linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *
   9 *      See ../COPYING for licensing terms.
  10 */
  11#define pr_fmt(fmt) "%s: " fmt, __func__
  12
  13#include <linux/kernel.h>
  14#include <linux/init.h>
  15#include <linux/errno.h>
  16#include <linux/time.h>
  17#include <linux/aio_abi.h>
  18#include <linux/export.h>
  19#include <linux/syscalls.h>
  20#include <linux/backing-dev.h>
  21#include <linux/uio.h>
  22
  23#include <linux/sched.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/timer.h>
  32#include <linux/aio.h>
  33#include <linux/highmem.h>
  34#include <linux/workqueue.h>
  35#include <linux/security.h>
  36#include <linux/eventfd.h>
  37#include <linux/blkdev.h>
  38#include <linux/compat.h>
  39#include <linux/migrate.h>
  40#include <linux/ramfs.h>
  41#include <linux/percpu-refcount.h>
  42#include <linux/mount.h>
  43
  44#include <asm/kmap_types.h>
  45#include <asm/uaccess.h>
  46
  47#include "internal.h"
  48
  49#define AIO_RING_MAGIC                  0xa10a10a1
  50#define AIO_RING_COMPAT_FEATURES        1
  51#define AIO_RING_INCOMPAT_FEATURES      0
  52struct aio_ring {
  53        unsigned        id;     /* kernel internal index number */
  54        unsigned        nr;     /* number of io_events */
  55        unsigned        head;
  56        unsigned        tail;
  57
  58        unsigned        magic;
  59        unsigned        compat_features;
  60        unsigned        incompat_features;
  61        unsigned        header_length;  /* size of aio_ring */
  62
  63
  64        struct io_event         io_events[0];
  65}; /* 128 bytes + ring size */
  66
  67#define AIO_RING_PAGES  8
  68
  69struct kioctx_table {
  70        struct rcu_head rcu;
  71        unsigned        nr;
  72        struct kioctx   *table[];
  73};
  74
  75struct kioctx_cpu {
  76        unsigned                reqs_available;
  77};
  78
  79struct kioctx {
  80        struct percpu_ref       users;
  81        atomic_t                dead;
  82
  83        struct percpu_ref       reqs;
  84
  85        unsigned long           user_id;
  86
  87        struct __percpu kioctx_cpu *cpu;
  88
  89        /*
  90         * For percpu reqs_available, number of slots we move to/from global
  91         * counter at a time:
  92         */
  93        unsigned                req_batch;
  94        /*
  95         * This is what userspace passed to io_setup(), it's not used for
  96         * anything but counting against the global max_reqs quota.
  97         *
  98         * The real limit is nr_events - 1, which will be larger (see
  99         * aio_setup_ring())
 100         */
 101        unsigned                max_reqs;
 102
 103        /* Size of ringbuffer, in units of struct io_event */
 104        unsigned                nr_events;
 105
 106        unsigned long           mmap_base;
 107        unsigned long           mmap_size;
 108
 109        struct page             **ring_pages;
 110        long                    nr_pages;
 111
 112        struct work_struct      free_work;
 113
 114        struct {
 115                /*
 116                 * This counts the number of available slots in the ringbuffer,
 117                 * so we avoid overflowing it: it's decremented (if positive)
 118                 * when allocating a kiocb and incremented when the resulting
 119                 * io_event is pulled off the ringbuffer.
 120                 *
 121                 * We batch accesses to it with a percpu version.
 122                 */
 123                atomic_t        reqs_available;
 124        } ____cacheline_aligned_in_smp;
 125
 126        struct {
 127                spinlock_t      ctx_lock;
 128                struct list_head active_reqs;   /* used for cancellation */
 129        } ____cacheline_aligned_in_smp;
 130
 131        struct {
 132                struct mutex    ring_lock;
 133                wait_queue_head_t wait;
 134        } ____cacheline_aligned_in_smp;
 135
 136        struct {
 137                unsigned        tail;
 138                spinlock_t      completion_lock;
 139        } ____cacheline_aligned_in_smp;
 140
 141        struct page             *internal_pages[AIO_RING_PAGES];
 142        struct file             *aio_ring_file;
 143
 144        unsigned                id;
 145};
 146
 147/*------ sysctl variables----*/
 148static DEFINE_SPINLOCK(aio_nr_lock);
 149unsigned long aio_nr;           /* current system wide number of aio requests */
 150unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 151/*----end sysctl variables---*/
 152
 153static struct kmem_cache        *kiocb_cachep;
 154static struct kmem_cache        *kioctx_cachep;
 155
 156static struct vfsmount *aio_mnt;
 157
 158static const struct file_operations aio_ring_fops;
 159static const struct address_space_operations aio_ctx_aops;
 160
 161static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 162{
 163        struct qstr this = QSTR_INIT("[aio]", 5);
 164        struct file *file;
 165        struct path path;
 166        struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 167        if (IS_ERR(inode))
 168                return ERR_CAST(inode);
 169
 170        inode->i_mapping->a_ops = &aio_ctx_aops;
 171        inode->i_mapping->private_data = ctx;
 172        inode->i_size = PAGE_SIZE * nr_pages;
 173
 174        path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
 175        if (!path.dentry) {
 176                iput(inode);
 177                return ERR_PTR(-ENOMEM);
 178        }
 179        path.mnt = mntget(aio_mnt);
 180
 181        d_instantiate(path.dentry, inode);
 182        file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
 183        if (IS_ERR(file)) {
 184                path_put(&path);
 185                return file;
 186        }
 187
 188        file->f_flags = O_RDWR;
 189        file->private_data = ctx;
 190        return file;
 191}
 192
 193static struct dentry *aio_mount(struct file_system_type *fs_type,
 194                                int flags, const char *dev_name, void *data)
 195{
 196        static const struct dentry_operations ops = {
 197                .d_dname        = simple_dname,
 198        };
 199        return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
 200}
 201
 202/* aio_setup
 203 *      Creates the slab caches used by the aio routines, panic on
 204 *      failure as this is done early during the boot sequence.
