the bit is
2019         * in, read it, OR in the new bit, then write back the new value.  The
2020         * register is determined by the upper 7 bits of the vector value and
2021         * the bit within that register are determined by the lower 5 bits of
2022         * the value.
2023         */
2024        vector_reg = (vector >> 5) & 0x7F;
2025        vector_bit = vector & 0x1F;
2026        hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2027}
2028
2029/**
2030 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2031 *  @hw: pointer to hardware structure
2032 *  @netdev: pointer to net device structure
2033 *
2034 *  The given list replaces any existing list. Clears the MC addrs from receive
2035 *  address registers and the multicast table. Uses unused receive address
2036 *  registers for the first multicast addresses, and hashes the rest into the
2037 *  multicast table.
2038 **/
2039s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2040                                      struct net_device *netdev)
2041{
2042        struct netdev_hw_addr *ha;
2043        u32 i;
2044
2045        /*
2046         * Set the new number of MC addresses that we are being requested to
2047         * use.
2048         */
2049        hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2050        hw->addr_ctrl.mta_in_use = 0;
2051
2052        /* Clear mta_shadow */
2053        hw_dbg(hw, " Clearing MTA\n");
2054        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2055
2056        /* Update mta shadow */
2057        netdev_for_each_mc_addr(ha, netdev) {
2058                hw_dbg(hw, " Adding the multicast addresses:\n");
2059                ixgbe_set_mta(hw, ha->addr);
2060        }
2061
2062        /* Enable mta */
2063        for (i = 0; i < hw->mac.mcft_size; i++)
2064                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2065                                      hw->mac.mta_shadow[i]);
2066
2067        if (hw->addr_ctrl.mta_in_use > 0)
2068                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2069                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2070
2071        hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2072        return 0;
2073}
2074
2075/**
2076 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2077 *  @hw: pointer to hardware structure
2078 *
2079 *  Enables multicast address in RAR and the use of the multicast hash table.
2080 **/
2081s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2082{
2083        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2084
2085        if (a->mta_in_use > 0)
2086                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2087                                hw->mac.mc_filter_type);
2088
2089        return 0;
2090}
2091
2092/**
2093 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2094 *  @hw: pointer to hardware structure
2095 *
2096 *  Disables multicast address in RAR and the use of the multicast hash table.
2097 **/
2098s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2099{
2100        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2101
2102        if (a->mta_in_use > 0)
2103                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2104
2105        return 0;
2106}
2107
2108/**
2109 *  ixgbe_fc_enable_generic - Enable flow control
2110 *  @hw: pointer to hardware structure
2111 *
2112 *  Enable flow control according to the current settings.
2113 **/
2114s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2115{
2116        s32 ret_val = 0;
2117        u32 mflcn_reg, fccfg_reg;
2118        u32 reg;
2119        u32 fcrtl, fcrth;
2120        int i;
2121
2122        /*
2123         * Validate the water mark configuration for packet buffer 0.  Zero
2124         * water marks indicate that the packet buffer was not configured
2125         * and the watermarks for packet buffer 0 should always be configured.
2126         */
2127        if (!hw->fc.low_water ||
2128            !hw->fc.high_water[0] ||
2129            !hw->fc.pause_time) {
2130                hw_dbg(hw, "Invalid water mark configuration\n");
2131                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2132                goto out;
2133        }
2134
2135        /* Negotiate the fc mode to use */
2136        ixgbe_fc_autoneg(hw);
2137
2138        /* Disable any previous flow control settings */
2139        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2140        mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2141
2142        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2143        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2144
2145        /*
2146         * The possible values of fc.current_mode are:
2147         * 0: Flow control is completely disabled
2148         * 1: Rx flow control is enabled (we can receive pause frames,
2149         *    but not send pause frames).
2150         * 2: Tx flow control is enabled (we can send pause frames but
2151         *    we do not support receiving pause frames).
2152         * 3: Both Rx and Tx flow control (symmetric) are enabled.
2153         * other: Invalid.
2154         */
2155        switch (hw->fc.current_mode) {
2156        case ixgbe_fc_none:
2157                /*
2158                 * Flow control is disabled by software override or autoneg.
2159                 * The code below will actually disable it in the HW.
2160                 */
2161                break;
2162        case ixgbe_fc_rx_pause:
2163                /*
2164                 * Rx Flow control is enabled and Tx Flow control is
2165                 * disabled by software override. Since there really
2166                 * isn't a way to advertise that we are capable of RX
2167                 * Pause ONLY, we will advertise that we support both
2168                 * symmetric and asymmetric Rx PAUSE.  Later, we will
2169                 * disable the adapter's ability to send PAUSE frames.
2170                 */
2171                mflcn_reg |= IXGBE_MFLCN_RFCE;
2172                break;
2173        case ixgbe_fc_tx_pause:
2174                /*
2175                 * Tx Flow control is enabled, and Rx Flow control is
2176                 * disabled by software override.
2177                 */
2178                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2179                break;
2180        case ixgbe_fc_full:
2181                /* Flow control (both Rx and Tx) is enabled by SW override. */
2182                mflcn_reg |= IXGBE_MFLCN_RFCE;
2183                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2184                break;
2185        default:
2186                hw_dbg(hw, "Flow control param set incorrectly\n");
2187                ret_val = IXGBE_ERR_CONFIG;
2188                goto out;
2189                break;
2190        }
2191
2192        /* Set 802.3x based flow control settings. */
2193        mflcn_reg |= IXGBE_MFLCN_DPF;
2194        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2195        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2196
2197        fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2198
2199        /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2200        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2201                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2202                    hw->fc.high_water[i]) {
2203                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2204                        fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2205                } else {
2206                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2207                        /*
2208                         * In order to prevent Tx hangs when the internal Tx
2209                         * switch is enabled we must set the high water mark
2210                         * to the maximum FCRTH value.  This allows the Tx
2211                         * switch to function even under heavy Rx workloads.
