linux/drivers/net/ethernet/micrel/ks8851.c
<<
>>
Prefs
   1/* drivers/net/ethernet/micrel/ks8851.c
   2 *
   3 * Copyright 2009 Simtec Electronics
   4 *      http://www.simtec.co.uk/
   5 *      Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#define DEBUG
  15
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/netdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/ethtool.h>
  22#include <linux/cache.h>
  23#include <linux/crc32.h>
  24#include <linux/mii.h>
  25#include <linux/eeprom_93cx6.h>
  26#include <linux/regulator/consumer.h>
  27
  28#include <linux/spi/spi.h>
  29
  30#include "ks8851.h"
  31
  32/**
  33 * struct ks8851_rxctrl - KS8851 driver rx control
  34 * @mchash: Multicast hash-table data.
  35 * @rxcr1: KS_RXCR1 register setting
  36 * @rxcr2: KS_RXCR2 register setting
  37 *
  38 * Representation of the settings needs to control the receive filtering
  39 * such as the multicast hash-filter and the receive register settings. This
  40 * is used to make the job of working out if the receive settings change and
  41 * then issuing the new settings to the worker that will send the necessary
  42 * commands.
  43 */
  44struct ks8851_rxctrl {
  45        u16     mchash[4];
  46        u16     rxcr1;
  47        u16     rxcr2;
  48};
  49
  50/**
  51 * union ks8851_tx_hdr - tx header data
  52 * @txb: The header as bytes
  53 * @txw: The header as 16bit, little-endian words
  54 *
  55 * A dual representation of the tx header data to allow
  56 * access to individual bytes, and to allow 16bit accesses
  57 * with 16bit alignment.
  58 */
  59union ks8851_tx_hdr {
  60        u8      txb[6];
  61        __le16  txw[3];
  62};
  63
  64/**
  65 * struct ks8851_net - KS8851 driver private data
  66 * @netdev: The network device we're bound to
  67 * @spidev: The spi device we're bound to.
  68 * @lock: Lock to ensure that the device is not accessed when busy.
  69 * @statelock: Lock on this structure for tx list.
  70 * @mii: The MII state information for the mii calls.
  71 * @rxctrl: RX settings for @rxctrl_work.
  72 * @tx_work: Work queue for tx packets
  73 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  74 * @txq: Queue of packets for transmission.
  75 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  76 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  77 * @txh: Space for generating packet TX header in DMA-able data
  78 * @rxd: Space for receiving SPI data, in DMA-able space.
  79 * @txd: Space for transmitting SPI data, in DMA-able space.
  80 * @msg_enable: The message flags controlling driver output (see ethtool).
  81 * @fid: Incrementing frame id tag.
  82 * @rc_ier: Cached copy of KS_IER.
  83 * @rc_ccr: Cached copy of KS_CCR.
  84 * @rc_rxqcr: Cached copy of KS_RXQCR.
  85 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
  86 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
  87 * @vdd_reg:    Optional regulator supplying the chip
  88 *
  89 * The @lock ensures that the chip is protected when certain operations are
  90 * in progress. When the read or write packet transfer is in progress, most
  91 * of the chip registers are not ccessible until the transfer is finished and
  92 * the DMA has been de-asserted.
  93 *
  94 * The @statelock is used to protect information in the structure which may
  95 * need to be accessed via several sources, such as the network driver layer
  96 * or one of the work queues.
  97 *
  98 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
  99 * wants to DMA map them, it will not have any problems with data the driver
 100 * modifies.
 101 */
 102struct ks8851_net {
 103        struct net_device       *netdev;
 104        struct spi_device       *spidev;
 105        struct mutex            lock;
 106        spinlock_t              statelock;
 107
 108        union ks8851_tx_hdr     txh ____cacheline_aligned;
 109        u8                      rxd[8];
 110        u8                      txd[8];
 111
 112        u32                     msg_enable ____cacheline_aligned;
 113        u16                     tx_space;
 114        u8                      fid;
 115
 116        u16                     rc_ier;
 117        u16                     rc_rxqcr;
 118        u16                     rc_ccr;
 119        u16                     eeprom_size;
 120
 121        struct mii_if_info      mii;
 122        struct ks8851_rxctrl    rxctrl;
 123
 124        struct work_struct      tx_work;
 125        struct work_struct      rxctrl_work;
 126
 127        struct sk_buff_head     txq;
 128
 129        struct spi_message      spi_msg1;
 130        struct spi_message      spi_msg2;
 131        struct spi_transfer     spi_xfer1;
 132        struct spi_transfer     spi_xfer2[2];
 133
 134        struct eeprom_93cx6     eeprom;
 135        struct regulator        *vdd_reg;
 136};
 137
 138static int msg_enable;
 139
 140/* shift for byte-enable data */
 141#define BYTE_EN(_x)     ((_x) << 2)
 142
 143/* turn register number and byte-enable mask into data for start of packet */
 144#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 145
 146/* SPI register read/write calls.
 147 *
 148 * All these calls issue SPI transactions to access the chip's registers. They
 149 * all require that the necessary lock is held to prevent accesses when the
 150 * chip is busy transferring packet data (RX/TX FIFO accesses).
 151 */
 152
 153/**
 154 * ks8851_wrreg16 - write 16bit register value to chip
 155 * @ks: The chip state
 156 * @reg: The register address
 157 * @val: The value to write
 158 *
 159 * Issue a write to put the value @val into the register specified in @reg.
 160 */
 161static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 162{
 163        struct spi_transfer *xfer = &ks->spi_xfer1;
 164        struct spi_message *msg = &ks->spi_msg1;
 165        __le16 txb[2];
 166        int ret;
 167
 168        txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 169        txb[1] = cpu_to_le16(val);
 170
 171        xfer->tx_buf = txb;
 172        xfer->rx_buf = NULL;
 173        xfer->len = 4;
 174
 175        ret = spi_sync(ks->spidev, msg);
 176        if (ret < 0)
 177                netdev_err(ks->netdev, "spi_sync() failed\n");
 178}
 179
 180/**
 181 * ks8851_wrreg8 - write 8bit register value to chip
 182 * @ks: The chip state
 183 * @reg: The register address
 184 * @val: The value to write
 185 *
 186 * Issue a write to put the value @val into the register specified in @reg.