 205 */
 206static int __init aio_setup(void)
 207{
 208        static struct file_system_type aio_fs = {
 209                .name           = "aio",
 210                .mount          = aio_mount,
 211                .kill_sb        = kill_anon_super,
 212        };
 213        aio_mnt = kern_mount(&aio_fs);
 214        if (IS_ERR(aio_mnt))
 215                panic("Failed to create aio fs mount.");
 216
 217        kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 218        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 219
 220        pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
 221
 222        return 0;
 223}
 224__initcall(aio_setup);
 225
 226static void put_aio_ring_file(struct kioctx *ctx)
 227{
 228        struct file *aio_ring_file = ctx->aio_ring_file;
 229        if (aio_ring_file) {
 230                truncate_setsize(aio_ring_file->f_inode, 0);
 231
 232                /* Prevent further access to the kioctx from migratepages */
 233                spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
 234                aio_ring_file->f_inode->i_mapping->private_data = NULL;
 235                ctx->aio_ring_file = NULL;
 236                spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
 237
 238                fput(aio_ring_file);
 239        }
 240}
 241
 242static void aio_free_ring(struct kioctx *ctx)
 243{
 244        int i;
 245
 246        for (i = 0; i < ctx->nr_pages; i++) {
 247                struct page *page;
 248                pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 249                                page_count(ctx->ring_pages[i]));
 250                page = ctx->ring_pages[i];
 251                if (!page)
 252                        continue;
 253                ctx->ring_pages[i] = NULL;
 254                put_page(page);
 255        }
 256
 257        put_aio_ring_file(ctx);
 258
 259        if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 260                kfree(ctx->ring_pages);
 261                ctx->ring_pages = NULL;
 262        }
 263}
 264
 265static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 266{
 267        vma->vm_ops = &generic_file_vm_ops;
 268        return 0;
 269}
 270
 271static const struct file_operations aio_ring_fops = {
 272        .mmap = aio_ring_mmap,
 273};
 274
 275static int aio_set_page_dirty(struct page *page)
 276{
 277        return 0;
 278}
 279
 280#if IS_ENABLED(CONFIG_MIGRATION)
 281static int aio_migratepage(struct address_space *mapping, struct page *new,
 282                        struct page *old, enum migrate_mode mode)
 283{
 284        struct kioctx *ctx;
 285        unsigned long flags;
 286        int rc;
 287
 288        rc = 0;
 289
 290        /* Make sure the old page hasn't already been changed */
 291        spin_lock(&mapping->private_lock);
 292        ctx = mapping->private_data;
 293        if (ctx) {
 294                pgoff_t idx;
 295                spin_lock_irqsave(&ctx->completion_lock, flags);
 296                idx = old->index;
 297                if (idx < (pgoff_t)ctx->nr_pages) {
 298                        if (ctx->ring_pages[idx] != old)
 299                                rc = -EAGAIN;
 300                } else
 301                        rc = -EINVAL;
 302                spin_unlock_irqrestore(&ctx->completion_lock, flags);
 303        } else
 304                rc = -EINVAL;
 305        spin_unlock(&mapping->private_lock);
 306
 307        if (rc != 0)
 308                return rc;
 309
 310        /* Writeback must be complete */
 311        BUG_ON(PageWriteback(old));
 312        get_page(new);
 313
 314        rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
 315        if (rc != MIGRATEPAGE_SUCCESS) {
 316                put_page(new);
 317                return rc;
 318        }
 319
 320        /* We can potentially race against kioctx teardown here.  Use the
 321         * address_space's private data lock to protect the mapping's
 322         * private_data.
 323         */
 324        spin_lock(&mapping->private_lock);
 325        ctx = mapping->private_data;
 326        if (ctx) {
 327                pgoff_t idx;
 328                spin_lock_irqsave(&ctx->completion_lock, flags);
 329                migrate_page_copy(new, old);
 330                idx = old->index;
 331                if (idx < (pgoff_t)ctx->nr_pages) {
 332                        /* And only do the move if things haven't changed */
 333                        if (ctx->ring_pages[idx] == old)
 334                                ctx->ring_pages[idx] = new;
 335                        else
 336                                rc = -EAGAIN;
 337                } else
 338                        rc = -EINVAL;
 339                spin_unlock_irqrestore(&ctx->completion_lock, flags);
 340        } else
 341                rc = -EBUSY;
 342        spin_unlock(&mapping->private_lock);
 343
 344        if (rc == MIGRATEPAGE_SUCCESS)
 345                put_page(old);
 346        else
 347                put_page(new);
 348
 349        return rc;
 350}
 351#endif
 352
 353static const struct address_space_operations aio_ctx_aops = {
 354        .set_page_dirty = aio_set_page_dirty,
 355#if IS_ENABLED(CONFIG_MIGRATION)
 356        .migratepage    = aio_migratepage,
 357#endif
 358};
 359
 360static int aio_setup_ring(struct kioctx *ctx)
 361{
 362        struct aio_ring *ring;
 363        unsigned nr_events = ctx->max_reqs;
 364        struct mm_struct *mm = current->mm;
 365        unsigned long size, unused;
 366        int nr_pages;
 367        int i;
 368        struct file *file;
 369
 370        /* Compensate for the ring buffer's head/tail overlap entry */
 371        nr_events += 2; /* 1 is required, 2 for good luck */
 372
 373        size = sizeof(struct aio_ring);
 374        size += sizeof(struct io_event) * nr_events;
 375
 376        nr_pages = PFN_UP(size);
 377        if (nr_pages < 0)
 378                return -EINVAL;
 379
 380        file = aio_private_file(ctx, nr_pages);
 381        if (IS_ERR(file)) {
 382                ctx->aio_ring_file = NULL;
 383                return -EAGAIN;
 384        }
 385
 386        ctx->aio_ring_file = file;
 387        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 388                        / sizeof(struct io_event);
 389
 390        ctx->ring_pages = ctx->internal_pages;
 391        if (nr_pages > AIO_RING_PAGES) {
 392                ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 393                                          GFP_KERNEL);
 394                if (!ctx->ring_pages) {
 395                        put_aio_ring_file(ctx);
 396                        return -ENOMEM;
 397                }
 398        }
 399
 400        for (i = 0; i < nr_pages; i++) {
 401                struct page *page;
 402                page = find_or_create_page(file->f_inode->i_mapping,
 403                                           i, GFP_HIGHUSER | __GFP_ZERO);
 404                if (!page)
 405                        break;
 406                pr_debug("pid(%d) page[%d]->count=%d\n",
 407                         current->pid, i, page_count(page));
 408                SetPageUptodate(page);
