linux/drivers/net/ethernet/sfc/ptp.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2011-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10/* Theory of operation:
  11 *
  12 * PTP support is assisted by firmware running on the MC, which provides
  13 * the hardware timestamping capabilities.  Both transmitted and received
  14 * PTP event packets are queued onto internal queues for subsequent processing;
  15 * this is because the MC operations are relatively long and would block
  16 * block NAPI/interrupt operation.
  17 *
  18 * Receive event processing:
  19 *      The event contains the packet's UUID and sequence number, together
  20 *      with the hardware timestamp.  The PTP receive packet queue is searched
  21 *      for this UUID/sequence number and, if found, put on a pending queue.
  22 *      Packets not matching are delivered without timestamps (MCDI events will
  23 *      always arrive after the actual packet).
  24 *      It is important for the operation of the PTP protocol that the ordering
  25 *      of packets between the event and general port is maintained.
  26 *
  27 * Work queue processing:
  28 *      If work waiting, synchronise host/hardware time
  29 *
  30 *      Transmit: send packet through MC, which returns the transmission time
  31 *      that is converted to an appropriate timestamp.
  32 *
  33 *      Receive: the packet's reception time is converted to an appropriate
  34 *      timestamp.
  35 */
  36#include <linux/ip.h>
  37#include <linux/udp.h>
  38#include <linux/time.h>
  39#include <linux/ktime.h>
  40#include <linux/module.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/pps_kernel.h>
  43#include <linux/ptp_clock_kernel.h>
  44#include "net_driver.h"
  45#include "efx.h"
  46#include "mcdi.h"
  47#include "mcdi_pcol.h"
  48#include "io.h"
  49#include "farch_regs.h"
  50#include "nic.h"
  51
  52/* Maximum number of events expected to make up a PTP event */
  53#define MAX_EVENT_FRAGS                 3
  54
  55/* Maximum delay, ms, to begin synchronisation */
  56#define MAX_SYNCHRONISE_WAIT_MS         2
  57
  58/* How long, at most, to spend synchronising */
  59#define SYNCHRONISE_PERIOD_NS           250000
  60
  61/* How often to update the shared memory time */
  62#define SYNCHRONISATION_GRANULARITY_NS  200
  63
  64/* Minimum permitted length of a (corrected) synchronisation time */
  65#define DEFAULT_MIN_SYNCHRONISATION_NS  120
  66
  67/* Maximum permitted length of a (corrected) synchronisation time */
  68#define MAX_SYNCHRONISATION_NS          1000
  69
  70/* How many (MC) receive events that can be queued */
  71#define MAX_RECEIVE_EVENTS              8
  72
  73/* Length of (modified) moving average. */
  74#define AVERAGE_LENGTH                  16
  75
  76/* How long an unmatched event or packet can be held */
  77#define PKT_EVENT_LIFETIME_MS           10
  78
  79/* Offsets into PTP packet for identification.  These offsets are from the
  80 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  81 * PTP V2 permit the use of IPV4 options.
  82 */
  83#define PTP_DPORT_OFFSET        22
  84
  85#define PTP_V1_VERSION_LENGTH   2
  86#define PTP_V1_VERSION_OFFSET   28
  87
  88#define PTP_V1_UUID_LENGTH      6
  89#define PTP_V1_UUID_OFFSET      50
  90
  91#define PTP_V1_SEQUENCE_LENGTH  2
  92#define PTP_V1_SEQUENCE_OFFSET  58
  93
  94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  95 * includes IP header.
  96 */
  97#define PTP_V1_MIN_LENGTH       64
  98
  99#define PTP_V2_VERSION_LENGTH   1
 100#define PTP_V2_VERSION_OFFSET   29
 101
 102#define PTP_V2_UUID_LENGTH      8
 103#define PTP_V2_UUID_OFFSET      48
 104
 105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 106 * the MC only captures the last six bytes of the clock identity. These values
 107 * reflect those, not the ones used in the standard.  The standard permits
 108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 109 */
 110#define PTP_V2_MC_UUID_LENGTH   6
 111#define PTP_V2_MC_UUID_OFFSET   50
 112
 113#define PTP_V2_SEQUENCE_LENGTH  2
 114#define PTP_V2_SEQUENCE_OFFSET  58
 115
 116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 117 * includes IP header.
 118 */
 119#define PTP_V2_MIN_LENGTH       63
 120
 121#define PTP_MIN_LENGTH          63
 122
 123#define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 124#define PTP_EVENT_PORT          319
 125#define PTP_GENERAL_PORT        320
 126
 127/* Annoyingly the format of the version numbers are different between
 128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 129 */
 130#define PTP_VERSION_V1          1
 131
 132#define PTP_VERSION_V2          2
 133#define PTP_VERSION_V2_MASK     0x0f
 134
 135enum ptp_packet_state {
 136        PTP_PACKET_STATE_UNMATCHED = 0,
 137        PTP_PACKET_STATE_MATCHED,
 138        PTP_PACKET_STATE_TIMED_OUT,
 139        PTP_PACKET_STATE_MATCH_UNWANTED
 140};
 141
 142/* NIC synchronised with single word of time only comprising
 143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 144 */
 145#define MC_NANOSECOND_BITS      30
 146#define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 147#define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 148
 149/* Maximum parts-per-billion adjustment that is acceptable */
 150#define MAX_PPB                 1000000
 151
 152/* Number of bits required to hold the above */
 153#define MAX_PPB_BITS            20
 154
 155/* Number of extra bits allowed when calculating fractional ns.
 156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
 157 * be less than 63.
 158 */
 159#define PPB_EXTRA_BITS          2
 160
 161/* Precalculate scale word to avoid long long division at runtime */
 162#define PPB_SCALE_WORD  ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
 163                        MAX_PPB_BITS)) / 1000000000LL)
 164
 165#define PTP_SYNC_ATTEMPTS       4
 166
 167/**
 168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 169 * @words: UUID and (partial) sequence number
 170 * @expiry: Time after which the packet should be delivered irrespective of
 171 *            event arrival.
 172 * @state: The state of the packet - whether it is ready for processing or
 173 *         whether that is of no interest.
 174 */
 175struct efx_ptp_match {
 176        u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 177        unsigned long expiry;
 178        enum ptp_packet_state state;
 179};
 180
 181/**
 182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 183 * @seq0: First part of (PTP) UUID
 184 * @seq1: Second part of (PTP) UUID and sequence number
 185 * @hwtimestamp: Event timestamp
 186 */
 187struct efx_ptp_event_rx {
 188        struct list_head link;
 189        u32 seq0;
 190        u32 seq1;
 191        ktime_t hwtimestamp;
 192        unsigned long expiry;
 193};
 194
 195/**
 196 * struct efx_ptp_timeset - Synchronisation between host and MC
 197 * @host_start: Host time immediately before hardware timestamp taken
 198 * @major: Hardware timestamp, major
 199 * @minor: Hardware timestamp, minor
 200 * @host_end: Host time immediately after hardware timestamp taken
 201 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 202 *          host end time being seen
 203 * @window: Difference of host_end and host_start
 204 * @valid: Whether this timeset is valid
 205 */
 206struct efx_ptp_timeset {
 207        u32 host_start;
 208        u32 major;
 209        u32 minor;
 210        u32 host_end;
 211        u32 wait;
 212        u32 window;     /* Derived: end - start, allowing for wrap */
 213};
 214
 215/**
 216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 217 * @efx: The NIC context
 218 * @channel: The PTP channel (Siena only)
 219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 220 *      separate events)
 221 * @rxq: Receive queue (awaiting timestamps)
 222 * @txq: Transmit queue
 223 * @evt_list: List of MC receive events awaiting packets
 224 * @evt_free_list: List of free events
 225 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 226 * @evt_overflow: Boolean indicating that event list has overflowed
 227 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 228 * @workwq: Work queue for processing pending PTP operations
 229 * @work: Work task
 230 * @reset_required: A serious error has occurred and the PTP task needs to be
 231 *                  reset (disable, enable).