 187 */
 188static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 189{
 190        struct spi_transfer *xfer = &ks->spi_xfer1;
 191        struct spi_message *msg = &ks->spi_msg1;
 192        __le16 txb[2];
 193        int ret;
 194        int bit;
 195
 196        bit = 1 << (reg & 3);
 197
 198        txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 199        txb[1] = val;
 200
 201        xfer->tx_buf = txb;
 202        xfer->rx_buf = NULL;
 203        xfer->len = 3;
 204
 205        ret = spi_sync(ks->spidev, msg);
 206        if (ret < 0)
 207                netdev_err(ks->netdev, "spi_sync() failed\n");
 208}
 209
 210/**
 211 * ks8851_rx_1msg - select whether to use one or two messages for spi read
 212 * @ks: The device structure
 213 *
 214 * Return whether to generate a single message with a tx and rx buffer
 215 * supplied to spi_sync(), or alternatively send the tx and rx buffers
 216 * as separate messages.
 217 *
 218 * Depending on the hardware in use, a single message may be more efficient
 219 * on interrupts or work done by the driver.
 220 *
 221 * This currently always returns true until we add some per-device data passed
 222 * from the platform code to specify which mode is better.
 223 */
 224static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
 225{
 226        return true;
 227}
 228
 229/**
 230 * ks8851_rdreg - issue read register command and return the data
 231 * @ks: The device state
 232 * @op: The register address and byte enables in message format.
 233 * @rxb: The RX buffer to return the result into
 234 * @rxl: The length of data expected.
 235 *
 236 * This is the low level read call that issues the necessary spi message(s)
 237 * to read data from the register specified in @op.
 238 */
 239static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 240                         u8 *rxb, unsigned rxl)
 241{
 242        struct spi_transfer *xfer;
 243        struct spi_message *msg;
 244        __le16 *txb = (__le16 *)ks->txd;
 245        u8 *trx = ks->rxd;
 246        int ret;
 247
 248        txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 249
 250        if (ks8851_rx_1msg(ks)) {
 251                msg = &ks->spi_msg1;
 252                xfer = &ks->spi_xfer1;
 253
 254                xfer->tx_buf = txb;
 255                xfer->rx_buf = trx;
 256                xfer->len = rxl + 2;
 257        } else {
 258                msg = &ks->spi_msg2;
 259                xfer = ks->spi_xfer2;
 260
 261                xfer->tx_buf = txb;
 262                xfer->rx_buf = NULL;
 263                xfer->len = 2;
 264
 265                xfer++;
 266                xfer->tx_buf = NULL;
 267                xfer->rx_buf = trx;
 268                xfer->len = rxl;
 269        }
 270
 271        ret = spi_sync(ks->spidev, msg);
 272        if (ret < 0)
 273                netdev_err(ks->netdev, "read: spi_sync() failed\n");
 274        else if (ks8851_rx_1msg(ks))
 275                memcpy(rxb, trx + 2, rxl);
 276        else
 277                memcpy(rxb, trx, rxl);
 278}
 279
 280/**
 281 * ks8851_rdreg8 - read 8 bit register from device
 282 * @ks: The chip information
 283 * @reg: The register address
 284 *
 285 * Read a 8bit register from the chip, returning the result
 286*/
 287static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 288{
 289        u8 rxb[1];
 290
 291        ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 292        return rxb[0];
 293}
 294
 295/**
 296 * ks8851_rdreg16 - read 16 bit register from device
 297 * @ks: The chip information
 298 * @reg: The register address
 299 *
 300 * Read a 16bit register from the chip, returning the result
 301*/
 302static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 303{
 304        __le16 rx = 0;
 305
 306        ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 307        return le16_to_cpu(rx);
 308}
 309
 310/**
 311 * ks8851_rdreg32 - read 32 bit register from device
 312 * @ks: The chip information
 313 * @reg: The register address
 314 *
 315 * Read a 32bit register from the chip.
 316 *
 317 * Note, this read requires the address be aligned to 4 bytes.
 318*/
 319static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 320{
 321        __le32 rx = 0;
 322
 323        WARN_ON(reg & 3);
 324
 325        ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 326        return le32_to_cpu(rx);
 327}
 328
 329/**
 330 * ks8851_soft_reset - issue one of the soft reset to the device
 331 * @ks: The device state.
 332 * @op: The bit(s) to set in the GRR
 333 *
 334 * Issue the relevant soft-reset command to the device's GRR register
 335 * specified by @op.
 336 *
 337 * Note, the delays are in there as a caution to ensure that the reset
 338 * has time to take effect and then complete. Since the datasheet does
 339 * not currently specify the exact sequence, we have chosen something
 340 * that seems to work with our device.
 341 */
 342static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 343{
 344        ks8851_wrreg16(ks, KS_GRR, op);
 345        mdelay(1);      /* wait a short time to effect reset */
 346        ks8851_wrreg16(ks, KS_GRR, 0);
 347        mdelay(1);      /* wait for condition to clear */
 348}
 349
 350/**
 351 * ks8851_set_powermode - set power mode of the device
 352 * @ks: The device state
 353 * @pwrmode: The power mode value to write to KS_PMECR.
 354 *
 355 * Change the power mode of the chip.
 356 */
 357static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 358{
 359        unsigned pmecr;
 360
 361        netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 362
 363        pmecr = ks8851_rdreg16(ks, KS_PMECR);
 364        pmecr &= ~PMECR_PM_MASK;
 365        pmecr |= pwrmode;
 366
 367        ks8851_wrreg16(ks, KS_PMECR, pmecr);
 368}
 369
 370/**
 371 * ks8851_write_mac_addr - write mac address to device registers
 372 * @dev: The network device
 373 *
 374 * Update the KS8851 MAC address registers from the address in @dev.
 375 *
 376 * This call assumes that the chip is not running, so there is no need to
 377 * shutdown the RXQ process whilst setting this.
 378*/
 379static int ks8851_write_mac_addr(struct net_device *dev)
 380{
 381        struct ks8851_net *ks = netdev_priv(dev);
 382        int i;
 383
 384        mutex_lock(&ks->lock);
 385
 386        /*
 387         * Wake up chip in case it was powered off when stopped; otherwise,
 388         * the first write to the MAC address does not take effect.