 409                SetPageDirty(page);
 410                unlock_page(page);
 411
 412                ctx->ring_pages[i] = page;
 413        }
 414        ctx->nr_pages = i;
 415
 416        if (unlikely(i != nr_pages)) {
 417                aio_free_ring(ctx);
 418                return -EAGAIN;
 419        }
 420
 421        ctx->mmap_size = nr_pages * PAGE_SIZE;
 422        pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 423
 424        down_write(&mm->mmap_sem);
 425        ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 426                                       PROT_READ | PROT_WRITE,
 427                                       MAP_SHARED, 0, &unused);
 428        up_write(&mm->mmap_sem);
 429        if (IS_ERR((void *)ctx->mmap_base)) {
 430                ctx->mmap_size = 0;
 431                aio_free_ring(ctx);
 432                return -EAGAIN;
 433        }
 434
 435        pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 436
 437        ctx->user_id = ctx->mmap_base;
 438        ctx->nr_events = nr_events; /* trusted copy */
 439
 440        ring = kmap_atomic(ctx->ring_pages[0]);
 441        ring->nr = nr_events;   /* user copy */
 442        ring->id = ~0U;
 443        ring->head = ring->tail = 0;
 444        ring->magic = AIO_RING_MAGIC;
 445        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 446        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 447        ring->header_length = sizeof(struct aio_ring);
 448        kunmap_atomic(ring);
 449        flush_dcache_page(ctx->ring_pages[0]);
 450
 451        return 0;
 452}
 453
 454#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 455#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 456#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 457
 458void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
 459{
 460        struct kioctx *ctx = req->ki_ctx;
 461        unsigned long flags;
 462
 463        spin_lock_irqsave(&ctx->ctx_lock, flags);
 464
 465        if (!req->ki_list.next)
 466                list_add(&req->ki_list, &ctx->active_reqs);
 467
 468        req->ki_cancel = cancel;
 469
 470        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 471}
 472EXPORT_SYMBOL(kiocb_set_cancel_fn);
 473
 474static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
 475{
 476        kiocb_cancel_fn *old, *cancel;
 477
 478        /*
 479         * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
 480         * actually has a cancel function, hence the cmpxchg()
 481         */
 482
 483        cancel = ACCESS_ONCE(kiocb->ki_cancel);
 484        do {
 485                if (!cancel || cancel == KIOCB_CANCELLED)
 486                        return -EINVAL;
 487
 488                old = cancel;
 489                cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
 490        } while (cancel != old);
 491
 492        return cancel(kiocb);
 493}
 494
 495static void free_ioctx(struct work_struct *work)
 496{
 497        struct kioctx *ctx = container_of(work, struct kioctx, free_work);
 498
 499        pr_debug("freeing %p\n", ctx);
 500
 501        aio_free_ring(ctx);
 502        free_percpu(ctx->cpu);
 503        kmem_cache_free(kioctx_cachep, ctx);
 504}
 505
 506static void free_ioctx_reqs(struct percpu_ref *ref)
 507{
 508        struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 509
 510        INIT_WORK(&ctx->free_work, free_ioctx);
 511        schedule_work(&ctx->free_work);
 512}
 513
 514/*
 515 * When this function runs, the kioctx has been removed from the "hash table"
 516 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 517 * now it's safe to cancel any that need to be.
 518 */
 519static void free_ioctx_users(struct percpu_ref *ref)
 520{
 521        struct kioctx *ctx = container_of(ref, struct kioctx, users);
 522        struct kiocb *req;
 523
 524        spin_lock_irq(&ctx->ctx_lock);
 525
 526        while (!list_empty(&ctx->active_reqs)) {
 527                req = list_first_entry(&ctx->active_reqs,
 528                                       struct kiocb, ki_list);
 529
 530                list_del_init(&req->ki_list);
 531                kiocb_cancel(ctx, req);
 532        }
 533
 534        spin_unlock_irq(&ctx->ctx_lock);
 535
 536        percpu_ref_kill(&ctx->reqs);
 537        percpu_ref_put(&ctx->reqs);
 538}
 539
 540static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 541{
 542        unsigned i, new_nr;
 543        struct kioctx_table *table, *old;
 544        struct aio_ring *ring;
 545
 546        spin_lock(&mm->ioctx_lock);
 547        rcu_read_lock();
 548        table = rcu_dereference(mm->ioctx_table);
 549
 550        while (1) {
 551                if (table)
 552                        for (i = 0; i < table->nr; i++)
 553                                if (!table->table[i]) {
 554                                        ctx->id = i;
 555                                        table->table[i] = ctx;
 556                                        rcu_read_unlock();
 557                                        spin_unlock(&mm->ioctx_lock);
 558
 559                                        ring = kmap_atomic(ctx->ring_pages[0]);
 560                                        ring->id = ctx->id;
 561                                        kunmap_atomic(ring);
 562                                        return 0;
 563                                }
 564
 565                new_nr = (table ? table->nr : 1) * 4;
 566
 567                rcu_read_unlock();
 568                spin_unlock(&mm->ioctx_lock);
 569
 570                table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 571                                new_nr, GFP_KERNEL);
 572                if (!table)
 573                        return -ENOMEM;
 574
 575                table->nr = new_nr;
 576
 577                spin_lock(&mm->ioctx_lock);
 578                rcu_read_lock();
 579                old = rcu_dereference(mm->ioctx_table);
 580
 581                if (!old) {
 582                        rcu_assign_pointer(mm->ioctx_table, table);
 583                } else if (table->nr > old->nr) {
 584                        memcpy(table->table, old->table,
 585                               old->nr * sizeof(struct kioctx *));
 586
 587                        rcu_assign_pointer(mm->ioctx_table, table);
 588                        kfree_rcu(old, rcu);
 589                } else {
 590                        kfree(table);
 591                        table = old;
 592                }
 593        }
 594}
 595
 596static void aio_nr_sub(unsigned nr)
 597{
 598        spin_lock(&aio_nr_lock);
 599        if (WARN_ON(aio_nr - nr > aio_nr))
 600                aio_nr = 0;
 601        else
 602                aio_nr -= nr;
 603        spin_unlock(&aio_nr_lock);
 604}
 605
 606/* ioctx_alloc
 607 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 608 */
 609static struct kioctx *ioctx_alloc(unsigned nr_events)
 610{
 611        struct mm_struct *mm = current->mm;
 612        struct kioctx *ctx;
 613        int err = -ENOMEM;
 614
 615        /*
 616         * We keep track of the number of available ringbuffer slots, to prevent
 617         * overflow (reqs_available), and we also use percpu counters for this.
