linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "print-tree.h"
  26#include "locking.h"
  27
  28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  29                      *root, struct btrfs_path *path, int level);
  30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  31                      *root, struct btrfs_key *ins_key,
  32                      struct btrfs_path *path, int data_size, int extend);
  33static int push_node_left(struct btrfs_trans_handle *trans,
  34                          struct btrfs_root *root, struct extent_buffer *dst,
  35                          struct extent_buffer *src, int empty);
  36static int balance_node_right(struct btrfs_trans_handle *trans,
  37                              struct btrfs_root *root,
  38                              struct extent_buffer *dst_buf,
  39                              struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41                    int level, int slot);
  42static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  43                                 struct extent_buffer *eb);
  44
  45struct btrfs_path *btrfs_alloc_path(void)
  46{
  47        struct btrfs_path *path;
  48        path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  49        return path;
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  57{
  58        int i;
  59        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60                if (!p->nodes[i] || !p->locks[i])
  61                        continue;
  62                btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63                if (p->locks[i] == BTRFS_READ_LOCK)
  64                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65                else if (p->locks[i] == BTRFS_WRITE_LOCK)
  66                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67        }
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79                                        struct extent_buffer *held, int held_rw)
  80{
  81        int i;
  82
  83#ifdef CONFIG_DEBUG_LOCK_ALLOC
  84        /* lockdep really cares that we take all of these spinlocks
  85         * in the right order.  If any of the locks in the path are not
  86         * currently blocking, it is going to complain.  So, make really
  87         * really sure by forcing the path to blocking before we clear
  88         * the path blocking.
  89         */
  90        if (held) {
  91                btrfs_set_lock_blocking_rw(held, held_rw);
  92                if (held_rw == BTRFS_WRITE_LOCK)
  93                        held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  94                else if (held_rw == BTRFS_READ_LOCK)
  95                        held_rw = BTRFS_READ_LOCK_BLOCKING;
  96        }
  97        btrfs_set_path_blocking(p);
  98#endif
  99
 100        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
 101                if (p->nodes[i] && p->locks[i]) {
 102                        btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 103                        if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 104                                p->locks[i] = BTRFS_WRITE_LOCK;
 105                        else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 106                                p->locks[i] = BTRFS_READ_LOCK;
 107                }
 108        }
 109
 110#ifdef CONFIG_DEBUG_LOCK_ALLOC
 111        if (held)
 112                btrfs_clear_lock_blocking_rw(held, held_rw);
 113#endif
 114}
 115
 116/* this also releases the path */
 117void btrfs_free_path(struct btrfs_path *p)
 118{
 119        if (!p)
 120                return;
 121        btrfs_release_path(p);
 122        kmem_cache_free(btrfs_path_cachep, p);
 123}
 124
 125/*
 126 * path release drops references on the extent buffers in the path
 127 * and it drops any locks held by this path
 128 *
 129 * It is safe to call this on paths that no locks or extent buffers held.
 130 */
 131noinline void btrfs_release_path(struct btrfs_path *p)
 132{
 133        int i;
 134
 135        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 136                p->slots[i] = 0;
 137                if (!p->nodes[i])
 138                        continue;
 139                if (p->locks[i]) {
 140                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 141                        p->locks[i] = 0;
 142                }
 143                free_extent_buffer(p->nodes[i]);
 144                p->nodes[i] = NULL;
 145        }
 146}
 147
 148/*
 149 * safely gets a reference on the root node of a tree.  A lock
 150 * is not taken, so a concurrent writer may put a different node
 151 * at the root of the tree.  See btrfs_lock_root_node for the
 152 * looping required.
 153 *
 154 * The extent buffer returned by this has a reference taken, so
 155 * it won't disappear.  It may stop being the root of the tree
 156 * at any time because there are no locks held.
 157 */
 158struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 159{
 160        struct extent_buffer *eb;
 161
 162        while (1) {
 163                rcu_read_lock();
 164                eb = rcu_dereference(root->node);
 165
 166                /*
 167                 * RCU really hurts here, we could free up the root node because
 168                 * it was cow'ed but we may not get the new root node yet so do
 169                 * the inc_not_zero dance and if it doesn't work then
 170                 * synchronize_rcu and try again.
 171                 */
 172                if (atomic_inc_not_zero(&eb->refs)) {
 173                        rcu_read_unlock();
 174                        break;
 175                }
 176                rcu_read_unlock();
 177                synchronize_rcu();
 178        }
 179        return eb;
 180}
 181
 182/* loop around taking references on and locking the root node of the
 183 * tree until you end up with a lock on the root.  A locked buffer
 184 * is returned, with a reference held.
 185 */
 186struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 187{
 188        struct extent_buffer *eb;
 189
 190        while (1) {
 191                eb = btrfs_root_node(root);
 192                btrfs_tree_lock(eb);
 193                if (eb == root->node)
 194                        break;
 195                btrfs_tree_unlock(eb);
 196                free_extent_buffer(eb);
 197        }
 198        return eb;
 199}
 200
 201/* loop around taking references on and locking the root node of the
 202 * tree until you end up with a lock on the root.  A locked buffer
 203 * is returned, with a reference held.
 204 */
 205static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 206{
 207        struct extent_buffer *eb;
 208
 209        while (1) {
 210                eb = btrfs_root_node(root);
 211                btrfs_tree_read_lock(eb);
 212                if (eb == root->node)
 213                        break;
 214                btrfs_tree_read_unlock(eb);
 215                free_extent_buffer(eb);
 216        }
 217        return eb;
 218}
 219
 220/* cowonly root (everything not a reference counted cow subvolume), just get
 221 * put onto a simple dirty list.  transaction.c walks this to make sure they
 222 * get properly updated on disk.
 223 */
 224static void add_root_to_dirty_list(struct btrfs_root *root)
 225{
 226        spin_lock(&root->fs_info->trans_lock);
 227        if (root->track_dirty && list_empty(&root->dirty_list)) {
 228                list_add(&root->dirty_list,
 229                         &root->fs_info->dirty_cowonly_roots);
 230        }
 231        spin_unlock(&root->fs_info->trans_lock);
 232}
 233
 234/*
 235 * used by snapshot creation to make a copy of a root for a tree with
 236 * a given objectid.  The buffer with the new root node is returned in
 237 * cow_ret, and this func returns zero on success or a negative error code.
 238 */
 239int btrfs_copy_root(struct btrfs_trans_handle *trans,
 240                      struct btrfs_root *root,
 241                      struct extent_buffer *buf,
 242                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 243{
 244        struct extent_buffer *cow;
 245        int ret = 0;
 246        int level;
 247        struct btrfs_disk_key disk_key;
 248
 249        WARN_ON(root->ref_cows && trans->transid !=
 250                root->fs_info->running_transaction->transid);
 251        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 252
 253        level = btrfs_header_level(buf);
 254        if (level == 0)
 255                btrfs_item_key(buf, &disk_key, 0);
 256        else
 257                btrfs_node_key(buf, &disk_key, 0);
 258
 259        cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 260                                     new_root_objectid, &disk_key, level,
 261                                     buf->start, 0);
 262        if (IS_ERR(cow))
 263                return PTR_ERR(cow);
 264
 265        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 266        btrfs_set_header_bytenr(cow, cow->start);
 267        btrfs_set_header_generation(cow, trans->transid);
 268        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 269        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 270                                     BTRFS_HEADER_FLAG_RELOC);
 271        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 272                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 273        else
 274                btrfs_set_header_owner(cow, new_root_objectid);
 275
 276        write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
 277                            BTRFS_FSID_SIZE);
 278
 279        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 280        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 281                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 282        else
 283                ret = btrfs_inc_ref(trans, root, cow, 0, 1);
 284
 285        if (ret)
 286                return ret;
 287
 288        btrfs_mark_buffer_dirty(cow);
 289        *cow_ret = cow;
 290        return 0;
 291}
 292
 293enum mod_log_op {
 294        MOD_LOG_KEY_REPLACE,
 295        MOD_LOG_KEY_ADD,
 296        MOD_LOG_KEY_REMOVE,
 297        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 298        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 299        MOD_LOG_MOVE_KEYS,
 300        MOD_LOG_ROOT_REPLACE,
 301};
 302
 303struct tree_mod_move {
 304        int dst_slot;
 305        int nr_items;
 306};
 307
 308struct tree_mod_root {
 309        u64 logical;
 310        u8 level;
 311};
 312
 313struct tree_mod_elem {
 314        struct rb_node node;
 315        u64 index;              /* shifted logical */
 316        u64 seq;
 317        enum mod_log_op op;
 318
 319        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 320        int slot;
 321
 322        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 323        u64 generation;
 324
 325        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 326        struct btrfs_disk_key key;
 327        u64 blockptr;
 328
 329        /* this is used for op == MOD_LOG_MOVE_KEYS */
 330        struct tree_mod_move move;
 331
 332        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 333        struct tree_mod_root old_root;
 334};
 335
 336static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 337{
 338        read_lock(&fs_info->tree_mod_log_lock);
 339}
 340
 341static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 342{
 343        read_unlock(&fs_info->tree_mod_log_lock);
 344}
 345
 346static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 347{
 348        write_lock(&fs_info->tree_mod_log_lock);
 349}
 350
 351static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 352{
 353        write_unlock(&fs_info->tree_mod_log_lock);
 354}
 355
 356/*
 357 * Increment the upper half of tree_mod_seq, set lower half zero.
 358 *
 359 * Must be called with fs_info->tree_mod_seq_lock held.
 360 */
 361static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
 362{
 363        u64 seq = atomic64_read(&fs_info->tree_mod_seq);
 364        seq &= 0xffffffff00000000ull;
 365        seq += 1ull << 32;
 366        atomic64_set(&fs_info->tree_mod_seq, seq);
 367        return seq;
 368}
 369
 370/*
 371 * Increment the lower half of tree_mod_seq.
