linux/drivers/net/wireless/zd1211rw/zd_chip.c
<<
>>
Prefs
   1/* ZD1211 USB-WLAN driver for Linux
   2 *
   3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20/* This file implements all the hardware specific functions for the ZD1211
  21 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
  22 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/errno.h>
  27#include <linux/slab.h>
  28
  29#include "zd_def.h"
  30#include "zd_chip.h"
  31#include "zd_mac.h"
  32#include "zd_rf.h"
  33
  34void zd_chip_init(struct zd_chip *chip,
  35                 struct ieee80211_hw *hw,
  36                 struct usb_interface *intf)
  37{
  38        memset(chip, 0, sizeof(*chip));
  39        mutex_init(&chip->mutex);
  40        zd_usb_init(&chip->usb, hw, intf);
  41        zd_rf_init(&chip->rf);
  42}
  43
  44void zd_chip_clear(struct zd_chip *chip)
  45{
  46        ZD_ASSERT(!mutex_is_locked(&chip->mutex));
  47        zd_usb_clear(&chip->usb);
  48        zd_rf_clear(&chip->rf);
  49        mutex_destroy(&chip->mutex);
  50        ZD_MEMCLEAR(chip, sizeof(*chip));
  51}
  52
  53static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
  54{
  55        u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
  56        return scnprintf(buffer, size, "%02x-%02x-%02x",
  57                         addr[0], addr[1], addr[2]);
  58}
  59
  60/* Prints an identifier line, which will support debugging. */
  61static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
  62{
  63        int i = 0;
  64
  65        i = scnprintf(buffer, size, "zd1211%s chip ",
  66                      zd_chip_is_zd1211b(chip) ? "b" : "");
  67        i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
  68        i += scnprintf(buffer+i, size-i, " ");
  69        i += scnprint_mac_oui(chip, buffer+i, size-i);
  70        i += scnprintf(buffer+i, size-i, " ");
  71        i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
  72        i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
  73                chip->patch_cck_gain ? 'g' : '-',
  74                chip->patch_cr157 ? '7' : '-',
  75                chip->patch_6m_band_edge ? '6' : '-',
  76                chip->new_phy_layout ? 'N' : '-',
  77                chip->al2230s_bit ? 'S' : '-');
  78        return i;
  79}
  80
  81static void print_id(struct zd_chip *chip)
  82{
  83        char buffer[80];
  84
  85        scnprint_id(chip, buffer, sizeof(buffer));
  86        buffer[sizeof(buffer)-1] = 0;
  87        dev_info(zd_chip_dev(chip), "%s\n", buffer);
  88}
  89
  90static zd_addr_t inc_addr(zd_addr_t addr)
  91{
  92        u16 a = (u16)addr;
  93        /* Control registers use byte addressing, but everything else uses word
  94         * addressing. */
  95        if ((a & 0xf000) == CR_START)
  96                a += 2;
  97        else
  98                a += 1;
  99        return (zd_addr_t)a;
 100}
 101
 102/* Read a variable number of 32-bit values. Parameter count is not allowed to
 103 * exceed USB_MAX_IOREAD32_COUNT.
 104 */
 105int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
 106                 unsigned int count)
 107{
 108        int r;
 109        int i;
 110        zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
 111        u16 v16[USB_MAX_IOREAD32_COUNT * 2];
 112        unsigned int count16;
 113
 114        if (count > USB_MAX_IOREAD32_COUNT)
 115                return -EINVAL;
 116
 117        /* Use stack for values and addresses. */
 118        count16 = 2 * count;
 119        BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
 120        BUG_ON(count16 * sizeof(u16) > sizeof(v16));
 121
 122        for (i = 0; i < count; i++) {
 123                int j = 2*i;
 124                /* We read the high word always first. */
 125                a16[j] = inc_addr(addr[i]);
 126                a16[j+1] = addr[i];
 127        }
 128
 129        r = zd_ioread16v_locked(chip, v16, a16, count16);
 130        if (r) {
 131                dev_dbg_f(zd_chip_dev(chip),
 132                          "error: zd_ioread16v_locked. Error number %d\n", r);
 133                return r;
 134        }
 135
 136        for (i = 0; i < count; i++) {
 137                int j = 2*i;
 138                values[i] = (v16[j] << 16) | v16[j+1];
 139        }
 140
 141        return 0;
 142}
 143
 144static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
 145                                       const struct zd_ioreq32 *ioreqs,
 146                                       unsigned int count)
 147{
 148        int i, j, r;
 149        struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
 150        unsigned int count16;
 151
 152        /* Use stack for values and addresses. */
 153
 154        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 155
 156        if (count == 0)
 157                return 0;
 158        if (count > USB_MAX_IOWRITE32_COUNT)
 159                return -EINVAL;
 160
 161        count16 = 2 * count;
 162        BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
 163
 164        for (i = 0; i < count; i++) {
 165                j = 2*i;
 166                /* We write the high word always first. */
 167                ioreqs16[j].value   = ioreqs[i].value >> 16;
 168                ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
 169                ioreqs16[j+1].value = ioreqs[i].value;
 170                ioreqs16[j+1].addr  = ioreqs[i].addr;
 171        }
 172
 173        r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
 174#ifdef DEBUG
 175        if (r) {
 176                dev_dbg_f(zd_chip_dev(chip),
 177                          "error %d in zd_usb_write16v\n", r);
 178        }
 179#endif /* DEBUG */
 180        return r;
 181}
 182
 183int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 184                          unsigned int count)
 185{
 186        int r;
 187
 188        zd_usb_iowrite16v_async_start(&chip->usb);
 189        r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
 190        if (r) {
 191                zd_usb_iowrite16v_async_end(&chip->usb, 0);
 192                return r;
 193        }
 194        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 195}
 196
 197int zd_iowrite16a_locked(struct zd_chip *chip,
 198                  const struct zd_ioreq16 *ioreqs, unsigned int count)
 199{
 200        int r;
 201        unsigned int i, j, t, max;
 202
 203        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 204        zd_usb_iowrite16v_async_start(&chip->usb);
 205
 206        for (i = 0; i < count; i += j + t) {
 207                t = 0;
 208                max = count-i;
 209                if (max > USB_MAX_IOWRITE16_COUNT)
 210                        max = USB_MAX_IOWRITE16_COUNT;
 211                for (j = 0; j < max; j++) {
 212                        if (!ioreqs[i+j].addr) {
 213                                t = 1;
 214                                break;
 215                        }
 216                }
 217
 218                r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
 219                if (r) {
 220                        zd_usb_iowrite16v_async_end(&chip->usb, 0);
 221                        dev_dbg_f(zd_chip_dev(chip),
 222                                  "error zd_usb_iowrite16v. Error number %d\n",
 223                                  r);
 224                        return r;
 225                }
 226        }
 227
 228        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 229}
 230
 231/* Writes a variable number of 32 bit registers. The functions will split
 232 * that in several USB requests. A split can be forced by inserting an IO
 233 * request with an zero address field.