 618         *
 619         * So since up to half the slots might be on other cpu's percpu counters
 620         * and unavailable, double nr_events so userspace sees what they
 621         * expected: additionally, we move req_batch slots to/from percpu
 622         * counters at a time, so make sure that isn't 0:
 623         */
 624        nr_events = max(nr_events, num_possible_cpus() * 4);
 625        nr_events *= 2;
 626
 627        /* Prevent overflows */
 628        if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
 629            (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
 630                pr_debug("ENOMEM: nr_events too high\n");
 631                return ERR_PTR(-EINVAL);
 632        }
 633
 634        if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
 635                return ERR_PTR(-EAGAIN);
 636
 637        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 638        if (!ctx)
 639                return ERR_PTR(-ENOMEM);
 640
 641        ctx->max_reqs = nr_events;
 642
 643        if (percpu_ref_init(&ctx->users, free_ioctx_users))
 644                goto err;
 645
 646        if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
 647                goto err;
 648
 649        spin_lock_init(&ctx->ctx_lock);
 650        spin_lock_init(&ctx->completion_lock);
 651        mutex_init(&ctx->ring_lock);
 652        init_waitqueue_head(&ctx->wait);
 653
 654        INIT_LIST_HEAD(&ctx->active_reqs);
 655
 656        ctx->cpu = alloc_percpu(struct kioctx_cpu);
 657        if (!ctx->cpu)
 658                goto err;
 659
 660        if (aio_setup_ring(ctx) < 0)
 661                goto err;
 662
 663        atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 664        ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 665        if (ctx->req_batch < 1)
 666                ctx->req_batch = 1;
 667
 668        /* limit the number of system wide aios */
 669        spin_lock(&aio_nr_lock);
 670        if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
 671            aio_nr + nr_events < aio_nr) {
 672                spin_unlock(&aio_nr_lock);
 673                err = -EAGAIN;
 674                goto err_ctx;
 675        }
 676        aio_nr += ctx->max_reqs;
 677        spin_unlock(&aio_nr_lock);
 678
 679        percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
 680        percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
 681
 682        err = ioctx_add_table(ctx, mm);
 683        if (err)
 684                goto err_cleanup;
 685
 686        pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 687                 ctx, ctx->user_id, mm, ctx->nr_events);
 688        return ctx;
 689
 690err_cleanup:
 691        aio_nr_sub(ctx->max_reqs);
 692err_ctx:
 693        aio_free_ring(ctx);
 694err:
 695        free_percpu(ctx->cpu);
 696        free_percpu(ctx->reqs.pcpu_count);
 697        free_percpu(ctx->users.pcpu_count);
 698        kmem_cache_free(kioctx_cachep, ctx);
 699        pr_debug("error allocating ioctx %d\n", err);
 700        return ERR_PTR(err);
 701}
 702
 703/* kill_ioctx
 704 *      Cancels all outstanding aio requests on an aio context.  Used
 705 *      when the processes owning a context have all exited to encourage
 706 *      the rapid destruction of the kioctx.
 707 */
 708static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
 709{
 710        if (!atomic_xchg(&ctx->dead, 1)) {
 711                struct kioctx_table *table;
 712
 713                spin_lock(&mm->ioctx_lock);
 714                rcu_read_lock();
 715                table = rcu_dereference(mm->ioctx_table);
 716
 717                WARN_ON(ctx != table->table[ctx->id]);
 718                table->table[ctx->id] = NULL;
 719                rcu_read_unlock();
 720                spin_unlock(&mm->ioctx_lock);
 721
 722                /* percpu_ref_kill() will do the necessary call_rcu() */
 723                wake_up_all(&ctx->wait);
 724
 725                /*
 726                 * It'd be more correct to do this in free_ioctx(), after all
 727                 * the outstanding kiocbs have finished - but by then io_destroy
 728                 * has already returned, so io_setup() could potentially return
 729                 * -EAGAIN with no ioctxs actually in use (as far as userspace
 730                 *  could tell).
 731                 */
 732                aio_nr_sub(ctx->max_reqs);
 733
 734                if (ctx->mmap_size)
 735                        vm_munmap(ctx->mmap_base, ctx->mmap_size);
 736
 737                percpu_ref_kill(&ctx->users);
 738        }
 739}
 740
 741/* wait_on_sync_kiocb:
 742 *      Waits on the given sync kiocb to complete.
 743 */
 744ssize_t wait_on_sync_kiocb(struct kiocb *req)
 745{
 746        while (!req->ki_ctx) {
 747                set_current_state(TASK_UNINTERRUPTIBLE);
 748                if (req->ki_ctx)
 749                        break;
 750                io_schedule();
 751        }
 752        __set_current_state(TASK_RUNNING);
 753        return req->ki_user_data;
 754}
 755EXPORT_SYMBOL(wait_on_sync_kiocb);
 756
 757/*
 758 * exit_aio: called when the last user of mm goes away.  At this point, there is
 759 * no way for any new requests to be submited or any of the io_* syscalls to be
 760 * called on the context.
 761 *
 762 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 763 * them.
 764 */
 765void exit_aio(struct mm_struct *mm)
 766{
 767        struct kioctx_table *table;
 768        struct kioctx *ctx;
 769        unsigned i = 0;
 770
 771        while (1) {
 772                rcu_read_lock();
 773                table = rcu_dereference(mm->ioctx_table);
 774
 775                do {
 776                        if (!table || i >= table->nr) {
 777                                rcu_read_unlock();
 778                                rcu_assign_pointer(mm->ioctx_table, NULL);
 779                                if (table)
 780                                        kfree(table);
 781                                return;
 782                        }
 783
 784                        ctx = table->table[i++];
 785                } while (!ctx);
 786
 787                rcu_read_unlock();
 788
 789                /*
 790                 * We don't need to bother with munmap() here -
 791                 * exit_mmap(mm) is coming and it'll unmap everything.
 792                 * Since aio_free_ring() uses non-zero ->mmap_size
 793                 * as indicator that it needs to unmap the area,
 794                 * just set it to 0; aio_free_ring() is the only
 795                 * place that uses ->mmap_size, so it's safe.