 372 *
 373 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
 374 * are generated should not technically require a spin lock here. (Rationale:
 375 * incrementing the minor while incrementing the major seq number is between its
 376 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
 377 * just returns a unique sequence number as usual.) We have decided to leave
 378 * that requirement in here and rethink it once we notice it really imposes a
 379 * problem on some workload.
 380 */
 381static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
 382{
 383        return atomic64_inc_return(&fs_info->tree_mod_seq);
 384}
 385
 386/*
 387 * return the last minor in the previous major tree_mod_seq number
 388 */
 389u64 btrfs_tree_mod_seq_prev(u64 seq)
 390{
 391        return (seq & 0xffffffff00000000ull) - 1ull;
 392}
 393
 394/*
 395 * This adds a new blocker to the tree mod log's blocker list if the @elem
 396 * passed does not already have a sequence number set. So when a caller expects
 397 * to record tree modifications, it should ensure to set elem->seq to zero
 398 * before calling btrfs_get_tree_mod_seq.
 399 * Returns a fresh, unused tree log modification sequence number, even if no new
 400 * blocker was added.
 401 */
 402u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 403                           struct seq_list *elem)
 404{
 405        u64 seq;
 406
 407        tree_mod_log_write_lock(fs_info);
 408        spin_lock(&fs_info->tree_mod_seq_lock);
 409        if (!elem->seq) {
 410                elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
 411                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 412        }
 413        seq = btrfs_inc_tree_mod_seq_minor(fs_info);
 414        spin_unlock(&fs_info->tree_mod_seq_lock);
 415        tree_mod_log_write_unlock(fs_info);
 416
 417        return seq;
 418}
 419
 420void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 421                            struct seq_list *elem)
 422{
 423        struct rb_root *tm_root;
 424        struct rb_node *node;
 425        struct rb_node *next;
 426        struct seq_list *cur_elem;
 427        struct tree_mod_elem *tm;
 428        u64 min_seq = (u64)-1;
 429        u64 seq_putting = elem->seq;
 430
 431        if (!seq_putting)
 432                return;
 433
 434        spin_lock(&fs_info->tree_mod_seq_lock);
 435        list_del(&elem->list);
 436        elem->seq = 0;
 437
 438        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 439                if (cur_elem->seq < min_seq) {
 440                        if (seq_putting > cur_elem->seq) {
 441                                /*
 442                                 * blocker with lower sequence number exists, we
 443                                 * cannot remove anything from the log
 444                                 */
 445                                spin_unlock(&fs_info->tree_mod_seq_lock);
 446                                return;
 447                        }
 448                        min_seq = cur_elem->seq;
 449                }
 450        }
 451        spin_unlock(&fs_info->tree_mod_seq_lock);
 452
 453        /*
 454         * anything that's lower than the lowest existing (read: blocked)
 455         * sequence number can be removed from the tree.
 456         */
 457        tree_mod_log_write_lock(fs_info);
 458        tm_root = &fs_info->tree_mod_log;
 459        for (node = rb_first(tm_root); node; node = next) {
 460                next = rb_next(node);
 461                tm = container_of(node, struct tree_mod_elem, node);
 462                if (tm->seq > min_seq)
 463                        continue;
 464                rb_erase(node, tm_root);
 465                kfree(tm);
 466        }
 467        tree_mod_log_write_unlock(fs_info);
 468}
 469
 470/*
 471 * key order of the log:
 472 *       index -> sequence
 473 *
 474 * the index is the shifted logical of the *new* root node for root replace
 475 * operations, or the shifted logical of the affected block for all other
 476 * operations.
 477 *
 478 * Note: must be called with write lock (tree_mod_log_write_lock).
 479 */
 480static noinline int
 481__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 482{
 483        struct rb_root *tm_root;
 484        struct rb_node **new;
 485        struct rb_node *parent = NULL;
 486        struct tree_mod_elem *cur;
 487
 488        BUG_ON(!tm);
 489
 490        spin_lock(&fs_info->tree_mod_seq_lock);
 491        tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
 492        spin_unlock(&fs_info->tree_mod_seq_lock);
 493
 494        tm_root = &fs_info->tree_mod_log;
 495        new = &tm_root->rb_node;
 496        while (*new) {
 497                cur = container_of(*new, struct tree_mod_elem, node);
 498                parent = *new;
 499                if (cur->index < tm->index)
 500                        new = &((*new)->rb_left);
 501                else if (cur->index > tm->index)
 502                        new = &((*new)->rb_right);
 503                else if (cur->seq < tm->seq)
 504                        new = &((*new)->rb_left);
 505                else if (cur->seq > tm->seq)
 506                        new = &((*new)->rb_right);
 507                else
 508                        return -EEXIST;
 509        }
 510
 511        rb_link_node(&tm->node, parent, new);
 512        rb_insert_color(&tm->node, tm_root);
 513        return 0;
 514}
 515
 516/*
 517 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 518 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 519 * this until all tree mod log insertions are recorded in the rb tree and then
 520 * call tree_mod_log_write_unlock() to release.
 521 */
 522static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 523                                    struct extent_buffer *eb) {
 524        smp_mb();
 525        if (list_empty(&(fs_info)->tree_mod_seq_list))
 526                return 1;
 527        if (eb && btrfs_header_level(eb) == 0)
 528                return 1;
 529
 530        tree_mod_log_write_lock(fs_info);
 531        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 532                tree_mod_log_write_unlock(fs_info);
 533                return 1;
 534        }
 535
 536        return 0;
 537}
 538
 539/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 540static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 541                                    struct extent_buffer *eb)
 542{
 543        smp_mb();
 544        if (list_empty(&(fs_info)->tree_mod_seq_list))
 545                return 0;
 546        if (eb && btrfs_header_level(eb) == 0)
 547                return 0;
 548
 549        return 1;
 550}
 551
 552static struct tree_mod_elem *
 553alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 554                    enum mod_log_op op, gfp_t flags)
 555{
 556        struct tree_mod_elem *tm;
 557
 558        tm = kzalloc(sizeof(*tm), flags);
 559        if (!tm)
 560                return NULL;
 561
 562        tm->index = eb->start >> PAGE_CACHE_SHIFT;
 563        if (op != MOD_LOG_KEY_ADD) {
 564                btrfs_node_key(eb, &tm->key, slot);
 565                tm->blockptr = btrfs_node_blockptr(eb, slot);
 566        }
 567        tm->op = op;
 568        tm->slot = slot;
 569        tm->generation = btrfs_node_ptr_generation(eb, slot);
 570        RB_CLEAR_NODE(&tm->node);
 571
 572        return tm;
 573}
 574
 575static noinline int
 576tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 577                        struct extent_buffer *eb, int slot,
 578                        enum mod_log_op op, gfp_t flags)
 579{
 580        struct tree_mod_elem *tm;
 581        int ret;
 582
 583        if (!tree_mod_need_log(fs_info, eb))
 584                return 0;
 585
 586        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 587        if (!tm)
 588                return -ENOMEM;
 589
 590        if (tree_mod_dont_log(fs_info, eb)) {
 591                kfree(tm);
 592                return 0;
 593        }
 594
 595        ret = __tree_mod_log_insert(fs_info, tm);
 596        tree_mod_log_write_unlock(fs_info);
 597        if (ret)
 598                kfree(tm);
 599
 600        return ret;
 601}
 602
 603static noinline int
 604tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 605                         struct extent_buffer *eb, int dst_slot, int src_slot,
 606                         int nr_items, gfp_t flags)
 607{
 608        struct tree_mod_elem *tm = NULL;
 609        struct tree_mod_elem **tm_list = NULL;
 610        int ret = 0;
 611        int i;
 612        int locked = 0;
 613
 614        if (!tree_mod_need_log(fs_info, eb))
 615                return 0;
 616
 617        tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
 618        if (!tm_list)
 619                return -ENOMEM;
 620
 621        tm = kzalloc(sizeof(*tm), flags);
 622        if (!tm) {
 623                ret = -ENOMEM;
 624                goto free_tms;
 625        }
 626
 627        tm->index = eb->start >> PAGE_CACHE_SHIFT;
 628        tm->slot = src_slot;
 629        tm->move.dst_slot = dst_slot;
 630        tm->move.nr_items = nr_items;
 631        tm->op = MOD_LOG_MOVE_KEYS;
 632
 633        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 634                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 635                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 636                if (!tm_list[i]) {
 637                        ret = -ENOMEM;
 638                        goto free_tms;
 639                }
 640        }
 641
 642        if (tree_mod_dont_log(fs_info, eb))
 643                goto free_tms;
 644        locked = 1;
 645
 646        /*
 647         * When we override something during the move, we log these removals.
 648         * This can only happen when we move towards the beginning of the
 649         * buffer, i.e. dst_slot < src_slot.