 234 */
 235int zd_iowrite32a_locked(struct zd_chip *chip,
 236                  const struct zd_ioreq32 *ioreqs, unsigned int count)
 237{
 238        int r;
 239        unsigned int i, j, t, max;
 240
 241        zd_usb_iowrite16v_async_start(&chip->usb);
 242
 243        for (i = 0; i < count; i += j + t) {
 244                t = 0;
 245                max = count-i;
 246                if (max > USB_MAX_IOWRITE32_COUNT)
 247                        max = USB_MAX_IOWRITE32_COUNT;
 248                for (j = 0; j < max; j++) {
 249                        if (!ioreqs[i+j].addr) {
 250                                t = 1;
 251                                break;
 252                        }
 253                }
 254
 255                r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
 256                if (r) {
 257                        zd_usb_iowrite16v_async_end(&chip->usb, 0);
 258                        dev_dbg_f(zd_chip_dev(chip),
 259                                "error _zd_iowrite32v_locked."
 260                                " Error number %d\n", r);
 261                        return r;
 262                }
 263        }
 264
 265        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 266}
 267
 268int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
 269{
 270        int r;
 271
 272        mutex_lock(&chip->mutex);
 273        r = zd_ioread16_locked(chip, value, addr);
 274        mutex_unlock(&chip->mutex);
 275        return r;
 276}
 277
 278int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
 279{
 280        int r;
 281
 282        mutex_lock(&chip->mutex);
 283        r = zd_ioread32_locked(chip, value, addr);
 284        mutex_unlock(&chip->mutex);
 285        return r;
 286}
 287
 288int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
 289{
 290        int r;
 291
 292        mutex_lock(&chip->mutex);
 293        r = zd_iowrite16_locked(chip, value, addr);
 294        mutex_unlock(&chip->mutex);
 295        return r;
 296}
 297
 298int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
 299{
 300        int r;
 301
 302        mutex_lock(&chip->mutex);
 303        r = zd_iowrite32_locked(chip, value, addr);
 304        mutex_unlock(&chip->mutex);
 305        return r;
 306}
 307
 308int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
 309                  u32 *values, unsigned int count)
 310{
 311        int r;
 312
 313        mutex_lock(&chip->mutex);
 314        r = zd_ioread32v_locked(chip, values, addresses, count);
 315        mutex_unlock(&chip->mutex);
 316        return r;
 317}
 318
 319int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 320                  unsigned int count)
 321{
 322        int r;
 323
 324        mutex_lock(&chip->mutex);
 325        r = zd_iowrite32a_locked(chip, ioreqs, count);
 326        mutex_unlock(&chip->mutex);
 327        return r;
 328}
 329
 330static int read_pod(struct zd_chip *chip, u8 *rf_type)
 331{
 332        int r;
 333        u32 value;
 334
 335        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 336        r = zd_ioread32_locked(chip, &value, E2P_POD);
 337        if (r)
 338                goto error;
 339        dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
 340
 341        /* FIXME: AL2230 handling (Bit 7 in POD) */
 342        *rf_type = value & 0x0f;
 343        chip->pa_type = (value >> 16) & 0x0f;
 344        chip->patch_cck_gain = (value >> 8) & 0x1;
 345        chip->patch_cr157 = (value >> 13) & 0x1;
 346        chip->patch_6m_band_edge = (value >> 21) & 0x1;
 347        chip->new_phy_layout = (value >> 31) & 0x1;
 348        chip->al2230s_bit = (value >> 7) & 0x1;
 349        chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
 350        chip->supports_tx_led = 1;
 351        if (value & (1 << 24)) { /* LED scenario */
 352                if (value & (1 << 29))
 353                        chip->supports_tx_led = 0;
 354        }
 355
 356        dev_dbg_f(zd_chip_dev(chip),
 357                "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
 358                "patch 6M %d new PHY %d link LED%d tx led %d\n",
 359                zd_rf_name(*rf_type), *rf_type,
 360                chip->pa_type, chip->patch_cck_gain,
 361                chip->patch_cr157, chip->patch_6m_band_edge,
 362                chip->new_phy_layout,
 363                chip->link_led == LED1 ? 1 : 2,
 364                chip->supports_tx_led);
 365        return 0;
 366error:
 367        *rf_type = 0;
 368        chip->pa_type = 0;
 369        chip->patch_cck_gain = 0;
 370        chip->patch_cr157 = 0;
 371        chip->patch_6m_band_edge = 0;
 372        chip->new_phy_layout = 0;
 373        return r;
 374}
 375
 376static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
 377                                    const struct zd_ioreq32 *in_reqs,
 378                                    const char *type)
 379{
 380        int r;
 381        struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
 382
 383        if (mac_addr) {
 384                reqs[0].value = (mac_addr[3] << 24)
 385                              | (mac_addr[2] << 16)
 386                              | (mac_addr[1] <<  8)
 387                              |  mac_addr[0];
 388                reqs[1].value = (mac_addr[5] <<  8)
 389                              |  mac_addr[4];
 390                dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
 391        } else {
 392                dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
 393        }
 394
 395        mutex_lock(&chip->mutex);
 396        r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 397        mutex_unlock(&chip->mutex);
 398        return r;
 399}
 400
 401/* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
 402 *              CR_MAC_ADDR_P2 must be overwritten
 403 */
 404int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
 405{
 406        static const struct zd_ioreq32 reqs[2] = {
 407                [0] = { .addr = CR_MAC_ADDR_P1 },
 408                [1] = { .addr = CR_MAC_ADDR_P2 },
 409        };
 410
 411        return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
 412}
 413
 414int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
 415{
 416        static const struct zd_ioreq32 reqs[2] = {
 417                [0] = { .addr = CR_BSSID_P1 },
 418                [1] = { .addr = CR_BSSID_P2 },
 419        };
 420
 421        return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
 422}
 423
 424int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
 425{
 426        int r;
 427        u32 value;
 428
 429        mutex_lock(&chip->mutex);
 430        r = zd_ioread32_locked(chip, &value, E2P_SUBID);
 431        mutex_unlock(&chip->mutex);
 432        if (r)
 433                return r;
 434
 435        *regdomain = value >> 16;
 436        dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
 437
 438        return 0;
 439}
 440
 441static int read_values(struct zd_chip *chip, u8 *values, size_t count,
 442                       zd_addr_t e2p_addr, u32 guard)
 443{
 444        int r;
 445        int i;
 446        u32 v;
 447