 232 * @rxfilter_event: Receive filter when operating
 233 * @rxfilter_general: Receive filter when operating
 234 * @config: Current timestamp configuration
 235 * @enabled: PTP operation enabled
 236 * @mode: Mode in which PTP operating (PTP version)
 237 * @time_format: Time format supported by this NIC
 238 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 239 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 240 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 241 * @ts_corrections.tx: Required driver correction of transmit timestamps
 242 * @ts_corrections.rx: Required driver correction of receive timestamps
 243 * @ts_corrections.pps_out: PPS output error (information only)
 244 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 245 * @evt_frags: Partly assembled PTP events
 246 * @evt_frag_idx: Current fragment number
 247 * @evt_code: Last event code
 248 * @start: Address at which MC indicates ready for synchronisation
 249 * @host_time_pps: Host time at last PPS
 250 * @current_adjfreq: Current ppb adjustment.
 251 * @phc_clock: Pointer to registered phc device (if primary function)
 252 * @phc_clock_info: Registration structure for phc device
 253 * @pps_work: pps work task for handling pps events
 254 * @pps_workwq: pps work queue
 255 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 256 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 257 *         allocations in main data path).
 258 * @good_syncs: Number of successful synchronisations.
 259 * @fast_syncs: Number of synchronisations requiring short delay
 260 * @bad_syncs: Number of failed synchronisations.
 261 * @sync_timeouts: Number of synchronisation timeouts
 262 * @no_time_syncs: Number of synchronisations with no good times.
 263 * @invalid_sync_windows: Number of sync windows with bad durations.
 264 * @undersize_sync_windows: Number of corrected sync windows that are too small
 265 * @oversize_sync_windows: Number of corrected sync windows that are too large
 266 * @rx_no_timestamp: Number of packets received without a timestamp.
 267 * @timeset: Last set of synchronisation statistics.
 268 */
 269struct efx_ptp_data {
 270        struct efx_nic *efx;
 271        struct efx_channel *channel;
 272        bool rx_ts_inline;
 273        struct sk_buff_head rxq;
 274        struct sk_buff_head txq;
 275        struct list_head evt_list;
 276        struct list_head evt_free_list;
 277        spinlock_t evt_lock;
 278        bool evt_overflow;
 279        struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 280        struct workqueue_struct *workwq;
 281        struct work_struct work;
 282        bool reset_required;
 283        u32 rxfilter_event;
 284        u32 rxfilter_general;
 285        bool rxfilter_installed;
 286        struct hwtstamp_config config;
 287        bool enabled;
 288        unsigned int mode;
 289        unsigned int time_format;
 290        void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 291        ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 292                                      s32 correction);
 293        unsigned int min_synchronisation_ns;
 294        struct {
 295                s32 tx;
 296                s32 rx;
 297                s32 pps_out;
 298                s32 pps_in;
 299        } ts_corrections;
 300        efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 301        int evt_frag_idx;
 302        int evt_code;
 303        struct efx_buffer start;
 304        struct pps_event_time host_time_pps;
 305        s64 current_adjfreq;
 306        struct ptp_clock *phc_clock;
 307        struct ptp_clock_info phc_clock_info;
 308        struct work_struct pps_work;
 309        struct workqueue_struct *pps_workwq;
 310        bool nic_ts_enabled;
 311        MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
 312
 313        unsigned int good_syncs;
 314        unsigned int fast_syncs;
 315        unsigned int bad_syncs;
 316        unsigned int sync_timeouts;
 317        unsigned int no_time_syncs;
 318        unsigned int invalid_sync_windows;
 319        unsigned int undersize_sync_windows;
 320        unsigned int oversize_sync_windows;
 321        unsigned int rx_no_timestamp;
 322        struct efx_ptp_timeset
 323        timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 324};
 325
 326static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 327static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 328static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
 329static int efx_phc_settime(struct ptp_clock_info *ptp,
 330                           const struct timespec *e_ts);
 331static int efx_phc_enable(struct ptp_clock_info *ptp,
 332                          struct ptp_clock_request *request, int on);
 333
 334#define PTP_SW_STAT(ext_name, field_name)                               \
 335        { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 336#define PTP_MC_STAT(ext_name, mcdi_name)                                \
 337        { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 338static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 339        PTP_SW_STAT(ptp_good_syncs, good_syncs),
 340        PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 341        PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 342        PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 343        PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 344        PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 345        PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 346        PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 347        PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 348        PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 349        PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 350        PTP_MC_STAT(ptp_timestamp_packets, TS),
 351        PTP_MC_STAT(ptp_filter_matches, FM),
 352        PTP_MC_STAT(ptp_non_filter_matches, NFM),
 353};
 354#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 355static const unsigned long efx_ptp_stat_mask[] = {
 356        [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 357};
 358
 359size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 360{
 361        if (!efx->ptp_data)
 362                return 0;
 363
 364        return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 365                                      efx_ptp_stat_mask, strings);
 366}
 367
 368size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 369{
 370        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 371        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 372        size_t i;
 373        int rc;
 374
 375        if (!efx->ptp_data)
 376                return 0;
 377
 378        /* Copy software statistics */
 379        for (i = 0; i < PTP_STAT_COUNT; i++) {
 380                if (efx_ptp_stat_desc[i].dma_width)
 381                        continue;
 382                stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 383                                             efx_ptp_stat_desc[i].offset);
 384        }
 385
 386        /* Fetch MC statistics.  We *must* fill in all statistics or
 387         * risk leaking kernel memory to userland, so if the MCDI
 388         * request fails we pretend we got zeroes.
 389         */
 390        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 391        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 392        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 393                          outbuf, sizeof(outbuf), NULL);
 394        if (rc) {
 395                netif_err(efx, hw, efx->net_dev,
 396                          "MC_CMD_PTP_OP_STATUS failed (%d)\n", rc);
 397                memset(outbuf, 0, sizeof(outbuf));
 398        }
 399        efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 400                             efx_ptp_stat_mask,
 401                             stats, _MCDI_PTR(outbuf, 0), false);
 402
 403        return PTP_STAT_COUNT;
 404}
 405
 406/* For Siena platforms NIC time is s and ns */
 407static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 408{
 409        struct timespec ts = ns_to_timespec(ns);
 410        *nic_major = ts.tv_sec;
 411        *nic_minor = ts.tv_nsec;
 412}
 413
 414static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 415                                                s32 correction)
 416{
 417        ktime_t kt = ktime_set(nic_major, nic_minor);
 418        if (correction >= 0)
 419                kt = ktime_add_ns(kt, (u64)correction);
 420        else
 421                kt = ktime_sub_ns(kt, (u64)-correction);
 422        return kt;
 423}
 424
 425/* To convert from s27 format to ns we multiply then divide by a power of 2.
 426 * For the conversion from ns to s27, the operation is also converted to a
 427 * multiply and shift.
 428 */
 429#define S27_TO_NS_SHIFT (27)
 430#define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 431#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
 432#define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
 433
 434/* For Huntington platforms NIC time is in seconds and fractions of a second
 435 * where the minor register only uses 27 bits in units of 2^-27s.
 436 */
 437static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 438{
 439        struct timespec ts = ns_to_timespec(ns);
 440        u32 maj = ts.tv_sec;
 441        u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 442                         (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 443
 444        /* The conversion can result in the minor value exceeding the maximum.
 445         * In this case, round up to the next second.