 650         */
 651        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 652                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 653                if (ret)
 654                        goto free_tms;
 655        }
 656
 657        ret = __tree_mod_log_insert(fs_info, tm);
 658        if (ret)
 659                goto free_tms;
 660        tree_mod_log_write_unlock(fs_info);
 661        kfree(tm_list);
 662
 663        return 0;
 664free_tms:
 665        for (i = 0; i < nr_items; i++) {
 666                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 667                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 668                kfree(tm_list[i]);
 669        }
 670        if (locked)
 671                tree_mod_log_write_unlock(fs_info);
 672        kfree(tm_list);
 673        kfree(tm);
 674
 675        return ret;
 676}
 677
 678static inline int
 679__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 680                       struct tree_mod_elem **tm_list,
 681                       int nritems)
 682{
 683        int i, j;
 684        int ret;
 685
 686        for (i = nritems - 1; i >= 0; i--) {
 687                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 688                if (ret) {
 689                        for (j = nritems - 1; j > i; j--)
 690                                rb_erase(&tm_list[j]->node,
 691                                         &fs_info->tree_mod_log);
 692                        return ret;
 693                }
 694        }
 695
 696        return 0;
 697}
 698
 699static noinline int
 700tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 701                         struct extent_buffer *old_root,
 702                         struct extent_buffer *new_root, gfp_t flags,
 703                         int log_removal)
 704{
 705        struct tree_mod_elem *tm = NULL;
 706        struct tree_mod_elem **tm_list = NULL;
 707        int nritems = 0;
 708        int ret = 0;
 709        int i;
 710
 711        if (!tree_mod_need_log(fs_info, NULL))
 712                return 0;
 713
 714        if (log_removal && btrfs_header_level(old_root) > 0) {
 715                nritems = btrfs_header_nritems(old_root);
 716                tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
 717                                  flags);
 718                if (!tm_list) {
 719                        ret = -ENOMEM;
 720                        goto free_tms;
 721                }
 722                for (i = 0; i < nritems; i++) {
 723                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 724                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 725                        if (!tm_list[i]) {
 726                                ret = -ENOMEM;
 727                                goto free_tms;
 728                        }
 729                }
 730        }
 731
 732        tm = kzalloc(sizeof(*tm), flags);
 733        if (!tm) {
 734                ret = -ENOMEM;
 735                goto free_tms;
 736        }
 737
 738        tm->index = new_root->start >> PAGE_CACHE_SHIFT;
 739        tm->old_root.logical = old_root->start;
 740        tm->old_root.level = btrfs_header_level(old_root);
 741        tm->generation = btrfs_header_generation(old_root);
 742        tm->op = MOD_LOG_ROOT_REPLACE;
 743
 744        if (tree_mod_dont_log(fs_info, NULL))
 745                goto free_tms;
 746
 747        if (tm_list)
 748                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 749        if (!ret)
 750                ret = __tree_mod_log_insert(fs_info, tm);
 751
 752        tree_mod_log_write_unlock(fs_info);
 753        if (ret)
 754                goto free_tms;
 755        kfree(tm_list);
 756
 757        return ret;
 758
 759free_tms:
 760        if (tm_list) {
 761                for (i = 0; i < nritems; i++)
 762                        kfree(tm_list[i]);
 763                kfree(tm_list);
 764        }
 765        kfree(tm);
 766
 767        return ret;
 768}
 769
 770static struct tree_mod_elem *
 771__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 772                      int smallest)
 773{
 774        struct rb_root *tm_root;
 775        struct rb_node *node;
 776        struct tree_mod_elem *cur = NULL;
 777        struct tree_mod_elem *found = NULL;
 778        u64 index = start >> PAGE_CACHE_SHIFT;
 779
 780        tree_mod_log_read_lock(fs_info);
 781        tm_root = &fs_info->tree_mod_log;
 782        node = tm_root->rb_node;
 783        while (node) {
 784                cur = container_of(node, struct tree_mod_elem, node);
 785                if (cur->index < index) {
 786                        node = node->rb_left;
 787                } else if (cur->index > index) {
 788                        node = node->rb_right;
 789                } else if (cur->seq < min_seq) {
 790                        node = node->rb_left;
 791                } else if (!smallest) {
 792                        /* we want the node with the highest seq */
 793                        if (found)
 794                                BUG_ON(found->seq > cur->seq);
 795                        found = cur;
 796                        node = node->rb_left;
 797                } else if (cur->seq > min_seq) {
 798                        /* we want the node with the smallest seq */
 799                        if (found)
 800                                BUG_ON(found->seq < cur->seq);
 801                        found = cur;
 802                        node = node->rb_right;
 803                } else {
 804                        found = cur;
 805                        break;
 806                }
 807        }
 808        tree_mod_log_read_unlock(fs_info);
 809
 810        return found;
 811}
 812
 813/*
 814 * this returns the element from the log with the smallest time sequence
 815 * value that's in the log (the oldest log item). any element with a time
 816 * sequence lower than min_seq will be ignored.
 817 */
 818static struct tree_mod_elem *
 819tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 820                           u64 min_seq)
 821{
 822        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 823}
 824
 825/*
 826 * this returns the element from the log with the largest time sequence
 827 * value that's in the log (the most recent log item). any element with
 828 * a time sequence lower than min_seq will be ignored.
 829 */
 830static struct tree_mod_elem *
 831tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 832{
 833        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 834}
 835
 836static noinline int
 837tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 838                     struct extent_buffer *src, unsigned long dst_offset,
 839                     unsigned long src_offset, int nr_items)
 840{
 841        int ret = 0;
 842        struct tree_mod_elem **tm_list = NULL;
 843        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 844        int i;
 845        int locked = 0;
 846
 847        if (!tree_mod_need_log(fs_info, NULL))
 848                return 0;
 849
 850        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 851                return 0;
 852
 853        tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
 854                          GFP_NOFS);
 855        if (!tm_list)
 856                return -ENOMEM;
 857
 858        tm_list_add = tm_list;
 859        tm_list_rem = tm_list + nr_items;
 860        for (i = 0; i < nr_items; i++) {
 861                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 862                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 863                if (!tm_list_rem[i]) {
 864                        ret = -ENOMEM;
 865                        goto free_tms;
 866                }
 867
 868                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 869                    MOD_LOG_KEY_ADD, GFP_NOFS);
 870                if (!tm_list_add[i]) {
 871                        ret = -ENOMEM;
 872                        goto free_tms;
 873                }
 874        }
 875
 876        if (tree_mod_dont_log(fs_info, NULL))
 877                goto free_tms;
 878        locked = 1;
 879
 880        for (i = 0; i < nr_items; i++) {
 881                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 882                if (ret)
 883                        goto free_tms;
 884                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 885                if (ret)
 886                        goto free_tms;
 887        }
 888
 889        tree_mod_log_write_unlock(fs_info);
 890        kfree(tm_list);
 891
 892        return 0;
 893
 894free_tms:
 895        for (i = 0; i < nr_items * 2; i++) {
 896                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 897                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 898                kfree(tm_list[i]);
 899        }
 900        if (locked)
 901                tree_mod_log_write_unlock(fs_info);
 902        kfree(tm_list);
 903
 904        return ret;
 905}
 906
 907static inline void
 908tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 909                     int dst_offset, int src_offset, int nr_items)
 910{
 911        int ret;
 912        ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 913                                       nr_items, GFP_NOFS);
 914        BUG_ON(ret < 0);
 915}
 916
 917static noinline void
 918tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 919                          struct extent_buffer *eb, int slot, int atomic)
 920{
 921        int ret;
 922
 923        ret = tree_mod_log_insert_key(fs_info, eb, slot,
 924                                        MOD_LOG_KEY_REPLACE,
 925                                        atomic ? GFP_ATOMIC : GFP_NOFS);
 926        BUG_ON(ret < 0);
 927}
 928
 929static noinline int
 930tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 931{
 932        struct tree_mod_elem **tm_list = NULL;
 933        int nritems = 0;
 934        int i;
 935        int ret = 0;
 936
 937        if (btrfs_header_level(eb) == 0)
 938                return 0;
 939
 940        if (!tree_mod_need_log(fs_info, NULL))
 941                return 0;
 942
 943        nritems = btrfs_header_nritems(eb);
 944        tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
 945                          GFP_NOFS);
 946        if (!tm_list)
 947                return -ENOMEM;
 948
 949        for (i = 0; i < nritems; i++) {
 950                tm_list[i] = alloc_tree_mod_elem(eb, i,
 951                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 952                if (!tm_list[i]) {
 953                        ret = -ENOMEM;
 954                        goto free_tms;
 955                }
 956        }
 957
 958        if (tree_mod_dont_log(fs_info, eb))
 959                goto free_tms;
 960
 961        ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 962        tree_mod_log_write_unlock(fs_info);
 963        if (ret)
 964                goto free_tms;
 965        kfree(tm_list);
 966
 967        return 0;
 968
 969free_tms:
 970        for (i = 0; i < nritems; i++)
 971                kfree(tm_list[i]);
 972        kfree(tm_list);
 973
 974        return ret;
 975}
 976
 977static noinline void
 978tree_mod_log_set_root_pointer(struct btrfs_root *root,
 979                              struct extent_buffer *new_root_node,
 980                              int log_removal)
 981{
 982        int ret;
 983        ret = tree_mod_log_insert_root(root->fs_info, root->node,
 984                                       new_root_node, GFP_NOFS, log_removal);
 985        BUG_ON(ret < 0);
 986}
 987
 988/*
 989 * check if the tree block can be shared by multiple trees
 990 */
 991int btrfs_block_can_be_shared(struct btrfs_root *root,
 992                              struct extent_buffer *buf)
 993{
 994        /*
 995         * Tree blocks not in refernece counted trees and tree roots
 996         * are never shared. If a block was allocated after the last
 997         * snapshot and the block was not allocated by tree relocation,
 998         * we know the block is not shared.
 999         */
1000        if (root->ref_cows &&
1001            buf != root->node && buf != root->commit_root &&
1002            (btrfs_header_generation(buf) <=
1003             btrfs_root_last_snapshot(&root->root_item) ||
1004             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
1005                return 1;
1006#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1007        if (root->ref_cows &&
1008            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1009                return 1;
1010#endif
1011        return 0;
1012}
1013
1014static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
1015                                       struct btrfs_root *root,
1016                                       struct extent_buffer *buf,
1017                                       struct extent_buffer *cow,
1018                                       int *last_ref)
1019{
1020        u64 refs;
1021        u64 owner;
1022        u64 flags;
1023        u64 new_flags = 0;
1024        int ret;
1025
1026        /*
1027         * Backrefs update rules:
1028         *
1029         * Always use full backrefs for extent pointers in tree block
1030         * allocated by tree relocation.