 448        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 449        for (i = 0;;) {
 450                r = zd_ioread32_locked(chip, &v,
 451                                       (zd_addr_t)((u16)e2p_addr+i/2));
 452                if (r)
 453                        return r;
 454                v -= guard;
 455                if (i+4 < count) {
 456                        values[i++] = v;
 457                        values[i++] = v >>  8;
 458                        values[i++] = v >> 16;
 459                        values[i++] = v >> 24;
 460                        continue;
 461                }
 462                for (;i < count; i++)
 463                        values[i] = v >> (8*(i%3));
 464                return 0;
 465        }
 466}
 467
 468static int read_pwr_cal_values(struct zd_chip *chip)
 469{
 470        return read_values(chip, chip->pwr_cal_values,
 471                        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
 472                        0);
 473}
 474
 475static int read_pwr_int_values(struct zd_chip *chip)
 476{
 477        return read_values(chip, chip->pwr_int_values,
 478                        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
 479                        E2P_PWR_INT_GUARD);
 480}
 481
 482static int read_ofdm_cal_values(struct zd_chip *chip)
 483{
 484        int r;
 485        int i;
 486        static const zd_addr_t addresses[] = {
 487                E2P_36M_CAL_VALUE1,
 488                E2P_48M_CAL_VALUE1,
 489                E2P_54M_CAL_VALUE1,
 490        };
 491
 492        for (i = 0; i < 3; i++) {
 493                r = read_values(chip, chip->ofdm_cal_values[i],
 494                                E2P_CHANNEL_COUNT, addresses[i], 0);
 495                if (r)
 496                        return r;
 497        }
 498        return 0;
 499}
 500
 501static int read_cal_int_tables(struct zd_chip *chip)
 502{
 503        int r;
 504
 505        r = read_pwr_cal_values(chip);
 506        if (r)
 507                return r;
 508        r = read_pwr_int_values(chip);
 509        if (r)
 510                return r;
 511        r = read_ofdm_cal_values(chip);
 512        if (r)
 513                return r;
 514        return 0;
 515}
 516
 517/* phy means physical registers */
 518int zd_chip_lock_phy_regs(struct zd_chip *chip)
 519{
 520        int r;
 521        u32 tmp;
 522
 523        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 524        r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 525        if (r) {
 526                dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
 527                return r;
 528        }
 529
 530        tmp &= ~UNLOCK_PHY_REGS;
 531
 532        r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 533        if (r)
 534                dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 535        return r;
 536}
 537
 538int zd_chip_unlock_phy_regs(struct zd_chip *chip)
 539{
 540        int r;
 541        u32 tmp;
 542
 543        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 544        r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 545        if (r) {
 546                dev_err(zd_chip_dev(chip),
 547                        "error ioread32(CR_REG1): %d\n", r);
 548                return r;
 549        }
 550
 551        tmp |= UNLOCK_PHY_REGS;
 552
 553        r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 554        if (r)
 555                dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 556        return r;
 557}
 558
 559/* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
 560static int patch_cr157(struct zd_chip *chip)
 561{
 562        int r;
 563        u16 value;
 564
 565        if (!chip->patch_cr157)
 566                return 0;
 567
 568        r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
 569        if (r)
 570                return r;
 571
 572        dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
 573        return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
 574}
 575
 576/*
 577 * 6M band edge can be optionally overwritten for certain RF's
 578 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
 579 * bit (for AL2230, AL2230S)
 580 */
 581static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
 582{
 583        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 584        if (!chip->patch_6m_band_edge)
 585                return 0;
 586
 587        return zd_rf_patch_6m_band_edge(&chip->rf, channel);
 588}
 589
 590/* Generic implementation of 6M band edge patching, used by most RFs via
 591 * zd_rf_generic_patch_6m() */
 592int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
 593{
 594        struct zd_ioreq16 ioreqs[] = {
 595                { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 596                { ZD_CR47,  0x1e },
 597        };
 598
 599        /* FIXME: Channel 11 is not the edge for all regulatory domains. */
 600        if (channel == 1 || channel == 11)
 601                ioreqs[0].value = 0x12;
 602
 603        dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
 604        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 605}
 606
 607static int zd1211_hw_reset_phy(struct zd_chip *chip)
 608{
 609        static const struct zd_ioreq16 ioreqs[] = {
 610                { ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 611                { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
 612                { ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
 613                { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
 614                { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
 615                { ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
 616                { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
 617                { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
 618                { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
 619                { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 620                { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 621                { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 622                { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 623                { ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
 624                { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 625                { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 626                { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 627                { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 628                { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 629                { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 630                { ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 631                { ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
 632                { ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
 633                { ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
 634                { ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