 446         */
 447        if (min >= S27_MINOR_MAX) {
 448                min -= S27_MINOR_MAX;
 449                maj++;
 450        }
 451
 452        *nic_major = maj;
 453        *nic_minor = min;
 454}
 455
 456static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 457{
 458        u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 459                        (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 460        return ktime_set(nic_major, ns);
 461}
 462
 463static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 464                                               s32 correction)
 465{
 466        /* Apply the correction and deal with carry */
 467        nic_minor += correction;
 468        if ((s32)nic_minor < 0) {
 469                nic_minor += S27_MINOR_MAX;
 470                nic_major--;
 471        } else if (nic_minor >= S27_MINOR_MAX) {
 472                nic_minor -= S27_MINOR_MAX;
 473                nic_major++;
 474        }
 475
 476        return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 477}
 478
 479/* Get PTP attributes and set up time conversions */
 480static int efx_ptp_get_attributes(struct efx_nic *efx)
 481{
 482        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 483        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 484        struct efx_ptp_data *ptp = efx->ptp_data;
 485        int rc;
 486        u32 fmt;
 487        size_t out_len;
 488
 489        /* Get the PTP attributes. If the NIC doesn't support the operation we
 490         * use the default format for compatibility with older NICs i.e.
 491         * seconds and nanoseconds.
 492         */
 493        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 494        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 495        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 496                          outbuf, sizeof(outbuf), &out_len);
 497        if (rc == 0)
 498                fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 499        else if (rc == -EINVAL)
 500                fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 501        else
 502                return rc;
 503
 504        if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) {
 505                ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 506                ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 507        } else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) {
 508                ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 509                ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 510        } else {
 511                return -ERANGE;
 512        }
 513
 514        ptp->time_format = fmt;
 515
 516        /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
 517         * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
 518         * to use for the minimum acceptable corrected synchronization window.
 519         * If we have the extra information store it. For older firmware that
 520         * does not implement the extended command use the default value.
 521         */
 522        if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 523                ptp->min_synchronisation_ns =
 524                        MCDI_DWORD(outbuf,
 525                                   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 526        else
 527                ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 528
 529        return 0;
 530}
 531
 532/* Get PTP timestamp corrections */
 533static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 534{
 535        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 536        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN);
 537        int rc;
 538
 539        /* Get the timestamp corrections from the NIC. If this operation is
 540         * not supported (older NICs) then no correction is required.
 541         */
 542        MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 543                       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 544        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 545
 546        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 547                          outbuf, sizeof(outbuf), NULL);
 548        if (rc == 0) {
 549                efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf,
 550                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 551                efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf,
 552                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 553                efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 554                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 555                efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 556                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 557        } else if (rc == -EINVAL) {
 558                efx->ptp_data->ts_corrections.tx = 0;
 559                efx->ptp_data->ts_corrections.rx = 0;
 560                efx->ptp_data->ts_corrections.pps_out = 0;
 561                efx->ptp_data->ts_corrections.pps_in = 0;
 562        } else {
 563                return rc;
 564        }
 565
 566        return 0;
 567}
 568
 569/* Enable MCDI PTP support. */
 570static int efx_ptp_enable(struct efx_nic *efx)
 571{
 572        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 573        MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
 574        int rc;
 575
 576        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 577        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 578        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 579                       efx->ptp_data->channel ?
 580                       efx->ptp_data->channel->channel : 0);
 581        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 582
 583        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 584                                outbuf, sizeof(outbuf), NULL);
 585        rc = (rc == -EALREADY) ? 0 : rc;
 586        if (rc)
 587                efx_mcdi_display_error(efx, MC_CMD_PTP,
 588                                       MC_CMD_PTP_IN_ENABLE_LEN,
 589                                       outbuf, sizeof(outbuf), rc);
 590        return rc;
 591}
 592
 593/* Disable MCDI PTP support.
 594 *
 595 * Note that this function should never rely on the presence of ptp_data -
 596 * may be called before that exists.
 597 */
 598static int efx_ptp_disable(struct efx_nic *efx)
 599{
 600        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 601        MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
 602        int rc;
 603
 604        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 605        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 606        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 607                                outbuf, sizeof(outbuf), NULL);
 608        rc = (rc == -EALREADY) ? 0 : rc;
 609        if (rc)
 610                efx_mcdi_display_error(efx, MC_CMD_PTP,
 611                                       MC_CMD_PTP_IN_DISABLE_LEN,
 612                                       outbuf, sizeof(outbuf), rc);
 613        return rc;
 614}
 615
 616static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 617{
 618        struct sk_buff *skb;
 619
 620        while ((skb = skb_dequeue(q))) {
 621                local_bh_disable();
 622                netif_receive_skb(skb);
 623                local_bh_enable();
 624        }
 625}
 626
 627static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 628{
 629        netif_err(efx, drv, efx->net_dev,
 630                  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 631                  "vector. PTP disabled\n");
 632}
 633
 634/* Repeatedly send the host time to the MC which will capture the hardware
 635 * time.
 636 */
 637static void efx_ptp_send_times(struct efx_nic *efx,
 638                               struct pps_event_time *last_time)
 639{
 640        struct pps_event_time now;
 641        struct timespec limit;
 642        struct efx_ptp_data *ptp = efx->ptp_data;
 643        struct timespec start;
 644        int *mc_running = ptp->start.addr;
 645
 646        pps_get_ts(&now);
 647        start = now.ts_real;
 648        limit = now.ts_real;
 649        timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 650
 651        /* Write host time for specified period or until MC is done */
 652        while ((timespec_compare(&now.ts_real, &limit) < 0) &&
 653               ACCESS_ONCE(*mc_running)) {
 654                struct timespec update_time;
 655                unsigned int host_time;
 656
 657                /* Don't update continuously to avoid saturating the PCIe bus */
 658                update_time = now.ts_real;
 659                timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 660                do {
 661                        pps_get_ts(&now);
 662                } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
 663                         ACCESS_ONCE(*mc_running));
 664
 665                /* Synchronise NIC with single word of time only */
 666                host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 667                             now.ts_real.tv_nsec);
 668                /* Update host time in NIC memory */
 669                efx->type->ptp_write_host_time(efx, host_time);
 670        }
 671        *last_time = now;
 672}
 673
 674/* Read a timeset from the MC's results and partial process. */
 675static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 676                                 struct efx_ptp_timeset *timeset)
 677{
 678        unsigned start_ns, end_ns;
 679
 680        timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 681        timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 682        timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 683        timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 684        timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 685
 686        /* Ignore seconds */
 687        start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 688        end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 689        /* Allow for rollover */
 690        if (end_ns < start_ns)
 691                end_ns += NSEC_PER_SEC;
 692        /* Determine duration of operation */
 693        timeset->window = end_ns - start_ns;
 694}
 695
 696/* Process times received from MC.
 697 *
 698 * Extract times from returned results, and establish the minimum value
 699 * seen.  The minimum value represents the "best" possible time and events
 700 * too much greater than this are rejected - the machine is, perhaps, too
 701 * busy. A number of readings are taken so that, hopefully, at least one good
 702 * synchronisation will be seen in the results.
 703 */
 704static int
 705efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 706                      size_t response_length,
 707                      const struct pps_event_time *last_time)
 708{
 709        unsigned number_readings =
 710                MCDI_VAR_ARRAY_LEN(response_length,
 711                                   PTP_OUT_SYNCHRONIZE_TIMESET);
 712        unsigned i;
 713        unsigned ngood = 0;
 714        unsigned last_good = 0;
 715        struct efx_ptp_data *ptp = efx->ptp_data;
 716        u32 last_sec;
 717        u32 start_sec;
 718        struct timespec delta;
 719        ktime_t mc_time;
 720
 721        if (number_readings == 0)
 722                return -EAGAIN;
 723
 724        /* Read the set of results and find the last good host-MC
 725         * synchronization result. The MC times when it finishes reading the
 726         * host time so the corrected window time should be fairly constant
 727         * for a given platform. Increment stats for any results that appear
 728         * to be erroneous.