2212                         */
2213                        fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2214                }
2215
2216                IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2217        }
2218
2219        /* Configure pause time (2 TCs per register) */
2220        reg = hw->fc.pause_time * 0x00010001;
2221        for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2222                IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2223
2224        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2225
2226out:
2227        return ret_val;
2228}
2229
2230/**
2231 *  ixgbe_negotiate_fc - Negotiate flow control
2232 *  @hw: pointer to hardware structure
2233 *  @adv_reg: flow control advertised settings
2234 *  @lp_reg: link partner's flow control settings
2235 *  @adv_sym: symmetric pause bit in advertisement
2236 *  @adv_asm: asymmetric pause bit in advertisement
2237 *  @lp_sym: symmetric pause bit in link partner advertisement
2238 *  @lp_asm: asymmetric pause bit in link partner advertisement
2239 *
2240 *  Find the intersection between advertised settings and link partner's
2241 *  advertised settings
2242 **/
2243static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2244                              u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2245{
2246        if ((!(adv_reg)) ||  (!(lp_reg)))
2247                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2248
2249        if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2250                /*
2251                 * Now we need to check if the user selected Rx ONLY
2252                 * of pause frames.  In this case, we had to advertise
2253                 * FULL flow control because we could not advertise RX
2254                 * ONLY. Hence, we must now check to see if we need to
2255                 * turn OFF the TRANSMISSION of PAUSE frames.
2256                 */
2257                if (hw->fc.requested_mode == ixgbe_fc_full) {
2258                        hw->fc.current_mode = ixgbe_fc_full;
2259                        hw_dbg(hw, "Flow Control = FULL.\n");
2260                } else {
2261                        hw->fc.current_mode = ixgbe_fc_rx_pause;
2262                        hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2263                }
2264        } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2265                   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2266                hw->fc.current_mode = ixgbe_fc_tx_pause;
2267                hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2268        } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2269                   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2270                hw->fc.current_mode = ixgbe_fc_rx_pause;
2271                hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2272        } else {
2273                hw->fc.current_mode = ixgbe_fc_none;
2274                hw_dbg(hw, "Flow Control = NONE.\n");
2275        }
2276        return 0;
2277}
2278
2279/**
2280 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2281 *  @hw: pointer to hardware structure
2282 *
2283 *  Enable flow control according on 1 gig fiber.
2284 **/
2285static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2286{
2287        u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2288        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2289
2290        /*
2291         * On multispeed fiber at 1g, bail out if
2292         * - link is up but AN did not complete, or if
2293         * - link is up and AN completed but timed out
2294         */
2295
2296        linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2297        if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2298            (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2299                goto out;
2300
2301        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2302        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2303
2304        ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2305                               pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2306                               IXGBE_PCS1GANA_ASM_PAUSE,
2307                               IXGBE_PCS1GANA_SYM_PAUSE,
2308                               IXGBE_PCS1GANA_ASM_PAUSE);
2309
2310out:
2311        return ret_val;
2312}
2313
2314/**
2315 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2316 *  @hw: pointer to hardware structure
2317 *
2318 *  Enable flow control according to IEEE clause 37.
2319 **/
2320static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2321{
2322        u32 links2, anlp1_reg, autoc_reg, links;
2323        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2324
2325        /*
2326         * On backplane, bail out if
2327         * - backplane autoneg was not completed, or if
2328         * - we are 82599 and link partner is not AN enabled
2329         */
2330        links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2331        if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2332                goto out;
2333
2334        if (hw->mac.type == ixgbe_mac_82599EB) {
2335                links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2336                if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2337                        goto out;
2338        }
2339        /*
2340         * Read the 10g AN autoc and LP ability registers and resolve
2341         * local flow control settings accordingly
2342         */
2343        autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2344        anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2345
2346        ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2347                anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2348                IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2349
2350out:
2351        return ret_val;
2352}
2353
2354/**
2355 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2356 *  @hw: pointer to hardware structure
2357 *
2358 *  Enable flow control according to IEEE clause 37.
2359 **/
2360static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2361{
2362        u16 technology_ability_reg = 0;
2363        u16 lp_technology_ability_reg = 0;
2364
2365        hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2366                             MDIO_MMD_AN,
2367                             &technology_ability_reg);
2368        hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2369                             MDIO_MMD_AN,
2370                             &lp_technology_ability_reg);
2371
2372        return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2373                                  (u32)lp_technology_ability_reg,
2374                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2375                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2376}
2377
2378/**
2379 *  ixgbe_fc_autoneg - Configure flow control
2380 *  @hw: pointer to hardware structure
2381 *
2382 *  Compares our advertised flow control capabilities to those advertised by
2383 *  our link partner, and determines the proper flow control mode to use.
2384 **/
2385void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2386{
2387        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2388        ixgbe_link_speed speed;
2389        bool link_up;
2390
2391        /*
2392         * AN should have completed when the cable was plugged in.
2393         * Look for reasons to bail out.  Bail out if:
2394         * - FC autoneg is disabled, or if
2395         * - link is not up.
2396         *
2397         * Since we're being called from an LSC, link is already known to be up.
2398         * So use link_up_wait_to_complete=false.
2399         */
2400        if (hw->fc.disable_fc_autoneg)
2401                goto out;
2402
2403        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2404        if (!link_up)
2405                goto out;
2406
2407        switch (hw->phy.media_type) {
2408        /* Autoneg flow control on fiber adapters */
2409        case ixgbe_media_type_fiber_fixed:
2410        case ixgbe_media_type_fiber:
2411                if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2412                        ret_val = ixgbe_fc_autoneg_fiber(hw);
2413                break;
2414
2415        /* Autoneg flow control on backplane adapters */
2416        case ixgbe_media_type_backplane:
2417                ret_val = ixgbe_fc_autoneg_backplane(hw);
2418                break;
2419
2420        /* Autoneg flow control on copper adapters */
2421        case ixgbe_media_type_copper:
2422                if (ixgbe_device_supports_autoneg_fc(hw))
2423                        ret_val = ixgbe_fc_autoneg_copper(hw);
2424                break;
2425
2426        default:
2427                break;
2428        }
2429
2430out:
2431        if (ret_val == 0) {
2432                hw->fc.fc_was_autonegged = true;
2433        } else {
2434                hw->fc.fc_was_autonegged = false;
2435                hw->fc.current_mode = hw->fc.requested_mode;
2436        }
2437}
2438
2439/**
2440 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2441 *  @hw: pointer to hardware structure
2442 *
2443 *  Disables PCI-Express master access and verifies there are no pending
2444 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2445 *  bit hasn't caused the master requests to be disabled, else 0
2446 *  is returned signifying master requests disabled.