 796                 */
 797                ctx->mmap_size = 0;
 798
 799                kill_ioctx(mm, ctx);
 800        }
 801}
 802
 803static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 804{
 805        struct kioctx_cpu *kcpu;
 806
 807        preempt_disable();
 808        kcpu = this_cpu_ptr(ctx->cpu);
 809
 810        kcpu->reqs_available += nr;
 811        while (kcpu->reqs_available >= ctx->req_batch * 2) {
 812                kcpu->reqs_available -= ctx->req_batch;
 813                atomic_add(ctx->req_batch, &ctx->reqs_available);
 814        }
 815
 816        preempt_enable();
 817}
 818
 819static bool get_reqs_available(struct kioctx *ctx)
 820{
 821        struct kioctx_cpu *kcpu;
 822        bool ret = false;
 823
 824        preempt_disable();
 825        kcpu = this_cpu_ptr(ctx->cpu);
 826
 827        if (!kcpu->reqs_available) {
 828                int old, avail = atomic_read(&ctx->reqs_available);
 829
 830                do {
 831                        if (avail < ctx->req_batch)
 832                                goto out;
 833
 834                        old = avail;
 835                        avail = atomic_cmpxchg(&ctx->reqs_available,
 836                                               avail, avail - ctx->req_batch);
 837                } while (avail != old);
 838
 839                kcpu->reqs_available += ctx->req_batch;
 840        }
 841
 842        ret = true;
 843        kcpu->reqs_available--;
 844out:
 845        preempt_enable();
 846        return ret;
 847}
 848
 849/* aio_get_req
 850 *      Allocate a slot for an aio request.
 851 * Returns NULL if no requests are free.
 852 */
 853static inline struct kiocb *aio_get_req(struct kioctx *ctx)
 854{
 855        struct kiocb *req;
 856
 857        if (!get_reqs_available(ctx))
 858                return NULL;
 859
 860        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
 861        if (unlikely(!req))
 862                goto out_put;
 863
 864        percpu_ref_get(&ctx->reqs);
 865
 866        req->ki_ctx = ctx;
 867        return req;
 868out_put:
 869        put_reqs_available(ctx, 1);
 870        return NULL;
 871}
 872
 873static void kiocb_free(struct kiocb *req)
 874{
 875        if (req->ki_filp)
 876                fput(req->ki_filp);
 877        if (req->ki_eventfd != NULL)
 878                eventfd_ctx_put(req->ki_eventfd);
 879        kmem_cache_free(kiocb_cachep, req);
 880}
 881
 882static struct kioctx *lookup_ioctx(unsigned long ctx_id)
 883{
 884        struct aio_ring __user *ring  = (void __user *)ctx_id;
 885        struct mm_struct *mm = current->mm;
 886        struct kioctx *ctx, *ret = NULL;
 887        struct kioctx_table *table;
 888        unsigned id;
 889
 890        if (get_user(id, &ring->id))
 891                return NULL;
 892
 893        rcu_read_lock();
 894        table = rcu_dereference(mm->ioctx_table);
 895
 896        if (!table || id >= table->nr)
 897                goto out;
 898
 899        ctx = table->table[id];
 900        if (ctx && ctx->user_id == ctx_id) {
 901                percpu_ref_get(&ctx->users);
 902                ret = ctx;
 903        }
 904out:
 905        rcu_read_unlock();
 906        return ret;
 907}
 908
 909/* aio_complete
 910 *      Called when the io request on the given iocb is complete.
 911 */
 912void aio_complete(struct kiocb *iocb, long res, long res2)
 913{
 914        struct kioctx   *ctx = iocb->ki_ctx;
 915        struct aio_ring *ring;
 916        struct io_event *ev_page, *event;
 917        unsigned long   flags;
 918        unsigned tail, pos;
 919
 920        /*
 921         * Special case handling for sync iocbs:
 922         *  - events go directly into the iocb for fast handling
 923         *  - the sync task with the iocb in its stack holds the single iocb
 924         *    ref, no other paths have a way to get another ref
 925         *  - the sync task helpfully left a reference to itself in the iocb
 926         */
 927        if (is_sync_kiocb(iocb)) {
 928                iocb->ki_user_data = res;
 929                smp_wmb();
 930                iocb->ki_ctx = ERR_PTR(-EXDEV);
 931                wake_up_process(iocb->ki_obj.tsk);
 932                return;
 933        }
 934
 935        if (iocb->ki_list.next) {
 936                unsigned long flags;
 937
 938                spin_lock_irqsave(&ctx->ctx_lock, flags);
 939                list_del(&iocb->ki_list);
 940                spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 941        }
 942
 943        /*
 944         * Add a completion event to the ring buffer. Must be done holding
 945         * ctx->completion_lock to prevent other code from messing with the tail
 946         * pointer since we might be called from irq context.
 947         */
 948        spin_lock_irqsave(&ctx->completion_lock, flags);
 949
 950        tail = ctx->tail;
 951        pos = tail + AIO_EVENTS_OFFSET;
 952
 953        if (++tail >= ctx->nr_events)
 954                tail = 0;
 955
 956        ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
 957        event = ev_page + pos % AIO_EVENTS_PER_PAGE;
 958
 959        event->obj = (u64)(unsigned long)iocb->ki_obj.user;
 960        event->data = iocb->ki_user_data;
 961        event->res = res;
 962        event->res2 = res2;
 963
 964        kunmap_atomic(ev_page);
 965        flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
 966
 967        pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
 968                 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
 969                 res, res2);
 970
 971        /* after flagging the request as done, we
 972         * must never even look at it again
 973         */
 974        smp_wmb();      /* make event visible before updating tail */
 975
 976        ctx->tail = tail;
 977
 978        ring = kmap_atomic(ctx->ring_pages[0]);
 979        ring->tail = tail;
 980        kunmap_atomic(ring);
 981        flush_dcache_page(ctx->ring_pages[0]);
 982
 983        spin_unlock_irqrestore(&ctx->completion_lock, flags);
 984
 985        pr_debug("added to ring %p at [%u]\n", iocb, tail);
 986
 987        /*
 988         * Check if the user asked us to deliver the result through an
 989         * eventfd. The eventfd_signal() function is safe to be called
 990         * from IRQ context.