 729         */
 730        for (i = 0; i < number_readings; i++) {
 731                s32 window, corrected;
 732                struct timespec wait;
 733
 734                efx_ptp_read_timeset(
 735                        MCDI_ARRAY_STRUCT_PTR(synch_buf,
 736                                              PTP_OUT_SYNCHRONIZE_TIMESET, i),
 737                        &ptp->timeset[i]);
 738
 739                wait = ktime_to_timespec(
 740                        ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 741                window = ptp->timeset[i].window;
 742                corrected = window - wait.tv_nsec;
 743
 744                /* We expect the uncorrected synchronization window to be at
 745                 * least as large as the interval between host start and end
 746                 * times. If it is smaller than this then this is mostly likely
 747                 * to be a consequence of the host's time being adjusted.
 748                 * Check that the corrected sync window is in a reasonable
 749                 * range. If it is out of range it is likely to be because an
 750                 * interrupt or other delay occurred between reading the system
 751                 * time and writing it to MC memory.
 752                 */
 753                if (window < SYNCHRONISATION_GRANULARITY_NS) {
 754                        ++ptp->invalid_sync_windows;
 755                } else if (corrected >= MAX_SYNCHRONISATION_NS) {
 756                        ++ptp->oversize_sync_windows;
 757                } else if (corrected < ptp->min_synchronisation_ns) {
 758                        ++ptp->undersize_sync_windows;
 759                } else {
 760                        ngood++;
 761                        last_good = i;
 762                }
 763        }
 764
 765        if (ngood == 0) {
 766                netif_warn(efx, drv, efx->net_dev,
 767                           "PTP no suitable synchronisations\n");
 768                return -EAGAIN;
 769        }
 770
 771        /* Convert the NIC time into kernel time. No correction is required-
 772         * this time is the output of a firmware process.
 773         */
 774        mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
 775                                          ptp->timeset[last_good].minor, 0);
 776
 777        /* Calculate delay from actual PPS to last_time */
 778        delta = ktime_to_timespec(mc_time);
 779        delta.tv_nsec +=
 780                last_time->ts_real.tv_nsec -
 781                (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 782
 783        /* It is possible that the seconds rolled over between taking
 784         * the start reading and the last value written by the host.  The
 785         * timescales are such that a gap of more than one second is never
 786         * expected.
 787         */
 788        start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 789        last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 790        if (start_sec != last_sec) {
 791                if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 792                        netif_warn(efx, hw, efx->net_dev,
 793                                   "PTP bad synchronisation seconds\n");
 794                        return -EAGAIN;
 795                } else {
 796                        delta.tv_sec = 1;
 797                }
 798        } else {
 799                delta.tv_sec = 0;
 800        }
 801
 802        ptp->host_time_pps = *last_time;
 803        pps_sub_ts(&ptp->host_time_pps, delta);
 804
 805        return 0;
 806}
 807
 808/* Synchronize times between the host and the MC */
 809static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
 810{
 811        struct efx_ptp_data *ptp = efx->ptp_data;
 812        MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
 813        size_t response_length;
 814        int rc;
 815        unsigned long timeout;
 816        struct pps_event_time last_time = {};
 817        unsigned int loops = 0;
 818        int *start = ptp->start.addr;
 819
 820        MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
 821        MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
 822        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
 823                       num_readings);
 824        MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
 825                       ptp->start.dma_addr);
 826
 827        /* Clear flag that signals MC ready */
 828        ACCESS_ONCE(*start) = 0;
 829        rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
 830                                MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
 831        EFX_BUG_ON_PARANOID(rc);
 832
 833        /* Wait for start from MCDI (or timeout) */
 834        timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
 835        while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
 836                udelay(20);     /* Usually start MCDI execution quickly */
 837                loops++;
 838        }
 839
 840        if (loops <= 1)
 841                ++ptp->fast_syncs;
 842        if (!time_before(jiffies, timeout))
 843                ++ptp->sync_timeouts;
 844
 845        if (ACCESS_ONCE(*start))
 846                efx_ptp_send_times(efx, &last_time);
 847
 848        /* Collect results */
 849        rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
 850                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
 851                                 synch_buf, sizeof(synch_buf),
 852                                 &response_length);
 853        if (rc == 0) {
 854                rc = efx_ptp_process_times(efx, synch_buf, response_length,
 855                                           &last_time);
 856                if (rc == 0)
 857                        ++ptp->good_syncs;
 858                else
 859                        ++ptp->no_time_syncs;
 860        }
 861
 862        /* Increment the bad syncs counter if the synchronize fails, whatever
 863         * the reason.
 864         */
 865        if (rc != 0)
 866                ++ptp->bad_syncs;
 867
 868        return rc;
 869}
 870
 871/* Transmit a PTP packet, via the MCDI interface, to the wire. */
 872static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
 873{
 874        struct efx_ptp_data *ptp_data = efx->ptp_data;
 875        struct skb_shared_hwtstamps timestamps;
 876        int rc = -EIO;
 877        MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
 878        size_t len;
 879
 880        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
 881        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
 882        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
 883        if (skb_shinfo(skb)->nr_frags != 0) {
 884                rc = skb_linearize(skb);
 885                if (rc != 0)
 886                        goto fail;
 887        }
 888
 889        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 890                rc = skb_checksum_help(skb);
 891                if (rc != 0)
 892                        goto fail;
 893        }
 894        skb_copy_from_linear_data(skb,
 895                                  MCDI_PTR(ptp_data->txbuf,
 896                                           PTP_IN_TRANSMIT_PACKET),
 897                                  skb->len);
 898        rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
 899                          ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
 900                          txtime, sizeof(txtime), &len);
 901        if (rc != 0)
 902                goto fail;
 903
 904        memset(&timestamps, 0, sizeof(timestamps));
 905        timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
 906                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
 907                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
 908                ptp_data->ts_corrections.tx);
 909
 910        skb_tstamp_tx(skb, &timestamps);
 911
 912        rc = 0;
 913
 914fail:
 915        dev_kfree_skb(skb);
 916
 917        return rc;
 918}
 919
 920static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
 921{
 922        struct efx_ptp_data *ptp = efx->ptp_data;
 923        struct list_head *cursor;
 924        struct list_head *next;
 925
 926        if (ptp->rx_ts_inline)
 927                return;
 928
 929        /* Drop time-expired events */
 930        spin_lock_bh(&ptp->evt_lock);
 931        if (!list_empty(&ptp->evt_list)) {
 932                list_for_each_safe(cursor, next, &ptp->evt_list) {
 933                        struct efx_ptp_event_rx *evt;
 934
 935                        evt = list_entry(cursor, struct efx_ptp_event_rx,
 936                                         link);
 937                        if (time_after(jiffies, evt->expiry)) {
 938                                list_move(&evt->link, &ptp->evt_free_list);
 939                                netif_warn(efx, hw, efx->net_dev,
 940                                           "PTP rx event dropped\n");
 941                        }
 942                }
 943        }
 944        /* If the event overflow flag is set and the event list is now empty
 945         * clear the flag to re-enable the overflow warning message.