 389         */
 390        ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 391        for (i = 0; i < ETH_ALEN; i++)
 392                ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 393        if (!netif_running(dev))
 394                ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 395
 396        mutex_unlock(&ks->lock);
 397
 398        return 0;
 399}
 400
 401/**
 402 * ks8851_read_mac_addr - read mac address from device registers
 403 * @dev: The network device
 404 *
 405 * Update our copy of the KS8851 MAC address from the registers of @dev.
 406*/
 407static void ks8851_read_mac_addr(struct net_device *dev)
 408{
 409        struct ks8851_net *ks = netdev_priv(dev);
 410        int i;
 411
 412        mutex_lock(&ks->lock);
 413
 414        for (i = 0; i < ETH_ALEN; i++)
 415                dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
 416
 417        mutex_unlock(&ks->lock);
 418}
 419
 420/**
 421 * ks8851_init_mac - initialise the mac address
 422 * @ks: The device structure
 423 *
 424 * Get or create the initial mac address for the device and then set that
 425 * into the station address register. If there is an EEPROM present, then
 426 * we try that. If no valid mac address is found we use eth_random_addr()
 427 * to create a new one.
 428 */
 429static void ks8851_init_mac(struct ks8851_net *ks)
 430{
 431        struct net_device *dev = ks->netdev;
 432
 433        /* first, try reading what we've got already */
 434        if (ks->rc_ccr & CCR_EEPROM) {
 435                ks8851_read_mac_addr(dev);
 436                if (is_valid_ether_addr(dev->dev_addr))
 437                        return;
 438
 439                netdev_err(ks->netdev, "invalid mac address read %pM\n",
 440                                dev->dev_addr);
 441        }
 442
 443        eth_hw_addr_random(dev);
 444        ks8851_write_mac_addr(dev);
 445}
 446
 447/**
 448 * ks8851_rdfifo - read data from the receive fifo
 449 * @ks: The device state.
 450 * @buff: The buffer address
 451 * @len: The length of the data to read
 452 *
 453 * Issue an RXQ FIFO read command and read the @len amount of data from
 454 * the FIFO into the buffer specified by @buff.
 455 */
 456static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 457{
 458        struct spi_transfer *xfer = ks->spi_xfer2;
 459        struct spi_message *msg = &ks->spi_msg2;
 460        u8 txb[1];
 461        int ret;
 462
 463        netif_dbg(ks, rx_status, ks->netdev,
 464                  "%s: %d@%p\n", __func__, len, buff);
 465
 466        /* set the operation we're issuing */
 467        txb[0] = KS_SPIOP_RXFIFO;
 468
 469        xfer->tx_buf = txb;
 470        xfer->rx_buf = NULL;
 471        xfer->len = 1;
 472
 473        xfer++;
 474        xfer->rx_buf = buff;
 475        xfer->tx_buf = NULL;
 476        xfer->len = len;
 477
 478        ret = spi_sync(ks->spidev, msg);
 479        if (ret < 0)
 480                netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 481}
 482
 483/**
 484 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 485 * @ks: The device state
 486 * @rxpkt: The data for the received packet
 487 *
 488 * Dump the initial data from the packet to dev_dbg().
 489*/
 490static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 491{
 492        netdev_dbg(ks->netdev,
 493                   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 494                   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 495                   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 496                   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 497}
 498
 499/**
 500 * ks8851_rx_pkts - receive packets from the host
 501 * @ks: The device information.
 502 *
 503 * This is called from the IRQ work queue when the system detects that there
 504 * are packets in the receive queue. Find out how many packets there are and
 505 * read them from the FIFO.
 506 */
 507static void ks8851_rx_pkts(struct ks8851_net *ks)
 508{
 509        struct sk_buff *skb;
 510        unsigned rxfc;
 511        unsigned rxlen;
 512        unsigned rxstat;
 513        u32 rxh;
 514        u8 *rxpkt;
 515
 516        rxfc = ks8851_rdreg8(ks, KS_RXFC);
 517
 518        netif_dbg(ks, rx_status, ks->netdev,
 519                  "%s: %d packets\n", __func__, rxfc);
 520
 521        /* Currently we're issuing a read per packet, but we could possibly
 522         * improve the code by issuing a single read, getting the receive
 523         * header, allocating the packet and then reading the packet data
 524         * out in one go.
 525         *
 526         * This form of operation would require us to hold the SPI bus'
 527         * chipselect low during the entie transaction to avoid any
 528         * reset to the data stream coming from the chip.
 529         */
 530
 531        for (; rxfc != 0; rxfc--) {
 532                rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 533                rxstat = rxh & 0xffff;
 534                rxlen = (rxh >> 16) & 0xfff;
 535
 536                netif_dbg(ks, rx_status, ks->netdev,
 537                          "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 538
 539                /* the length of the packet includes the 32bit CRC */
 540
 541                /* set dma read address */
 542                ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 543
 544                /* start the packet dma process, and set auto-dequeue rx */
 545                ks8851_wrreg16(ks, KS_RXQCR,
 546                               ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
 547
 548                if (rxlen > 4) {
 549                        unsigned int rxalign;
 550
 551                        rxlen -= 4;
 552                        rxalign = ALIGN(rxlen, 4);
 553                        skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 554                        if (skb) {
 555
 556                                /* 4 bytes of status header + 4 bytes of
 557                                 * garbage: we put them before ethernet
 558                                 * header, so that they are copied,
 559                                 * but ignored.
 560                                 */
 561
 562                                rxpkt = skb_put(skb, rxlen) - 8;
 563
 564                                ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 565
 566                                if (netif_msg_pktdata(ks))
 567                                        ks8851_dbg_dumpkkt(ks, rxpkt);
 568
 569                                skb->protocol = eth_type_trans(skb, ks->netdev);
 570                                netif_rx_ni(skb);
 571
 572                                ks->netdev->stats.rx_packets++;
 573                                ks->netdev->stats.rx_bytes += rxlen;
 574                        }
 575                }
 576
 577                ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 578        }
 579}
 580
 581/**
 582 * ks8851_irq - IRQ handler for dealing with interrupt requests
 583 * @irq: IRQ number
 584 * @_ks: cookie
 585 *
 586 * This handler is invoked when the IRQ line asserts to find out what happened.