2447 **/
2448static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2449{
2450        struct ixgbe_adapter *adapter = hw->back;
2451        s32 status = 0;
2452        u32 i;
2453        u16 value;
2454
2455        /* Always set this bit to ensure any future transactions are blocked */
2456        IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2457
2458        /* Exit if master requests are blocked */
2459        if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2460                goto out;
2461
2462        /* Poll for master request bit to clear */
2463        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2464                udelay(100);
2465                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2466                        goto out;
2467        }
2468
2469        /*
2470         * Two consecutive resets are required via CTRL.RST per datasheet
2471         * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2472         * of this need.  The first reset prevents new master requests from
2473         * being issued by our device.  We then must wait 1usec or more for any
2474         * remaining completions from the PCIe bus to trickle in, and then reset
2475         * again to clear out any effects they may have had on our device.
2476         */
2477        hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2478        hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2479
2480        /*
2481         * Before proceeding, make sure that the PCIe block does not have
2482         * transactions pending.
2483         */
2484        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2485                udelay(100);
2486                pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2487                                                         &value);
2488                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2489                        goto out;
2490        }
2491
2492        hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2493        status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2494
2495out:
2496        return status;
2497}
2498
2499/**
2500 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2501 *  @hw: pointer to hardware structure
2502 *  @mask: Mask to specify which semaphore to acquire
2503 *
2504 *  Acquires the SWFW semaphore through the GSSR register for the specified
2505 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2506 **/
2507s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2508{
2509        u32 gssr = 0;
2510        u32 swmask = mask;
2511        u32 fwmask = mask << 5;
2512        u32 timeout = 200;
2513        u32 i;
2514
2515        for (i = 0; i < timeout; i++) {
2516                /*
2517                 * SW NVM semaphore bit is used for access to all
2518                 * SW_FW_SYNC bits (not just NVM)
2519                 */
2520                if (ixgbe_get_eeprom_semaphore(hw))
2521                        return IXGBE_ERR_SWFW_SYNC;
2522
2523                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2524                if (!(gssr & (fwmask | swmask))) {
2525                        gssr |= swmask;
2526                        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2527                        ixgbe_release_eeprom_semaphore(hw);
2528                        return 0;
2529                } else {
2530                        /* Resource is currently in use by FW or SW */
2531                        ixgbe_release_eeprom_semaphore(hw);
2532                        usleep_range(5000, 10000);
2533                }
2534        }
2535
2536        /* If time expired clear the bits holding the lock and retry */
2537        if (gssr & (fwmask | swmask))
2538                ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2539
2540        usleep_range(5000, 10000);
2541        return IXGBE_ERR_SWFW_SYNC;
2542}
2543
2544/**
2545 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2546 *  @hw: pointer to hardware structure
2547 *  @mask: Mask to specify which semaphore to release
2548 *
2549 *  Releases the SWFW semaphore through the GSSR register for the specified
2550 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2551 **/
2552void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2553{
2554        u32 gssr;
2555        u32 swmask = mask;
2556
2557        ixgbe_get_eeprom_semaphore(hw);
2558
2559        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2560        gssr &= ~swmask;
2561        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2562
2563        ixgbe_release_eeprom_semaphore(hw);
2564}
2565
2566/**
2567 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2568 *  @hw: pointer to hardware structure
2569 *
2570 *  Stops the receive data path and waits for the HW to internally
2571 *  empty the Rx security block.
2572 **/
2573s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2574{
2575#define IXGBE_MAX_SECRX_POLL 40
2576        int i;
2577        int secrxreg;
2578
2579        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2580        secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2581        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2582        for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2583                secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2584                if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2585                        break;
2586                else
2587                        /* Use interrupt-safe sleep just in case */
2588                        udelay(1000);
2589        }
2590
2591        /* For informational purposes only */
2592        if (i >= IXGBE_MAX_SECRX_POLL)
2593                hw_dbg(hw, "Rx unit being enabled before security "
2594                       "path fully disabled.  Continuing with init.\n");
2595
2596        return 0;
2597
2598}
2599
2600/**
2601 *  ixgbe_enable_rx_buff - Enables the receive data path
2602 *  @hw: pointer to hardware structure
2603 *
2604 *  Enables the receive data path
2605 **/
2606s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2607{
2608        int secrxreg;
2609
2610        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2611        secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2612        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2613        IXGBE_WRITE_FLUSH(hw);
2614
2615        return 0;
2616}
2617
2618/**
2619 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2620 *  @hw: pointer to hardware structure
2621 *  @regval: register value to write to RXCTRL
2622 *
2623 *  Enables the Rx DMA unit
2624 **/
2625s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2626{
2627        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2628
2629        return 0;
2630}
2631
2632/**
2633 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2634 *  @hw: pointer to hardware structure
2635 *  @index: led number to blink
2636 **/
2637s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2638{
2639        ixgbe_link_speed speed = 0;
2640        bool link_up = false;
2641        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2642        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2643        s32 ret_val = 0;
2644
2645        /*
2646         * Link must be up to auto-blink the LEDs;
2647         * Force it if link is down.
2648         */
2649        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2650
2651        if (!link_up) {
2652                /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2653                 * LESM is on.
2654                 */
2655                bool got_lock = false;
2656
2657                if ((hw->mac.type == ixgbe_mac_82599EB) &&
2658                    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2659                        ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2660                                                        IXGBE_GSSR_MAC_CSR_SM);
2661                        if (ret_val)
2662                                goto out;
2663
2664                        got_lock = true;
2665                }
2666                autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2667                autoc_reg |= IXGBE_AUTOC_FLU;
2668                IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2669                IXGBE_WRITE_FLUSH(hw);
2670
2671                if (got_lock)
2672                        hw->mac.ops.release_swfw_sync(hw,
2673                                                      IXGBE_GSSR_MAC_CSR_SM);
2674                usleep_range(10000, 20000);
2675        }
2676
2677        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2678        led_reg |= IXGBE_LED_BLINK(index);
2679        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2680        IXGBE_WRITE_FLUSH(hw);
2681
2682out:
2683        return ret_val;
2684}
2685
2686/**
2687 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2688 *  @hw: pointer to hardware structure
2689 *  @index: led number to stop blinking
2690 **/
2691s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2692{
2693        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2694        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2695        s32 ret_val = 0;
2696        bool got_lock = false;
2697
2698        /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2699         * LESM is on.