1031         *
1032         * If a shared tree block is no longer referenced by its owner
1033         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1034         * use full backrefs for extent pointers in tree block.
1035         *
1036         * If a tree block is been relocating
1037         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1038         * use full backrefs for extent pointers in tree block.
1039         * The reason for this is some operations (such as drop tree)
1040         * are only allowed for blocks use full backrefs.
1041         */
1042
1043        if (btrfs_block_can_be_shared(root, buf)) {
1044                ret = btrfs_lookup_extent_info(trans, root, buf->start,
1045                                               btrfs_header_level(buf), 1,
1046                                               &refs, &flags);
1047                if (ret)
1048                        return ret;
1049                if (refs == 0) {
1050                        ret = -EROFS;
1051                        btrfs_std_error(root->fs_info, ret);
1052                        return ret;
1053                }
1054        } else {
1055                refs = 1;
1056                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1057                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1058                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1059                else
1060                        flags = 0;
1061        }
1062
1063        owner = btrfs_header_owner(buf);
1064        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1065               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1066
1067        if (refs > 1) {
1068                if ((owner == root->root_key.objectid ||
1069                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1070                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1071                        ret = btrfs_inc_ref(trans, root, buf, 1, 1);
1072                        BUG_ON(ret); /* -ENOMEM */
1073
1074                        if (root->root_key.objectid ==
1075                            BTRFS_TREE_RELOC_OBJECTID) {
1076                                ret = btrfs_dec_ref(trans, root, buf, 0, 1);
1077                                BUG_ON(ret); /* -ENOMEM */
1078                                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1079                                BUG_ON(ret); /* -ENOMEM */
1080                        }
1081                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1082                } else {
1083
1084                        if (root->root_key.objectid ==
1085                            BTRFS_TREE_RELOC_OBJECTID)
1086                                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1087                        else
1088                                ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1089                        BUG_ON(ret); /* -ENOMEM */
1090                }
1091                if (new_flags != 0) {
1092                        int level = btrfs_header_level(buf);
1093
1094                        ret = btrfs_set_disk_extent_flags(trans, root,
1095                                                          buf->start,
1096                                                          buf->len,
1097                                                          new_flags, level, 0);
1098                        if (ret)
1099                                return ret;
1100                }
1101        } else {
1102                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1103                        if (root->root_key.objectid ==
1104                            BTRFS_TREE_RELOC_OBJECTID)
1105                                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1106                        else
1107                                ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1108                        BUG_ON(ret); /* -ENOMEM */
1109                        ret = btrfs_dec_ref(trans, root, buf, 1, 1);
1110                        BUG_ON(ret); /* -ENOMEM */
1111                }
1112                clean_tree_block(trans, root, buf);
1113                *last_ref = 1;
1114        }
1115        return 0;
1116}
1117
1118/*
1119 * does the dirty work in cow of a single block.  The parent block (if
1120 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1121 * dirty and returned locked.  If you modify the block it needs to be marked
1122 * dirty again.
1123 *
1124 * search_start -- an allocation hint for the new block
1125 *
1126 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1127 * bytes the allocator should try to find free next to the block it returns.
1128 * This is just a hint and may be ignored by the allocator.
1129 */
1130static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1131                             struct btrfs_root *root,
1132                             struct extent_buffer *buf,
1133                             struct extent_buffer *parent, int parent_slot,
1134                             struct extent_buffer **cow_ret,
1135                             u64 search_start, u64 empty_size)
1136{
1137        struct btrfs_disk_key disk_key;
1138        struct extent_buffer *cow;
1139        int level, ret;
1140        int last_ref = 0;
1141        int unlock_orig = 0;
1142        u64 parent_start;
1143
1144        if (*cow_ret == buf)
1145                unlock_orig = 1;
1146
1147        btrfs_assert_tree_locked(buf);
1148
1149        WARN_ON(root->ref_cows && trans->transid !=
1150                root->fs_info->running_transaction->transid);
1151        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1152
1153        level = btrfs_header_level(buf);
1154
1155        if (level == 0)
1156                btrfs_item_key(buf, &disk_key, 0);
1157        else
1158                btrfs_node_key(buf, &disk_key, 0);
1159
1160        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1161                if (parent)
1162                        parent_start = parent->start;
1163                else
1164                        parent_start = 0;
1165        } else
1166                parent_start = 0;
1167
1168        cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1169                                     root->root_key.objectid, &disk_key,
1170                                     level, search_start, empty_size);
1171        if (IS_ERR(cow))
1172                return PTR_ERR(cow);
1173
1174        /* cow is set to blocking by btrfs_init_new_buffer */
1175
1176        copy_extent_buffer(cow, buf, 0, 0, cow->len);
1177        btrfs_set_header_bytenr(cow, cow->start);
1178        btrfs_set_header_generation(cow, trans->transid);
1179        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1180        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1181                                     BTRFS_HEADER_FLAG_RELOC);
1182        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1183                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1184        else
1185                btrfs_set_header_owner(cow, root->root_key.objectid);
1186
1187        write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1188                            BTRFS_FSID_SIZE);
1189
1190        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1191        if (ret) {
1192                btrfs_abort_transaction(trans, root, ret);
1193                return ret;
1194        }
1195
1196        if (root->ref_cows) {
1197                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1198                if (ret)
1199                        return ret;
1200        }
1201
1202        if (buf == root->node) {
1203                WARN_ON(parent && parent != buf);
1204                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1205                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1206                        parent_start = buf->start;
1207                else
1208                        parent_start = 0;
1209
1210                extent_buffer_get(cow);
1211                tree_mod_log_set_root_pointer(root, cow, 1);
1212                rcu_assign_pointer(root->node, cow);
1213
1214                btrfs_free_tree_block(trans, root, buf, parent_start,
1215                                      last_ref);
1216                free_extent_buffer(buf);
1217                add_root_to_dirty_list(root);
1218        } else {
1219                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1220                        parent_start = parent->start;
1221                else
1222                        parent_start = 0;
1223
1224                WARN_ON(trans->transid != btrfs_header_generation(parent));
1225                tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1226                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1227                btrfs_set_node_blockptr(parent, parent_slot,
1228                                        cow->start);
1229                btrfs_set_node_ptr_generation(parent, parent_slot,
1230                                              trans->transid);
1231                btrfs_mark_buffer_dirty(parent);
1232                if (last_ref) {
1233                        ret = tree_mod_log_free_eb(root->fs_info, buf);
1234                        if (ret) {
1235                                btrfs_abort_transaction(trans, root, ret);
1236                                return ret;
1237                        }
1238                }
1239                btrfs_free_tree_block(trans, root, buf, parent_start,
1240                                      last_ref);
1241        }
1242        if (unlock_orig)
1243                btrfs_tree_unlock(buf);
1244        free_extent_buffer_stale(buf);
1245        btrfs_mark_buffer_dirty(cow);
1246        *cow_ret = cow;
1247        return 0;
1248}
1249
1250/*
1251 * returns the logical address of the oldest predecessor of the given root.
1252 * entries older than time_seq are ignored.
1253 */
1254static struct tree_mod_elem *
1255__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1256                           struct extent_buffer *eb_root, u64 time_seq)
1257{
1258        struct tree_mod_elem *tm;
1259        struct tree_mod_elem *found = NULL;
1260        u64 root_logical = eb_root->start;
1261        int looped = 0;
1262
1263        if (!time_seq)
1264                return NULL;
1265
1266        /*
1267         * the very last operation that's logged for a root is the replacement
1268         * operation (if it is replaced at all). this has the index of the *new*
1269         * root, making it the very first operation that's logged for this root.
1270         */
1271        while (1) {
1272                tm = tree_mod_log_search_oldest(fs_info, root_logical,
1273                                                time_seq);
1274                if (!looped && !tm)
1275                        return NULL;
1276                /*
1277                 * if there are no tree operation for the oldest root, we simply
1278                 * return it. this should only happen if that (old) root is at
1279                 * level 0.
1280                 */
1281                if (!tm)
1282                        break;
1283
1284                /*
1285                 * if there's an operation that's not a root replacement, we
1286                 * found the oldest version of our root. normally, we'll find a
1287                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1288                 */
1289                if (tm->op != MOD_LOG_ROOT_REPLACE)
1290                        break;
1291
1292                found = tm;
1293                root_logical = tm->old_root.logical;
1294                looped = 1;
1295        }
1296
1297        /* if there's no old root to return, return what we found instead */
1298        if (!found)
1299                found = tm;
1300
1301        return found;
1302}
1303
1304/*
1305 * tm is a pointer to the first operation to rewind within eb. then, all
1306 * previous operations will be rewinded (until we reach something older than
1307 * time_seq).
1308 */
1309static void
1310__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1311                      u64 time_seq, struct tree_mod_elem *first_tm)
1312{
1313        u32 n;
1314        struct rb_node *next;
1315        struct tree_mod_elem *tm = first_tm;
1316        unsigned long o_dst;
1317        unsigned long o_src;
1318        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1319
1320        n = btrfs_header_nritems(eb);
1321        tree_mod_log_read_lock(fs_info);
1322        while (tm && tm->seq >= time_seq) {
1323                /*
1324                 * all the operations are recorded with the operator used for
1325                 * the modification. as we're going backwards, we do the
1326                 * opposite of each operation here.