 991         */
 992        if (iocb->ki_eventfd != NULL)
 993                eventfd_signal(iocb->ki_eventfd, 1);
 994
 995        /* everything turned out well, dispose of the aiocb. */
 996        kiocb_free(iocb);
 997
 998        /*
 999         * We have to order our ring_info tail store above and test
1000         * of the wait list below outside the wait lock.  This is
1001         * like in wake_up_bit() where clearing a bit has to be
1002         * ordered with the unlocked test.
1003         */
1004        smp_mb();
1005
1006        if (waitqueue_active(&ctx->wait))
1007                wake_up(&ctx->wait);
1008
1009        percpu_ref_put(&ctx->reqs);
1010}
1011EXPORT_SYMBOL(aio_complete);
1012
1013/* aio_read_events
1014 *      Pull an event off of the ioctx's event ring.  Returns the number of
1015 *      events fetched
1016 */
1017static long aio_read_events_ring(struct kioctx *ctx,
1018                                 struct io_event __user *event, long nr)
1019{
1020        struct aio_ring *ring;
1021        unsigned head, tail, pos;
1022        long ret = 0;
1023        int copy_ret;
1024
1025        mutex_lock(&ctx->ring_lock);
1026
1027        ring = kmap_atomic(ctx->ring_pages[0]);
1028        head = ring->head;
1029        tail = ring->tail;
1030        kunmap_atomic(ring);
1031
1032        pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1033
1034        if (head == tail)
1035                goto out;
1036
1037        while (ret < nr) {
1038                long avail;
1039                struct io_event *ev;
1040                struct page *page;
1041
1042                avail = (head <= tail ?  tail : ctx->nr_events) - head;
1043                if (head == tail)
1044                        break;
1045
1046                avail = min(avail, nr - ret);
1047                avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1048                            ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1049
1050                pos = head + AIO_EVENTS_OFFSET;
1051                page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1052                pos %= AIO_EVENTS_PER_PAGE;
1053
1054                ev = kmap(page);
1055                copy_ret = copy_to_user(event + ret, ev + pos,
1056                                        sizeof(*ev) * avail);
1057                kunmap(page);
1058
1059                if (unlikely(copy_ret)) {
1060                        ret = -EFAULT;
1061                        goto out;
1062                }
1063
1064                ret += avail;
1065                head += avail;
1066                head %= ctx->nr_events;
1067        }
1068
1069        ring = kmap_atomic(ctx->ring_pages[0]);
1070        ring->head = head;
1071        kunmap_atomic(ring);
1072        flush_dcache_page(ctx->ring_pages[0]);
1073
1074        pr_debug("%li  h%u t%u\n", ret, head, tail);
1075
1076        put_reqs_available(ctx, ret);
1077out:
1078        mutex_unlock(&ctx->ring_lock);
1079
1080        return ret;
1081}
1082
1083static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1084                            struct io_event __user *event, long *i)
1085{
1086        long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1087
1088        if (ret > 0)
1089                *i += ret;
1090
1091        if (unlikely(atomic_read(&ctx->dead)))
1092                ret = -EINVAL;
1093
1094        if (!*i)
1095                *i = ret;
1096
1097        return ret < 0 || *i >= min_nr;
1098}
1099
1100static long read_events(struct kioctx *ctx, long min_nr, long nr,
1101                        struct io_event __user *event,
1102                        struct timespec __user *timeout)
1103{
1104        ktime_t until = { .tv64 = KTIME_MAX };
1105        long ret = 0;
1106
1107        if (timeout) {
1108                struct timespec ts;
1109
1110                if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1111                        return -EFAULT;
1112
1113                until = timespec_to_ktime(ts);
1114        }
1115
1116        /*
1117         * Note that aio_read_events() is being called as the conditional - i.e.
1118         * we're calling it after prepare_to_wait() has set task state to
1119         * TASK_INTERRUPTIBLE.
1120         *
1121         * But aio_read_events() can block, and if it blocks it's going to flip
1122         * the task state back to TASK_RUNNING.
1123         *
1124         * This should be ok, provided it doesn't flip the state back to
1125         * TASK_RUNNING and return 0 too much - that causes us to spin. That
1126         * will only happen if the mutex_lock() call blocks, and we then find
1127         * the ringbuffer empty. So in practice we should be ok, but it's
1128         * something to be aware of when touching this code.
1129         */
1130        wait_event_interruptible_hrtimeout(ctx->wait,
1131                        aio_read_events(ctx, min_nr, nr, event, &ret), until);
1132
1133        if (!ret && signal_pending(current))
1134                ret = -EINTR;
1135
1136        return ret;
1137}
1138
1139/* sys_io_setup:
1140 *      Create an aio_context capable of receiving at least nr_events.
1141 *      ctxp must not point to an aio_context that already exists, and
1142 *      must be initialized to 0 prior to the call.  On successful
1143 *      creation of the aio_context, *ctxp is filled in with the resulting 
1144 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1145 *      if the specified nr_events exceeds internal limits.  May fail 
1146 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1147 *      of available events.  May fail with -ENOMEM if insufficient kernel
1148 *      resources are available.  May fail with -EFAULT if an invalid
1149 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1150 *      implemented.
1151 */
1152SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1153{
1154        struct kioctx *ioctx = NULL;
1155        unsigned long ctx;
1156        long ret;
1157
1158        ret = get_user(ctx, ctxp);
1159        if (unlikely(ret))
1160                goto out;
1161
1162        ret = -EINVAL;
1163        if (unlikely(ctx || nr_events == 0)) {
1164                pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1165                         ctx, nr_events);
1166                goto out;
1167        }
1168
1169        ioctx = ioctx_alloc(nr_events);
1170        ret = PTR_ERR(ioctx);
1171        if (!IS_ERR(ioctx)) {
1172                ret = put_user(ioctx->user_id, ctxp);
1173                if (ret)
1174                        kill_ioctx(current->mm, ioctx);
1175                percpu_ref_put(&ioctx->users);
1176        }
1177
1178out:
1179        return ret;
1180}
1181
1182/* sys_io_destroy:
1183 *      Destroy the aio_context specified.  May cancel any outstanding 
1184 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1185 *      implemented.  May fail with -EINVAL if the context pointed to
1186 *      is invalid.