2700         */
2701        if ((hw->mac.type == ixgbe_mac_82599EB) &&
2702            ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2703                ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2704                                                IXGBE_GSSR_MAC_CSR_SM);
2705                if (ret_val)
2706                        goto out;
2707
2708                got_lock = true;
2709        }
2710
2711        autoc_reg &= ~IXGBE_AUTOC_FLU;
2712        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2713        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2714
2715        if (hw->mac.type == ixgbe_mac_82599EB)
2716                ixgbe_reset_pipeline_82599(hw);
2717
2718        if (got_lock)
2719                hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
2720
2721        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2722        led_reg &= ~IXGBE_LED_BLINK(index);
2723        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2724        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2725        IXGBE_WRITE_FLUSH(hw);
2726
2727out:
2728        return ret_val;
2729}
2730
2731/**
2732 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2733 *  @hw: pointer to hardware structure
2734 *  @san_mac_offset: SAN MAC address offset
2735 *
2736 *  This function will read the EEPROM location for the SAN MAC address
2737 *  pointer, and returns the value at that location.  This is used in both
2738 *  get and set mac_addr routines.
2739 **/
2740static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2741                                        u16 *san_mac_offset)
2742{
2743        s32 ret_val;
2744
2745        /*
2746         * First read the EEPROM pointer to see if the MAC addresses are
2747         * available.
2748         */
2749        ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2750                                      san_mac_offset);
2751        if (ret_val)
2752                hw_err(hw, "eeprom read at offset %d failed\n",
2753                       IXGBE_SAN_MAC_ADDR_PTR);
2754
2755        return ret_val;
2756}
2757
2758/**
2759 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2760 *  @hw: pointer to hardware structure
2761 *  @san_mac_addr: SAN MAC address
2762 *
2763 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2764 *  per-port, so set_lan_id() must be called before reading the addresses.
2765 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2766 *  upon for non-SFP connections, so we must call it here.
2767 **/
2768s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2769{
2770        u16 san_mac_data, san_mac_offset;
2771        u8 i;
2772        s32 ret_val;
2773
2774        /*
2775         * First read the EEPROM pointer to see if the MAC addresses are
2776         * available.  If they're not, no point in calling set_lan_id() here.
2777         */
2778        ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2779        if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2780
2781                goto san_mac_addr_clr;
2782
2783        /* make sure we know which port we need to program */
2784        hw->mac.ops.set_lan_id(hw);
2785        /* apply the port offset to the address offset */
2786        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2787                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2788        for (i = 0; i < 3; i++) {
2789                ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2790                                              &san_mac_data);
2791                if (ret_val) {
2792                        hw_err(hw, "eeprom read at offset %d failed\n",
2793                               san_mac_offset);
2794                        goto san_mac_addr_clr;
2795                }
2796                san_mac_addr[i * 2] = (u8)(san_mac_data);
2797                san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2798                san_mac_offset++;
2799        }
2800        return 0;
2801
2802san_mac_addr_clr:
2803        /* No addresses available in this EEPROM.  It's not necessarily an
2804         * error though, so just wipe the local address and return.
2805         */
2806        for (i = 0; i < 6; i++)
2807                san_mac_addr[i] = 0xFF;
2808        return ret_val;
2809}
2810
2811/**
2812 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2813 *  @hw: pointer to hardware structure
2814 *
2815 *  Read PCIe configuration space, and get the MSI-X vector count from
2816 *  the capabilities table.
2817 **/
2818u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2819{
2820        struct ixgbe_adapter *adapter = hw->back;
2821        u16 msix_count = 1;
2822        u16 max_msix_count;
2823        u16 pcie_offset;
2824
2825        switch (hw->mac.type) {
2826        case ixgbe_mac_82598EB:
2827                pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2828                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2829                break;
2830        case ixgbe_mac_82599EB:
2831        case ixgbe_mac_X540:
2832                pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2833                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2834                break;
2835        default:
2836                return msix_count;
2837        }
2838
2839        pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
2840        msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2841
2842        /* MSI-X count is zero-based in HW */
2843        msix_count++;
2844
2845        if (msix_count > max_msix_count)
2846                msix_count = max_msix_count;
2847
2848        return msix_count;
2849}
2850
2851/**
2852 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2853 *  @hw: pointer to hardware struct
2854 *  @rar: receive address register index to disassociate
2855 *  @vmdq: VMDq pool index to remove from the rar
2856 **/
2857s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2858{
2859        u32 mpsar_lo, mpsar_hi;
2860        u32 rar_entries = hw->mac.num_rar_entries;
2861
2862        /* Make sure we are using a valid rar index range */
2863        if (rar >= rar_entries) {
2864                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2865                return IXGBE_ERR_INVALID_ARGUMENT;
2866        }
2867
2868        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2869        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2870
2871        if (!mpsar_lo && !mpsar_hi)
2872                goto done;
2873
2874        if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2875                if (mpsar_lo) {
2876                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2877                        mpsar_lo = 0;
2878                }
2879                if (mpsar_hi) {
2880                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2881                        mpsar_hi = 0;
2882                }
2883        } else if (vmdq < 32) {
2884                mpsar_lo &= ~(1 << vmdq);
2885                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2886        } else {
2887                mpsar_hi &= ~(1 << (vmdq - 32));
2888                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2889        }
2890
2891        /* was that the last pool using this rar? */
2892        if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2893                hw->mac.ops.clear_rar(hw, rar);
2894done:
2895        return 0;
2896}
2897
2898/**
2899 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2900 *  @hw: pointer to hardware struct
2901 *  @rar: receive address register index to associate with a VMDq index
2902 *  @vmdq: VMDq pool index
2903 **/
2904s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2905{
2906        u32 mpsar;
2907        u32 rar_entries = hw->mac.num_rar_entries;
2908
2909        /* Make sure we are using a valid rar index range */
2910        if (rar >= rar_entries) {
2911                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2912                return IXGBE_ERR_INVALID_ARGUMENT;
2913        }
2914
2915        if (vmdq < 32) {
2916                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2917                mpsar |= 1 << vmdq;
2918                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2919        } else {
2920                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2921                mpsar |= 1 << (vmdq - 32);
2922                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2923        }
2924        return 0;
2925}
2926
2927/**
2928 *  This function should only be involved in the IOV mode.
2929 *  In IOV mode, Default pool is next pool after the number of
2930 *  VFs advertized and not 0.