 587 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 588 * in thread context.
 589 *
 590 * Read the interrupt status, work out what needs to be done and then clear
 591 * any of the interrupts that are not needed.
 592 */
 593static irqreturn_t ks8851_irq(int irq, void *_ks)
 594{
 595        struct ks8851_net *ks = _ks;
 596        unsigned status;
 597        unsigned handled = 0;
 598
 599        mutex_lock(&ks->lock);
 600
 601        status = ks8851_rdreg16(ks, KS_ISR);
 602
 603        netif_dbg(ks, intr, ks->netdev,
 604                  "%s: status 0x%04x\n", __func__, status);
 605
 606        if (status & IRQ_LCI)
 607                handled |= IRQ_LCI;
 608
 609        if (status & IRQ_LDI) {
 610                u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 611                pmecr &= ~PMECR_WKEVT_MASK;
 612                ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 613
 614                handled |= IRQ_LDI;
 615        }
 616
 617        if (status & IRQ_RXPSI)
 618                handled |= IRQ_RXPSI;
 619
 620        if (status & IRQ_TXI) {
 621                handled |= IRQ_TXI;
 622
 623                /* no lock here, tx queue should have been stopped */
 624
 625                /* update our idea of how much tx space is available to the
 626                 * system */
 627                ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 628
 629                netif_dbg(ks, intr, ks->netdev,
 630                          "%s: txspace %d\n", __func__, ks->tx_space);
 631        }
 632
 633        if (status & IRQ_RXI)
 634                handled |= IRQ_RXI;
 635
 636        if (status & IRQ_SPIBEI) {
 637                dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 638                handled |= IRQ_SPIBEI;
 639        }
 640
 641        ks8851_wrreg16(ks, KS_ISR, handled);
 642
 643        if (status & IRQ_RXI) {
 644                /* the datasheet says to disable the rx interrupt during
 645                 * packet read-out, however we're masking the interrupt
 646                 * from the device so do not bother masking just the RX
 647                 * from the device. */
 648
 649                ks8851_rx_pkts(ks);
 650        }
 651
 652        /* if something stopped the rx process, probably due to wanting
 653         * to change the rx settings, then do something about restarting
 654         * it. */
 655        if (status & IRQ_RXPSI) {
 656                struct ks8851_rxctrl *rxc = &ks->rxctrl;
 657
 658                /* update the multicast hash table */
 659                ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 660                ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 661                ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 662                ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 663
 664                ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 665                ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 666        }
 667
 668        mutex_unlock(&ks->lock);
 669
 670        if (status & IRQ_LCI)
 671                mii_check_link(&ks->mii);
 672
 673        if (status & IRQ_TXI)
 674                netif_wake_queue(ks->netdev);
 675
 676        return IRQ_HANDLED;
 677}
 678
 679/**
 680 * calc_txlen - calculate size of message to send packet
 681 * @len: Length of data
 682 *
 683 * Returns the size of the TXFIFO message needed to send
 684 * this packet.
 685 */
 686static inline unsigned calc_txlen(unsigned len)
 687{
 688        return ALIGN(len + 4, 4);
 689}
 690
 691/**
 692 * ks8851_wrpkt - write packet to TX FIFO
 693 * @ks: The device state.
 694 * @txp: The sk_buff to transmit.
 695 * @irq: IRQ on completion of the packet.
 696 *
 697 * Send the @txp to the chip. This means creating the relevant packet header
 698 * specifying the length of the packet and the other information the chip
 699 * needs, such as IRQ on completion. Send the header and the packet data to
 700 * the device.
 701 */
 702static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 703{
 704        struct spi_transfer *xfer = ks->spi_xfer2;
 705        struct spi_message *msg = &ks->spi_msg2;
 706        unsigned fid = 0;
 707        int ret;
 708
 709        netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 710                  __func__, txp, txp->len, txp->data, irq);
 711
 712        fid = ks->fid++;
 713        fid &= TXFR_TXFID_MASK;
 714
 715        if (irq)
 716                fid |= TXFR_TXIC;       /* irq on completion */
 717
 718        /* start header at txb[1] to align txw entries */
 719        ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 720        ks->txh.txw[1] = cpu_to_le16(fid);
 721        ks->txh.txw[2] = cpu_to_le16(txp->len);
 722
 723        xfer->tx_buf = &ks->txh.txb[1];
 724        xfer->rx_buf = NULL;
 725        xfer->len = 5;
 726
 727        xfer++;
 728        xfer->tx_buf = txp->data;
 729        xfer->rx_buf = NULL;
 730        xfer->len = ALIGN(txp->len, 4);
 731
 732        ret = spi_sync(ks->spidev, msg);
 733        if (ret < 0)
 734                netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 735}
 736
 737/**
 738 * ks8851_done_tx - update and then free skbuff after transmitting
 739 * @ks: The device state
 740 * @txb: The buffer transmitted
 741 */
 742static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 743{
 744        struct net_device *dev = ks->netdev;
 745
 746        dev->stats.tx_bytes += txb->len;
 747        dev->stats.tx_packets++;
 748
 749        dev_kfree_skb(txb);
 750}
 751
 752/**
 753 * ks8851_tx_work - process tx packet(s)
 754 * @work: The work strucutre what was scheduled.
 755 *
 756 * This is called when a number of packets have been scheduled for
 757 * transmission and need to be sent to the device.
 758 */
 759static void ks8851_tx_work(struct work_struct *work)
 760{
 761        struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 762        struct sk_buff *txb;
 763        bool last = skb_queue_empty(&ks->txq);
 764
 765        mutex_lock(&ks->lock);
 766
 767        while (!last) {
 768                txb = skb_dequeue(&ks->txq);
 769                last = skb_queue_empty(&ks->txq);
 770
 771                if (txb != NULL) {
 772                        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 773                        ks8851_wrpkt(ks, txb, last);
 774                        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 775                        ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 776
 777                        ks8851_done_tx(ks, txb);
 778                }
 779        }
 780
 781        mutex_unlock(&ks->lock);
 782}
 783
 784/**
 785 * ks8851_net_open - open network device
 786 * @dev: The network device being opened.
 787 *
 788 * Called when the network device is marked active, such as a user executing
 789 * 'ifconfig up' on the device.