1327                 */
1328                switch (tm->op) {
1329                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1330                        BUG_ON(tm->slot < n);
1331                        /* Fallthrough */
1332                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1333                case MOD_LOG_KEY_REMOVE:
1334                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1335                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1336                        btrfs_set_node_ptr_generation(eb, tm->slot,
1337                                                      tm->generation);
1338                        n++;
1339                        break;
1340                case MOD_LOG_KEY_REPLACE:
1341                        BUG_ON(tm->slot >= n);
1342                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1343                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1344                        btrfs_set_node_ptr_generation(eb, tm->slot,
1345                                                      tm->generation);
1346                        break;
1347                case MOD_LOG_KEY_ADD:
1348                        /* if a move operation is needed it's in the log */
1349                        n--;
1350                        break;
1351                case MOD_LOG_MOVE_KEYS:
1352                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1353                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1354                        memmove_extent_buffer(eb, o_dst, o_src,
1355                                              tm->move.nr_items * p_size);
1356                        break;
1357                case MOD_LOG_ROOT_REPLACE:
1358                        /*
1359                         * this operation is special. for roots, this must be
1360                         * handled explicitly before rewinding.
1361                         * for non-roots, this operation may exist if the node
1362                         * was a root: root A -> child B; then A gets empty and
1363                         * B is promoted to the new root. in the mod log, we'll
1364                         * have a root-replace operation for B, a tree block
1365                         * that is no root. we simply ignore that operation.
1366                         */
1367                        break;
1368                }
1369                next = rb_next(&tm->node);
1370                if (!next)
1371                        break;
1372                tm = container_of(next, struct tree_mod_elem, node);
1373                if (tm->index != first_tm->index)
1374                        break;
1375        }
1376        tree_mod_log_read_unlock(fs_info);
1377        btrfs_set_header_nritems(eb, n);
1378}
1379
1380/*
1381 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1382 * is returned. If rewind operations happen, a fresh buffer is returned. The
1383 * returned buffer is always read-locked. If the returned buffer is not the
1384 * input buffer, the lock on the input buffer is released and the input buffer
1385 * is freed (its refcount is decremented).
1386 */
1387static struct extent_buffer *
1388tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1389                    struct extent_buffer *eb, u64 time_seq)
1390{
1391        struct extent_buffer *eb_rewin;
1392        struct tree_mod_elem *tm;
1393
1394        if (!time_seq)
1395                return eb;
1396
1397        if (btrfs_header_level(eb) == 0)
1398                return eb;
1399
1400        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1401        if (!tm)
1402                return eb;
1403
1404        btrfs_set_path_blocking(path);
1405        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1406
1407        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1408                BUG_ON(tm->slot != 0);
1409                eb_rewin = alloc_dummy_extent_buffer(eb->start,
1410                                                fs_info->tree_root->nodesize);
1411                if (!eb_rewin) {
1412                        btrfs_tree_read_unlock_blocking(eb);
1413                        free_extent_buffer(eb);
1414                        return NULL;
1415                }
1416                btrfs_set_header_bytenr(eb_rewin, eb->start);
1417                btrfs_set_header_backref_rev(eb_rewin,
1418                                             btrfs_header_backref_rev(eb));
1419                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1420                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1421        } else {
1422                eb_rewin = btrfs_clone_extent_buffer(eb);
1423                if (!eb_rewin) {
1424                        btrfs_tree_read_unlock_blocking(eb);
1425                        free_extent_buffer(eb);
1426                        return NULL;
1427                }
1428        }
1429
1430        btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1431        btrfs_tree_read_unlock_blocking(eb);
1432        free_extent_buffer(eb);
1433
1434        extent_buffer_get(eb_rewin);
1435        btrfs_tree_read_lock(eb_rewin);
1436        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1437        WARN_ON(btrfs_header_nritems(eb_rewin) >
1438                BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1439
1440        return eb_rewin;
1441}
1442
1443/*
1444 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1445 * value. If there are no changes, the current root->root_node is returned. If
1446 * anything changed in between, there's a fresh buffer allocated on which the
1447 * rewind operations are done. In any case, the returned buffer is read locked.
1448 * Returns NULL on error (with no locks held).
1449 */
1450static inline struct extent_buffer *
1451get_old_root(struct btrfs_root *root, u64 time_seq)
1452{
1453        struct tree_mod_elem *tm;
1454        struct extent_buffer *eb = NULL;
1455        struct extent_buffer *eb_root;
1456        struct extent_buffer *old;
1457        struct tree_mod_root *old_root = NULL;
1458        u64 old_generation = 0;
1459        u64 logical;
1460        u32 blocksize;
1461
1462        eb_root = btrfs_read_lock_root_node(root);
1463        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1464        if (!tm)
1465                return eb_root;
1466
1467        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1468                old_root = &tm->old_root;
1469                old_generation = tm->generation;
1470                logical = old_root->logical;
1471        } else {
1472                logical = eb_root->start;
1473        }
1474
1475        tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1476        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1477                btrfs_tree_read_unlock(eb_root);
1478                free_extent_buffer(eb_root);
1479                blocksize = btrfs_level_size(root, old_root->level);
1480                old = read_tree_block(root, logical, blocksize, 0);
1481                if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1482                        free_extent_buffer(old);
1483                        btrfs_warn(root->fs_info,
1484                                "failed to read tree block %llu from get_old_root", logical);
1485                } else {
1486                        eb = btrfs_clone_extent_buffer(old);
1487                        free_extent_buffer(old);
1488                }
1489        } else if (old_root) {
1490                btrfs_tree_read_unlock(eb_root);
1491                free_extent_buffer(eb_root);
1492                eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1493        } else {
1494                btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1495                eb = btrfs_clone_extent_buffer(eb_root);
1496                btrfs_tree_read_unlock_blocking(eb_root);
1497                free_extent_buffer(eb_root);
1498        }
1499
1500        if (!eb)
1501                return NULL;
1502        extent_buffer_get(eb);
1503        btrfs_tree_read_lock(eb);
1504        if (old_root) {
1505                btrfs_set_header_bytenr(eb, eb->start);
1506                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1507                btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1508                btrfs_set_header_level(eb, old_root->level);
1509                btrfs_set_header_generation(eb, old_generation);
1510        }
1511        if (tm)
1512                __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1513        else
1514                WARN_ON(btrfs_header_level(eb) != 0);
1515        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1516
1517        return eb;
1518}
1519
1520int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1521{
1522        struct tree_mod_elem *tm;
1523        int level;
1524        struct extent_buffer *eb_root = btrfs_root_node(root);
1525
1526        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1527        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1528                level = tm->old_root.level;
1529        } else {
1530                level = btrfs_header_level(eb_root);
1531        }
1532        free_extent_buffer(eb_root);
1533
1534        return level;
1535}
1536
1537static inline int should_cow_block(struct btrfs_trans_handle *trans,
1538                                   struct btrfs_root *root,
1539                                   struct extent_buffer *buf)
1540{
1541        /* ensure we can see the force_cow */
1542        smp_rmb();
1543
1544        /*
1545         * We do not need to cow a block if
1546         * 1) this block is not created or changed in this transaction;
1547         * 2) this block does not belong to TREE_RELOC tree;
1548         * 3) the root is not forced COW.
1549         *
1550         * What is forced COW:
1551         *    when we create snapshot during commiting the transaction,
1552         *    after we've finished coping src root, we must COW the shared
1553         *    block to ensure the metadata consistency.
1554         */
1555        if (btrfs_header_generation(buf) == trans->transid &&
1556            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1557            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1558              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1559            !root->force_cow)
1560                return 0;
1561        return 1;
1562}
1563
1564/*
1565 * cows a single block, see __btrfs_cow_block for the real work.