 635                { ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
 636                { ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
 637                { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
 638                { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
 639                { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
 640                { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
 641                { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
 642                { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 643                { },
 644                { ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
 645                { ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
 646                { ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
 647                { ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
 648                { ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
 649                { ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
 650                { ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
 651                { ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
 652                { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
 653                { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 654                { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 655                { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 656                { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 657                { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
 658                { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
 659                { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
 660                { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
 661                { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
 662                { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
 663                { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
 664                { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
 665                { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 666                { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 667                { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 668                { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 669                /* Note: ZD_CR204 must lead the ZD_CR203 */
 670                { ZD_CR204, 0x7d },
 671                { },
 672                { ZD_CR203, 0x30 },
 673        };
 674
 675        int r, t;
 676
 677        dev_dbg_f(zd_chip_dev(chip), "\n");
 678
 679        r = zd_chip_lock_phy_regs(chip);
 680        if (r)
 681                goto out;
 682
 683        r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 684        if (r)
 685                goto unlock;
 686
 687        r = patch_cr157(chip);
 688unlock:
 689        t = zd_chip_unlock_phy_regs(chip);
 690        if (t && !r)
 691                r = t;
 692out:
 693        return r;
 694}
 695
 696static int zd1211b_hw_reset_phy(struct zd_chip *chip)
 697{
 698        static const struct zd_ioreq16 ioreqs[] = {
 699                { ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 700                { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
 701                { ZD_CR10,  0x81 },
 702                /* power control { { ZD_CR11,  1 << 6 }, */
 703                { ZD_CR11,  0x00 },
 704                { ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
 705                { ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
 706                { ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
 707                { ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
 708                { ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
 709                { ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
 710                { ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
 711                { ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
 712                { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 713                { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 714                { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 715                { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 716                { ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
 717                { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 718                { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 719                { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 720                { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 721                { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 722                { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 723                { ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 724                { ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
 725                { ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
 726                { ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
 727                { ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
 728                { ZD_CR94,  0x01 },
 729                { ZD_CR95,  0x20 }, /* ZD1211B */
 730                { ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
 731                { ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
 732                { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 733                { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
 734                { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 735                { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 736                { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 737                { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
 738                { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 739                { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 740                { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
 741                { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
 742                { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
 743                { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
 744                { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
 745                { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
 746                { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
 747                { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 748                { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 749                { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 750                { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 751                /* Note: ZD_CR204 must lead the ZD_CR203 */
 752                { ZD_CR204, 0x7d },