 946         */
 947        if (ptp->evt_overflow && list_empty(&ptp->evt_list))
 948                ptp->evt_overflow = false;
 949        spin_unlock_bh(&ptp->evt_lock);
 950}
 951
 952static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
 953                                              struct sk_buff *skb)
 954{
 955        struct efx_ptp_data *ptp = efx->ptp_data;
 956        bool evts_waiting;
 957        struct list_head *cursor;
 958        struct list_head *next;
 959        struct efx_ptp_match *match;
 960        enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
 961
 962        WARN_ON_ONCE(ptp->rx_ts_inline);
 963
 964        spin_lock_bh(&ptp->evt_lock);
 965        evts_waiting = !list_empty(&ptp->evt_list);
 966        spin_unlock_bh(&ptp->evt_lock);
 967
 968        if (!evts_waiting)
 969                return PTP_PACKET_STATE_UNMATCHED;
 970
 971        match = (struct efx_ptp_match *)skb->cb;
 972        /* Look for a matching timestamp in the event queue */
 973        spin_lock_bh(&ptp->evt_lock);
 974        list_for_each_safe(cursor, next, &ptp->evt_list) {
 975                struct efx_ptp_event_rx *evt;
 976
 977                evt = list_entry(cursor, struct efx_ptp_event_rx, link);
 978                if ((evt->seq0 == match->words[0]) &&
 979                    (evt->seq1 == match->words[1])) {
 980                        struct skb_shared_hwtstamps *timestamps;
 981
 982                        /* Match - add in hardware timestamp */
 983                        timestamps = skb_hwtstamps(skb);
 984                        timestamps->hwtstamp = evt->hwtimestamp;
 985
 986                        match->state = PTP_PACKET_STATE_MATCHED;
 987                        rc = PTP_PACKET_STATE_MATCHED;
 988                        list_move(&evt->link, &ptp->evt_free_list);
 989                        break;
 990                }
 991        }
 992        /* If the event overflow flag is set and the event list is now empty
 993         * clear the flag to re-enable the overflow warning message.
 994         */
 995        if (ptp->evt_overflow && list_empty(&ptp->evt_list))
 996                ptp->evt_overflow = false;
 997        spin_unlock_bh(&ptp->evt_lock);
 998
 999        return rc;
1000}
1001
1002/* Process any queued receive events and corresponding packets
1003 *
1004 * q is returned with all the packets that are ready for delivery.
1005 */
1006static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1007{
1008        struct efx_ptp_data *ptp = efx->ptp_data;
1009        struct sk_buff *skb;
1010
1011        while ((skb = skb_dequeue(&ptp->rxq))) {
1012                struct efx_ptp_match *match;
1013
1014                match = (struct efx_ptp_match *)skb->cb;
1015                if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1016                        __skb_queue_tail(q, skb);
1017                } else if (efx_ptp_match_rx(efx, skb) ==
1018                           PTP_PACKET_STATE_MATCHED) {
1019                        __skb_queue_tail(q, skb);
1020                } else if (time_after(jiffies, match->expiry)) {
1021                        match->state = PTP_PACKET_STATE_TIMED_OUT;
1022                        ++ptp->rx_no_timestamp;
1023                        __skb_queue_tail(q, skb);
1024                } else {
1025                        /* Replace unprocessed entry and stop */
1026                        skb_queue_head(&ptp->rxq, skb);
1027                        break;
1028                }
1029        }
1030}
1031
1032/* Complete processing of a received packet */
1033static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1034{
1035        local_bh_disable();
1036        netif_receive_skb(skb);
1037        local_bh_enable();
1038}
1039
1040static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1041{
1042        struct efx_ptp_data *ptp = efx->ptp_data;
1043
1044        if (ptp->rxfilter_installed) {
1045                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1046                                          ptp->rxfilter_general);
1047                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1048                                          ptp->rxfilter_event);
1049                ptp->rxfilter_installed = false;
1050        }
1051}
1052
1053static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1054{
1055        struct efx_ptp_data *ptp = efx->ptp_data;
1056        struct efx_filter_spec rxfilter;
1057        int rc;
1058
1059        if (!ptp->channel || ptp->rxfilter_installed)
1060                return 0;
1061
1062        /* Must filter on both event and general ports to ensure
1063         * that there is no packet re-ordering.
1064         */
1065        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1066                           efx_rx_queue_index(
1067                                   efx_channel_get_rx_queue(ptp->channel)));
1068        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1069                                       htonl(PTP_ADDRESS),
1070                                       htons(PTP_EVENT_PORT));
1071        if (rc != 0)
1072                return rc;
1073
1074        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1075        if (rc < 0)
1076                return rc;
1077        ptp->rxfilter_event = rc;
1078
1079        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1080                           efx_rx_queue_index(
1081                                   efx_channel_get_rx_queue(ptp->channel)));
1082        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1083                                       htonl(PTP_ADDRESS),
1084                                       htons(PTP_GENERAL_PORT));
1085        if (rc != 0)
1086                goto fail;
1087
1088        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1089        if (rc < 0)
1090                goto fail;
1091        ptp->rxfilter_general = rc;
1092
1093        ptp->rxfilter_installed = true;
1094        return 0;
1095
1096fail:
1097        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1098                                  ptp->rxfilter_event);
1099        return rc;
1100}
1101
1102static int efx_ptp_start(struct efx_nic *efx)
1103{
1104        struct efx_ptp_data *ptp = efx->ptp_data;
1105        int rc;
1106
1107        ptp->reset_required = false;
1108
1109        rc = efx_ptp_insert_multicast_filters(efx);
1110        if (rc)
1111                return rc;
1112
1113        rc = efx_ptp_enable(efx);
1114        if (rc != 0)
1115                goto fail;
1116
1117        ptp->evt_frag_idx = 0;
1118        ptp->current_adjfreq = 0;
1119
1120        return 0;
1121
1122fail:
1123        efx_ptp_remove_multicast_filters(efx);
1124        return rc;
1125}
1126
1127static int efx_ptp_stop(struct efx_nic *efx)
1128{
1129        struct efx_ptp_data *ptp = efx->ptp_data;
1130        struct list_head *cursor;
1131        struct list_head *next;
1132        int rc;
1133
1134        if (ptp == NULL)
1135                return 0;
1136
1137        rc = efx_ptp_disable(efx);
1138
1139        efx_ptp_remove_multicast_filters(efx);
1140
1141        /* Make sure RX packets are really delivered */
1142        efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1143        skb_queue_purge(&efx->ptp_data->txq);
1144
1145        /* Drop any pending receive events */
1146        spin_lock_bh(&efx->ptp_data->evt_lock);
1147        list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1148                list_move(cursor, &efx->ptp_data->evt_free_list);
1149        }
1150        ptp->evt_overflow = false;
1151        spin_unlock_bh(&efx->ptp_data->evt_lock);
1152
1153        return rc;
1154}
1155
1156static int efx_ptp_restart(struct efx_nic *efx)
1157{
1158        if (efx->ptp_data && efx->ptp_data->enabled)
1159                return efx_ptp_start(efx);
1160        return 0;
1161}
1162
1163static void efx_ptp_pps_worker(struct work_struct *work)
1164{
1165        struct efx_ptp_data *ptp =
1166                container_of(work, struct efx_ptp_data, pps_work);
1167        struct efx_nic *efx = ptp->efx;
1168        struct ptp_clock_event ptp_evt;
1169
1170        if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1171                return;
1172
1173        ptp_evt.type = PTP_CLOCK_PPSUSR;
1174        ptp_evt.pps_times = ptp->host_time_pps;
1175        ptp_clock_event(ptp->phc_clock, &ptp_evt);
1176}
1177
1178static void efx_ptp_worker(struct work_struct *work)
1179{
1180        struct efx_ptp_data *ptp_data =
1181                container_of(work, struct efx_ptp_data, work);
1182        struct efx_nic *efx = ptp_data->efx;
1183        struct sk_buff *skb;
1184        struct sk_buff_head tempq;
1185
1186        if (ptp_data->reset_required) {
1187                efx_ptp_stop(efx);
1188                efx_ptp_start(efx);
1189                return;
1190        }
1191
1192        efx_ptp_drop_time_expired_events(efx);
1193
1194        __skb_queue_head_init(&tempq);
1195        efx_ptp_process_events(efx, &tempq);
1196
1197        while ((skb = skb_dequeue(&ptp_data->txq)))
1198                efx_ptp_xmit_skb(efx, skb);
1199
1200        while ((skb = __skb_dequeue(&tempq)))
1201                efx_ptp_process_rx(efx, skb);
1202}
1203
1204static const struct ptp_clock_info efx_phc_clock_info = {
1205        .owner          = THIS_MODULE,
1206        .name           = "sfc",
1207        .max_adj        = MAX_PPB,
1208        .n_alarm        = 0,
1209        .n_ext_ts       = 0,
1210        .n_per_out      = 0,
1211        .pps            = 1,
1212        .adjfreq        = efx_phc_adjfreq,
1213        .adjtime        = efx_phc_adjtime,
1214        .gettime        = efx_phc_gettime,