1187 */
1188SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1189{
1190        struct kioctx *ioctx = lookup_ioctx(ctx);
1191        if (likely(NULL != ioctx)) {
1192                kill_ioctx(current->mm, ioctx);
1193                percpu_ref_put(&ioctx->users);
1194                return 0;
1195        }
1196        pr_debug("EINVAL: io_destroy: invalid context id\n");
1197        return -EINVAL;
1198}
1199
1200typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1201                            unsigned long, loff_t);
1202
1203static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1204                                     int rw, char __user *buf,
1205                                     unsigned long *nr_segs,
1206                                     struct iovec **iovec,
1207                                     bool compat)
1208{
1209        ssize_t ret;
1210
1211        *nr_segs = kiocb->ki_nbytes;
1212
1213#ifdef CONFIG_COMPAT
1214        if (compat)
1215                ret = compat_rw_copy_check_uvector(rw,
1216                                (struct compat_iovec __user *)buf,
1217                                *nr_segs, 1, *iovec, iovec);
1218        else
1219#endif
1220                ret = rw_copy_check_uvector(rw,
1221                                (struct iovec __user *)buf,
1222                                *nr_segs, 1, *iovec, iovec);
1223        if (ret < 0)
1224                return ret;
1225
1226        /* ki_nbytes now reflect bytes instead of segs */
1227        kiocb->ki_nbytes = ret;
1228        return 0;
1229}
1230
1231static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1232                                       int rw, char __user *buf,
1233                                       unsigned long *nr_segs,
1234                                       struct iovec *iovec)
1235{
1236        if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1237                return -EFAULT;
1238
1239        iovec->iov_base = buf;
1240        iovec->iov_len = kiocb->ki_nbytes;
1241        *nr_segs = 1;
1242        return 0;
1243}
1244
1245/*
1246 * aio_setup_iocb:
1247 *      Performs the initial checks and aio retry method
1248 *      setup for the kiocb at the time of io submission.
1249 */
1250static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1251                            char __user *buf, bool compat)
1252{
1253        struct file *file = req->ki_filp;
1254        ssize_t ret;
1255        unsigned long nr_segs;
1256        int rw;
1257        fmode_t mode;
1258        aio_rw_op *rw_op;
1259        struct iovec inline_vec, *iovec = &inline_vec;
1260
1261        switch (opcode) {
1262        case IOCB_CMD_PREAD:
1263        case IOCB_CMD_PREADV:
1264                mode    = FMODE_READ;
1265                rw      = READ;
1266                rw_op   = file->f_op->aio_read;
1267                goto rw_common;
1268
1269        case IOCB_CMD_PWRITE:
1270        case IOCB_CMD_PWRITEV:
1271                mode    = FMODE_WRITE;
1272                rw      = WRITE;
1273                rw_op   = file->f_op->aio_write;
1274                goto rw_common;
1275rw_common:
1276                if (unlikely(!(file->f_mode & mode)))
1277                        return -EBADF;
1278
1279                if (!rw_op)
1280                        return -EINVAL;
1281
1282                ret = (opcode == IOCB_CMD_PREADV ||
1283                       opcode == IOCB_CMD_PWRITEV)
1284                        ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1285                                                &iovec, compat)
1286                        : aio_setup_single_vector(req, rw, buf, &nr_segs,
1287                                                  iovec);
1288                if (ret)
1289                        return ret;
1290
1291                ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1292                if (ret < 0) {
1293                        if (iovec != &inline_vec)
1294                                kfree(iovec);
1295                        return ret;
1296                }
1297
1298                req->ki_nbytes = ret;
1299
1300                /* XXX: move/kill - rw_verify_area()? */
1301                /* This matches the pread()/pwrite() logic */
1302                if (req->ki_pos < 0) {
1303                        ret = -EINVAL;
1304                        break;
1305                }
1306
1307                if (rw == WRITE)
1308                        file_start_write(file);
1309
1310                ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1311
1312                if (rw == WRITE)
1313                        file_end_write(file);
1314                break;
1315
1316        case IOCB_CMD_FDSYNC:
1317                if (!file->f_op->aio_fsync)
1318                        return -EINVAL;
1319
1320                ret = file->f_op->aio_fsync(req, 1);
1321                break;
1322
1323        case IOCB_CMD_FSYNC:
1324                if (!file->f_op->aio_fsync)
1325                        return -EINVAL;
1326
1327                ret = file->f_op->aio_fsync(req, 0);
1328                break;
1329
1330        default:
1331                pr_debug("EINVAL: no operation provided\n");
1332                return -EINVAL;
1333        }
1334
1335        if (iovec != &inline_vec)
1336                kfree(iovec);
1337
1338        if (ret != -EIOCBQUEUED) {
1339                /*
1340                 * There's no easy way to restart the syscall since other AIO's
1341                 * may be already running. Just fail this IO with EINTR.
1342                 */
1343                if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1344                             ret == -ERESTARTNOHAND ||
1345                             ret == -ERESTART_RESTARTBLOCK))
1346                        ret = -EINTR;
1347                aio_complete(req, ret, 0);
1348        }
1349
1350        return 0;
1351}
1352
1353static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1354                         struct iocb *iocb, bool compat)
1355{
1356        struct kiocb *req;
1357        ssize_t ret;
1358
1359        /* enforce forwards compatibility on users */
1360        if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1361                pr_debug("EINVAL: reserve field set\n");
1362                return -EINVAL;
1363        }
1364
1365        /* prevent overflows */
1366        if (unlikely(
1367            (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1368            (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1369            ((ssize_t)iocb->aio_nbytes < 0)
1370           )) {
1371                pr_debug("EINVAL: io_submit: overflow check\n");
1372                return -EINVAL;
1373        }
1374
1375        req = aio_get_req(ctx);
1376        if (unlikely(!req))
1377                return -EAGAIN;
1378
1379        req->ki_filp = fget(iocb->aio_fildes);
1380        if (unlikely(!req->ki_filp)) {
1381                ret = -EBADF;
1382                goto out_put_req;
1383        }
1384
1385        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1386                /*
1387                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1388                 * instance of the file* now. The file descriptor must be
1389                 * an eventfd() fd, and will be signaled for each completed
1390                 * event using the eventfd_signal() function.