1566 * This version of it has extra checks so that a block isn't cow'd more than
1567 * once per transaction, as long as it hasn't been written yet
1568 */
1569noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1570                    struct btrfs_root *root, struct extent_buffer *buf,
1571                    struct extent_buffer *parent, int parent_slot,
1572                    struct extent_buffer **cow_ret)
1573{
1574        u64 search_start;
1575        int ret;
1576
1577        if (trans->transaction != root->fs_info->running_transaction)
1578                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1579                       trans->transid,
1580                       root->fs_info->running_transaction->transid);
1581
1582        if (trans->transid != root->fs_info->generation)
1583                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1584                       trans->transid, root->fs_info->generation);
1585
1586        if (!should_cow_block(trans, root, buf)) {
1587                *cow_ret = buf;
1588                return 0;
1589        }
1590
1591        search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1592
1593        if (parent)
1594                btrfs_set_lock_blocking(parent);
1595        btrfs_set_lock_blocking(buf);
1596
1597        ret = __btrfs_cow_block(trans, root, buf, parent,
1598                                 parent_slot, cow_ret, search_start, 0);
1599
1600        trace_btrfs_cow_block(root, buf, *cow_ret);
1601
1602        return ret;
1603}
1604
1605/*
1606 * helper function for defrag to decide if two blocks pointed to by a
1607 * node are actually close by
1608 */
1609static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1610{
1611        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1612                return 1;
1613        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1614                return 1;
1615        return 0;
1616}
1617
1618/*
1619 * compare two keys in a memcmp fashion
1620 */
1621static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1622{
1623        struct btrfs_key k1;
1624
1625        btrfs_disk_key_to_cpu(&k1, disk);
1626
1627        return btrfs_comp_cpu_keys(&k1, k2);
1628}
1629
1630/*
1631 * same as comp_keys only with two btrfs_key's
1632 */
1633int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1634{
1635        if (k1->objectid > k2->objectid)
1636                return 1;
1637        if (k1->objectid < k2->objectid)
1638                return -1;
1639        if (k1->type > k2->type)
1640                return 1;
1641        if (k1->type < k2->type)
1642                return -1;
1643        if (k1->offset > k2->offset)
1644                return 1;
1645        if (k1->offset < k2->offset)
1646                return -1;
1647        return 0;
1648}
1649
1650/*
1651 * this is used by the defrag code to go through all the
1652 * leaves pointed to by a node and reallocate them so that
1653 * disk order is close to key order
1654 */
1655int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1656                       struct btrfs_root *root, struct extent_buffer *parent,
1657                       int start_slot, u64 *last_ret,
1658                       struct btrfs_key *progress)
1659{
1660        struct extent_buffer *cur;
1661        u64 blocknr;
1662        u64 gen;
1663        u64 search_start = *last_ret;
1664        u64 last_block = 0;
1665        u64 other;
1666        u32 parent_nritems;
1667        int end_slot;
1668        int i;
1669        int err = 0;
1670        int parent_level;
1671        int uptodate;
1672        u32 blocksize;
1673        int progress_passed = 0;
1674        struct btrfs_disk_key disk_key;
1675
1676        parent_level = btrfs_header_level(parent);
1677
1678        WARN_ON(trans->transaction != root->fs_info->running_transaction);
1679        WARN_ON(trans->transid != root->fs_info->generation);
1680
1681        parent_nritems = btrfs_header_nritems(parent);
1682        blocksize = btrfs_level_size(root, parent_level - 1);
1683        end_slot = parent_nritems;
1684
1685        if (parent_nritems == 1)
1686                return 0;
1687
1688        btrfs_set_lock_blocking(parent);
1689
1690        for (i = start_slot; i < end_slot; i++) {
1691                int close = 1;
1692
1693                btrfs_node_key(parent, &disk_key, i);
1694                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1695                        continue;
1696
1697                progress_passed = 1;
1698                blocknr = btrfs_node_blockptr(parent, i);
1699                gen = btrfs_node_ptr_generation(parent, i);
1700                if (last_block == 0)
1701                        last_block = blocknr;
1702
1703                if (i > 0) {
1704                        other = btrfs_node_blockptr(parent, i - 1);
1705                        close = close_blocks(blocknr, other, blocksize);
1706                }
1707                if (!close && i < end_slot - 2) {
1708                        other = btrfs_node_blockptr(parent, i + 1);
1709                        close = close_blocks(blocknr, other, blocksize);
1710                }
1711                if (close) {
1712                        last_block = blocknr;
1713                        continue;
1714                }
1715
1716                cur = btrfs_find_tree_block(root, blocknr, blocksize);
1717                if (cur)
1718                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1719                else
1720                        uptodate = 0;
1721                if (!cur || !uptodate) {
1722                        if (!cur) {
1723                                cur = read_tree_block(root, blocknr,
1724                                                         blocksize, gen);
1725                                if (!cur || !extent_buffer_uptodate(cur)) {
1726                                        free_extent_buffer(cur);
1727                                        return -EIO;
1728                                }
1729                        } else if (!uptodate) {
1730                                err = btrfs_read_buffer(cur, gen);
1731                                if (err) {
1732                                        free_extent_buffer(cur);
1733                                        return err;
1734                                }
1735                        }
1736                }
1737                if (search_start == 0)
1738                        search_start = last_block;
1739
1740                btrfs_tree_lock(cur);
1741                btrfs_set_lock_blocking(cur);
1742                err = __btrfs_cow_block(trans, root, cur, parent, i,
1743                                        &cur, search_start,
1744                                        min(16 * blocksize,
1745                                            (end_slot - i) * blocksize));
1746                if (err) {
1747                        btrfs_tree_unlock(cur);
1748                        free_extent_buffer(cur);
1749                        break;
1750                }
1751                search_start = cur->start;
1752                last_block = cur->start;
1753                *last_ret = search_start;
1754                btrfs_tree_unlock(cur);
1755                free_extent_buffer(cur);
1756        }
1757        return err;
1758}
1759
1760/*
1761 * The leaf data grows from end-to-front in the node.
1762 * this returns the address of the start of the last item,
1763 * which is the stop of the leaf data stack
1764 */
1765static inline unsigned int leaf_data_end(struct btrfs_root *root,
1766                                         struct extent_buffer *leaf)
1767{
1768        u32 nr = btrfs_header_nritems(leaf);
1769        if (nr == 0)
1770                return BTRFS_LEAF_DATA_SIZE(root);
1771        return btrfs_item_offset_nr(leaf, nr - 1);
1772}
1773
1774
1775/*
1776 * search for key in the extent_buffer.  The items start at offset p,
1777 * and they are item_size apart.  There are 'max' items in p.
1778 *
1779 * the slot in the array is returned via slot, and it points to
1780 * the place where you would insert key if it is not found in
1781 * the array.
1782 *
1783 * slot may point to max if the key is bigger than all of the keys
1784 */
1785static noinline int generic_bin_search(struct extent_buffer *eb,
1786                                       unsigned long p,
1787                                       int item_size, struct btrfs_key *key,
1788                                       int max, int *slot)
1789{
1790        int low = 0;
1791        int high = max;
1792        int mid;
1793        int ret;
1794        struct btrfs_disk_key *tmp = NULL;
1795        struct btrfs_disk_key unaligned;
1796        unsigned long offset;
1797        char *kaddr = NULL;
1798        unsigned long map_start = 0;
1799        unsigned long map_len = 0;
1800        int err;
1801
1802        while (low < high) {
1803                mid = (low + high) / 2;
1804                offset = p + mid * item_size;
1805
1806                if (!kaddr || offset < map_start ||
1807                    (offset + sizeof(struct btrfs_disk_key)) >
1808                    map_start + map_len) {
1809
1810                        err = map_private_extent_buffer(eb, offset,
1811                                                sizeof(struct btrfs_disk_key),
1812                                                &kaddr, &map_start, &map_len);
1813
1814                        if (!err) {
1815                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1816                                                        map_start);
1817                        } else {
1818                                read_extent_buffer(eb, &unaligned,
1819                                                   offset, sizeof(unaligned));
1820                                tmp = &unaligned;
1821                        }
1822
1823                } else {
1824                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1825                                                        map_start);
1826                }
1827                ret = comp_keys(tmp, key);
1828
1829                if (ret < 0)
1830                        low = mid + 1;
1831                else if (ret > 0)
1832                        high = mid;
1833                else {
1834                        *slot = mid;
1835                        return 0;
1836                }
1837        }
1838        *slot = low;
1839        return 1;
1840}
1841
1842/*
1843 * simple bin_search frontend that does the right thing for
1844 * leaves vs nodes
1845 */
1846static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1847                      int level, int *slot)
1848{
1849        if (level == 0)
1850                return generic_bin_search(eb,
1851                                          offsetof(struct btrfs_leaf, items),
1852                                          sizeof(struct btrfs_item),
1853                                          key, btrfs_header_nritems(eb),
1854                                          slot);
1855        else
1856                return generic_bin_search(eb,
1857                                          offsetof(struct btrfs_node, ptrs),
1858                                          sizeof(struct btrfs_key_ptr),
1859                                          key, btrfs_header_nritems(eb),
1860                                          slot);
1861}
1862
1863int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1864                     int level, int *slot)
1865{
1866        return bin_search(eb, key, level, slot);
1867}
1868
1869static void root_add_used(struct btrfs_root *root, u32 size)
1870{
1871        spin_lock(&root->accounting_lock);
1872        btrfs_set_root_used(&root->root_item,
1873                            btrfs_root_used(&root->root_item) + size);
1874        spin_unlock(&root->accounting_lock);
1875}
1876
1877static void root_sub_used(struct btrfs_root *root, u32 size)
1878{
1879        spin_lock(&root->accounting_lock);
1880        btrfs_set_root_used(&root->root_item,
1881                            btrfs_root_used(&root->root_item) - size);
1882        spin_unlock(&root->accounting_lock);
1883}
1884
1885/* given a node and slot number, this reads the blocks it points to.  The
1886 * extent buffer is returned with a reference taken (but unlocked).
1887 * NULL is returned on error.
1888 */
1889static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1890                                   struct extent_buffer *parent, int slot)
1891{
1892        int level = btrfs_header_level(parent);
1893        struct extent_buffer *eb;
1894
1895        if (slot < 0)
1896                return NULL;
1897        if (slot >= btrfs_header_nritems(parent))
1898                return NULL;
1899
1900        BUG_ON(level == 0);
1901
1902        eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1903                             btrfs_level_size(root, level - 1),
1904                             btrfs_node_ptr_generation(parent, slot));
1905        if (eb && !extent_buffer_uptodate(eb)) {
1906                free_extent_buffer(eb);
1907                eb = NULL;
1908        }
1909
1910        return eb;
1911}
1912
1913/*
1914 * node level balancing, used to make sure nodes are in proper order for
1915 * item deletion.  We balance from the top down, so we have to make sure
1916 * that a deletion won't leave an node completely empty later on.