 790 */
 791static int ks8851_net_open(struct net_device *dev)
 792{
 793        struct ks8851_net *ks = netdev_priv(dev);
 794
 795        /* lock the card, even if we may not actually be doing anything
 796         * else at the moment */
 797        mutex_lock(&ks->lock);
 798
 799        netif_dbg(ks, ifup, ks->netdev, "opening\n");
 800
 801        /* bring chip out of any power saving mode it was in */
 802        ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 803
 804        /* issue a soft reset to the RX/TX QMU to put it into a known
 805         * state. */
 806        ks8851_soft_reset(ks, GRR_QMU);
 807
 808        /* setup transmission parameters */
 809
 810        ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 811                                     TXCR_TXPE | /* pad to min length */
 812                                     TXCR_TXCRC | /* add CRC */
 813                                     TXCR_TXFCE)); /* enable flow control */
 814
 815        /* auto-increment tx data, reset tx pointer */
 816        ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 817
 818        /* setup receiver control */
 819
 820        ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 821                                      RXCR1_RXFCE | /* enable flow control */
 822                                      RXCR1_RXBE | /* broadcast enable */
 823                                      RXCR1_RXUE | /* unicast enable */
 824                                      RXCR1_RXE)); /* enable rx block */
 825
 826        /* transfer entire frames out in one go */
 827        ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 828
 829        /* set receive counter timeouts */
 830        ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 831        ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 832        ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 833
 834        ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 835                        RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 836                        RXQCR_RXDTTE);  /* IRQ on time exceeded */
 837
 838        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 839
 840        /* clear then enable interrupts */
 841
 842#define STD_IRQ (IRQ_LCI |      /* Link Change */       \
 843                 IRQ_TXI |      /* TX done */           \
 844                 IRQ_RXI |      /* RX done */           \
 845                 IRQ_SPIBEI |   /* SPI bus error */     \
 846                 IRQ_TXPSI |    /* TX process stop */   \
 847                 IRQ_RXPSI)     /* RX process stop */
 848
 849        ks->rc_ier = STD_IRQ;
 850        ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 851        ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 852
 853        netif_start_queue(ks->netdev);
 854
 855        netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 856
 857        mutex_unlock(&ks->lock);
 858        return 0;
 859}
 860
 861/**
 862 * ks8851_net_stop - close network device
 863 * @dev: The device being closed.
 864 *
 865 * Called to close down a network device which has been active. Cancell any
 866 * work, shutdown the RX and TX process and then place the chip into a low
 867 * power state whilst it is not being used.
 868 */
 869static int ks8851_net_stop(struct net_device *dev)
 870{
 871        struct ks8851_net *ks = netdev_priv(dev);
 872
 873        netif_info(ks, ifdown, dev, "shutting down\n");
 874
 875        netif_stop_queue(dev);
 876
 877        mutex_lock(&ks->lock);
 878        /* turn off the IRQs and ack any outstanding */
 879        ks8851_wrreg16(ks, KS_IER, 0x0000);
 880        ks8851_wrreg16(ks, KS_ISR, 0xffff);
 881        mutex_unlock(&ks->lock);
 882
 883        /* stop any outstanding work */
 884        flush_work(&ks->tx_work);
 885        flush_work(&ks->rxctrl_work);
 886
 887        mutex_lock(&ks->lock);
 888        /* shutdown RX process */
 889        ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 890
 891        /* shutdown TX process */
 892        ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 893
 894        /* set powermode to soft power down to save power */
 895        ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 896        mutex_unlock(&ks->lock);
 897
 898        /* ensure any queued tx buffers are dumped */
 899        while (!skb_queue_empty(&ks->txq)) {
 900                struct sk_buff *txb = skb_dequeue(&ks->txq);
 901
 902                netif_dbg(ks, ifdown, ks->netdev,
 903                          "%s: freeing txb %p\n", __func__, txb);
 904
 905                dev_kfree_skb(txb);
 906        }
 907
 908        return 0;
 909}
 910
 911/**
 912 * ks8851_start_xmit - transmit packet
 913 * @skb: The buffer to transmit
 914 * @dev: The device used to transmit the packet.
 915 *
 916 * Called by the network layer to transmit the @skb. Queue the packet for
 917 * the device and schedule the necessary work to transmit the packet when
 918 * it is free.
 919 *
 920 * We do this to firstly avoid sleeping with the network device locked,
 921 * and secondly so we can round up more than one packet to transmit which
 922 * means we can try and avoid generating too many transmit done interrupts.
 923 */
 924static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 925                                     struct net_device *dev)
 926{
 927        struct ks8851_net *ks = netdev_priv(dev);
 928        unsigned needed = calc_txlen(skb->len);
 929        netdev_tx_t ret = NETDEV_TX_OK;
 930
 931        netif_dbg(ks, tx_queued, ks->netdev,
 932                  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 933
 934        spin_lock(&ks->statelock);
 935
 936        if (needed > ks->tx_space) {
 937                netif_stop_queue(dev);
 938                ret = NETDEV_TX_BUSY;
 939        } else {
 940                ks->tx_space -= needed;
 941                skb_queue_tail(&ks->txq, skb);
 942        }
 943
 944        spin_unlock(&ks->statelock);
 945        schedule_work(&ks->tx_work);
 946
 947        return ret;
 948}
 949
 950/**
 951 * ks8851_rxctrl_work - work handler to change rx mode
 952 * @work: The work structure this belongs to.
 953 *
 954 * Lock the device and issue the necessary changes to the receive mode from
 955 * the network device layer. This is done so that we can do this without
 956 * having to sleep whilst holding the network device lock.
 957 *
 958 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 959 * receive parameters are programmed, we issue a write to disable the RXQ and
 960 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 961 * complete. The interrupt handler then writes the new values into the chip.