1391                 */
1392                req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1393                if (IS_ERR(req->ki_eventfd)) {
1394                        ret = PTR_ERR(req->ki_eventfd);
1395                        req->ki_eventfd = NULL;
1396                        goto out_put_req;
1397                }
1398        }
1399
1400        ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1401        if (unlikely(ret)) {
1402                pr_debug("EFAULT: aio_key\n");
1403                goto out_put_req;
1404        }
1405
1406        req->ki_obj.user = user_iocb;
1407        req->ki_user_data = iocb->aio_data;
1408        req->ki_pos = iocb->aio_offset;
1409        req->ki_nbytes = iocb->aio_nbytes;
1410
1411        ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1412                           (char __user *)(unsigned long)iocb->aio_buf,
1413                           compat);
1414        if (ret)
1415                goto out_put_req;
1416
1417        return 0;
1418out_put_req:
1419        put_reqs_available(ctx, 1);
1420        percpu_ref_put(&ctx->reqs);
1421        kiocb_free(req);
1422        return ret;
1423}
1424
1425long do_io_submit(aio_context_t ctx_id, long nr,
1426                  struct iocb __user *__user *iocbpp, bool compat)
1427{
1428        struct kioctx *ctx;
1429        long ret = 0;
1430        int i = 0;
1431        struct blk_plug plug;
1432
1433        if (unlikely(nr < 0))
1434                return -EINVAL;
1435
1436        if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1437                nr = LONG_MAX/sizeof(*iocbpp);
1438
1439        if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1440                return -EFAULT;
1441
1442        ctx = lookup_ioctx(ctx_id);
1443        if (unlikely(!ctx)) {
1444                pr_debug("EINVAL: invalid context id\n");
1445                return -EINVAL;
1446        }
1447
1448        blk_start_plug(&plug);
1449
1450        /*
1451         * AKPM: should this return a partial result if some of the IOs were
1452         * successfully submitted?
1453         */
1454        for (i=0; i<nr; i++) {
1455                struct iocb __user *user_iocb;
1456                struct iocb tmp;
1457
1458                if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1459                        ret = -EFAULT;
1460                        break;
1461                }
1462
1463                if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1464                        ret = -EFAULT;
1465                        break;
1466                }
1467
1468                ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1469                if (ret)
1470                        break;
1471        }
1472        blk_finish_plug(&plug);
1473
1474        percpu_ref_put(&ctx->users);
1475        return i ? i : ret;
1476}
1477
1478/* sys_io_submit:
1479 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1480 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1481 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1482 *      *iocbpp[0] is not properly initialized, if the operation specified
1483 *      is invalid for the file descriptor in the iocb.  May fail with
1484 *      -EFAULT if any of the data structures point to invalid data.  May
1485 *      fail with -EBADF if the file descriptor specified in the first
1486 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1487 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1488 *      fail with -ENOSYS if not implemented.
1489 */
1490SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1491                struct iocb __user * __user *, iocbpp)
1492{
1493        return do_io_submit(ctx_id, nr, iocbpp, 0);
1494}
1495
1496/* lookup_kiocb
1497 *      Finds a given iocb for cancellation.
1498 */
1499static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1500                                  u32 key)
1501{
1502        struct list_head *pos;
1503
1504        assert_spin_locked(&ctx->ctx_lock);
1505
1506        if (key != KIOCB_KEY)
1507                return NULL;
1508
1509        /* TODO: use a hash or array, this sucks. */
1510        list_for_each(pos, &ctx->active_reqs) {
1511                struct kiocb *kiocb = list_kiocb(pos);
1512                if (kiocb->ki_obj.user == iocb)
1513                        return kiocb;
1514        }
1515        return NULL;
1516}
1517
1518/* sys_io_cancel:
1519 *      Attempts to cancel an iocb previously passed to io_submit.  If
1520 *      the operation is successfully cancelled, the resulting event is
1521 *      copied into the memory pointed to by result without being placed
1522 *      into the completion queue and 0 is returned.  May fail with
1523 *      -EFAULT if any of the data structures pointed to are invalid.
1524 *      May fail with -EINVAL if aio_context specified by ctx_id is
1525 *      invalid.  May fail with -EAGAIN if the iocb specified was not
1526 *      cancelled.  Will fail with -ENOSYS if not implemented.
1527 */
1528SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1529                struct io_event __user *, result)
1530{
1531        struct kioctx *ctx;
1532        struct kiocb *kiocb;
1533        u32 key;
1534        int ret;
1535
1536        ret = get_user(key, &iocb->aio_key);
1537        if (unlikely(ret))
1538                return -EFAULT;
1539
1540        ctx = lookup_ioctx(ctx_id);
1541        if (unlikely(!ctx))
1542                return -EINVAL;
1543
1544        spin_lock_irq(&ctx->ctx_lock);
1545
1546        kiocb = lookup_kiocb(ctx, iocb, key);
1547        if (kiocb)
1548                ret = kiocb_cancel(ctx, kiocb);
1549        else
1550                ret = -EINVAL;
1551
1552        spin_unlock_irq(&ctx->ctx_lock);
1553
1554        if (!ret) {
1555                /*
1556                 * The result argument is no longer used - the io_event is
1557                 * always delivered via the ring buffer. -EINPROGRESS indicates
1558                 * cancellation is progress:
1559                 */
1560                ret = -EINPROGRESS;
1561        }
1562
1563        percpu_ref_put(&ctx->users);
1564
1565        return ret;
1566}
1567
1568/* io_getevents:
1569 *      Attempts to read at least min_nr events and up to nr events from
1570 *      the completion queue for the aio_context specified by ctx_id. If
1571 *      it succeeds, the number of read events is returned. May fail with
1572 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1573 *      out of range, if timeout is out of range.  May fail with -EFAULT
1574 *      if any of the memory specified is invalid.  May return 0 or
1575 *      < min_nr if the timeout specified by timeout has elapsed
1576 *      before sufficient events are available, where timeout == NULL
1577 *      specifies an infinite timeout. Note that the timeout pointed to by
1578 *      timeout is relative.  Will fail with -ENOSYS if not implemented.
1579 */
1580SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1581                long, min_nr,
1582                long, nr,
1583                struct io_event __user *, events,
1584                struct timespec __user *, timeout)
1585{
1586        struct kioctx *ioctx = lookup_ioctx(ctx_id);
1587        long ret = -EINVAL;
1588
1589        if (likely(ioctx)) {
1590                if (likely(min_nr <= nr && min_nr >= 0))
1591                        ret = read_events(ioctx, min_nr, nr, events, timeout);
1592                percpu_ref_put(&ioctx->users);
1593        }
1594        return ret;
1595}
1596