2931 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2932 *
2933 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2934 *  @hw: pointer to hardware struct
2935 *  @vmdq: VMDq pool index
2936 **/
2937s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2938{
2939        u32 rar = hw->mac.san_mac_rar_index;
2940
2941        if (vmdq < 32) {
2942                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2943                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2944        } else {
2945                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2946                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2947        }
2948
2949        return 0;
2950}
2951
2952/**
2953 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2954 *  @hw: pointer to hardware structure
2955 **/
2956s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2957{
2958        int i;
2959
2960        for (i = 0; i < 128; i++)
2961                IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2962
2963        return 0;
2964}
2965
2966/**
2967 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2968 *  @hw: pointer to hardware structure
2969 *  @vlan: VLAN id to write to VLAN filter
2970 *
2971 *  return the VLVF index where this VLAN id should be placed
2972 *
2973 **/
2974static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2975{
2976        u32 bits = 0;
2977        u32 first_empty_slot = 0;
2978        s32 regindex;
2979
2980        /* short cut the special case */
2981        if (vlan == 0)
2982                return 0;
2983
2984        /*
2985          * Search for the vlan id in the VLVF entries. Save off the first empty
2986          * slot found along the way
2987          */
2988        for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2989                bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2990                if (!bits && !(first_empty_slot))
2991                        first_empty_slot = regindex;
2992                else if ((bits & 0x0FFF) == vlan)
2993                        break;
2994        }
2995
2996        /*
2997          * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2998          * in the VLVF. Else use the first empty VLVF register for this
2999          * vlan id.
3000          */
3001        if (regindex >= IXGBE_VLVF_ENTRIES) {
3002                if (first_empty_slot)
3003                        regindex = first_empty_slot;
3004                else {
3005                        hw_dbg(hw, "No space in VLVF.\n");
3006                        regindex = IXGBE_ERR_NO_SPACE;
3007                }
3008        }
3009
3010        return regindex;
3011}
3012
3013/**
3014 *  ixgbe_set_vfta_generic - Set VLAN filter table
3015 *  @hw: pointer to hardware structure
3016 *  @vlan: VLAN id to write to VLAN filter
3017 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3018 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3019 *
3020 *  Turn on/off specified VLAN in the VLAN filter table.
3021 **/
3022s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3023                           bool vlan_on)
3024{
3025        s32 regindex;
3026        u32 bitindex;
3027        u32 vfta;
3028        u32 bits;
3029        u32 vt;
3030        u32 targetbit;
3031        bool vfta_changed = false;
3032
3033        if (vlan > 4095)
3034                return IXGBE_ERR_PARAM;
3035
3036        /*
3037         * this is a 2 part operation - first the VFTA, then the
3038         * VLVF and VLVFB if VT Mode is set
3039         * We don't write the VFTA until we know the VLVF part succeeded.
3040         */
3041
3042        /* Part 1
3043         * The VFTA is a bitstring made up of 128 32-bit registers
3044         * that enable the particular VLAN id, much like the MTA:
3045         *    bits[11-5]: which register
3046         *    bits[4-0]:  which bit in the register
3047         */
3048        regindex = (vlan >> 5) & 0x7F;
3049        bitindex = vlan & 0x1F;
3050        targetbit = (1 << bitindex);
3051        vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3052
3053        if (vlan_on) {
3054                if (!(vfta & targetbit)) {
3055                        vfta |= targetbit;
3056                        vfta_changed = true;
3057                }
3058        } else {
3059                if ((vfta & targetbit)) {
3060                        vfta &= ~targetbit;
3061                        vfta_changed = true;
3062                }
3063        }
3064
3065        /* Part 2
3066         * If VT Mode is set
3067         *   Either vlan_on
3068         *     make sure the vlan is in VLVF
3069         *     set the vind bit in the matching VLVFB
3070         *   Or !vlan_on
3071         *     clear the pool bit and possibly the vind
3072         */
3073        vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3074        if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3075                s32 vlvf_index;
3076
3077                vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3078                if (vlvf_index < 0)
3079                        return vlvf_index;
3080
3081                if (vlan_on) {
3082                        /* set the pool bit */
3083                        if (vind < 32) {
3084                                bits = IXGBE_READ_REG(hw,
3085                                                IXGBE_VLVFB(vlvf_index*2));
3086                                bits |= (1 << vind);
3087                                IXGBE_WRITE_REG(hw,
3088                                                IXGBE_VLVFB(vlvf_index*2),
3089                                                bits);
3090                        } else {
3091                                bits = IXGBE_READ_REG(hw,
3092                                                IXGBE_VLVFB((vlvf_index*2)+1));
3093                                bits |= (1 << (vind-32));
3094                                IXGBE_WRITE_REG(hw,
3095                                                IXGBE_VLVFB((vlvf_index*2)+1),
3096                                                bits);
3097                        }
3098                } else {
3099                        /* clear the pool bit */
3100                        if (vind < 32) {
3101                                bits = IXGBE_READ_REG(hw,
3102                                                IXGBE_VLVFB(vlvf_index*2));
3103                                bits &= ~(1 << vind);
3104                                IXGBE_WRITE_REG(hw,
3105                                                IXGBE_VLVFB(vlvf_index*2),
3106                                                bits);
3107                                bits |= IXGBE_READ_REG(hw,
3108                                                IXGBE_VLVFB((vlvf_index*2)+1));
3109                        } else {
3110                                bits = IXGBE_READ_REG(hw,
3111                                                IXGBE_VLVFB((vlvf_index*2)+1));
3112                                bits &= ~(1 << (vind-32));
3113                                IXGBE_WRITE_REG(hw,
3114                                                IXGBE_VLVFB((vlvf_index*2)+1),
3115                                                bits);
3116                                bits |= IXGBE_READ_REG(hw,
3117                                                IXGBE_VLVFB(vlvf_index*2));
3118                        }
3119                }
3120
3121                /*
3122                 * If there are still bits set in the VLVFB registers
3123                 * for the VLAN ID indicated we need to see if the
3124                 * caller is requesting that we clear the VFTA entry bit.
3125                 * If the caller has requested that we clear the VFTA
3126                 * entry bit but there are still pools/VFs using this VLAN
3127                 * ID entry then ignore the request.  We're not worried
3128                 * about the case where we're turning the VFTA VLAN ID
3129                 * entry bit on, only when requested to turn it off as
3130                 * there may be multiple pools and/or VFs using the
3131                 * VLAN ID entry.  In that case we cannot clear the
3132                 * VFTA bit until all pools/VFs using that VLAN ID have also
3133                 * been cleared.  This will be indicated by "bits" being
3134                 * zero.