1215        .settime        = efx_phc_settime,
1216        .enable         = efx_phc_enable,
1217};
1218
1219/* Initialise PTP state. */
1220int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1221{
1222        struct efx_ptp_data *ptp;
1223        int rc = 0;
1224        unsigned int pos;
1225
1226        ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1227        efx->ptp_data = ptp;
1228        if (!efx->ptp_data)
1229                return -ENOMEM;
1230
1231        ptp->efx = efx;
1232        ptp->channel = channel;
1233        ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1234
1235        rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1236        if (rc != 0)
1237                goto fail1;
1238
1239        skb_queue_head_init(&ptp->rxq);
1240        skb_queue_head_init(&ptp->txq);
1241        ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1242        if (!ptp->workwq) {
1243                rc = -ENOMEM;
1244                goto fail2;
1245        }
1246
1247        INIT_WORK(&ptp->work, efx_ptp_worker);
1248        ptp->config.flags = 0;
1249        ptp->config.tx_type = HWTSTAMP_TX_OFF;
1250        ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1251        INIT_LIST_HEAD(&ptp->evt_list);
1252        INIT_LIST_HEAD(&ptp->evt_free_list);
1253        spin_lock_init(&ptp->evt_lock);
1254        for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1255                list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1256        ptp->evt_overflow = false;
1257
1258        /* Get the NIC PTP attributes and set up time conversions */
1259        rc = efx_ptp_get_attributes(efx);
1260        if (rc < 0)
1261                goto fail3;
1262
1263        /* Get the timestamp corrections */
1264        rc = efx_ptp_get_timestamp_corrections(efx);
1265        if (rc < 0)
1266                goto fail3;
1267
1268        if (efx->mcdi->fn_flags &
1269            (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1270                ptp->phc_clock_info = efx_phc_clock_info;
1271                ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1272                                                    &efx->pci_dev->dev);
1273                if (IS_ERR(ptp->phc_clock)) {
1274                        rc = PTR_ERR(ptp->phc_clock);
1275                        goto fail3;
1276                }
1277
1278                INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1279                ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1280                if (!ptp->pps_workwq) {
1281                        rc = -ENOMEM;
1282                        goto fail4;
1283                }
1284        }
1285        ptp->nic_ts_enabled = false;
1286
1287        return 0;
1288fail4:
1289        ptp_clock_unregister(efx->ptp_data->phc_clock);
1290
1291fail3:
1292        destroy_workqueue(efx->ptp_data->workwq);
1293
1294fail2:
1295        efx_nic_free_buffer(efx, &ptp->start);
1296
1297fail1:
1298        kfree(efx->ptp_data);
1299        efx->ptp_data = NULL;
1300
1301        return rc;
1302}
1303
1304/* Initialise PTP channel.
1305 *
1306 * Setting core_index to zero causes the queue to be initialised and doesn't
1307 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1308 */
1309static int efx_ptp_probe_channel(struct efx_channel *channel)
1310{
1311        struct efx_nic *efx = channel->efx;
1312
1313        channel->irq_moderation = 0;
1314        channel->rx_queue.core_index = 0;
1315
1316        return efx_ptp_probe(efx, channel);
1317}
1318
1319void efx_ptp_remove(struct efx_nic *efx)
1320{
1321        if (!efx->ptp_data)
1322                return;
1323
1324        (void)efx_ptp_disable(efx);
1325
1326        cancel_work_sync(&efx->ptp_data->work);
1327        cancel_work_sync(&efx->ptp_data->pps_work);
1328
1329        skb_queue_purge(&efx->ptp_data->rxq);
1330        skb_queue_purge(&efx->ptp_data->txq);
1331
1332        if (efx->ptp_data->phc_clock) {
1333                destroy_workqueue(efx->ptp_data->pps_workwq);
1334                ptp_clock_unregister(efx->ptp_data->phc_clock);
1335        }
1336
1337        destroy_workqueue(efx->ptp_data->workwq);
1338
1339        efx_nic_free_buffer(efx, &efx->ptp_data->start);
1340        kfree(efx->ptp_data);
1341}
1342
1343static void efx_ptp_remove_channel(struct efx_channel *channel)
1344{
1345        efx_ptp_remove(channel->efx);
1346}
1347
1348static void efx_ptp_get_channel_name(struct efx_channel *channel,
1349                                     char *buf, size_t len)
1350{
1351        snprintf(buf, len, "%s-ptp", channel->efx->name);
1352}
1353
1354/* Determine whether this packet should be processed by the PTP module
1355 * or transmitted conventionally.
1356 */
1357bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1358{
1359        return efx->ptp_data &&
1360                efx->ptp_data->enabled &&
1361                skb->len >= PTP_MIN_LENGTH &&
1362                skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1363                likely(skb->protocol == htons(ETH_P_IP)) &&
1364                skb_transport_header_was_set(skb) &&
1365                skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1366                ip_hdr(skb)->protocol == IPPROTO_UDP &&
1367                skb_headlen(skb) >=
1368                skb_transport_offset(skb) + sizeof(struct udphdr) &&
1369                udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1370}
1371
1372/* Receive a PTP packet.  Packets are queued until the arrival of
1373 * the receive timestamp from the MC - this will probably occur after the
1374 * packet arrival because of the processing in the MC.
1375 */
1376static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1377{
1378        struct efx_nic *efx = channel->efx;
1379        struct efx_ptp_data *ptp = efx->ptp_data;
1380        struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1381        u8 *match_data_012, *match_data_345;
1382        unsigned int version;
1383
1384        match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1385
1386        /* Correct version? */
1387        if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1388                if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1389                        return false;
1390                }
1391                version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1392                if (version != PTP_VERSION_V1) {
1393                        return false;
1394                }
1395
1396                /* PTP V1 uses all six bytes of the UUID to match the packet
1397                 * to the timestamp
1398                 */
1399                match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
1400                match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
1401        } else {
1402                if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1403                        return false;
1404                }
1405                version = skb->data[PTP_V2_VERSION_OFFSET];
1406                if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1407                        return false;
1408                }
1409
1410                /* The original V2 implementation uses bytes 2-7 of
1411                 * the UUID to match the packet to the timestamp. This
1412                 * discards two of the bytes of the MAC address used
1413                 * to create the UUID (SF bug 33070).  The PTP V2
1414                 * enhanced mode fixes this issue and uses bytes 0-2
1415                 * and byte 5-7 of the UUID.
1416                 */
1417                match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
1418                if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1419                        match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
1420                } else {
1421                        match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
1422                        BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1423                }
1424        }
1425
1426        /* Does this packet require timestamping? */
1427        if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1428                match->state = PTP_PACKET_STATE_UNMATCHED;
1429
1430                /* We expect the sequence number to be in the same position in
1431                 * the packet for PTP V1 and V2
1432                 */
1433                BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1434                BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1435
1436                /* Extract UUID/Sequence information */
1437                match->words[0] = (match_data_012[0]         |
1438                                   (match_data_012[1] << 8)  |
1439                                   (match_data_012[2] << 16) |
1440                                   (match_data_345[0] << 24));
1441                match->words[1] = (match_data_345[1]         |
1442                                   (match_data_345[2] << 8)  |
1443                                   (skb->data[PTP_V1_SEQUENCE_OFFSET +
1444                                              PTP_V1_SEQUENCE_LENGTH - 1] <<
1445                                    16));
1446        } else {
1447                match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1448        }
1449
1450        skb_queue_tail(&ptp->rxq, skb);
1451        queue_work(ptp->workwq, &ptp->work);
1452
1453        return true;
1454}
1455
1456/* Transmit a PTP packet.  This has to be transmitted by the MC
1457 * itself, through an MCDI call.  MCDI calls aren't permitted
1458 * in the transmit path so defer the actual transmission to a suitable worker.
