linux/fs/btrfs/backref.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/vmalloc.h>
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "backref.h"
  23#include "ulist.h"
  24#include "transaction.h"
  25#include "delayed-ref.h"
  26#include "locking.h"
  27
  28struct extent_inode_elem {
  29        u64 inum;
  30        u64 offset;
  31        struct extent_inode_elem *next;
  32};
  33
  34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  35                                struct btrfs_file_extent_item *fi,
  36                                u64 extent_item_pos,
  37                                struct extent_inode_elem **eie)
  38{
  39        u64 offset = 0;
  40        struct extent_inode_elem *e;
  41
  42        if (!btrfs_file_extent_compression(eb, fi) &&
  43            !btrfs_file_extent_encryption(eb, fi) &&
  44            !btrfs_file_extent_other_encoding(eb, fi)) {
  45                u64 data_offset;
  46                u64 data_len;
  47
  48                data_offset = btrfs_file_extent_offset(eb, fi);
  49                data_len = btrfs_file_extent_num_bytes(eb, fi);
  50
  51                if (extent_item_pos < data_offset ||
  52                    extent_item_pos >= data_offset + data_len)
  53                        return 1;
  54                offset = extent_item_pos - data_offset;
  55        }
  56
  57        e = kmalloc(sizeof(*e), GFP_NOFS);
  58        if (!e)
  59                return -ENOMEM;
  60
  61        e->next = *eie;
  62        e->inum = key->objectid;
  63        e->offset = key->offset + offset;
  64        *eie = e;
  65
  66        return 0;
  67}
  68
  69static void free_inode_elem_list(struct extent_inode_elem *eie)
  70{
  71        struct extent_inode_elem *eie_next;
  72
  73        for (; eie; eie = eie_next) {
  74                eie_next = eie->next;
  75                kfree(eie);
  76        }
  77}
  78
  79static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  80                                u64 extent_item_pos,
  81                                struct extent_inode_elem **eie)
  82{
  83        u64 disk_byte;
  84        struct btrfs_key key;
  85        struct btrfs_file_extent_item *fi;
  86        int slot;
  87        int nritems;
  88        int extent_type;
  89        int ret;
  90
  91        /*
  92         * from the shared data ref, we only have the leaf but we need
  93         * the key. thus, we must look into all items and see that we
  94         * find one (some) with a reference to our extent item.
  95         */
  96        nritems = btrfs_header_nritems(eb);
  97        for (slot = 0; slot < nritems; ++slot) {
  98                btrfs_item_key_to_cpu(eb, &key, slot);
  99                if (key.type != BTRFS_EXTENT_DATA_KEY)
 100                        continue;
 101                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 102                extent_type = btrfs_file_extent_type(eb, fi);
 103                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 104                        continue;
 105                /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 106                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 107                if (disk_byte != wanted_disk_byte)
 108                        continue;
 109
 110                ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
 111                if (ret < 0)
 112                        return ret;
 113        }
 114
 115        return 0;
 116}
 117
 118/*
 119 * this structure records all encountered refs on the way up to the root
 120 */
 121struct __prelim_ref {
 122        struct list_head list;
 123        u64 root_id;
 124        struct btrfs_key key_for_search;
 125        int level;
 126        int count;
 127        struct extent_inode_elem *inode_list;
 128        u64 parent;
 129        u64 wanted_disk_byte;
 130};
 131
 132static struct kmem_cache *btrfs_prelim_ref_cache;
 133
 134int __init btrfs_prelim_ref_init(void)
 135{
 136        btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 137                                        sizeof(struct __prelim_ref),
 138                                        0,
 139                                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 140                                        NULL);
 141        if (!btrfs_prelim_ref_cache)
 142                return -ENOMEM;
 143        return 0;
 144}
 145
 146void btrfs_prelim_ref_exit(void)
 147{
 148        if (btrfs_prelim_ref_cache)
 149                kmem_cache_destroy(btrfs_prelim_ref_cache);
 150}
 151
 152/*
 153 * the rules for all callers of this function are:
 154 * - obtaining the parent is the goal
 155 * - if you add a key, you must know that it is a correct key
 156 * - if you cannot add the parent or a correct key, then we will look into the
 157 *   block later to set a correct key
 158 *
 159 * delayed refs
 160 * ============
 161 *        backref type | shared | indirect | shared | indirect
 162 * information         |   tree |     tree |   data |     data
 163 * --------------------+--------+----------+--------+----------
 164 *      parent logical |    y   |     -    |    -   |     -
 165 *      key to resolve |    -   |     y    |    y   |     y
 166 *  tree block logical |    -   |     -    |    -   |     -
 167 *  root for resolving |    y   |     y    |    y   |     y
 168 *
 169 * - column 1:       we've the parent -> done
 170 * - column 2, 3, 4: we use the key to find the parent
 171 *
 172 * on disk refs (inline or keyed)
 173 * ==============================
 174 *        backref type | shared | indirect | shared | indirect
 175 * information         |   tree |     tree |   data |     data
 176 * --------------------+--------+----------+--------+----------
 177 *      parent logical |    y   |     -    |    y   |     -
 178 *      key to resolve |    -   |     -    |    -   |     y
 179 *  tree block logical |    y   |     y    |    y   |     y
 180 *  root for resolving |    -   |     y    |    y   |     y
 181 *
 182 * - column 1, 3: we've the parent -> done
 183 * - column 2:    we take the first key from the block to find the parent
 184 *                (see __add_missing_keys)
 185 * - column 4:    we use the key to find the parent
 186 *
 187 * additional information that's available but not required to find the parent
 188 * block might help in merging entries to gain some speed.
 189 */
 190
 191static int __add_prelim_ref(struct list_head *head, u64 root_id,
 192                            struct btrfs_key *key, int level,
 193                            u64 parent, u64 wanted_disk_byte, int count,
 194                            gfp_t gfp_mask)
 195{
 196        struct __prelim_ref *ref;
 197
 198        if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 199                return 0;
 200
 201        ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 202        if (!ref)
 203                return -ENOMEM;
 204
 205        ref->root_id = root_id;
 206        if (key)
 207                ref->key_for_search = *key;
 208        else
 209                memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 210
 211        ref->inode_list = NULL;
 212        ref->level = level;
 213        ref->count = count;
 214        ref->parent = parent;
 215        ref->wanted_disk_byte = wanted_disk_byte;
 216        list_add_tail(&ref->list, head);
 217
 218        return 0;
 219}
 220
 221static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 222                           struct ulist *parents, struct __prelim_ref *ref,
 223                           int level, u64 time_seq, const u64 *extent_item_pos)
 224{
 225        int ret = 0;
 226        int slot;
 227        struct extent_buffer *eb;
 228        struct btrfs_key key;
 229        struct btrfs_key *key_for_search = &ref->key_for_search;
 230        struct btrfs_file_extent_item *fi;
 231        struct extent_inode_elem *eie = NULL, *old = NULL;
 232        u64 disk_byte;
 233        u64 wanted_disk_byte = ref->wanted_disk_byte;
 234        u64 count = 0;
 235
 236        if (level != 0) {
 237                eb = path->nodes[level];
 238                ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 239                if (ret < 0)
 240                        return ret;
 241                return 0;
 242        }
 243
 244        /*
 245         * We normally enter this function with the path already pointing to
 246         * the first item to check. But sometimes, we may enter it with
 247         * slot==nritems. In that case, go to the next leaf before we continue.