3135                 */
3136                if (bits) {
3137                        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3138                                        (IXGBE_VLVF_VIEN | vlan));
3139                        if (!vlan_on) {
3140                                /* someone wants to clear the vfta entry
3141                                 * but some pools/VFs are still using it.
3142                                 * Ignore it. */
3143                                vfta_changed = false;
3144                        }
3145                }
3146                else
3147                        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3148        }
3149
3150        if (vfta_changed)
3151                IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3152
3153        return 0;
3154}
3155
3156/**
3157 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3158 *  @hw: pointer to hardware structure
3159 *
3160 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3161 **/
3162s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3163{
3164        u32 offset;
3165
3166        for (offset = 0; offset < hw->mac.vft_size; offset++)
3167                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3168
3169        for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3170                IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3171                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3172                IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3173        }
3174
3175        return 0;
3176}
3177
3178/**
3179 *  ixgbe_check_mac_link_generic - Determine link and speed status
3180 *  @hw: pointer to hardware structure
3181 *  @speed: pointer to link speed
3182 *  @link_up: true when link is up
3183 *  @link_up_wait_to_complete: bool used to wait for link up or not
3184 *
3185 *  Reads the links register to determine if link is up and the current speed
3186 **/
3187s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3188                                 bool *link_up, bool link_up_wait_to_complete)
3189{
3190        u32 links_reg, links_orig;
3191        u32 i;
3192
3193        /* clear the old state */
3194        links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3195
3196        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3197
3198        if (links_orig != links_reg) {
3199                hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3200                       links_orig, links_reg);
3201        }
3202
3203        if (link_up_wait_to_complete) {
3204                for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3205                        if (links_reg & IXGBE_LINKS_UP) {
3206                                *link_up = true;
3207                                break;
3208                        } else {
3209                                *link_up = false;
3210                        }
3211                        msleep(100);
3212                        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3213                }
3214        } else {
3215                if (links_reg & IXGBE_LINKS_UP)
3216                        *link_up = true;
3217                else
3218                        *link_up = false;
3219        }
3220
3221        if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3222            IXGBE_LINKS_SPEED_10G_82599)
3223                *speed = IXGBE_LINK_SPEED_10GB_FULL;
3224        else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3225                 IXGBE_LINKS_SPEED_1G_82599)
3226                *speed = IXGBE_LINK_SPEED_1GB_FULL;
3227        else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3228                 IXGBE_LINKS_SPEED_100_82599)
3229                *speed = IXGBE_LINK_SPEED_100_FULL;
3230        else
3231                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3232
3233        return 0;
3234}
3235
3236/**
3237 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3238 *  the EEPROM
3239 *  @hw: pointer to hardware structure
3240 *  @wwnn_prefix: the alternative WWNN prefix
3241 *  @wwpn_prefix: the alternative WWPN prefix
3242 *
3243 *  This function will read the EEPROM from the alternative SAN MAC address
3244 *  block to check the support for the alternative WWNN/WWPN prefix support.
3245 **/
3246s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3247                                        u16 *wwpn_prefix)
3248{
3249        u16 offset, caps;
3250        u16 alt_san_mac_blk_offset;
3251
3252        /* clear output first */
3253        *wwnn_prefix = 0xFFFF;
3254        *wwpn_prefix = 0xFFFF;
3255
3256        /* check if alternative SAN MAC is supported */
3257        offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3258        if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3259                goto wwn_prefix_err;
3260
3261        if ((alt_san_mac_blk_offset == 0) ||
3262            (alt_san_mac_blk_offset == 0xFFFF))
3263                goto wwn_prefix_out;
3264
3265        /* check capability in alternative san mac address block */
3266        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3267        if (hw->eeprom.ops.read(hw, offset, &caps))
3268                goto wwn_prefix_err;
3269        if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3270                goto wwn_prefix_out;
3271
3272        /* get the corresponding prefix for WWNN/WWPN */
3273        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3274        if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3275                hw_err(hw, "eeprom read at offset %d failed\n", offset);
3276
3277        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3278        if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3279                goto wwn_prefix_err;
3280
3281wwn_prefix_out:
3282        return 0;
3283
3284wwn_prefix_err:
3285        hw_err(hw, "eeprom read at offset %d failed\n", offset);
3286        return 0;
3287}
3288
3289/**
3290 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3291 *  @hw: pointer to hardware structure
3292 *  @enable: enable or disable switch for anti-spoofing
3293 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3294 *
3295 **/
3296void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3297{
3298        int j;
3299        int pf_target_reg = pf >> 3;
3300        int pf_target_shift = pf % 8;
3301        u32 pfvfspoof = 0;
3302
3303        if (hw->mac.type == ixgbe_mac_82598EB)
3304                return;
3305
3306        if (enable)
3307                pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3308
3309        /*
3310         * PFVFSPOOF register array is size 8 with 8 bits assigned to
3311         * MAC anti-spoof enables in each register array element.
3312         */
3313        for (j = 0; j < pf_target_reg; j++)
3314                IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3315
3316        /*
3317         * The PF should be allowed to spoof so that it can support
3318         * emulation mode NICs.  Do not set the bits assigned to the PF
3319         */
3320        pfvfspoof &= (1 << pf_target_shift) - 1;
3321        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3322
3323        /*
3324         * Remaining pools belong to the PF so they do not need to have
3325         * anti-spoofing enabled.
3326         */
3327        for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3328                IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3329}
3330
3331/**
3332 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3333 *  @hw: pointer to hardware structure
3334 *  @enable: enable or disable switch for VLAN anti-spoofing
3335 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3336 *
3337 **/
3338void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3339{
3340        int vf_target_reg = vf >> 3;
3341        int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3342        u32 pfvfspoof;
3343
3344        if (hw->mac.type == ixgbe_mac_82598EB)
3345                return;
3346
3347        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3348        if (enable)
3349                pfvfspoof |= (1 << vf_target_shift);
3350        else
3351                pfvfspoof &= ~(1 << vf_target_shift);
3352        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3353}
3354
3355/**
3356 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3357 *  @hw: pointer to hardware structure
3358 *  @device_caps: the EEPROM word with the extra device capabilities
3359 *
3360 *  This function will read the EEPROM location for the device capabilities,
3361 *  and return the word through device_caps.