1459 */
1460int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1461{
1462        struct efx_ptp_data *ptp = efx->ptp_data;
1463
1464        skb_queue_tail(&ptp->txq, skb);
1465
1466        if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1467            (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1468                efx_xmit_hwtstamp_pending(skb);
1469        queue_work(ptp->workwq, &ptp->work);
1470
1471        return NETDEV_TX_OK;
1472}
1473
1474int efx_ptp_get_mode(struct efx_nic *efx)
1475{
1476        return efx->ptp_data->mode;
1477}
1478
1479int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1480                        unsigned int new_mode)
1481{
1482        if ((enable_wanted != efx->ptp_data->enabled) ||
1483            (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1484                int rc = 0;
1485
1486                if (enable_wanted) {
1487                        /* Change of mode requires disable */
1488                        if (efx->ptp_data->enabled &&
1489                            (efx->ptp_data->mode != new_mode)) {
1490                                efx->ptp_data->enabled = false;
1491                                rc = efx_ptp_stop(efx);
1492                                if (rc != 0)
1493                                        return rc;
1494                        }
1495
1496                        /* Set new operating mode and establish
1497                         * baseline synchronisation, which must
1498                         * succeed.
1499                         */
1500                        efx->ptp_data->mode = new_mode;
1501                        if (netif_running(efx->net_dev))
1502                                rc = efx_ptp_start(efx);
1503                        if (rc == 0) {
1504                                rc = efx_ptp_synchronize(efx,
1505                                                         PTP_SYNC_ATTEMPTS * 2);
1506                                if (rc != 0)
1507                                        efx_ptp_stop(efx);
1508                        }
1509                } else {
1510                        rc = efx_ptp_stop(efx);
1511                }
1512
1513                if (rc != 0)
1514                        return rc;
1515
1516                efx->ptp_data->enabled = enable_wanted;
1517        }
1518
1519        return 0;
1520}
1521
1522static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1523{
1524        int rc;
1525
1526        if (init->flags)
1527                return -EINVAL;
1528
1529        if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1530            (init->tx_type != HWTSTAMP_TX_ON))
1531                return -ERANGE;
1532
1533        rc = efx->type->ptp_set_ts_config(efx, init);
1534        if (rc)
1535                return rc;
1536
1537        efx->ptp_data->config = *init;
1538        return 0;
1539}
1540
1541void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1542{
1543        struct efx_ptp_data *ptp = efx->ptp_data;
1544        struct efx_nic *primary = efx->primary;
1545
1546        ASSERT_RTNL();
1547
1548        if (!ptp)
1549                return;
1550
1551        ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1552                                     SOF_TIMESTAMPING_RX_HARDWARE |
1553                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1554        if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1555                ts_info->phc_index =
1556                        ptp_clock_index(primary->ptp_data->phc_clock);
1557        ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1558        ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1559}
1560
1561int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1562{
1563        struct hwtstamp_config config;
1564        int rc;
1565
1566        /* Not a PTP enabled port */
1567        if (!efx->ptp_data)
1568                return -EOPNOTSUPP;
1569
1570        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1571                return -EFAULT;
1572
1573        rc = efx_ptp_ts_init(efx, &config);
1574        if (rc != 0)
1575                return rc;
1576
1577        return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1578                ? -EFAULT : 0;
1579}
1580
1581int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1582{
1583        if (!efx->ptp_data)
1584                return -EOPNOTSUPP;
1585
1586        return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1587                            sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1588}
1589
1590static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1591{
1592        struct efx_ptp_data *ptp = efx->ptp_data;
1593
1594        netif_err(efx, hw, efx->net_dev,
1595                "PTP unexpected event length: got %d expected %d\n",
1596                ptp->evt_frag_idx, expected_frag_len);
1597        ptp->reset_required = true;
1598        queue_work(ptp->workwq, &ptp->work);
1599}
1600
1601/* Process a completed receive event.  Put it on the event queue and
1602 * start worker thread.  This is required because event and their
1603 * correspoding packets may come in either order.
1604 */
1605static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1606{
1607        struct efx_ptp_event_rx *evt = NULL;
1608
1609        if (WARN_ON_ONCE(ptp->rx_ts_inline))
1610                return;
1611
1612        if (ptp->evt_frag_idx != 3) {
1613                ptp_event_failure(efx, 3);
1614                return;
1615        }
1616
1617        spin_lock_bh(&ptp->evt_lock);
1618        if (!list_empty(&ptp->evt_free_list)) {
1619                evt = list_first_entry(&ptp->evt_free_list,
1620                                       struct efx_ptp_event_rx, link);
1621                list_del(&evt->link);
1622
1623                evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1624                evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1625                                             MCDI_EVENT_SRC)        |
1626                             (EFX_QWORD_FIELD(ptp->evt_frags[1],
1627                                              MCDI_EVENT_SRC) << 8) |
1628                             (EFX_QWORD_FIELD(ptp->evt_frags[0],
1629                                              MCDI_EVENT_SRC) << 16));
1630                evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1631                        EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1632                        EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1633                        ptp->ts_corrections.rx);
1634                evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1635                list_add_tail(&evt->link, &ptp->evt_list);
1636
1637                queue_work(ptp->workwq, &ptp->work);
1638        } else if (!ptp->evt_overflow) {
1639                /* Log a warning message and set the event overflow flag.
1640                 * The message won't be logged again until the event queue
1641                 * becomes empty.
1642                 */
1643                netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1644                ptp->evt_overflow = true;
1645        }
1646        spin_unlock_bh(&ptp->evt_lock);
1647}
1648
1649static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1650{
1651        int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1652        if (ptp->evt_frag_idx != 1) {
1653                ptp_event_failure(efx, 1);
1654                return;
1655        }
1656
1657        netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1658}
1659
1660static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1661{
1662        if (ptp->nic_ts_enabled)
1663                queue_work(ptp->pps_workwq, &ptp->pps_work);
1664}
1665
1666void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1667{
1668        struct efx_ptp_data *ptp = efx->ptp_data;
1669        int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1670
1671        if (!ptp) {
1672                if (net_ratelimit())
1673                        netif_warn(efx, drv, efx->net_dev,
1674                                   "Received PTP event but PTP not set up\n");
1675                return;
1676        }
1677
1678        if (!ptp->enabled)
1679                return;
1680
1681        if (ptp->evt_frag_idx == 0) {
1682                ptp->evt_code = code;
1683        } else if (ptp->evt_code != code) {
1684                netif_err(efx, hw, efx->net_dev,
1685                          "PTP out of sequence event %d\n", code);
1686                ptp->evt_frag_idx = 0;
1687        }
1688
1689        ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1690        if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1691                /* Process resulting event */
1692                switch (code) {
1693                case MCDI_EVENT_CODE_PTP_RX:
1694                        ptp_event_rx(efx, ptp);
1695                        break;
1696                case MCDI_EVENT_CODE_PTP_FAULT:
1697                        ptp_event_fault(efx, ptp);
1698                        break;
1699                case MCDI_EVENT_CODE_PTP_PPS:
1700                        ptp_event_pps(efx, ptp);
1701                        break;
1702                default:
1703                        netif_err(efx, hw, efx->net_dev,
1704                                  "PTP unknown event %d\n", code);
1705                        break;
1706                }
1707                ptp->evt_frag_idx = 0;
1708        } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1709                netif_err(efx, hw, efx->net_dev,
1710                          "PTP too many event fragments\n");
1711                ptp->evt_frag_idx = 0;
1712        }
1713}
1714
1715void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1716{
1717        channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1718        channel->sync_timestamp_minor =
1719                MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19;
1720        /* if sync events have been disabled then we want to silently ignore
1721         * this event, so throw away result.