 248         */
 249        if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
 250                ret = btrfs_next_old_leaf(root, path, time_seq);
 251
 252        while (!ret && count < ref->count) {
 253                eb = path->nodes[0];
 254                slot = path->slots[0];
 255
 256                btrfs_item_key_to_cpu(eb, &key, slot);
 257
 258                if (key.objectid != key_for_search->objectid ||
 259                    key.type != BTRFS_EXTENT_DATA_KEY)
 260                        break;
 261
 262                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 263                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 264
 265                if (disk_byte == wanted_disk_byte) {
 266                        eie = NULL;
 267                        old = NULL;
 268                        count++;
 269                        if (extent_item_pos) {
 270                                ret = check_extent_in_eb(&key, eb, fi,
 271                                                *extent_item_pos,
 272                                                &eie);
 273                                if (ret < 0)
 274                                        break;
 275                        }
 276                        if (ret > 0)
 277                                goto next;
 278                        ret = ulist_add_merge(parents, eb->start,
 279                                              (uintptr_t)eie,
 280                                              (u64 *)&old, GFP_NOFS);
 281                        if (ret < 0)
 282                                break;
 283                        if (!ret && extent_item_pos) {
 284                                while (old->next)
 285                                        old = old->next;
 286                                old->next = eie;
 287                        }
 288                        eie = NULL;
 289                }
 290next:
 291                ret = btrfs_next_old_item(root, path, time_seq);
 292        }
 293
 294        if (ret > 0)
 295                ret = 0;
 296        else if (ret < 0)
 297                free_inode_elem_list(eie);
 298        return ret;
 299}
 300
 301/*
 302 * resolve an indirect backref in the form (root_id, key, level)
 303 * to a logical address
 304 */
 305static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 306                                  struct btrfs_path *path, u64 time_seq,
 307                                  struct __prelim_ref *ref,
 308                                  struct ulist *parents,
 309                                  const u64 *extent_item_pos)
 310{
 311        struct btrfs_root *root;
 312        struct btrfs_key root_key;
 313        struct extent_buffer *eb;
 314        int ret = 0;
 315        int root_level;
 316        int level = ref->level;
 317        int index;
 318
 319        root_key.objectid = ref->root_id;
 320        root_key.type = BTRFS_ROOT_ITEM_KEY;
 321        root_key.offset = (u64)-1;
 322
 323        index = srcu_read_lock(&fs_info->subvol_srcu);
 324
 325        root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 326        if (IS_ERR(root)) {
 327                srcu_read_unlock(&fs_info->subvol_srcu, index);
 328                ret = PTR_ERR(root);
 329                goto out;
 330        }
 331
 332        root_level = btrfs_old_root_level(root, time_seq);
 333
 334        if (root_level + 1 == level) {
 335                srcu_read_unlock(&fs_info->subvol_srcu, index);
 336                goto out;
 337        }
 338
 339        path->lowest_level = level;
 340        ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
 341
 342        /* root node has been locked, we can release @subvol_srcu safely here */
 343        srcu_read_unlock(&fs_info->subvol_srcu, index);
 344
 345        pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 346                 "%d for key (%llu %u %llu)\n",
 347                 ref->root_id, level, ref->count, ret,
 348                 ref->key_for_search.objectid, ref->key_for_search.type,
 349                 ref->key_for_search.offset);
 350        if (ret < 0)
 351                goto out;
 352
 353        eb = path->nodes[level];
 354        while (!eb) {
 355                if (WARN_ON(!level)) {
 356                        ret = 1;
 357                        goto out;
 358                }
 359                level--;
 360                eb = path->nodes[level];
 361        }
 362
 363        ret = add_all_parents(root, path, parents, ref, level, time_seq,
 364                              extent_item_pos);
 365out:
 366        path->lowest_level = 0;
 367        btrfs_release_path(path);
 368        return ret;
 369}
 370
 371/*
 372 * resolve all indirect backrefs from the list
 373 */
 374static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 375                                   struct btrfs_path *path, u64 time_seq,
 376                                   struct list_head *head,
 377                                   const u64 *extent_item_pos)
 378{
 379        int err;
 380        int ret = 0;
 381        struct __prelim_ref *ref;
 382        struct __prelim_ref *ref_safe;
 383        struct __prelim_ref *new_ref;
 384        struct ulist *parents;
 385        struct ulist_node *node;
 386        struct ulist_iterator uiter;
 387
 388        parents = ulist_alloc(GFP_NOFS);
 389        if (!parents)
 390                return -ENOMEM;
 391
 392        /*
 393         * _safe allows us to insert directly after the current item without
 394         * iterating over the newly inserted items.
 395         * we're also allowed to re-assign ref during iteration.
 396         */
 397        list_for_each_entry_safe(ref, ref_safe, head, list) {
 398                if (ref->parent)        /* already direct */
 399                        continue;
 400                if (ref->count == 0)
 401                        continue;
 402                err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
 403                                             parents, extent_item_pos);
 404                /*
 405                 * we can only tolerate ENOENT,otherwise,we should catch error
 406                 * and return directly.
 407                 */
 408                if (err == -ENOENT) {
 409                        continue;
 410                } else if (err) {
 411                        ret = err;
 412                        goto out;
 413                }
 414
 415                /* we put the first parent into the ref at hand */
 416                ULIST_ITER_INIT(&uiter);
 417                node = ulist_next(parents, &uiter);
 418                ref->parent = node ? node->val : 0;
 419                ref->inode_list = node ?
 420                        (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
 421
 422                /* additional parents require new refs being added here */
 423                while ((node = ulist_next(parents, &uiter))) {
 424                        new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 425                                                   GFP_NOFS);
 426                        if (!new_ref) {
 427                                ret = -ENOMEM;
 428                                goto out;
 429                        }
 430                        memcpy(new_ref, ref, sizeof(*ref));
 431                        new_ref->parent = node->val;
 432                        new_ref->inode_list = (struct extent_inode_elem *)
 433                                                        (uintptr_t)node->aux;
 434                        list_add(&new_ref->list, &ref->list);
 435                }
 436                ulist_reinit(parents);
 437        }
 438out:
 439        ulist_free(parents);
 440        return ret;
 441}
 442
 443static inline int ref_for_same_block(struct __prelim_ref *ref1,
 444                                     struct __prelim_ref *ref2)
 445{
 446        if (ref1->level != ref2->level)
 447                return 0;
 448        if (ref1->root_id != ref2->root_id)
 449                return 0;
 450        if (ref1->key_for_search.type != ref2->key_for_search.type)
 451                return 0;
 452        if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 453                return 0;
 454        if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 455                return 0;
 456        if (ref1->parent != ref2->parent)
 457                return 0;
 458
 459        return 1;
 460}
 461
 462/*
 463 * read tree blocks and add keys where required.
 464 */
 465static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 466                              struct list_head *head)
 467{
 468        struct list_head *pos;
 469        struct extent_buffer *eb;
 470
 471        list_for_each(pos, head) {
 472                struct __prelim_ref *ref;
 473                ref = list_entry(pos, struct __prelim_ref, list);
 474
 475                if (ref->parent)
 476                        continue;
 477                if (ref->key_for_search.type)
 478                        continue;
 479                BUG_ON(!ref->wanted_disk_byte);
 480                eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 481                                     fs_info->tree_root->leafsize, 0);
 482                if (!eb || !extent_buffer_uptodate(eb)) {
 483                        free_extent_buffer(eb);
 484                        return -EIO;
 485                }
 486                btrfs_tree_read_lock(eb);
 487                if (btrfs_header_level(eb) == 0)
 488                        btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 489                else
 490                        btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 491                btrfs_tree_read_unlock(eb);
 492                free_extent_buffer(eb);
 493        }
 494        return 0;
 495}
 496
 497/*
 498 * merge two lists of backrefs and adjust counts accordingly
 499 *
 500 * mode = 1: merge identical keys, if key is set
 501 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 502 *           additionally, we could even add a key range for the blocks we
 503 *           looked into to merge even more (-> replace unresolved refs by those
 504 *           having a parent).