 962 */
 963static void ks8851_rxctrl_work(struct work_struct *work)
 964{
 965        struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 966
 967        mutex_lock(&ks->lock);
 968
 969        /* need to shutdown RXQ before modifying filter parameters */
 970        ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 971
 972        mutex_unlock(&ks->lock);
 973}
 974
 975static void ks8851_set_rx_mode(struct net_device *dev)
 976{
 977        struct ks8851_net *ks = netdev_priv(dev);
 978        struct ks8851_rxctrl rxctrl;
 979
 980        memset(&rxctrl, 0, sizeof(rxctrl));
 981
 982        if (dev->flags & IFF_PROMISC) {
 983                /* interface to receive everything */
 984
 985                rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 986        } else if (dev->flags & IFF_ALLMULTI) {
 987                /* accept all multicast packets */
 988
 989                rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 990                                RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 991        } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 992                struct netdev_hw_addr *ha;
 993                u32 crc;
 994
 995                /* accept some multicast */
 996
 997                netdev_for_each_mc_addr(ha, dev) {
 998                        crc = ether_crc(ETH_ALEN, ha->addr);
 999                        crc >>= (32 - 6);  /* get top six bits */
1000
1001                        rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1002                }
1003
1004                rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1005        } else {
1006                /* just accept broadcast / unicast */
1007                rxctrl.rxcr1 = RXCR1_RXPAFMA;
1008        }
1009
1010        rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1011                         RXCR1_RXBE | /* broadcast enable */
1012                         RXCR1_RXE | /* RX process enable */
1013                         RXCR1_RXFCE); /* enable flow control */
1014
1015        rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1016
1017        /* schedule work to do the actual set of the data if needed */
1018
1019        spin_lock(&ks->statelock);
1020
1021        if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1022                memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1023                schedule_work(&ks->rxctrl_work);
1024        }
1025
1026        spin_unlock(&ks->statelock);
1027}
1028
1029static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1030{
1031        struct sockaddr *sa = addr;
1032
1033        if (netif_running(dev))
1034                return -EBUSY;
1035
1036        if (!is_valid_ether_addr(sa->sa_data))
1037                return -EADDRNOTAVAIL;
1038
1039        memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1040        return ks8851_write_mac_addr(dev);
1041}
1042
1043static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1044{
1045        struct ks8851_net *ks = netdev_priv(dev);
1046
1047        if (!netif_running(dev))
1048                return -EINVAL;
1049
1050        return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1051}
1052
1053static const struct net_device_ops ks8851_netdev_ops = {
1054        .ndo_open               = ks8851_net_open,
1055        .ndo_stop               = ks8851_net_stop,
1056        .ndo_do_ioctl           = ks8851_net_ioctl,
1057        .ndo_start_xmit         = ks8851_start_xmit,
1058        .ndo_set_mac_address    = ks8851_set_mac_address,
1059        .ndo_set_rx_mode        = ks8851_set_rx_mode,
1060        .ndo_change_mtu         = eth_change_mtu,
1061        .ndo_validate_addr      = eth_validate_addr,
1062};
1063
1064/* ethtool support */
1065
1066static void ks8851_get_drvinfo(struct net_device *dev,
1067                               struct ethtool_drvinfo *di)
1068{
1069        strlcpy(di->driver, "KS8851", sizeof(di->driver));
1070        strlcpy(di->version, "1.00", sizeof(di->version));
1071        strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1072}
1073
1074static u32 ks8851_get_msglevel(struct net_device *dev)
1075{
1076        struct ks8851_net *ks = netdev_priv(dev);
1077        return ks->msg_enable;
1078}
1079
1080static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1081{
1082        struct ks8851_net *ks = netdev_priv(dev);
1083        ks->msg_enable = to;
1084}
1085
1086static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1087{
1088        struct ks8851_net *ks = netdev_priv(dev);
1089        return mii_ethtool_gset(&ks->mii, cmd);
1090}
1091
1092static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1093{
1094        struct ks8851_net *ks = netdev_priv(dev);
1095        return mii_ethtool_sset(&ks->mii, cmd);
1096}
1097
1098static u32 ks8851_get_link(struct net_device *dev)
1099{
1100        struct ks8851_net *ks = netdev_priv(dev);
1101        return mii_link_ok(&ks->mii);
1102}
1103
1104static int ks8851_nway_reset(struct net_device *dev)
1105{
1106        struct ks8851_net *ks = netdev_priv(dev);
1107        return mii_nway_restart(&ks->mii);
1108}
1109
1110/* EEPROM support */
1111
1112static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1113{
1114        struct ks8851_net *ks = ee->data;
1115        unsigned val;
1116
1117        val = ks8851_rdreg16(ks, KS_EEPCR);
1118
1119        ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1120        ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1121        ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1122}
1123
1124static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1125{
1126        struct ks8851_net *ks = ee->data;
1127        unsigned val = EEPCR_EESA;      /* default - eeprom access on */
1128
1129        if (ee->drive_data)
1130                val |= EEPCR_EESRWA;
1131        if (ee->reg_data_in)
1132                val |= EEPCR_EEDO;
1133        if (ee->reg_data_clock)
1134                val |= EEPCR_EESCK;
1135        if (ee->reg_chip_select)
1136                val |= EEPCR_EECS;
1137
1138        ks8851_wrreg16(ks, KS_EEPCR, val);
1139}
1140
1141/**
1142 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1143 * @ks: The network device state.
1144 *
1145 * Check for the presence of an EEPROM, and then activate software access
1146 * to the device.