1722         */
1723        (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1724                       SYNC_EVENTS_VALID);
1725}
1726
1727/* make some assumptions about the time representation rather than abstract it,
1728 * since we currently only support one type of inline timestamping and only on
1729 * EF10.
1730 */
1731#define MINOR_TICKS_PER_SECOND 0x8000000
1732/* Fuzz factor for sync events to be out of order with RX events */
1733#define FUZZ (MINOR_TICKS_PER_SECOND / 10)
1734#define EXPECTED_SYNC_EVENTS_PER_SECOND 4
1735
1736static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1737{
1738#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1739        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1740#else
1741        const u8 *data = eh + efx->rx_packet_ts_offset;
1742        return (u32)data[0]       |
1743               (u32)data[1] << 8  |
1744               (u32)data[2] << 16 |
1745               (u32)data[3] << 24;
1746#endif
1747}
1748
1749void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1750                                   struct sk_buff *skb)
1751{
1752        struct efx_nic *efx = channel->efx;
1753        u32 pkt_timestamp_major, pkt_timestamp_minor;
1754        u32 diff, carry;
1755        struct skb_shared_hwtstamps *timestamps;
1756
1757        pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx,
1758                                                          skb_mac_header(skb)) +
1759                               (u32) efx->ptp_data->ts_corrections.rx) &
1760                              (MINOR_TICKS_PER_SECOND - 1);
1761
1762        /* get the difference between the packet and sync timestamps,
1763         * modulo one second
1764         */
1765        diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) &
1766                (MINOR_TICKS_PER_SECOND - 1);
1767        /* do we roll over a second boundary and need to carry the one? */
1768        carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ?
1769                1 : 0;
1770
1771        if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND +
1772                    FUZZ) {
1773                /* packet is ahead of the sync event by a quarter of a second or
1774                 * less (allowing for fuzz)
1775                 */
1776                pkt_timestamp_major = channel->sync_timestamp_major + carry;
1777        } else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) {
1778                /* packet is behind the sync event but within the fuzz factor.
1779                 * This means the RX packet and sync event crossed as they were
1780                 * placed on the event queue, which can sometimes happen.
1781                 */
1782                pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
1783        } else {
1784                /* it's outside tolerance in both directions. this might be
1785                 * indicative of us missing sync events for some reason, so
1786                 * we'll call it an error rather than risk giving a bogus
1787                 * timestamp.
1788                 */
1789                netif_vdbg(efx, drv, efx->net_dev,
1790                          "packet timestamp %x too far from sync event %x:%x\n",
1791                          pkt_timestamp_minor, channel->sync_timestamp_major,
1792                          channel->sync_timestamp_minor);
1793                return;
1794        }
1795
1796        /* attach the timestamps to the skb */
1797        timestamps = skb_hwtstamps(skb);
1798        timestamps->hwtstamp =
1799                efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor);
1800}
1801
1802static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1803{
1804        struct efx_ptp_data *ptp_data = container_of(ptp,
1805                                                     struct efx_ptp_data,
1806                                                     phc_clock_info);
1807        struct efx_nic *efx = ptp_data->efx;
1808        MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
1809        s64 adjustment_ns;
1810        int rc;
1811
1812        if (delta > MAX_PPB)
1813                delta = MAX_PPB;
1814        else if (delta < -MAX_PPB)
1815                delta = -MAX_PPB;
1816
1817        /* Convert ppb to fixed point ns. */
1818        adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1819                         (PPB_EXTRA_BITS + MAX_PPB_BITS));
1820
1821        MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1822        MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
1823        MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
1824        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1825        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1826        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1827                          NULL, 0, NULL);
1828        if (rc != 0)
1829                return rc;
1830
1831        ptp_data->current_adjfreq = adjustment_ns;
1832        return 0;
1833}
1834
1835static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1836{
1837        u32 nic_major, nic_minor;
1838        struct efx_ptp_data *ptp_data = container_of(ptp,
1839                                                     struct efx_ptp_data,
1840                                                     phc_clock_info);
1841        struct efx_nic *efx = ptp_data->efx;
1842        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
1843
1844        efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
1845
1846        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1847        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1848        MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
1849        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
1850        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
1851        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1852                            NULL, 0, NULL);
1853}
1854
1855static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1856{
1857        struct efx_ptp_data *ptp_data = container_of(ptp,
1858                                                     struct efx_ptp_data,
1859                                                     phc_clock_info);
1860        struct efx_nic *efx = ptp_data->efx;
1861        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
1862        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
1863        int rc;
1864        ktime_t kt;
1865
1866        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1867        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1868
1869        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1870                          outbuf, sizeof(outbuf), NULL);
1871        if (rc != 0)
1872                return rc;
1873
1874        kt = ptp_data->nic_to_kernel_time(
1875                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
1876                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
1877        *ts = ktime_to_timespec(kt);
1878        return 0;
1879}
1880
1881static int efx_phc_settime(struct ptp_clock_info *ptp,
1882                           const struct timespec *e_ts)
1883{
1884        /* Get the current NIC time, efx_phc_gettime.
1885         * Subtract from the desired time to get the offset
1886         * call efx_phc_adjtime with the offset
1887         */
1888        int rc;
1889        struct timespec time_now;
1890        struct timespec delta;
1891
1892        rc = efx_phc_gettime(ptp, &time_now);
1893        if (rc != 0)
1894                return rc;
1895
1896        delta = timespec_sub(*e_ts, time_now);
1897
1898        rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1899        if (rc != 0)
1900                return rc;
1901
1902        return 0;
1903}
1904
1905static int efx_phc_enable(struct ptp_clock_info *ptp,
1906                          struct ptp_clock_request *request,
1907                          int enable)
1908{
1909        struct efx_ptp_data *ptp_data = container_of(ptp,
1910                                                     struct efx_ptp_data,
1911                                                     phc_clock_info);
1912        if (request->type != PTP_CLK_REQ_PPS)
1913                return -EOPNOTSUPP;
1914
1915        ptp_data->nic_ts_enabled = !!enable;
1916        return 0;
1917}
1918
1919static const struct efx_channel_type efx_ptp_channel_type = {
1920        .handle_no_channel      = efx_ptp_handle_no_channel,
1921        .pre_probe              = efx_ptp_probe_channel,
1922        .post_remove            = efx_ptp_remove_channel,
1923        .get_name               = efx_ptp_get_channel_name,
1924        /* no copy operation; there is no need to reallocate this channel */
1925        .receive_skb            = efx_ptp_rx,
1926        .keep_eventq            = false,
1927};
1928
1929void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
1930{
1931        /* Check whether PTP is implemented on this NIC.  The DISABLE
1932         * operation will succeed if and only if it is implemented.
1933         */
1934        if (efx_ptp_disable(efx) == 0)
1935                efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1936                        &efx_ptp_channel_type;
1937}
1938
1939void efx_ptp_start_datapath(struct efx_nic *efx)
1940{
1941        if (efx_ptp_restart(efx))
1942                netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
1943        /* re-enable timestamping if it was previously enabled */
1944        if (efx->type->ptp_set_ts_sync_events)
1945                efx->type->ptp_set_ts_sync_events(efx, true, true);
1946}
1947
1948void efx_ptp_stop_datapath(struct efx_nic *efx)
1949{
1950        /* temporarily disable timestamping */
1951        if (efx->type->ptp_set_ts_sync_events)
1952                efx->type->ptp_set_ts_sync_events(efx, false, true);
1953        efx_ptp_stop(efx);
1954}
1955