 505 * mode = 2: merge identical parents
 506 */
 507static void __merge_refs(struct list_head *head, int mode)
 508{
 509        struct list_head *pos1;
 510
 511        list_for_each(pos1, head) {
 512                struct list_head *n2;
 513                struct list_head *pos2;
 514                struct __prelim_ref *ref1;
 515
 516                ref1 = list_entry(pos1, struct __prelim_ref, list);
 517
 518                for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
 519                     pos2 = n2, n2 = pos2->next) {
 520                        struct __prelim_ref *ref2;
 521                        struct __prelim_ref *xchg;
 522                        struct extent_inode_elem *eie;
 523
 524                        ref2 = list_entry(pos2, struct __prelim_ref, list);
 525
 526                        if (mode == 1) {
 527                                if (!ref_for_same_block(ref1, ref2))
 528                                        continue;
 529                                if (!ref1->parent && ref2->parent) {
 530                                        xchg = ref1;
 531                                        ref1 = ref2;
 532                                        ref2 = xchg;
 533                                }
 534                        } else {
 535                                if (ref1->parent != ref2->parent)
 536                                        continue;
 537                        }
 538
 539                        eie = ref1->inode_list;
 540                        while (eie && eie->next)
 541                                eie = eie->next;
 542                        if (eie)
 543                                eie->next = ref2->inode_list;
 544                        else
 545                                ref1->inode_list = ref2->inode_list;
 546                        ref1->count += ref2->count;
 547
 548                        list_del(&ref2->list);
 549                        kmem_cache_free(btrfs_prelim_ref_cache, ref2);
 550                }
 551
 552        }
 553}
 554
 555/*
 556 * add all currently queued delayed refs from this head whose seq nr is
 557 * smaller or equal that seq to the list
 558 */
 559static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 560                              struct list_head *prefs)
 561{
 562        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 563        struct rb_node *n = &head->node.rb_node;
 564        struct btrfs_key key;
 565        struct btrfs_key op_key = {0};
 566        int sgn;
 567        int ret = 0;
 568
 569        if (extent_op && extent_op->update_key)
 570                btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 571
 572        spin_lock(&head->lock);
 573        n = rb_first(&head->ref_root);
 574        while (n) {
 575                struct btrfs_delayed_ref_node *node;
 576                node = rb_entry(n, struct btrfs_delayed_ref_node,
 577                                rb_node);
 578                n = rb_next(n);
 579                if (node->seq > seq)
 580                        continue;
 581
 582                switch (node->action) {
 583                case BTRFS_ADD_DELAYED_EXTENT:
 584                case BTRFS_UPDATE_DELAYED_HEAD:
 585                        WARN_ON(1);
 586                        continue;
 587                case BTRFS_ADD_DELAYED_REF:
 588                        sgn = 1;
 589                        break;
 590                case BTRFS_DROP_DELAYED_REF:
 591                        sgn = -1;
 592                        break;
 593                default:
 594                        BUG_ON(1);
 595                }
 596                switch (node->type) {
 597                case BTRFS_TREE_BLOCK_REF_KEY: {
 598                        struct btrfs_delayed_tree_ref *ref;
 599
 600                        ref = btrfs_delayed_node_to_tree_ref(node);
 601                        ret = __add_prelim_ref(prefs, ref->root, &op_key,
 602                                               ref->level + 1, 0, node->bytenr,
 603                                               node->ref_mod * sgn, GFP_ATOMIC);
 604                        break;
 605                }
 606                case BTRFS_SHARED_BLOCK_REF_KEY: {
 607                        struct btrfs_delayed_tree_ref *ref;
 608
 609                        ref = btrfs_delayed_node_to_tree_ref(node);
 610                        ret = __add_prelim_ref(prefs, ref->root, NULL,
 611                                               ref->level + 1, ref->parent,
 612                                               node->bytenr,
 613                                               node->ref_mod * sgn, GFP_ATOMIC);
 614                        break;
 615                }
 616                case BTRFS_EXTENT_DATA_REF_KEY: {
 617                        struct btrfs_delayed_data_ref *ref;
 618                        ref = btrfs_delayed_node_to_data_ref(node);
 619
 620                        key.objectid = ref->objectid;
 621                        key.type = BTRFS_EXTENT_DATA_KEY;
 622                        key.offset = ref->offset;
 623                        ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 624                                               node->bytenr,
 625                                               node->ref_mod * sgn, GFP_ATOMIC);
 626                        break;
 627                }
 628                case BTRFS_SHARED_DATA_REF_KEY: {
 629                        struct btrfs_delayed_data_ref *ref;
 630
 631                        ref = btrfs_delayed_node_to_data_ref(node);
 632
 633                        key.objectid = ref->objectid;
 634                        key.type = BTRFS_EXTENT_DATA_KEY;
 635                        key.offset = ref->offset;
 636                        ret = __add_prelim_ref(prefs, ref->root, &key, 0,
 637                                               ref->parent, node->bytenr,
 638                                               node->ref_mod * sgn, GFP_ATOMIC);
 639                        break;
 640                }
 641                default:
 642                        WARN_ON(1);
 643                }
 644                if (ret)
 645                        break;
 646        }
 647        spin_unlock(&head->lock);
 648        return ret;
 649}
 650
 651/*
 652 * add all inline backrefs for bytenr to the list
 653 */
 654static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 655                             struct btrfs_path *path, u64 bytenr,
 656                             int *info_level, struct list_head *prefs)
 657{
 658        int ret = 0;
 659        int slot;
 660        struct extent_buffer *leaf;
 661        struct btrfs_key key;
 662        struct btrfs_key found_key;
 663        unsigned long ptr;
 664        unsigned long end;
 665        struct btrfs_extent_item *ei;
 666        u64 flags;
 667        u64 item_size;
 668
 669        /*
 670         * enumerate all inline refs
 671         */
 672        leaf = path->nodes[0];
 673        slot = path->slots[0];
 674
 675        item_size = btrfs_item_size_nr(leaf, slot);
 676        BUG_ON(item_size < sizeof(*ei));
 677
 678        ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 679        flags = btrfs_extent_flags(leaf, ei);
 680        btrfs_item_key_to_cpu(leaf, &found_key, slot);
 681
 682        ptr = (unsigned long)(ei + 1);
 683        end = (unsigned long)ei + item_size;
 684
 685        if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 686            flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 687                struct btrfs_tree_block_info *info;
 688
 689                info = (struct btrfs_tree_block_info *)ptr;
 690                *info_level = btrfs_tree_block_level(leaf, info);
 691                ptr += sizeof(struct btrfs_tree_block_info);
 692                BUG_ON(ptr > end);
 693        } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 694                *info_level = found_key.offset;
 695        } else {
 696                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 697        }