1917 */
1918static noinline int balance_level(struct btrfs_trans_handle *trans,
1919                         struct btrfs_root *root,
1920                         struct btrfs_path *path, int level)
1921{
1922        struct extent_buffer *right = NULL;
1923        struct extent_buffer *mid;
1924        struct extent_buffer *left = NULL;
1925        struct extent_buffer *parent = NULL;
1926        int ret = 0;
1927        int wret;
1928        int pslot;
1929        int orig_slot = path->slots[level];
1930        u64 orig_ptr;
1931
1932        if (level == 0)
1933                return 0;
1934
1935        mid = path->nodes[level];
1936
1937        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1938                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1939        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1940
1941        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1942
1943        if (level < BTRFS_MAX_LEVEL - 1) {
1944                parent = path->nodes[level + 1];
1945                pslot = path->slots[level + 1];
1946        }
1947
1948        /*
1949         * deal with the case where there is only one pointer in the root
1950         * by promoting the node below to a root
1951         */
1952        if (!parent) {
1953                struct extent_buffer *child;
1954
1955                if (btrfs_header_nritems(mid) != 1)
1956                        return 0;
1957
1958                /* promote the child to a root */
1959                child = read_node_slot(root, mid, 0);
1960                if (!child) {
1961                        ret = -EROFS;
1962                        btrfs_std_error(root->fs_info, ret);
1963                        goto enospc;
1964                }
1965
1966                btrfs_tree_lock(child);
1967                btrfs_set_lock_blocking(child);
1968                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1969                if (ret) {
1970                        btrfs_tree_unlock(child);
1971                        free_extent_buffer(child);
1972                        goto enospc;
1973                }
1974
1975                tree_mod_log_set_root_pointer(root, child, 1);
1976                rcu_assign_pointer(root->node, child);
1977
1978                add_root_to_dirty_list(root);
1979                btrfs_tree_unlock(child);
1980
1981                path->locks[level] = 0;
1982                path->nodes[level] = NULL;
1983                clean_tree_block(trans, root, mid);
1984                btrfs_tree_unlock(mid);
1985                /* once for the path */
1986                free_extent_buffer(mid);
1987
1988                root_sub_used(root, mid->len);
1989                btrfs_free_tree_block(trans, root, mid, 0, 1);
1990                /* once for the root ptr */
1991                free_extent_buffer_stale(mid);
1992                return 0;
1993        }
1994        if (btrfs_header_nritems(mid) >
1995            BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1996                return 0;
1997
1998        left = read_node_slot(root, parent, pslot - 1);
1999        if (left) {
2000                btrfs_tree_lock(left);
2001                btrfs_set_lock_blocking(left);
2002                wret = btrfs_cow_block(trans, root, left,
2003                                       parent, pslot - 1, &left);
2004                if (wret) {
2005                        ret = wret;
2006                        goto enospc;
2007                }
2008        }
2009        right = read_node_slot(root, parent, pslot + 1);
2010        if (right) {
2011                btrfs_tree_lock(right);
2012                btrfs_set_lock_blocking(right);
2013                wret = btrfs_cow_block(trans, root, right,
2014                                       parent, pslot + 1, &right);
2015                if (wret) {
2016                        ret = wret;
2017                        goto enospc;
2018                }
2019        }
2020
2021        /* first, try to make some room in the middle buffer */
2022        if (left) {
2023                orig_slot += btrfs_header_nritems(left);
2024                wret = push_node_left(trans, root, left, mid, 1);
2025                if (wret < 0)
2026                        ret = wret;
2027        }
2028
2029        /*
2030         * then try to empty the right most buffer into the middle
2031         */
2032        if (right) {
2033                wret = push_node_left(trans, root, mid, right, 1);
2034                if (wret < 0 && wret != -ENOSPC)
2035                        ret = wret;
2036                if (btrfs_header_nritems(right) == 0) {
2037                        clean_tree_block(trans, root, right);
2038                        btrfs_tree_unlock(right);
2039                        del_ptr(root, path, level + 1, pslot + 1);
2040                        root_sub_used(root, right->len);
2041                        btrfs_free_tree_block(trans, root, right, 0, 1);
2042                        free_extent_buffer_stale(right);
2043                        right = NULL;
2044                } else {
2045                        struct btrfs_disk_key right_key;
2046                        btrfs_node_key(right, &right_key, 0);
2047                        tree_mod_log_set_node_key(root->fs_info, parent,
2048                                                  pslot + 1, 0);
2049                        btrfs_set_node_key(parent, &right_key, pslot + 1);
2050                        btrfs_mark_buffer_dirty(parent);
2051                }
2052        }
2053        if (btrfs_header_nritems(mid) == 1) {
2054                /*
2055                 * we're not allowed to leave a node with one item in the
2056                 * tree during a delete.  A deletion from lower in the tree
2057                 * could try to delete the only pointer in this node.
2058                 * So, pull some keys from the left.
2059                 * There has to be a left pointer at this point because
2060                 * otherwise we would have pulled some pointers from the
2061                 * right
2062                 */
2063                if (!left) {
2064                        ret = -EROFS;
2065                        btrfs_std_error(root->fs_info, ret);
2066                        goto enospc;
2067                }
2068                wret = balance_node_right(trans, root, mid, left);
2069                if (wret < 0) {
2070                        ret = wret;
2071                        goto enospc;
2072                }
2073                if (wret == 1) {
2074                        wret = push_node_left(trans, root, left, mid, 1);
2075                        if (wret < 0)
2076                                ret = wret;
2077                }
2078                BUG_ON(wret == 1);
2079        }
2080        if (btrfs_header_nritems(mid) == 0) {
2081                clean_tree_block(trans, root, mid);
2082                btrfs_tree_unlock(mid);
2083                del_ptr(root, path, level + 1, pslot);
2084                root_sub_used(root, mid->len);
2085                btrfs_free_tree_block(trans, root, mid, 0, 1);
2086                free_extent_buffer_stale(mid);
2087                mid = NULL;
2088        } else {
2089                /* update the parent key to reflect our changes */
2090                struct btrfs_disk_key mid_key;
2091                btrfs_node_key(mid, &mid_key, 0);
2092                tree_mod_log_set_node_key(root->fs_info, parent,
2093                                          pslot, 0);
2094                btrfs_set_node_key(parent, &mid_key, pslot);
2095                btrfs_mark_buffer_dirty(parent);
2096        }
2097
2098        /* update the path */
2099        if (left) {
2100                if (btrfs_header_nritems(left) > orig_slot) {
2101                        extent_buffer_get(left);
2102                        /* left was locked after cow */
2103                        path->nodes[level] = left;
2104                        path->slots[level + 1] -= 1;
2105                        path->slots[level] = orig_slot;
2106                        if (mid) {
2107                                btrfs_tree_unlock(mid);
2108                                free_extent_buffer(mid);
2109                        }
2110                } else {
2111                        orig_slot -= btrfs_header_nritems(left);
2112                        path->slots[level] = orig_slot;
2113                }
2114        }
2115        /* double check we haven't messed things up */
2116        if (orig_ptr !=
2117            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2118                BUG();
2119enospc:
2120        if (right) {
2121                btrfs_tree_unlock(right);
2122                free_extent_buffer(right);
2123        }
2124        if (left) {
2125                if (path->nodes[level] != left)
2126                        btrfs_tree_unlock(left);
2127                free_extent_buffer(left);
2128        }
2129        return ret;
2130}
2131
2132/* Node balancing for insertion.  Here we only split or push nodes around
2133 * when they are completely full.  This is also done top down, so we
2134 * have to be pessimistic.
2135 */
2136static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2137                                          struct btrfs_root *root,
2138                                          struct btrfs_path *path, int level)
2139{
2140        struct extent_buffer *right = NULL;
2141        struct extent_buffer *mid;
2142        struct extent_buffer *left = NULL;
2143        struct extent_buffer *parent = NULL;
2144        int ret = 0;
2145        int wret;
2146        int pslot;
2147        int orig_slot = path->slots[level];
2148
2149        if (level == 0)
2150                return 1;
2151
2152        mid = path->nodes[level];
2153        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2154
2155        if (level < BTRFS_MAX_LEVEL - 1) {
2156                parent = path->nodes[level + 1];
2157                pslot = path->slots[level + 1];
2158        }
2159
2160        if (!parent)
2161                return 1;
2162
2163        left = read_node_slot(root, parent, pslot - 1);
2164
2165        /* first, try to make some room in the middle buffer */
2166        if (left) {
2167                u32 left_nr;
2168
2169                btrfs_tree_lock(left);
2170                btrfs_set_lock_blocking(left);
2171
2172                left_nr = btrfs_header_nritems(left);
2173                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2174                        wret = 1;
2175                } else {
2176                        ret = btrfs_cow_block(trans, root, left, parent,
2177                                              pslot - 1, &left);
2178                        if (ret)
2179                                wret = 1;
2180                        else {
2181                                wret = push_node_left(trans, root,
2182                                                      left, mid, 0);
2183                        }
2184                }
2185                if (wret < 0)
2186                        ret = wret;
2187                if (wret == 0) {
2188                        struct btrfs_disk_key disk_key;
2189                        orig_slot += left_nr;
2190                        btrfs_node_key(mid, &disk_key, 0);
2191                        tree_mod_log_set_node_key(root->fs_info, parent,
2192                                                  pslot, 0);
2193                        btrfs_set_node_key(parent, &disk_key, pslot);
2194                        btrfs_mark_buffer_dirty(parent);
2195                        if (btrfs_header_nritems(left) > orig_slot) {
2196                                path->nodes[level] = left;
2197                                path->slots[level + 1] -= 1;
2198                                path->slots[level] = orig_slot;
2199                                btrfs_tree_unlock(mid);
2200                                free_extent_buffer(mid);
2201                        } else {
2202                                orig_slot -=
2203                                        btrfs_header_nritems(left);
2204                                path->slots[level] = orig_slot;
2205                                btrfs_tree_unlock(left);
2206                                free_extent_buffer(left);
2207                        }
2208                        return 0;
2209                }
2210                btrfs_tree_unlock(left);
2211                free_extent_buffer(left);
2212        }
2213        right = read_node_slot(root, parent, pslot + 1);
2214
2215        /*
2216         * then try to empty the right most buffer into the middle
2217         */
2218        if (right) {
2219                u32 right_nr;
2220
2221                btrfs_tree_lock(right);
2222                btrfs_set_lock_blocking(right);
2223
2224                right_nr = btrfs_header_nritems(right);
2225                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2226                        wret = 1;
2227                } else {
2228                        ret = btrfs_cow_block(trans, root, right,
2229                                              parent, pslot + 1,
2230                                              &right);
2231                        if (ret)
2232                                wret = 1;
2233                        else {
2234                                wret = balance_node_right(trans, root,
2235                                                          right, mid);
2236                        }
2237                }
2238                if (wret < 0)
2239                        ret = wret;
2240                if (wret == 0) {
2241                        struct btrfs_disk_key disk_key;
2242
2243                        btrfs_node_key(right, &disk_key, 0);
2244                        tree_mod_log_set_node_key(root->fs_info, parent,
2245                                                  pslot + 1, 0);
2246                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2247                        btrfs_mark_buffer_dirty(parent);
2248
2249                        if (btrfs_header_nritems(mid) <= orig_slot) {
2250                                path->nodes[level] = right;
2251                                path->slots[level + 1] += 1;
2252                                path->slots[level] = orig_slot -
2253                                        btrfs_header_nritems(mid);
2254                                btrfs_tree_unlock(mid);
2255                                free_extent_buffer(mid);
2256                        } else {
2257                                btrfs_tree_unlock(right);
2258                                free_extent_buffer(right);
2259                        }
2260                        return 0;
2261                }
2262                btrfs_tree_unlock(right);
2263                free_extent_buffer(right);
2264        }
2265        return 1;
2266}
2267
2268/*
2269 * readahead one full node of leaves, finding things that are close
2270 * to the block in 'slot', and triggering ra on them.