 753                {},
 754                { ZD_CR203, 0x30 },
 755        };
 756
 757        int r, t;
 758
 759        dev_dbg_f(zd_chip_dev(chip), "\n");
 760
 761        r = zd_chip_lock_phy_regs(chip);
 762        if (r)
 763                goto out;
 764
 765        r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 766        t = zd_chip_unlock_phy_regs(chip);
 767        if (t && !r)
 768                r = t;
 769out:
 770        return r;
 771}
 772
 773static int hw_reset_phy(struct zd_chip *chip)
 774{
 775        return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
 776                                  zd1211_hw_reset_phy(chip);
 777}
 778
 779static int zd1211_hw_init_hmac(struct zd_chip *chip)
 780{
 781        static const struct zd_ioreq32 ioreqs[] = {
 782                { CR_ZD1211_RETRY_MAX,          ZD1211_RETRY_COUNT },
 783                { CR_RX_THRESHOLD,              0x000c0640 },
 784        };
 785
 786        dev_dbg_f(zd_chip_dev(chip), "\n");
 787        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 788        return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 789}
 790
 791static int zd1211b_hw_init_hmac(struct zd_chip *chip)
 792{
 793        static const struct zd_ioreq32 ioreqs[] = {
 794                { CR_ZD1211B_RETRY_MAX,         ZD1211B_RETRY_COUNT },
 795                { CR_ZD1211B_CWIN_MAX_MIN_AC0,  0x007f003f },
 796                { CR_ZD1211B_CWIN_MAX_MIN_AC1,  0x007f003f },
 797                { CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
 798                { CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
 799                { CR_ZD1211B_AIFS_CTL1,         0x00280028 },
 800                { CR_ZD1211B_AIFS_CTL2,         0x008C003C },
 801                { CR_ZD1211B_TXOP,              0x01800824 },
 802                { CR_RX_THRESHOLD,              0x000c0eff, },
 803        };
 804
 805        dev_dbg_f(zd_chip_dev(chip), "\n");
 806        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 807        return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 808}
 809
 810static int hw_init_hmac(struct zd_chip *chip)
 811{
 812        int r;
 813        static const struct zd_ioreq32 ioreqs[] = {
 814                { CR_ACK_TIMEOUT_EXT,           0x20 },
 815                { CR_ADDA_MBIAS_WARMTIME,       0x30000808 },
 816                { CR_SNIFFER_ON,                0 },
 817                { CR_RX_FILTER,                 STA_RX_FILTER },
 818                { CR_GROUP_HASH_P1,             0x00 },
 819                { CR_GROUP_HASH_P2,             0x80000000 },
 820                { CR_REG1,                      0xa4 },
 821                { CR_ADDA_PWR_DWN,              0x7f },
 822                { CR_BCN_PLCP_CFG,              0x00f00401 },
 823                { CR_PHY_DELAY,                 0x00 },
 824                { CR_ACK_TIMEOUT_EXT,           0x80 },
 825                { CR_ADDA_PWR_DWN,              0x00 },
 826                { CR_ACK_TIME_80211,            0x100 },
 827                { CR_RX_PE_DELAY,               0x70 },
 828                { CR_PS_CTRL,                   0x10000000 },
 829                { CR_RTS_CTS_RATE,              0x02030203 },
 830                { CR_AFTER_PNP,                 0x1 },
 831                { CR_WEP_PROTECT,               0x114 },
 832                { CR_IFS_VALUE,                 IFS_VALUE_DEFAULT },
 833                { CR_CAM_MODE,                  MODE_AP_WDS},
 834        };
 835
 836        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 837        r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 838        if (r)
 839                return r;
 840
 841        return zd_chip_is_zd1211b(chip) ?
 842                zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
 843}
 844
 845struct aw_pt_bi {
 846        u32 atim_wnd_period;
 847        u32 pre_tbtt;
 848        u32 beacon_interval;
 849};
 850
 851static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 852{
 853        int r;
 854        static const zd_addr_t aw_pt_bi_addr[] =
 855                { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
 856        u32 values[3];
 857
 858        r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
 859                         ARRAY_SIZE(aw_pt_bi_addr));
 860        if (r) {
 861                memset(s, 0, sizeof(*s));
 862                return r;
 863        }
 864
 865        s->atim_wnd_period = values[0];
 866        s->pre_tbtt = values[1];
 867        s->beacon_interval = values[2];
 868        return 0;
 869}
 870
 871static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 872{
 873        struct zd_ioreq32 reqs[3];
 874        u16 b_interval = s->beacon_interval & 0xffff;
 875
 876        if (b_interval <= 5)
 877                b_interval = 5;
 878        if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
 879                s->pre_tbtt = b_interval - 1;
 880        if (s->atim_wnd_period >= s->pre_tbtt)
 881                s->atim_wnd_period = s->pre_tbtt - 1;
 882
 883        reqs[0].addr = CR_ATIM_WND_PERIOD;
 884        reqs[0].value = s->atim_wnd_period;
 885        reqs[1].addr = CR_PRE_TBTT;
 886        reqs[1].value = s->pre_tbtt;
 887        reqs[2].addr = CR_BCN_INTERVAL;
 888        reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
 889
 890        return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 891}
 892
 893
 894static int set_beacon_interval(struct zd_chip *chip, u16 interval,
 895                               u8 dtim_period, int type)
 896{
 897        int r;
 898        struct aw_pt_bi s;
 899        u32 b_interval, mode_flag;
 900
 901        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 902
 903        if (interval > 0) {
 904                switch (type) {
 905                case NL80211_IFTYPE_ADHOC:
 906                case NL80211_IFTYPE_MESH_POINT:
 907                        mode_flag = BCN_MODE_IBSS;
 908                        break;
 909                case NL80211_IFTYPE_AP:
 910                        mode_flag = BCN_MODE_AP;
 911                        break;
 912                default:
 913                        mode_flag = 0;
 914                        break;
 915                }
 916        } else {
 917                dtim_period = 0;
 918                mode_flag = 0;
 919        }
 920
 921        b_interval = mode_flag | (dtim_period << 16) | interval;
 922
 923        r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
 924        if (r)
 925                return r;
 926        r = get_aw_pt_bi(chip, &s);
 927        if (r)
 928                return r;
 929        return set_aw_pt_bi(chip, &s);
 930}
 931
 932int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
 933                           int type)
 934{
 935        int r;
 936
 937        mutex_lock(&chip->mutex);
 938        r = set_beacon_interval(chip, interval, dtim_period, type);
 939        mutex_unlock(&chip->mutex);
 940        return r;
 941}
 942
 943static int hw_init(struct zd_chip *chip)
 944{
 945        int r;
 946
 947        dev_dbg_f(zd_chip_dev(chip), "\n");