 698
 699        while (ptr < end) {
 700                struct btrfs_extent_inline_ref *iref;
 701                u64 offset;
 702                int type;
 703
 704                iref = (struct btrfs_extent_inline_ref *)ptr;
 705                type = btrfs_extent_inline_ref_type(leaf, iref);
 706                offset = btrfs_extent_inline_ref_offset(leaf, iref);
 707
 708                switch (type) {
 709                case BTRFS_SHARED_BLOCK_REF_KEY:
 710                        ret = __add_prelim_ref(prefs, 0, NULL,
 711                                                *info_level + 1, offset,
 712                                                bytenr, 1, GFP_NOFS);
 713                        break;
 714                case BTRFS_SHARED_DATA_REF_KEY: {
 715                        struct btrfs_shared_data_ref *sdref;
 716                        int count;
 717
 718                        sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 719                        count = btrfs_shared_data_ref_count(leaf, sdref);
 720                        ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 721                                               bytenr, count, GFP_NOFS);
 722                        break;
 723                }
 724                case BTRFS_TREE_BLOCK_REF_KEY:
 725                        ret = __add_prelim_ref(prefs, offset, NULL,
 726                                               *info_level + 1, 0,
 727                                               bytenr, 1, GFP_NOFS);
 728                        break;
 729                case BTRFS_EXTENT_DATA_REF_KEY: {
 730                        struct btrfs_extent_data_ref *dref;
 731                        int count;
 732                        u64 root;
 733
 734                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 735                        count = btrfs_extent_data_ref_count(leaf, dref);
 736                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 737                                                                      dref);
 738                        key.type = BTRFS_EXTENT_DATA_KEY;
 739                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 740                        root = btrfs_extent_data_ref_root(leaf, dref);
 741                        ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 742                                               bytenr, count, GFP_NOFS);
 743                        break;
 744                }
 745                default:
 746                        WARN_ON(1);
 747                }
 748                if (ret)
 749                        return ret;
 750                ptr += btrfs_extent_inline_ref_size(type);
 751        }
 752
 753        return 0;
 754}
 755
 756/*
 757 * add all non-inline backrefs for bytenr to the list
 758 */
 759static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 760                            struct btrfs_path *path, u64 bytenr,
 761                            int info_level, struct list_head *prefs)
 762{
 763        struct btrfs_root *extent_root = fs_info->extent_root;
 764        int ret;
 765        int slot;
 766        struct extent_buffer *leaf;
 767        struct btrfs_key key;
 768
 769        while (1) {
 770                ret = btrfs_next_item(extent_root, path);
 771                if (ret < 0)
 772                        break;
 773                if (ret) {
 774                        ret = 0;
 775                        break;
 776                }
 777
 778                slot = path->slots[0];
 779                leaf = path->nodes[0];
 780                btrfs_item_key_to_cpu(leaf, &key, slot);
 781
 782                if (key.objectid != bytenr)
 783                        break;
 784                if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 785                        continue;
 786                if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 787                        break;
 788
 789                switch (key.type) {
 790                case BTRFS_SHARED_BLOCK_REF_KEY:
 791                        ret = __add_prelim_ref(prefs, 0, NULL,
 792                                                info_level + 1, key.offset,
 793                                                bytenr, 1, GFP_NOFS);
 794                        break;
 795                case BTRFS_SHARED_DATA_REF_KEY: {
 796                        struct btrfs_shared_data_ref *sdref;
 797                        int count;
 798
 799                        sdref = btrfs_item_ptr(leaf, slot,
 800                                              struct btrfs_shared_data_ref);
 801                        count = btrfs_shared_data_ref_count(leaf, sdref);
 802                        ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 803                                                bytenr, count, GFP_NOFS);
 804                        break;
 805                }
 806                case BTRFS_TREE_BLOCK_REF_KEY:
 807                        ret = __add_prelim_ref(prefs, key.offset, NULL,
 808                                               info_level + 1, 0,
 809                                               bytenr, 1, GFP_NOFS);
 810                        break;
 811                case BTRFS_EXTENT_DATA_REF_KEY: {
 812                        struct btrfs_extent_data_ref *dref;
 813                        int count;
 814                        u64 root;
 815
 816                        dref = btrfs_item_ptr(leaf, slot,
 817                                              struct btrfs_extent_data_ref);
 818                        count = btrfs_extent_data_ref_count(leaf, dref);
 819                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 820                                                                      dref);
 821                        key.type = BTRFS_EXTENT_DATA_KEY;
 822                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 823                        root = btrfs_extent_data_ref_root(leaf, dref);
 824                        ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 825                                               bytenr, count, GFP_NOFS);
 826                        break;
 827                }
 828                default:
 829                        WARN_ON(1);
 830                }
 831                if (ret)
 832                        return ret;
 833
 834        }
 835
 836        return ret;
 837}
 838
 839/*
 840 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 841 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 842 * indirect refs to their parent bytenr.
 843 * When roots are found, they're added to the roots list
 844 *
 845 * FIXME some caching might speed things up
 846 */
 847static int find_parent_nodes(struct btrfs_trans_handle *trans,
 848                             struct btrfs_fs_info *fs_info, u64 bytenr,
 849                             u64 time_seq, struct ulist *refs,
 850                             struct ulist *roots, const u64 *extent_item_pos)
 851{
 852        struct btrfs_key key;
 853        struct btrfs_path *path;
 854        struct btrfs_delayed_ref_root *delayed_refs = NULL;
 855        struct btrfs_delayed_ref_head *head;
 856        int info_level = 0;
 857        int ret;
 858        struct list_head prefs_delayed;
 859        struct list_head prefs;
 860        struct __prelim_ref *ref;
 861        struct extent_inode_elem *eie = NULL;
 862
 863        INIT_LIST_HEAD(&prefs);
 864        INIT_LIST_HEAD(&prefs_delayed);
 865
 866        key.objectid = bytenr;
 867        key.offset = (u64)-1;
 868        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 869                key.type = BTRFS_METADATA_ITEM_KEY;
 870        else
 871                key.type = BTRFS_EXTENT_ITEM_KEY;
 872
 873        path = btrfs_alloc_path();
 874        if (!path)
 875                return -ENOMEM;
 876        if (!trans)
 877                path->search_commit_root = 1;
 878
 879        /*
 880         * grab both a lock on the path and a lock on the delayed ref head.