3362 **/
3363s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3364{
3365        hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3366
3367        return 0;
3368}
3369
3370/**
3371 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3372 * @hw: pointer to hardware structure
3373 * @num_pb: number of packet buffers to allocate
3374 * @headroom: reserve n KB of headroom
3375 * @strategy: packet buffer allocation strategy
3376 **/
3377void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3378                             int num_pb,
3379                             u32 headroom,
3380                             int strategy)
3381{
3382        u32 pbsize = hw->mac.rx_pb_size;
3383        int i = 0;
3384        u32 rxpktsize, txpktsize, txpbthresh;
3385
3386        /* Reserve headroom */
3387        pbsize -= headroom;
3388
3389        if (!num_pb)
3390                num_pb = 1;
3391
3392        /* Divide remaining packet buffer space amongst the number
3393         * of packet buffers requested using supplied strategy.
3394         */
3395        switch (strategy) {
3396        case (PBA_STRATEGY_WEIGHTED):
3397                /* pba_80_48 strategy weight first half of packet buffer with
3398                 * 5/8 of the packet buffer space.
3399                 */
3400                rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3401                pbsize -= rxpktsize * (num_pb / 2);
3402                rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3403                for (; i < (num_pb / 2); i++)
3404                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3405                /* Fall through to configure remaining packet buffers */
3406        case (PBA_STRATEGY_EQUAL):
3407                /* Divide the remaining Rx packet buffer evenly among the TCs */
3408                rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3409                for (; i < num_pb; i++)
3410                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3411                break;
3412        default:
3413                break;
3414        }
3415
3416        /*
3417         * Setup Tx packet buffer and threshold equally for all TCs
3418         * TXPBTHRESH register is set in K so divide by 1024 and subtract
3419         * 10 since the largest packet we support is just over 9K.
3420         */
3421        txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3422        txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3423        for (i = 0; i < num_pb; i++) {
3424                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3425                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3426        }
3427
3428        /* Clear unused TCs, if any, to zero buffer size*/
3429        for (; i < IXGBE_MAX_PB; i++) {
3430                IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3431                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3432                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3433        }
3434}
3435
3436/**
3437 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3438 *  @buffer: pointer to EEPROM
3439 *  @length: size of EEPROM to calculate a checksum for
3440 *
3441 *  Calculates the checksum for some buffer on a specified length.  The
3442 *  checksum calculated is returned.
3443 **/
3444static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3445{
3446        u32 i;
3447        u8 sum = 0;
3448
3449        if (!buffer)
3450                return 0;
3451
3452        for (i = 0; i < length; i++)
3453                sum += buffer[i];
3454
3455        return (u8) (0 - sum);
3456}
3457
3458/**
3459 *  ixgbe_host_interface_command - Issue command to manageability block
3460 *  @hw: pointer to the HW structure
3461 *  @buffer: contains the command to write and where the return status will
3462 *           be placed
3463 *  @length: length of buffer, must be multiple of 4 bytes
3464 *
3465 *  Communicates with the manageability block.  On success return 0
3466 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3467 **/
3468static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3469                                        u32 length)
3470{
3471        u32 hicr, i, bi;
3472        u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3473        u8 buf_len, dword_len;
3474
3475        s32 ret_val = 0;
3476
3477        if (length == 0 || length & 0x3 ||
3478            length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3479                hw_dbg(hw, "Buffer length failure.\n");
3480                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3481                goto out;
3482        }
3483
3484        /* Check that the host interface is enabled. */
3485        hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3486        if ((hicr & IXGBE_HICR_EN) == 0) {
3487                hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3488                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3489                goto out;
3490        }
3491
3492        /* Calculate length in DWORDs */
3493        dword_len = length >> 2;
3494
3495        /*
3496         * The device driver writes the relevant command block
3497         * into the ram area.
3498         */
3499        for (i = 0; i < dword_len; i++)
3500                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3501                                      i, cpu_to_le32(buffer[i]));
3502
3503        /* Setting this bit tells the ARC that a new command is pending. */
3504        IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3505
3506        for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3507                hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3508                if (!(hicr & IXGBE_HICR_C))
3509                        break;
3510                usleep_range(1000, 2000);
3511        }
3512
3513        /* Check command successful completion. */
3514        if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3515            (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3516                hw_dbg(hw, "Command has failed with no status valid.\n");
3517                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3518                goto out;
3519        }
3520
3521        /* Calculate length in DWORDs */
3522        dword_len = hdr_size >> 2;
3523
3524        /* first pull in the header so we know the buffer length */
3525        for (bi = 0; bi < dword_len; bi++) {
3526                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3527                le32_to_cpus(&buffer[bi]);
3528        }
3529
3530        /* If there is any thing in data position pull it in */
3531        buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3532        if (buf_len == 0)
3533                goto out;
3534
3535        if (length < (buf_len + hdr_size)) {
3536                hw_dbg(hw, "Buffer not large enough for reply message.\n");
3537                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3538                goto out;
3539        }
3540
3541        /* Calculate length in DWORDs, add 3 for odd lengths */
3542        dword_len = (buf_len + 3) >> 2;
3543
3544        /* Pull in the rest of the buffer (bi is where we left off)*/
3545        for (; bi <= dword_len; bi++) {
3546                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3547                le32_to_cpus(&buffer[bi]);
3548        }
3549
3550out:
3551        return ret_val;
3552}
3553
3554/**
3555 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3556 *  @hw: pointer to the HW structure
3557 *  @maj: driver version major number
3558 *  @min: driver version minor number
3559 *  @build: driver version build number
3560 *  @sub: driver version sub build number
3561 *
3562 *  Sends driver version number to firmware through the manageability
3563 *  block.  On success return 0
3564 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3565 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3566 **/
3567s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3568                                 u8 build, u8 sub)
3569{
3570        struct ixgbe_hic_drv_info fw_cmd;
3571        int i;
3572        s32 ret_val = 0;
3573
3574        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3575                ret_val = IXGBE_ERR_SWFW_SYNC;
3576                goto out;
3577        }
3578
3579        fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3580        fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3581        fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3582        fw_cmd.port_num = (u8)hw->bus.func;
3583        fw_cmd.ver_maj = maj;
3584        fw_cmd.ver_min = min;
3585        fw_cmd.ver_build = build;
3586        fw_cmd.ver_sub = sub;
3587        fw_cmd.hdr.checksum = 0;
3588        fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3589                                (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3590        fw_cmd.pad = 0;
3591        fw_cmd.pad2 = 0;
3592
3593        for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3594                ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3595                                                       sizeof(fw_cmd));
3596                if (ret_val != 0)
3597                        continue;
3598
3599                if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3600                    FW_CEM_RESP_STATUS_SUCCESS)
3601                        ret_val = 0;
3602                else
3603                        ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3604
3605                break;
3606        }
3607
3608        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3609out:
3610        return ret_val;
3611}
3612
3613/**
3614 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3615 * @hw: pointer to the hardware structure
3616 *
3617 * The 82599 and x540 MACs can experience issues if TX work is still pending
3618 * when a reset occurs.  This function prevents this by flushing the PCIe
3619 * buffers on the system.