 948        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 949        r = hw_reset_phy(chip);
 950        if (r)
 951                return r;
 952
 953        r = hw_init_hmac(chip);
 954        if (r)
 955                return r;
 956
 957        return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
 958}
 959
 960static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
 961{
 962        return (zd_addr_t)((u16)chip->fw_regs_base + offset);
 963}
 964
 965#ifdef DEBUG
 966static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
 967                   const char *addr_string)
 968{
 969        int r;
 970        u32 value;
 971
 972        r = zd_ioread32_locked(chip, &value, addr);
 973        if (r) {
 974                dev_dbg_f(zd_chip_dev(chip),
 975                        "error reading %s. Error number %d\n", addr_string, r);
 976                return r;
 977        }
 978
 979        dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
 980                addr_string, (unsigned int)value);
 981        return 0;
 982}
 983
 984static int test_init(struct zd_chip *chip)
 985{
 986        int r;
 987
 988        r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
 989        if (r)
 990                return r;
 991        r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
 992        if (r)
 993                return r;
 994        return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
 995}
 996
 997static void dump_fw_registers(struct zd_chip *chip)
 998{
 999        const zd_addr_t addr[4] = {
1000                fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
1001                fw_reg_addr(chip, FW_REG_USB_SPEED),
1002                fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
1003                fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1004        };
1005
1006        int r;
1007        u16 values[4];
1008
1009        r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
1010                         ARRAY_SIZE(addr));
1011        if (r) {
1012                dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1013                         r);
1014                return;
1015        }
1016
1017        dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1018        dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1019        dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1020        dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1021}
1022#endif /* DEBUG */
1023
1024static int print_fw_version(struct zd_chip *chip)
1025{
1026        struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1027        int r;
1028        u16 version;
1029
1030        r = zd_ioread16_locked(chip, &version,
1031                fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1032        if (r)
1033                return r;
1034
1035        dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1036
1037        snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1038                        "%04hx", version);
1039
1040        return 0;
1041}
1042
1043static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1044{
1045        u32 rates;
1046        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1047        /* This sets the mandatory rates, which only depend from the standard
1048         * that the device is supporting. Until further notice we should try
1049         * to support 802.11g also for full speed USB.
1050         */
1051        if (!gmode)
1052                rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1053        else
1054                rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1055                        CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1056
1057        return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1058}
1059
1060int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1061                                    int preamble)
1062{
1063        u32 value = 0;
1064
1065        dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1066        value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1067        value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1068
1069        /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1070        value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1071        value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1072        value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1073        value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1074
1075        return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1076}
1077
1078int zd_chip_enable_hwint(struct zd_chip *chip)
1079{
1080        int r;
1081
1082        mutex_lock(&chip->mutex);
1083        r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1084        mutex_unlock(&chip->mutex);
1085        return r;
1086}
1087
1088static int disable_hwint(struct zd_chip *chip)
1089{
1090        return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1091}
1092
1093int zd_chip_disable_hwint(struct zd_chip *chip)
1094{
1095        int r;
1096
1097        mutex_lock(&chip->mutex);
1098        r = disable_hwint(chip);
1099        mutex_unlock(&chip->mutex);
1100        return r;
1101}
1102
1103static int read_fw_regs_offset(struct zd_chip *chip)
1104{
1105        int r;
1106
1107        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1108        r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1109                               FWRAW_REGS_ADDR);
1110        if (r)
1111                return r;
1112        dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1113                  (u16)chip->fw_regs_base);
1114
1115        return 0;
1116}
1117
1118/* Read mac address using pre-firmware interface */
1119int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1120{
1121        dev_dbg_f(zd_chip_dev(chip), "\n");
1122        return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1123                ETH_ALEN);
1124}
1125
1126int zd_chip_init_hw(struct zd_chip *chip)
1127{
1128        int r;
1129        u8 rf_type;
1130
1131        dev_dbg_f(zd_chip_dev(chip), "\n");
1132
1133        mutex_lock(&chip->mutex);
1134
1135#ifdef DEBUG
1136        r = test_init(chip);
1137        if (r)
1138                goto out;
1139#endif
1140        r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1141        if (r)
1142                goto out;
1143
1144        r = read_fw_regs_offset(chip);
1145        if (r)
1146                goto out;
1147
1148        /* GPI is always disabled, also in the other driver.
1149         */
1150        r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1151        if (r)
1152                goto out;
1153        r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1154        if (r)
1155                goto out;
1156        /* Currently we support IEEE 802.11g for full and high speed USB.
1157         * It might be discussed, whether we should support pure b mode for
1158         * full speed USB.
1159         */
1160        r = set_mandatory_rates(chip, 1);
1161        if (r)
1162                goto out;
1163        /* Disabling interrupts is certainly a smart thing here.