 881         * We need both to get a consistent picture of how the refs look
 882         * at a specified point in time
 883         */
 884again:
 885        head = NULL;
 886
 887        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 888        if (ret < 0)
 889                goto out;
 890        BUG_ON(ret == 0);
 891
 892        if (trans) {
 893                /*
 894                 * look if there are updates for this ref queued and lock the
 895                 * head
 896                 */
 897                delayed_refs = &trans->transaction->delayed_refs;
 898                spin_lock(&delayed_refs->lock);
 899                head = btrfs_find_delayed_ref_head(trans, bytenr);
 900                if (head) {
 901                        if (!mutex_trylock(&head->mutex)) {
 902                                atomic_inc(&head->node.refs);
 903                                spin_unlock(&delayed_refs->lock);
 904
 905                                btrfs_release_path(path);
 906
 907                                /*
 908                                 * Mutex was contended, block until it's
 909                                 * released and try again
 910                                 */
 911                                mutex_lock(&head->mutex);
 912                                mutex_unlock(&head->mutex);
 913                                btrfs_put_delayed_ref(&head->node);
 914                                goto again;
 915                        }
 916                        spin_unlock(&delayed_refs->lock);
 917                        ret = __add_delayed_refs(head, time_seq,
 918                                                 &prefs_delayed);
 919                        mutex_unlock(&head->mutex);
 920                        if (ret)
 921                                goto out;
 922                } else {
 923                        spin_unlock(&delayed_refs->lock);
 924                }
 925        }
 926
 927        if (path->slots[0]) {
 928                struct extent_buffer *leaf;
 929                int slot;
 930
 931                path->slots[0]--;
 932                leaf = path->nodes[0];
 933                slot = path->slots[0];
 934                btrfs_item_key_to_cpu(leaf, &key, slot);
 935                if (key.objectid == bytenr &&
 936                    (key.type == BTRFS_EXTENT_ITEM_KEY ||
 937                     key.type == BTRFS_METADATA_ITEM_KEY)) {
 938                        ret = __add_inline_refs(fs_info, path, bytenr,
 939                                                &info_level, &prefs);
 940                        if (ret)
 941                                goto out;
 942                        ret = __add_keyed_refs(fs_info, path, bytenr,
 943                                               info_level, &prefs);
 944                        if (ret)
 945                                goto out;
 946                }
 947        }
 948        btrfs_release_path(path);
 949
 950        list_splice_init(&prefs_delayed, &prefs);
 951
 952        ret = __add_missing_keys(fs_info, &prefs);
 953        if (ret)
 954                goto out;
 955
 956        __merge_refs(&prefs, 1);
 957
 958        ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
 959                                      extent_item_pos);
 960        if (ret)
 961                goto out;
 962
 963        __merge_refs(&prefs, 2);
 964
 965        while (!list_empty(&prefs)) {
 966                ref = list_first_entry(&prefs, struct __prelim_ref, list);
 967                WARN_ON(ref->count < 0);
 968                if (ref->count && ref->root_id && ref->parent == 0) {
 969                        /* no parent == root of tree */
 970                        ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
 971                        if (ret < 0)
 972                                goto out;
 973                }
 974                if (ref->count && ref->parent) {
 975                        if (extent_item_pos && !ref->inode_list) {
 976                                u32 bsz;
 977                                struct extent_buffer *eb;
 978                                bsz = btrfs_level_size(fs_info->extent_root,
 979                                                        info_level);
 980                                eb = read_tree_block(fs_info->extent_root,
 981                                                           ref->parent, bsz, 0);
 982                                if (!eb || !extent_buffer_uptodate(eb)) {
 983                                        free_extent_buffer(eb);
 984                                        ret = -EIO;
 985                                        goto out;
 986                                }
 987                                ret = find_extent_in_eb(eb, bytenr,
 988                                                        *extent_item_pos, &eie);
 989                                free_extent_buffer(eb);
 990                                if (ret < 0)
 991                                        goto out;
 992                                ref->inode_list = eie;
 993                        }
 994                        ret = ulist_add_merge(refs, ref->parent,
 995                                              (uintptr_t)ref->inode_list,
 996                                              (u64 *)&eie, GFP_NOFS);
 997                        if (ret < 0)
 998                                goto out;
 999                        if (!ret && extent_item_pos) {
1000                                /*
1001                                 * we've recorded that parent, so we must extend
1002                                 * its inode list here
1003                                 */
1004                                BUG_ON(!eie);
1005                                while (eie->next)
1006                                        eie = eie->next;
1007                                eie->next = ref->inode_list;
1008                        }
1009                        eie = NULL;
1010                }
1011                list_del(&ref->list);
1012                kmem_cache_free(btrfs_prelim_ref_cache, ref);
1013        }
1014
1015out:
1016        btrfs_free_path(path);
1017        while (!list_empty(&prefs)) {
1018                ref = list_first_entry(&prefs, struct __prelim_ref, list);
1019                list_del(&ref->list);
1020                kmem_cache_free(btrfs_prelim_ref_cache, ref);
1021        }
1022        while (!list_empty(&prefs_delayed)) {
1023                ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1024                                       list);
1025                list_del(&ref->list);
1026                kmem_cache_free(btrfs_prelim_ref_cache, ref);
1027        }
1028        if (ret < 0)
1029                free_inode_elem_list(eie);
1030        return ret;
1031}
1032
1033static void free_leaf_list(struct ulist *blocks)
1034{
1035        struct ulist_node *node = NULL;
1036        struct extent_inode_elem *eie;
1037        struct ulist_iterator uiter;
1038
1039        ULIST_ITER_INIT(&uiter);
1040        while ((node = ulist_next(blocks, &uiter))) {
1041                if (!node->aux)
1042                        continue;
1043                eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1044                free_inode_elem_list(eie);
1045                node->aux = 0;
1046        }
1047
1048        ulist_free(blocks);
1049}
1050
1051/*
1052 * Finds all leafs with a reference to the specified combination of bytenr and
1053 * offset. key_list_head will point to a list of corresponding keys (caller must
1054 * free each list element). The leafs will be stored in the leafs ulist, which
1055 * must be freed with ulist_free.
1056 *
1057 * returns 0 on success, <0 on error
1058 */
1059static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1060                                struct btrfs_fs_info *fs_info, u64 bytenr,
1061                                u64 time_seq, struct ulist **leafs,
1062                                const u64 *extent_item_pos)
1063{
1064        struct ulist *tmp;
1065        int ret;
1066
1067        tmp = ulist_alloc(GFP_NOFS);
1068        if (!tmp)
1069                return -ENOMEM;
1070        *leafs = ulist_alloc(GFP_NOFS);
1071        if (!*leafs) {
1072                ulist_free(tmp);
1073                return -ENOMEM;
1074        }
1075
1076        ret = find_parent_nodes(trans, fs_info, bytenr,
1077                                time_seq, *leafs, tmp, extent_item_pos);
1078        ulist_free(tmp);
1079
1080        if (ret < 0 && ret != -ENOENT) {
1081                free_leaf_list(*leafs);
1082                return ret;
1083        }
1084
1085        return 0;
1086}
1087
1088/*
1089 * walk all backrefs for a given extent to find all roots that reference this
1090 * extent. Walking a backref means finding all extents that reference this
1091 * extent and in turn walk the backrefs of those, too. Naturally this is a
1092 * recursive process, but here it is implemented in an iterative fashion: We
1093 * find all referencing extents for the extent in question and put them on a
1094 * list. In turn, we find all referencing extents for those, further appending
1095 * to the list. The way we iterate the list allows adding more elements after
1096 * the current while iterating. The process stops when we reach the end of the
1097 * list. Found roots are added to the roots list.
1098 *
1099 * returns 0 on success, < 0 on error.