1147 */
1148static int ks8851_eeprom_claim(struct ks8851_net *ks)
1149{
1150        if (!(ks->rc_ccr & CCR_EEPROM))
1151                return -ENOENT;
1152
1153        mutex_lock(&ks->lock);
1154
1155        /* start with clock low, cs high */
1156        ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1157        return 0;
1158}
1159
1160/**
1161 * ks8851_eeprom_release - release the EEPROM interface
1162 * @ks: The device state
1163 *
1164 * Release the software access to the device EEPROM
1165 */
1166static void ks8851_eeprom_release(struct ks8851_net *ks)
1167{
1168        unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1169
1170        ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1171        mutex_unlock(&ks->lock);
1172}
1173
1174#define KS_EEPROM_MAGIC (0x00008851)
1175
1176static int ks8851_set_eeprom(struct net_device *dev,
1177                             struct ethtool_eeprom *ee, u8 *data)
1178{
1179        struct ks8851_net *ks = netdev_priv(dev);
1180        int offset = ee->offset;
1181        int len = ee->len;
1182        u16 tmp;
1183
1184        /* currently only support byte writing */
1185        if (len != 1)
1186                return -EINVAL;
1187
1188        if (ee->magic != KS_EEPROM_MAGIC)
1189                return -EINVAL;
1190
1191        if (ks8851_eeprom_claim(ks))
1192                return -ENOENT;
1193
1194        eeprom_93cx6_wren(&ks->eeprom, true);
1195
1196        /* ethtool currently only supports writing bytes, which means
1197         * we have to read/modify/write our 16bit EEPROMs */
1198
1199        eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1200
1201        if (offset & 1) {
1202                tmp &= 0xff;
1203                tmp |= *data << 8;
1204        } else {
1205                tmp &= 0xff00;
1206                tmp |= *data;
1207        }
1208
1209        eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1210        eeprom_93cx6_wren(&ks->eeprom, false);
1211
1212        ks8851_eeprom_release(ks);
1213
1214        return 0;
1215}
1216
1217static int ks8851_get_eeprom(struct net_device *dev,
1218                             struct ethtool_eeprom *ee, u8 *data)
1219{
1220        struct ks8851_net *ks = netdev_priv(dev);
1221        int offset = ee->offset;
1222        int len = ee->len;
1223
1224        /* must be 2 byte aligned */
1225        if (len & 1 || offset & 1)
1226                return -EINVAL;
1227
1228        if (ks8851_eeprom_claim(ks))
1229                return -ENOENT;
1230
1231        ee->magic = KS_EEPROM_MAGIC;
1232
1233        eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1234        ks8851_eeprom_release(ks);
1235
1236        return 0;
1237}
1238
1239static int ks8851_get_eeprom_len(struct net_device *dev)
1240{
1241        struct ks8851_net *ks = netdev_priv(dev);
1242
1243        /* currently, we assume it is an 93C46 attached, so return 128 */
1244        return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1245}
1246
1247static const struct ethtool_ops ks8851_ethtool_ops = {
1248        .get_drvinfo    = ks8851_get_drvinfo,
1249        .get_msglevel   = ks8851_get_msglevel,
1250        .set_msglevel   = ks8851_set_msglevel,
1251        .get_settings   = ks8851_get_settings,
1252        .set_settings   = ks8851_set_settings,
1253        .get_link       = ks8851_get_link,
1254        .nway_reset     = ks8851_nway_reset,
1255        .get_eeprom_len = ks8851_get_eeprom_len,
1256        .get_eeprom     = ks8851_get_eeprom,
1257        .set_eeprom     = ks8851_set_eeprom,
1258};
1259
1260/* MII interface controls */
1261
1262/**
1263 * ks8851_phy_reg - convert MII register into a KS8851 register
1264 * @reg: MII register number.
1265 *
1266 * Return the KS8851 register number for the corresponding MII PHY register
1267 * if possible. Return zero if the MII register has no direct mapping to the
1268 * KS8851 register set.
1269 */
1270static int ks8851_phy_reg(int reg)
1271{
1272        switch (reg) {
1273        case MII_BMCR:
1274                return KS_P1MBCR;
1275        case MII_BMSR:
1276                return KS_P1MBSR;
1277        case MII_PHYSID1:
1278                return KS_PHY1ILR;
1279        case MII_PHYSID2:
1280                return KS_PHY1IHR;
1281        case MII_ADVERTISE:
1282                return KS_P1ANAR;
1283        case MII_LPA:
1284                return KS_P1ANLPR;
1285        }
1286
1287        return 0x0;
1288}
1289
1290/**
1291 * ks8851_phy_read - MII interface PHY register read.
1292 * @dev: The network device the PHY is on.
1293 * @phy_addr: Address of PHY (ignored as we only have one)
1294 * @reg: The register to read.
1295 *
1296 * This call reads data from the PHY register specified in @reg. Since the
1297 * device does not support all the MII registers, the non-existent values
1298 * are always returned as zero.
1299 *
1300 * We return zero for unsupported registers as the MII code does not check
1301 * the value returned for any error status, and simply returns it to the
1302 * caller. The mii-tool that the driver was tested with takes any -ve error
1303 * as real PHY capabilities, thus displaying incorrect data to the user.
1304 */
1305static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1306{
1307        struct ks8851_net *ks = netdev_priv(dev);
1308        int ksreg;
1309        int result;
1310
1311        ksreg = ks8851_phy_reg(reg);
1312        if (!ksreg)
1313                return 0x0;     /* no error return allowed, so use zero */
1314
1315        mutex_lock(&ks->lock);
1316        result = ks8851_rdreg16(ks, ksreg);
1317        mutex_unlock(&ks->lock);
1318
1319        return result;
1320}
1321
1322static void ks8851_phy_write(struct net_device *dev,
1323                             int phy, int reg, int value)
1324{
1325        struct ks8851_net *ks = netdev_priv(dev);
1326        int ksreg;
1327
1328        ksreg = ks8851_phy_reg(reg);
1329        if (ksreg) {
1330                mutex_lock(&ks->lock);
1331                ks8851_wrreg16(ks, ksreg, value);
1332                mutex_unlock(&ks->lock);
1333        }
1334}
1335
1336/**
1337 * ks8851_read_selftest - read the selftest memory info.
1338 * @ks: The device state
1339 *
1340 * Read and check the TX/RX memory selftest information.