1164         */
1165        r = disable_hwint(chip);
1166        if (r)
1167                goto out;
1168        r = read_pod(chip, &rf_type);
1169        if (r)
1170                goto out;
1171        r = hw_init(chip);
1172        if (r)
1173                goto out;
1174        r = zd_rf_init_hw(&chip->rf, rf_type);
1175        if (r)
1176                goto out;
1177
1178        r = print_fw_version(chip);
1179        if (r)
1180                goto out;
1181
1182#ifdef DEBUG
1183        dump_fw_registers(chip);
1184        r = test_init(chip);
1185        if (r)
1186                goto out;
1187#endif /* DEBUG */
1188
1189        r = read_cal_int_tables(chip);
1190        if (r)
1191                goto out;
1192
1193        print_id(chip);
1194out:
1195        mutex_unlock(&chip->mutex);
1196        return r;
1197}
1198
1199static int update_pwr_int(struct zd_chip *chip, u8 channel)
1200{
1201        u8 value = chip->pwr_int_values[channel - 1];
1202        return zd_iowrite16_locked(chip, value, ZD_CR31);
1203}
1204
1205static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1206{
1207        u8 value = chip->pwr_cal_values[channel-1];
1208        return zd_iowrite16_locked(chip, value, ZD_CR68);
1209}
1210
1211static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1212{
1213        struct zd_ioreq16 ioreqs[3];
1214
1215        ioreqs[0].addr = ZD_CR67;
1216        ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1217        ioreqs[1].addr = ZD_CR66;
1218        ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1219        ioreqs[2].addr = ZD_CR65;
1220        ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1221
1222        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1223}
1224
1225static int update_channel_integration_and_calibration(struct zd_chip *chip,
1226                                                      u8 channel)
1227{
1228        int r;
1229
1230        if (!zd_rf_should_update_pwr_int(&chip->rf))
1231                return 0;
1232
1233        r = update_pwr_int(chip, channel);
1234        if (r)
1235                return r;
1236        if (zd_chip_is_zd1211b(chip)) {
1237                static const struct zd_ioreq16 ioreqs[] = {
1238                        { ZD_CR69, 0x28 },
1239                        {},
1240                        { ZD_CR69, 0x2a },
1241                };
1242
1243                r = update_ofdm_cal(chip, channel);
1244                if (r)
1245                        return r;
1246                r = update_pwr_cal(chip, channel);
1247                if (r)
1248                        return r;
1249                r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1250                if (r)
1251                        return r;
1252        }
1253
1254        return 0;
1255}
1256
1257/* The CCK baseband gain can be optionally patched by the EEPROM */
1258static int patch_cck_gain(struct zd_chip *chip)
1259{
1260        int r;
1261        u32 value;
1262
1263        if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1264                return 0;
1265
1266        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1267        r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1268        if (r)
1269                return r;
1270        dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1271        return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1272}
1273
1274int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1275{
1276        int r, t;
1277
1278        mutex_lock(&chip->mutex);
1279        r = zd_chip_lock_phy_regs(chip);
1280        if (r)
1281                goto out;
1282        r = zd_rf_set_channel(&chip->rf, channel);
1283        if (r)
1284                goto unlock;
1285        r = update_channel_integration_and_calibration(chip, channel);
1286        if (r)
1287                goto unlock;
1288        r = patch_cck_gain(chip);
1289        if (r)
1290                goto unlock;
1291        r = patch_6m_band_edge(chip, channel);
1292        if (r)
1293                goto unlock;
1294        r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1295unlock:
1296        t = zd_chip_unlock_phy_regs(chip);
1297        if (t && !r)
1298                r = t;
1299out:
1300        mutex_unlock(&chip->mutex);
1301        return r;
1302}
1303
1304u8 zd_chip_get_channel(struct zd_chip *chip)
1305{
1306        u8 channel;
1307
1308        mutex_lock(&chip->mutex);
1309        channel = chip->rf.channel;
1310        mutex_unlock(&chip->mutex);
1311        return channel;
1312}
1313
1314int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1315{
1316        const zd_addr_t a[] = {
1317                fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1318                CR_LED,
1319        };
1320
1321        int r;
1322        u16 v[ARRAY_SIZE(a)];
1323        struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1324                [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1325                [1] = { CR_LED },
1326        };
1327        u16 other_led;
1328
1329        mutex_lock(&chip->mutex);
1330        r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1331        if (r)
1332                goto out;
1333
1334        other_led = chip->link_led == LED1 ? LED2 : LED1;
1335
1336        switch (status) {
1337        case ZD_LED_OFF:
1338                ioreqs[0].value = FW_LINK_OFF;
1339                ioreqs[1].value = v[1] & ~(LED1|LED2);
1340                break;
1341        case ZD_LED_SCANNING:
1342                ioreqs[0].value = FW_LINK_OFF;
1343                ioreqs[1].value = v[1] & ~other_led;
1344                if (get_seconds() % 3 == 0) {
1345                        ioreqs[1].value &= ~chip->link_led;
1346                } else {
1347                        ioreqs[1].value |= chip->link_led;
1348                }
1349                break;
1350        case ZD_LED_ASSOCIATED:
1351                ioreqs[0].value = FW_LINK_TX;
1352                ioreqs[1].value = v[1] & ~other_led;
1353                ioreqs[1].value |= chip->link_led;
1354                break;
1355        default:
1356                r = -EINVAL;
1357                goto out;
1358        }
1359
1360        if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1361                r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1362                if (r)
1363                        goto out;
1364        }
1365        r = 0;
1366out:
1367        mutex_unlock(&chip->mutex);
1368        return r;
1369}
1370
1371int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1372{
1373        int r;
1374
1375        if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1376                return -EINVAL;
1377
1378        mutex_lock(&chip->mutex);
1379        r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1380        mutex_unlock(&chip->mutex);
1381        return r;
1382}
1383
1384static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1385{
1386        return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1387}
1388
1389/**
1390 * zd_rx_rate - report zd-rate
1391 * @rx_frame - received frame
1392 * @rx_status - rx_status as given by the device
1393 *
1394 * This function converts the rate as encoded in the received packet to the
1395 * zd-rate, we are using on other places in the driver.