1100 */
1101int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1102                                struct btrfs_fs_info *fs_info, u64 bytenr,
1103                                u64 time_seq, struct ulist **roots)
1104{
1105        struct ulist *tmp;
1106        struct ulist_node *node = NULL;
1107        struct ulist_iterator uiter;
1108        int ret;
1109
1110        tmp = ulist_alloc(GFP_NOFS);
1111        if (!tmp)
1112                return -ENOMEM;
1113        *roots = ulist_alloc(GFP_NOFS);
1114        if (!*roots) {
1115                ulist_free(tmp);
1116                return -ENOMEM;
1117        }
1118
1119        ULIST_ITER_INIT(&uiter);
1120        while (1) {
1121                ret = find_parent_nodes(trans, fs_info, bytenr,
1122                                        time_seq, tmp, *roots, NULL);
1123                if (ret < 0 && ret != -ENOENT) {
1124                        ulist_free(tmp);
1125                        ulist_free(*roots);
1126                        return ret;
1127                }
1128                node = ulist_next(tmp, &uiter);
1129                if (!node)
1130                        break;
1131                bytenr = node->val;
1132                cond_resched();
1133        }
1134
1135        ulist_free(tmp);
1136        return 0;
1137}
1138
1139/*
1140 * this makes the path point to (inum INODE_ITEM ioff)
1141 */
1142int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1143                        struct btrfs_path *path)
1144{
1145        struct btrfs_key key;
1146        return btrfs_find_item(fs_root, path, inum, ioff,
1147                        BTRFS_INODE_ITEM_KEY, &key);
1148}
1149
1150static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1151                                struct btrfs_path *path,
1152                                struct btrfs_key *found_key)
1153{
1154        return btrfs_find_item(fs_root, path, inum, ioff,
1155                        BTRFS_INODE_REF_KEY, found_key);
1156}
1157
1158int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1159                          u64 start_off, struct btrfs_path *path,
1160                          struct btrfs_inode_extref **ret_extref,
1161                          u64 *found_off)
1162{
1163        int ret, slot;
1164        struct btrfs_key key;
1165        struct btrfs_key found_key;
1166        struct btrfs_inode_extref *extref;
1167        struct extent_buffer *leaf;
1168        unsigned long ptr;
1169
1170        key.objectid = inode_objectid;
1171        btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1172        key.offset = start_off;
1173
1174        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1175        if (ret < 0)
1176                return ret;
1177
1178        while (1) {
1179                leaf = path->nodes[0];
1180                slot = path->slots[0];
1181                if (slot >= btrfs_header_nritems(leaf)) {
1182                        /*
1183                         * If the item at offset is not found,
1184                         * btrfs_search_slot will point us to the slot
1185                         * where it should be inserted. In our case
1186                         * that will be the slot directly before the
1187                         * next INODE_REF_KEY_V2 item. In the case
1188                         * that we're pointing to the last slot in a
1189                         * leaf, we must move one leaf over.
1190                         */
1191                        ret = btrfs_next_leaf(root, path);
1192                        if (ret) {
1193                                if (ret >= 1)
1194                                        ret = -ENOENT;
1195                                break;
1196                        }
1197                        continue;
1198                }
1199
1200                btrfs_item_key_to_cpu(leaf, &found_key, slot);
1201
1202                /*
1203                 * Check that we're still looking at an extended ref key for
1204                 * this particular objectid. If we have different
1205                 * objectid or type then there are no more to be found
1206                 * in the tree and we can exit.
1207                 */
1208                ret = -ENOENT;
1209                if (found_key.objectid != inode_objectid)
1210                        break;
1211                if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1212                        break;
1213
1214                ret = 0;
1215                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1216                extref = (struct btrfs_inode_extref *)ptr;
1217                *ret_extref = extref;
1218                if (found_off)
1219                        *found_off = found_key.offset;
1220                break;
1221        }
1222
1223        return ret;
1224}
1225
1226/*
1227 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1228 * Elements of the path are separated by '/' and the path is guaranteed to be
1229 * 0-terminated. the path is only given within the current file system.
1230 * Therefore, it never starts with a '/'. the caller is responsible to provide
1231 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1232 * the start point of the resulting string is returned. this pointer is within
1233 * dest, normally.
1234 * in case the path buffer would overflow, the pointer is decremented further
1235 * as if output was written to the buffer, though no more output is actually
1236 * generated. that way, the caller can determine how much space would be
1237 * required for the path to fit into the buffer. in that case, the returned
1238 * value will be smaller than dest. callers must check this!
1239 */
1240char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1241                        u32 name_len, unsigned long name_off,
1242                        struct extent_buffer *eb_in, u64 parent,
1243                        char *dest, u32 size)
1244{
1245        int slot;
1246        u64 next_inum;
1247        int ret;
1248        s64 bytes_left = ((s64)size) - 1;
1249        struct extent_buffer *eb = eb_in;
1250        struct btrfs_key found_key;
1251        int leave_spinning = path->leave_spinning;
1252        struct btrfs_inode_ref *iref;
1253
1254        if (bytes_left >= 0)
1255                dest[bytes_left] = '\0';
1256
1257        path->leave_spinning = 1;
1258        while (1) {
1259                bytes_left -= name_len;
1260                if (bytes_left >= 0)
1261                        read_extent_buffer(eb, dest + bytes_left,
1262                                           name_off, name_len);
1263                if (eb != eb_in) {
1264                        btrfs_tree_read_unlock_blocking(eb);
1265                        free_extent_buffer(eb);
1266                }
1267                ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1268                if (ret > 0)
1269                        ret = -ENOENT;
1270                if (ret)
1271                        break;
1272
1273                next_inum = found_key.offset;
1274
1275                /* regular exit ahead */
1276                if (parent == next_inum)
1277                        break;
1278
1279                slot = path->slots[0];
1280                eb = path->nodes[0];
1281                /* make sure we can use eb after releasing the path */
1282                if (eb != eb_in) {
1283                        atomic_inc(&eb->refs);
1284                        btrfs_tree_read_lock(eb);
1285                        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1286                }
1287                btrfs_release_path(path);
1288                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1289
1290                name_len = btrfs_inode_ref_name_len(eb, iref);
1291                name_off = (unsigned long)(iref + 1);
1292
1293                parent = next_inum;
1294                --bytes_left;
1295                if (bytes_left >= 0)
1296                        dest[bytes_left] = '/';
1297        }
1298
1299        btrfs_release_path(path);
1300        path->leave_spinning = leave_spinning;
1301
1302        if (ret)
1303                return ERR_PTR(ret);
1304
1305        return dest + bytes_left;
1306}
1307
1308/*
1309 * this makes the path point to (logical EXTENT_ITEM *)
1310 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1311 * tree blocks and <0 on error.
1312 */
1313int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1314                        struct btrfs_path *path, struct btrfs_key *found_key,
1315                        u64 *flags_ret)
1316{
1317        int ret;
1318        u64 flags;
1319        u64 size = 0;
1320        u32 item_size;
1321        struct extent_buffer *eb;
1322        struct btrfs_extent_item *ei;
1323        struct btrfs_key key;
1324
1325        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1326                key.type = BTRFS_METADATA_ITEM_KEY;
1327        else
1328                key.type = BTRFS_EXTENT_ITEM_KEY;
1329        key.objectid = logical;
1330        key.offset = (u64)-1;
1331
1332        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1333        if (ret < 0)
1334                return ret;
1335
1336        while (1) {
1337                u32 nritems;
1338                if (path->slots[0] == 0) {
1339                        btrfs_set_path_blocking(path);
1340                        ret = btrfs_prev_leaf(fs_info->extent_root, path);
1341                        if (ret != 0) {
1342                                if (ret > 0) {
1343                                        pr_debug("logical %llu is not within "
1344                                                 "any extent\n", logical);
1345                                        ret = -ENOENT;
1346                                }
1347                                return ret;
1348                        }
1349                } else {
1350                        path->slots[0]--;
1351                }
1352                nritems = btrfs_header_nritems(path->nodes[0]);
1353                if (nritems == 0) {
1354                        pr_debug("logical %llu is not within any extent\n",
1355                                 logical);
1356                        return -ENOENT;
1357                }
1358                if (path->slots[0] == nritems)
1359                        path->slots[0]--;
1360
1361                btrfs_item_key_to_cpu(path->nodes[0], found_key,
1362                                      path->slots[0]);
1363                if (found_key->type == BTRFS_EXTENT_ITEM_KEY ||
1364                    found_key->type == BTRFS_METADATA_ITEM_KEY)
1365                        break;
1366        }
1367
1368        if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1369                size = fs_info->extent_root->leafsize;
1370        else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1371                size = found_key->offset;
1372
1373        if (found_key->objectid > logical ||
1374            found_key->objectid + size <= logical) {
1375                pr_debug("logical %llu is not within any extent\n", logical);
1376                return -ENOENT;
1377        }
1378
1379        eb = path->nodes[0];
1380        item_size = btrfs_item_size_nr(eb, path->slots[0]);
1381        BUG_ON(item_size < sizeof(*ei));
1382
1383        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1384        flags = btrfs_extent_flags(eb, ei);
1385
1386        pr_debug("logical %llu is at position %llu within the extent (%llu "
1387                 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1388                 logical, logical - found_key->objectid, found_key->objectid,
1389                 found_key->offset, flags, item_size);
1390
1391        WARN_ON(!flags_ret);
1392        if (flags_ret) {
1393                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1394                        *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1395                else if (flags & BTRFS_EXTENT_FLAG_DATA)
1396                        *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1397                else
1398                        BUG_ON(1);
1399                return 0;
1400        }
1401
1402        return -EIO;
1403}
1404
1405/*
1406 * helper function to iterate extent inline refs. ptr must point to a 0 value
1407 * for the first call and may be modified. it is used to track state.