1341 */
1342static int ks8851_read_selftest(struct ks8851_net *ks)
1343{
1344        unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1345        int ret = 0;
1346        unsigned rd;
1347
1348        rd = ks8851_rdreg16(ks, KS_MBIR);
1349
1350        if ((rd & both_done) != both_done) {
1351                netdev_warn(ks->netdev, "Memory selftest not finished\n");
1352                return 0;
1353        }
1354
1355        if (rd & MBIR_TXMBFA) {
1356                netdev_err(ks->netdev, "TX memory selftest fail\n");
1357                ret |= 1;
1358        }
1359
1360        if (rd & MBIR_RXMBFA) {
1361                netdev_err(ks->netdev, "RX memory selftest fail\n");
1362                ret |= 2;
1363        }
1364
1365        return 0;
1366}
1367
1368/* driver bus management functions */
1369
1370#ifdef CONFIG_PM_SLEEP
1371
1372static int ks8851_suspend(struct device *dev)
1373{
1374        struct ks8851_net *ks = dev_get_drvdata(dev);
1375        struct net_device *netdev = ks->netdev;
1376
1377        if (netif_running(netdev)) {
1378                netif_device_detach(netdev);
1379                ks8851_net_stop(netdev);
1380        }
1381
1382        return 0;
1383}
1384
1385static int ks8851_resume(struct device *dev)
1386{
1387        struct ks8851_net *ks = dev_get_drvdata(dev);
1388        struct net_device *netdev = ks->netdev;
1389
1390        if (netif_running(netdev)) {
1391                ks8851_net_open(netdev);
1392                netif_device_attach(netdev);
1393        }
1394
1395        return 0;
1396}
1397#endif
1398
1399static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1400
1401static int ks8851_probe(struct spi_device *spi)
1402{
1403        struct net_device *ndev;
1404        struct ks8851_net *ks;
1405        int ret;
1406        unsigned cider;
1407
1408        ndev = alloc_etherdev(sizeof(struct ks8851_net));
1409        if (!ndev)
1410                return -ENOMEM;
1411
1412        spi->bits_per_word = 8;
1413
1414        ks = netdev_priv(ndev);
1415
1416        ks->netdev = ndev;
1417        ks->spidev = spi;
1418        ks->tx_space = 6144;
1419
1420        ks->vdd_reg = regulator_get_optional(&spi->dev, "vdd");
1421        if (IS_ERR(ks->vdd_reg)) {
1422                ret = PTR_ERR(ks->vdd_reg);
1423                if (ret == -EPROBE_DEFER)
1424                        goto err_reg;
1425        } else {
1426                ret = regulator_enable(ks->vdd_reg);
1427                if (ret) {
1428                        dev_err(&spi->dev, "regulator enable fail: %d\n",
1429                                ret);
1430                        goto err_reg_en;
1431                }
1432        }
1433
1434
1435        mutex_init(&ks->lock);
1436        spin_lock_init(&ks->statelock);
1437
1438        INIT_WORK(&ks->tx_work, ks8851_tx_work);
1439        INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1440
1441        /* initialise pre-made spi transfer messages */
1442
1443        spi_message_init(&ks->spi_msg1);
1444        spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1445
1446        spi_message_init(&ks->spi_msg2);
1447        spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1448        spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1449
1450        /* setup EEPROM state */
1451
1452        ks->eeprom.data = ks;
1453        ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1454        ks->eeprom.register_read = ks8851_eeprom_regread;
1455        ks->eeprom.register_write = ks8851_eeprom_regwrite;
1456
1457        /* setup mii state */
1458        ks->mii.dev             = ndev;
1459        ks->mii.phy_id          = 1,
1460        ks->mii.phy_id_mask     = 1;
1461        ks->mii.reg_num_mask    = 0xf;
1462        ks->mii.mdio_read       = ks8851_phy_read;
1463        ks->mii.mdio_write      = ks8851_phy_write;
1464
1465        dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1466
1467        /* set the default message enable */
1468        ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1469                                                     NETIF_MSG_PROBE |
1470                                                     NETIF_MSG_LINK));
1471
1472        skb_queue_head_init(&ks->txq);
1473
1474        SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1475        SET_NETDEV_DEV(ndev, &spi->dev);
1476
1477        spi_set_drvdata(spi, ks);
1478
1479        ndev->if_port = IF_PORT_100BASET;
1480        ndev->netdev_ops = &ks8851_netdev_ops;
1481        ndev->irq = spi->irq;
1482
1483        /* issue a global soft reset to reset the device. */
1484        ks8851_soft_reset(ks, GRR_GSR);
1485
1486        /* simple check for a valid chip being connected to the bus */
1487        cider = ks8851_rdreg16(ks, KS_CIDER);
1488        if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1489                dev_err(&spi->dev, "failed to read device ID\n");
1490                ret = -ENODEV;
1491                goto err_id;
1492        }
1493
1494        /* cache the contents of the CCR register for EEPROM, etc. */
1495        ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1496
1497        if (ks->rc_ccr & CCR_EEPROM)
1498                ks->eeprom_size = 128;
1499        else
1500                ks->eeprom_size = 0;
1501
1502        ks8851_read_selftest(ks);
1503        ks8851_init_mac(ks);
1504
1505        ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1506                                   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1507                                   ndev->name, ks);
1508        if (ret < 0) {
1509                dev_err(&spi->dev, "failed to get irq\n");
1510                goto err_irq;
1511        }
1512
1513        ret = register_netdev(ndev);
1514        if (ret) {
1515                dev_err(&spi->dev, "failed to register network device\n");
1516                goto err_netdev;
1517        }
1518
1519        netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1520                    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1521                    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1522
1523        return 0;
1524
1525
1526err_netdev:
1527        free_irq(ndev->irq, ks);
1528
1529err_irq:
1530err_id:
1531        if (!IS_ERR(ks->vdd_reg))
1532                regulator_disable(ks->vdd_reg);
1533err_reg_en:
1534        if (!IS_ERR(ks->vdd_reg))
1535                regulator_put(ks->vdd_reg);
1536err_reg:
1537        free_netdev(ndev);
1538        return ret;
1539}
1540
1541static int ks8851_remove(struct spi_device *spi)
1542{
1543        struct ks8851_net *priv = spi_get_drvdata(spi);
1544
1545        if (netif_msg_drv(priv))
1546                dev_info(&spi->dev, "remove\n");
1547
1548        unregister_netdev(priv->netdev);
1549        free_irq(spi->irq, priv);
1550        if (!IS_ERR(priv->vdd_reg)) {
1551                regulator_disable(priv->vdd_reg);
1552                regulator_put(priv->vdd_reg);
1553        }
1554        free_netdev(priv->netdev);
1555
1556        return 0;
1557}
1558
1559static struct spi_driver ks8851_driver = {
1560        .driver = {
1561                .name = "ks8851",
1562                .owner = THIS_MODULE,
1563                .pm = &ks8851_pm_ops,
1564        },
1565        .probe = ks8851_probe,
1566        .remove = ks8851_remove,
1567};
1568module_spi_driver(ks8851_driver);
1569
1570MODULE_DESCRIPTION("KS8851 Network driver");
1571MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1572MODULE_LICENSE("GPL");
1573
1574module_param_named(message, msg_enable, int, 0);
1575MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1576MODULE_ALIAS("spi:ks8851");
1577