1396 */
1397u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1398{
1399        u8 zd_rate;
1400        if (status->frame_status & ZD_RX_OFDM) {
1401                zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1402        } else {
1403                switch (zd_cck_plcp_header_signal(rx_frame)) {
1404                case ZD_CCK_PLCP_SIGNAL_1M:
1405                        zd_rate = ZD_CCK_RATE_1M;
1406                        break;
1407                case ZD_CCK_PLCP_SIGNAL_2M:
1408                        zd_rate = ZD_CCK_RATE_2M;
1409                        break;
1410                case ZD_CCK_PLCP_SIGNAL_5M5:
1411                        zd_rate = ZD_CCK_RATE_5_5M;
1412                        break;
1413                case ZD_CCK_PLCP_SIGNAL_11M:
1414                        zd_rate = ZD_CCK_RATE_11M;
1415                        break;
1416                default:
1417                        zd_rate = 0;
1418                }
1419        }
1420
1421        return zd_rate;
1422}
1423
1424int zd_chip_switch_radio_on(struct zd_chip *chip)
1425{
1426        int r;
1427
1428        mutex_lock(&chip->mutex);
1429        r = zd_switch_radio_on(&chip->rf);
1430        mutex_unlock(&chip->mutex);
1431        return r;
1432}
1433
1434int zd_chip_switch_radio_off(struct zd_chip *chip)
1435{
1436        int r;
1437
1438        mutex_lock(&chip->mutex);
1439        r = zd_switch_radio_off(&chip->rf);
1440        mutex_unlock(&chip->mutex);
1441        return r;
1442}
1443
1444int zd_chip_enable_int(struct zd_chip *chip)
1445{
1446        int r;
1447
1448        mutex_lock(&chip->mutex);
1449        r = zd_usb_enable_int(&chip->usb);
1450        mutex_unlock(&chip->mutex);
1451        return r;
1452}
1453
1454void zd_chip_disable_int(struct zd_chip *chip)
1455{
1456        mutex_lock(&chip->mutex);
1457        zd_usb_disable_int(&chip->usb);
1458        mutex_unlock(&chip->mutex);
1459
1460        /* cancel pending interrupt work */
1461        cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1462}
1463
1464int zd_chip_enable_rxtx(struct zd_chip *chip)
1465{
1466        int r;
1467
1468        mutex_lock(&chip->mutex);
1469        zd_usb_enable_tx(&chip->usb);
1470        r = zd_usb_enable_rx(&chip->usb);
1471        zd_tx_watchdog_enable(&chip->usb);
1472        mutex_unlock(&chip->mutex);
1473        return r;
1474}
1475
1476void zd_chip_disable_rxtx(struct zd_chip *chip)
1477{
1478        mutex_lock(&chip->mutex);
1479        zd_tx_watchdog_disable(&chip->usb);
1480        zd_usb_disable_rx(&chip->usb);
1481        zd_usb_disable_tx(&chip->usb);
1482        mutex_unlock(&chip->mutex);
1483}
1484
1485int zd_rfwritev_locked(struct zd_chip *chip,
1486                       const u32* values, unsigned int count, u8 bits)
1487{
1488        int r;
1489        unsigned int i;
1490
1491        for (i = 0; i < count; i++) {
1492                r = zd_rfwrite_locked(chip, values[i], bits);
1493                if (r)
1494                        return r;
1495        }
1496
1497        return 0;
1498}
1499
1500/*
1501 * We can optionally program the RF directly through CR regs, if supported by
1502 * the hardware. This is much faster than the older method.
1503 */
1504int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1505{
1506        const struct zd_ioreq16 ioreqs[] = {
1507                { ZD_CR244, (value >> 16) & 0xff },
1508                { ZD_CR243, (value >>  8) & 0xff },
1509                { ZD_CR242,  value        & 0xff },
1510        };
1511        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1512        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1513}
1514
1515int zd_rfwritev_cr_locked(struct zd_chip *chip,
1516                          const u32 *values, unsigned int count)
1517{
1518        int r;
1519        unsigned int i;
1520
1521        for (i = 0; i < count; i++) {
1522                r = zd_rfwrite_cr_locked(chip, values[i]);
1523                if (r)
1524                        return r;
1525        }
1526
1527        return 0;
1528}
1529
1530int zd_chip_set_multicast_hash(struct zd_chip *chip,
1531                               struct zd_mc_hash *hash)
1532{
1533        const struct zd_ioreq32 ioreqs[] = {
1534                { CR_GROUP_HASH_P1, hash->low },
1535                { CR_GROUP_HASH_P2, hash->high },
1536        };
1537
1538        return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1539}
1540
1541u64 zd_chip_get_tsf(struct zd_chip *chip)
1542{
1543        int r;
1544        static const zd_addr_t aw_pt_bi_addr[] =
1545                { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1546        u32 values[2];
1547        u64 tsf;
1548
1549        mutex_lock(&chip->mutex);
1550        r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1551                                ARRAY_SIZE(aw_pt_bi_addr));
1552        mutex_unlock(&chip->mutex);
1553        if (r)
1554                return 0;
1555
1556        tsf = values[1];
1557        tsf = (tsf << 32) | values[0];
1558
1559        return tsf;
1560}
1561