1408 * if more refs exist, 0 is returned and the next call to
1409 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1410 * next ref. after the last ref was processed, 1 is returned.
1411 * returns <0 on error
1412 */
1413static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1414                                struct btrfs_extent_item *ei, u32 item_size,
1415                                struct btrfs_extent_inline_ref **out_eiref,
1416                                int *out_type)
1417{
1418        unsigned long end;
1419        u64 flags;
1420        struct btrfs_tree_block_info *info;
1421
1422        if (!*ptr) {
1423                /* first call */
1424                flags = btrfs_extent_flags(eb, ei);
1425                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1426                        info = (struct btrfs_tree_block_info *)(ei + 1);
1427                        *out_eiref =
1428                                (struct btrfs_extent_inline_ref *)(info + 1);
1429                } else {
1430                        *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1431                }
1432                *ptr = (unsigned long)*out_eiref;
1433                if ((void *)*ptr >= (void *)ei + item_size)
1434                        return -ENOENT;
1435        }
1436
1437        end = (unsigned long)ei + item_size;
1438        *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1439        *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1440
1441        *ptr += btrfs_extent_inline_ref_size(*out_type);
1442        WARN_ON(*ptr > end);
1443        if (*ptr == end)
1444                return 1; /* last */
1445
1446        return 0;
1447}
1448
1449/*
1450 * reads the tree block backref for an extent. tree level and root are returned
1451 * through out_level and out_root. ptr must point to a 0 value for the first
1452 * call and may be modified (see __get_extent_inline_ref comment).
1453 * returns 0 if data was provided, 1 if there was no more data to provide or
1454 * <0 on error.
1455 */
1456int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1457                                struct btrfs_extent_item *ei, u32 item_size,
1458                                u64 *out_root, u8 *out_level)
1459{
1460        int ret;
1461        int type;
1462        struct btrfs_tree_block_info *info;
1463        struct btrfs_extent_inline_ref *eiref;
1464
1465        if (*ptr == (unsigned long)-1)
1466                return 1;
1467
1468        while (1) {
1469                ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1470                                                &eiref, &type);
1471                if (ret < 0)
1472                        return ret;
1473
1474                if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1475                    type == BTRFS_SHARED_BLOCK_REF_KEY)
1476                        break;
1477
1478                if (ret == 1)
1479                        return 1;
1480        }
1481
1482        /* we can treat both ref types equally here */
1483        info = (struct btrfs_tree_block_info *)(ei + 1);
1484        *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1485        *out_level = btrfs_tree_block_level(eb, info);
1486
1487        if (ret == 1)
1488                *ptr = (unsigned long)-1;
1489
1490        return 0;
1491}
1492
1493static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1494                                u64 root, u64 extent_item_objectid,
1495                                iterate_extent_inodes_t *iterate, void *ctx)
1496{
1497        struct extent_inode_elem *eie;
1498        int ret = 0;
1499
1500        for (eie = inode_list; eie; eie = eie->next) {
1501                pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1502                         "root %llu\n", extent_item_objectid,
1503                         eie->inum, eie->offset, root);
1504                ret = iterate(eie->inum, eie->offset, root, ctx);
1505                if (ret) {
1506                        pr_debug("stopping iteration for %llu due to ret=%d\n",
1507                                 extent_item_objectid, ret);
1508                        break;
1509                }
1510        }
1511
1512        return ret;
1513}
1514
1515/*
1516 * calls iterate() for every inode that references the extent identified by
1517 * the given parameters.
1518 * when the iterator function returns a non-zero value, iteration stops.
1519 */
1520int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1521                                u64 extent_item_objectid, u64 extent_item_pos,
1522                                int search_commit_root,
1523                                iterate_extent_inodes_t *iterate, void *ctx)
1524{
1525        int ret;
1526        struct btrfs_trans_handle *trans = NULL;
1527        struct ulist *refs = NULL;
1528        struct ulist *roots = NULL;
1529        struct ulist_node *ref_node = NULL;
1530        struct ulist_node *root_node = NULL;
1531        struct seq_list tree_mod_seq_elem = {};
1532        struct ulist_iterator ref_uiter;
1533        struct ulist_iterator root_uiter;
1534
1535        pr_debug("resolving all inodes for extent %llu\n",
1536                        extent_item_objectid);
1537
1538        if (!search_commit_root) {
1539                trans = btrfs_join_transaction(fs_info->extent_root);
1540                if (IS_ERR(trans))
1541                        return PTR_ERR(trans);
1542                btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1543        }
1544
1545        ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1546                                   tree_mod_seq_elem.seq, &refs,
1547                                   &extent_item_pos);
1548        if (ret)
1549                goto out;
1550
1551        ULIST_ITER_INIT(&ref_uiter);
1552        while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1553                ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1554                                           tree_mod_seq_elem.seq, &roots);
1555                if (ret)
1556                        break;
1557                ULIST_ITER_INIT(&root_uiter);
1558                while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1559                        pr_debug("root %llu references leaf %llu, data list "
1560                                 "%#llx\n", root_node->val, ref_node->val,
1561                                 ref_node->aux);
1562                        ret = iterate_leaf_refs((struct extent_inode_elem *)
1563                                                (uintptr_t)ref_node->aux,
1564                                                root_node->val,
1565                                                extent_item_objectid,
1566                                                iterate, ctx);
1567                }
1568                ulist_free(roots);
1569        }
1570
1571        free_leaf_list(refs);
1572out:
1573        if (!search_commit_root) {
1574                btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1575                btrfs_end_transaction(trans, fs_info->extent_root);
1576        }
1577
1578        return ret;
1579}
1580
1581int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1582                                struct btrfs_path *path,
1583                                iterate_extent_inodes_t *iterate, void *ctx)
1584{
1585        int ret;
1586        u64 extent_item_pos;
1587        u64 flags = 0;
1588        struct btrfs_key found_key;
1589        int search_commit_root = path->search_commit_root;
1590
1591        ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1592        btrfs_release_path(path);
1593        if (ret < 0)
1594                return ret;
1595        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596                return -EINVAL;
1597
1598        extent_item_pos = logical - found_key.objectid;
1599        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1600                                        extent_item_pos, search_commit_root,
1601                                        iterate, ctx);
1602
1603        return ret;
1604}
1605
1606typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1607                              struct extent_buffer *eb, void *ctx);
1608
1609static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1610                              struct btrfs_path *path,
1611                              iterate_irefs_t *iterate, void *ctx)
1612{
1613        int ret = 0;
1614        int slot;
1615        u32 cur;
1616        u32 len;
1617        u32 name_len;
1618        u64 parent = 0;
1619        int found = 0;
1620        struct extent_buffer *eb;
1621        struct btrfs_item *item;
1622        struct btrfs_inode_ref *iref;
1623        struct btrfs_key found_key;
1624
1625        while (!ret) {
1626                ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1627                                     &found_key);
1628                if (ret < 0)
1629                        break;