3620 **/
3621void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3622{
3623        u32 gcr_ext, hlreg0;
3624
3625        /*
3626         * If double reset is not requested then all transactions should
3627         * already be clear and as such there is no work to do
3628         */
3629        if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3630                return;
3631
3632        /*
3633         * Set loopback enable to prevent any transmits from being sent
3634         * should the link come up.  This assumes that the RXCTRL.RXEN bit
3635         * has already been cleared.
3636         */
3637        hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3638        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3639
3640        /* initiate cleaning flow for buffers in the PCIe transaction layer */
3641        gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3642        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3643                        gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3644
3645        /* Flush all writes and allow 20usec for all transactions to clear */
3646        IXGBE_WRITE_FLUSH(hw);
3647        udelay(20);
3648
3649        /* restore previous register values */
3650        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3651        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3652}
3653
3654static const u8 ixgbe_emc_temp_data[4] = {
3655        IXGBE_EMC_INTERNAL_DATA,
3656        IXGBE_EMC_DIODE1_DATA,
3657        IXGBE_EMC_DIODE2_DATA,
3658        IXGBE_EMC_DIODE3_DATA
3659};
3660static const u8 ixgbe_emc_therm_limit[4] = {
3661        IXGBE_EMC_INTERNAL_THERM_LIMIT,
3662        IXGBE_EMC_DIODE1_THERM_LIMIT,
3663        IXGBE_EMC_DIODE2_THERM_LIMIT,
3664        IXGBE_EMC_DIODE3_THERM_LIMIT
3665};
3666
3667/**
3668 *  ixgbe_get_ets_data - Extracts the ETS bit data
3669 *  @hw: pointer to hardware structure
3670 *  @ets_cfg: extected ETS data
3671 *  @ets_offset: offset of ETS data
3672 *
3673 *  Returns error code.
3674 **/
3675static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3676                              u16 *ets_offset)
3677{
3678        s32 status = 0;
3679
3680        status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3681        if (status)
3682                goto out;
3683
3684        if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3685                status = IXGBE_NOT_IMPLEMENTED;
3686                goto out;
3687        }
3688
3689        status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3690        if (status)
3691                goto out;
3692
3693        if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3694                status = IXGBE_NOT_IMPLEMENTED;
3695                goto out;
3696        }
3697
3698out:
3699        return status;
3700}
3701
3702/**
3703 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3704 *  @hw: pointer to hardware structure
3705 *
3706 *  Returns the thermal sensor data structure
3707 **/
3708s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3709{
3710        s32 status = 0;
3711        u16 ets_offset;
3712        u16 ets_cfg;
3713        u16 ets_sensor;
3714        u8  num_sensors;
3715        u8  i;
3716        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3717
3718        /* Only support thermal sensors attached to physical port 0 */
3719        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3720                status = IXGBE_NOT_IMPLEMENTED;
3721                goto out;
3722        }
3723
3724        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3725        if (status)
3726                goto out;
3727
3728        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3729        if (num_sensors > IXGBE_MAX_SENSORS)
3730                num_sensors = IXGBE_MAX_SENSORS;
3731
3732        for (i = 0; i < num_sensors; i++) {
3733                u8  sensor_index;
3734                u8  sensor_location;
3735
3736                status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3737                                             &ets_sensor);
3738                if (status)
3739                        goto out;
3740
3741                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3742                                IXGBE_ETS_DATA_INDEX_SHIFT);
3743                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3744                                   IXGBE_ETS_DATA_LOC_SHIFT);
3745
3746                if (sensor_location != 0) {
3747                        status = hw->phy.ops.read_i2c_byte(hw,
3748                                        ixgbe_emc_temp_data[sensor_index],
3749                                        IXGBE_I2C_THERMAL_SENSOR_ADDR,
3750                                        &data->sensor[i].temp);
3751                        if (status)
3752                                goto out;
3753                }
3754        }
3755out:
3756        return status;
3757}
3758
3759/**
3760 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3761 * @hw: pointer to hardware structure
3762 *
3763 * Inits the thermal sensor thresholds according to the NVM map
3764 * and save off the threshold and location values into mac.thermal_sensor_data
3765 **/
3766s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3767{
3768        s32 status = 0;
3769        u16 ets_offset;
3770        u16 ets_cfg;
3771        u16 ets_sensor;
3772        u8  low_thresh_delta;
3773        u8  num_sensors;
3774        u8  therm_limit;
3775        u8  i;
3776        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3777
3778        memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3779
3780        /* Only support thermal sensors attached to physical port 0 */
3781        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3782                status = IXGBE_NOT_IMPLEMENTED;
3783                goto out;
3784        }
3785
3786        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3787        if (status)
3788                goto out;
3789
3790        low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3791                             IXGBE_ETS_LTHRES_DELTA_SHIFT);
3792        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3793        if (num_sensors > IXGBE_MAX_SENSORS)
3794                num_sensors = IXGBE_MAX_SENSORS;
3795
3796        for (i = 0; i < num_sensors; i++) {
3797                u8  sensor_index;
3798                u8  sensor_location;
3799
3800                if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3801                        hw_err(hw, "eeprom read at offset %d failed\n",
3802                               ets_offset + 1 + i);
3803                        continue;
3804                }
3805                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3806                                IXGBE_ETS_DATA_INDEX_SHIFT);
3807                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3808                                   IXGBE_ETS_DATA_LOC_SHIFT);
3809                therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3810
3811                hw->phy.ops.write_i2c_byte(hw,
3812                        ixgbe_emc_therm_limit[sensor_index],
3813                        IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3814
3815                if (sensor_location == 0)
3816                        continue;
3817
3818                data->sensor[i].location = sensor_location;
3819                data->sensor[i].caution_thresh = therm_limit;
3820                data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3821        }
3822out:
3823        return status;
3824}
3825
3826