1630                if (ret) {
1631                        ret = found ? 0 : -ENOENT;
1632                        break;
1633                }
1634                ++found;
1635
1636                parent = found_key.offset;
1637                slot = path->slots[0];
1638                eb = btrfs_clone_extent_buffer(path->nodes[0]);
1639                if (!eb) {
1640                        ret = -ENOMEM;
1641                        break;
1642                }
1643                extent_buffer_get(eb);
1644                btrfs_tree_read_lock(eb);
1645                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1646                btrfs_release_path(path);
1647
1648                item = btrfs_item_nr(slot);
1649                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1650
1651                for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1652                        name_len = btrfs_inode_ref_name_len(eb, iref);
1653                        /* path must be released before calling iterate()! */
1654                        pr_debug("following ref at offset %u for inode %llu in "
1655                                 "tree %llu\n", cur, found_key.objectid,
1656                                 fs_root->objectid);
1657                        ret = iterate(parent, name_len,
1658                                      (unsigned long)(iref + 1), eb, ctx);
1659                        if (ret)
1660                                break;
1661                        len = sizeof(*iref) + name_len;
1662                        iref = (struct btrfs_inode_ref *)((char *)iref + len);
1663                }
1664                btrfs_tree_read_unlock_blocking(eb);
1665                free_extent_buffer(eb);
1666        }
1667
1668        btrfs_release_path(path);
1669
1670        return ret;
1671}
1672
1673static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1674                                 struct btrfs_path *path,
1675                                 iterate_irefs_t *iterate, void *ctx)
1676{
1677        int ret;
1678        int slot;
1679        u64 offset = 0;
1680        u64 parent;
1681        int found = 0;
1682        struct extent_buffer *eb;
1683        struct btrfs_inode_extref *extref;
1684        struct extent_buffer *leaf;
1685        u32 item_size;
1686        u32 cur_offset;
1687        unsigned long ptr;
1688
1689        while (1) {
1690                ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1691                                            &offset);
1692                if (ret < 0)
1693                        break;
1694                if (ret) {
1695                        ret = found ? 0 : -ENOENT;
1696                        break;
1697                }
1698                ++found;
1699
1700                slot = path->slots[0];
1701                eb = btrfs_clone_extent_buffer(path->nodes[0]);
1702                if (!eb) {
1703                        ret = -ENOMEM;
1704                        break;
1705                }
1706                extent_buffer_get(eb);
1707
1708                btrfs_tree_read_lock(eb);
1709                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1710                btrfs_release_path(path);
1711
1712                leaf = path->nodes[0];
1713                item_size = btrfs_item_size_nr(leaf, slot);
1714                ptr = btrfs_item_ptr_offset(leaf, slot);
1715                cur_offset = 0;
1716
1717                while (cur_offset < item_size) {
1718                        u32 name_len;
1719
1720                        extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1721                        parent = btrfs_inode_extref_parent(eb, extref);
1722                        name_len = btrfs_inode_extref_name_len(eb, extref);
1723                        ret = iterate(parent, name_len,
1724                                      (unsigned long)&extref->name, eb, ctx);
1725                        if (ret)
1726                                break;
1727
1728                        cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1729                        cur_offset += sizeof(*extref);
1730                }
1731                btrfs_tree_read_unlock_blocking(eb);
1732                free_extent_buffer(eb);
1733
1734                offset++;
1735        }
1736
1737        btrfs_release_path(path);
1738
1739        return ret;
1740}
1741
1742static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1743                         struct btrfs_path *path, iterate_irefs_t *iterate,
1744                         void *ctx)
1745{
1746        int ret;
1747        int found_refs = 0;
1748
1749        ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1750        if (!ret)
1751                ++found_refs;
1752        else if (ret != -ENOENT)
1753                return ret;
1754
1755        ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1756        if (ret == -ENOENT && found_refs)
1757                return 0;
1758
1759        return ret;
1760}
1761
1762/*
1763 * returns 0 if the path could be dumped (probably truncated)
1764 * returns <0 in case of an error
1765 */
1766static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1767                         struct extent_buffer *eb, void *ctx)
1768{
1769        struct inode_fs_paths *ipath = ctx;
1770        char *fspath;
1771        char *fspath_min;
1772        int i = ipath->fspath->elem_cnt;
1773        const int s_ptr = sizeof(char *);
1774        u32 bytes_left;
1775
1776        bytes_left = ipath->fspath->bytes_left > s_ptr ?
1777                                        ipath->fspath->bytes_left - s_ptr : 0;
1778
1779        fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1780        fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1781                                   name_off, eb, inum, fspath_min, bytes_left);
1782        if (IS_ERR(fspath))
1783                return PTR_ERR(fspath);
1784
1785        if (fspath > fspath_min) {
1786                ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1787                ++ipath->fspath->elem_cnt;
1788                ipath->fspath->bytes_left = fspath - fspath_min;
1789        } else {
1790                ++ipath->fspath->elem_missed;
1791                ipath->fspath->bytes_missing += fspath_min - fspath;
1792                ipath->fspath->bytes_left = 0;
1793        }
1794
1795        return 0;
1796}
1797
1798/*
1799 * this dumps all file system paths to the inode into the ipath struct, provided
1800 * is has been created large enough. each path is zero-terminated and accessed
1801 * from ipath->fspath->val[i].
1802 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1803 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1804 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1805 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1806 * have been needed to return all paths.
1807 */
1808int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1809{
1810        return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1811                             inode_to_path, ipath);
1812}
1813
1814struct btrfs_data_container *init_data_container(u32 total_bytes)
1815{
1816        struct btrfs_data_container *data;
1817        size_t alloc_bytes;
1818
1819        alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1820        data = vmalloc(alloc_bytes);
1821        if (!data)
1822                return ERR_PTR(-ENOMEM);
1823
1824        if (total_bytes >= sizeof(*data)) {
1825                data->bytes_left = total_bytes - sizeof(*data);
1826                data->bytes_missing = 0;
1827        } else {
1828                data->bytes_missing = sizeof(*data) - total_bytes;
1829                data->bytes_left = 0;
1830        }
1831
1832        data->elem_cnt = 0;
1833        data->elem_missed = 0;
1834
1835        return data;
1836}
1837
1838/*
1839 * allocates space to return multiple file system paths for an inode.
1840 * total_bytes to allocate are passed, note that space usable for actual path
1841 * information will be total_bytes - sizeof(struct inode_fs_paths).
1842 * the returned pointer must be freed with free_ipath() in the end.
1843 */
1844struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1845                                        struct btrfs_path *path)
1846{
1847        struct inode_fs_paths *ifp;
1848        struct btrfs_data_container *fspath;
1849
1850        fspath = init_data_container(total_bytes);
1851        if (IS_ERR(fspath))
1852                return (void *)fspath;
1853
1854        ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1855        if (!ifp) {
1856                kfree(fspath);
1857                return ERR_PTR(-ENOMEM);
1858        }
1859
1860        ifp->btrfs_path = path;
1861        ifp->fspath = fspath;
1862        ifp->fs_root = fs_root;
1863
1864        return ifp;
1865}
1866
1867void free_ipath(struct inode_fs_paths *ipath)
1868{
1869        if (!ipath)
1870                return;
1871        vfree(ipath->fspath);
1872        kfree(ipath);
1873}
1874