2271 */
2272static void reada_for_search(struct btrfs_root *root,
2273                             struct btrfs_path *path,
2274                             int level, int slot, u64 objectid)
2275{
2276        struct extent_buffer *node;
2277        struct btrfs_disk_key disk_key;
2278        u32 nritems;
2279        u64 search;
2280        u64 target;
2281        u64 nread = 0;
2282        u64 gen;
2283        int direction = path->reada;
2284        struct extent_buffer *eb;
2285        u32 nr;
2286        u32 blocksize;
2287        u32 nscan = 0;
2288
2289        if (level != 1)
2290                return;
2291
2292        if (!path->nodes[level])
2293                return;
2294
2295        node = path->nodes[level];
2296
2297        search = btrfs_node_blockptr(node, slot);
2298        blocksize = btrfs_level_size(root, level - 1);
2299        eb = btrfs_find_tree_block(root, search, blocksize);
2300        if (eb) {
2301                free_extent_buffer(eb);
2302                return;
2303        }
2304
2305        target = search;
2306
2307        nritems = btrfs_header_nritems(node);
2308        nr = slot;
2309
2310        while (1) {
2311                if (direction < 0) {
2312                        if (nr == 0)
2313                                break;
2314                        nr--;
2315                } else if (direction > 0) {
2316                        nr++;
2317                        if (nr >= nritems)
2318                                break;
2319                }
2320                if (path->reada < 0 && objectid) {
2321                        btrfs_node_key(node, &disk_key, nr);
2322                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2323                                break;
2324                }
2325                search = btrfs_node_blockptr(node, nr);
2326                if ((search <= target && target - search <= 65536) ||
2327                    (search > target && search - target <= 65536)) {
2328                        gen = btrfs_node_ptr_generation(node, nr);
2329                        readahead_tree_block(root, search, blocksize, gen);
2330                        nread += blocksize;
2331                }
2332                nscan++;
2333                if ((nread > 65536 || nscan > 32))
2334                        break;
2335        }
2336}
2337
2338static noinline void reada_for_balance(struct btrfs_root *root,
2339                                       struct btrfs_path *path, int level)
2340{
2341        int slot;
2342        int nritems;
2343        struct extent_buffer *parent;
2344        struct extent_buffer *eb;
2345        u64 gen;
2346        u64 block1 = 0;
2347        u64 block2 = 0;
2348        int blocksize;
2349
2350        parent = path->nodes[level + 1];
2351        if (!parent)
2352                return;
2353
2354        nritems = btrfs_header_nritems(parent);
2355        slot = path->slots[level + 1];
2356        blocksize = btrfs_level_size(root, level);
2357
2358        if (slot > 0) {
2359                block1 = btrfs_node_blockptr(parent, slot - 1);
2360                gen = btrfs_node_ptr_generation(parent, slot - 1);
2361                eb = btrfs_find_tree_block(root, block1, blocksize);
2362                /*
2363                 * if we get -eagain from btrfs_buffer_uptodate, we
2364                 * don't want to return eagain here.  That will loop
2365                 * forever
2366                 */
2367                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2368                        block1 = 0;
2369                free_extent_buffer(eb);
2370        }
2371        if (slot + 1 < nritems) {
2372                block2 = btrfs_node_blockptr(parent, slot + 1);
2373                gen = btrfs_node_ptr_generation(parent, slot + 1);
2374                eb = btrfs_find_tree_block(root, block2, blocksize);
2375                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2376                        block2 = 0;
2377                free_extent_buffer(eb);
2378        }
2379
2380        if (block1)
2381                readahead_tree_block(root, block1, blocksize, 0);
2382        if (block2)
2383                readahead_tree_block(root, block2, blocksize, 0);
2384}
2385
2386
2387/*
2388 * when we walk down the tree, it is usually safe to unlock the higher layers
2389 * in the tree.  The exceptions are when our path goes through slot 0, because
2390 * operations on the tree might require changing key pointers higher up in the
2391 * tree.
2392 *
2393 * callers might also have set path->keep_locks, which tells this code to keep
2394 * the lock if the path points to the last slot in the block.  This is part of
2395 * walking through the tree, and selecting the next slot in the higher block.
2396 *
2397 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2398 * if lowest_unlock is 1, level 0 won't be unlocked
2399 */
2400static noinline void unlock_up(struct btrfs_path *path, int level,
2401                               int lowest_unlock, int min_write_lock_level,
2402                               int *write_lock_level)
2403{
2404        int i;
2405        int skip_level = level;
2406        int no_skips = 0;
2407        struct extent_buffer *t;
2408
2409        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2410                if (!path->nodes[i])
2411                        break;
2412                if (!path->locks[i])
2413                        break;
2414                if (!no_skips && path->slots[i] == 0) {
2415                        skip_level = i + 1;
2416                        continue;
2417                }
2418                if (!no_skips && path->keep_locks) {
2419                        u32 nritems;
2420                        t = path->nodes[i];
2421                        nritems = btrfs_header_nritems(t);
2422                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2423                                skip_level = i + 1;
2424                                continue;
2425                        }
2426                }
2427                if (skip_level < i && i >= lowest_unlock)
2428                        no_skips = 1;
2429
2430                t = path->nodes[i];
2431                if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2432                        btrfs_tree_unlock_rw(t, path->locks[i]);
2433                        path->locks[i] = 0;
2434                        if (write_lock_level &&
2435                            i > min_write_lock_level &&
2436                            i <= *write_lock_level) {
2437                                *write_lock_level = i - 1;
2438                        }
2439                }
2440        }
2441}
2442
2443/*
2444 * This releases any locks held in the path starting at level and
2445 * going all the way up to the root.
2446 *
2447 * btrfs_search_slot will keep the lock held on higher nodes in a few
2448 * corner cases, such as COW of the block at slot zero in the node.  This
2449 * ignores those rules, and it should only be called when there are no
2450 * more updates to be done higher up in the tree.
2451 */
2452noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2453{
2454        int i;
2455
2456        if (path->keep_locks)
2457                return;
2458
2459        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2460                if (!path->nodes[i])
2461                        continue;
2462                if (!path->locks[i])
2463                        continue;
2464                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2465                path->locks[i] = 0;
2466        }
2467}
2468
2469/*
2470 * helper function for btrfs_search_slot.  The goal is to find a block
2471 * in cache without setting the path to blocking.  If we find the block
2472 * we return zero and the path is unchanged.
2473 *
2474 * If we can't find the block, we set the path blocking and do some
2475 * reada.  -EAGAIN is returned and the search must be repeated.
2476 */
2477static int
2478read_block_for_search(struct btrfs_trans_handle *trans,
2479                       struct btrfs_root *root, struct btrfs_path *p,
2480                       struct extent_buffer **eb_ret, int level, int slot,
2481                       struct btrfs_key *key, u64 time_seq)
2482{
2483        u64 blocknr;
2484        u64 gen;
2485        u32 blocksize;
2486        struct extent_buffer *b = *eb_ret;
2487        struct extent_buffer *tmp;
2488        int ret;
2489
2490        blocknr = btrfs_node_blockptr(b, slot);
2491        gen = btrfs_node_ptr_generation(b, slot);
2492        blocksize = btrfs_level_size(root, level - 1);
2493
2494        tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2495        if (tmp) {
2496                /* first we do an atomic uptodate check */
2497                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2498                        *eb_ret = tmp;
2499                        return 0;
2500                }
2501
2502                /* the pages were up to date, but we failed
2503                 * the generation number check.  Do a full
2504                 * read for the generation number that is correct.
2505                 * We must do this without dropping locks so
2506                 * we can trust our generation number
2507                 */
2508                btrfs_set_path_blocking(p);
2509
2510                /* now we're allowed to do a blocking uptodate check */
2511                ret = btrfs_read_buffer(tmp, gen);
2512                if (!ret) {
2513                        *eb_ret = tmp;
2514                        return 0;
2515                }
2516                free_extent_buffer(tmp);
2517                btrfs_release_path(p);
2518                return -EIO;
2519        }
2520
2521        /*
2522         * reduce lock contention at high levels
2523         * of the btree by dropping locks before
2524         * we read.  Don't release the lock on the current
2525         * level because we need to walk this node to figure
2526         * out which blocks to read.
2527         */
2528        btrfs_unlock_up_safe(p, level + 1);
2529        btrfs_set_path_blocking(p);
2530
2531        free_extent_buffer(tmp);
2532        if (p->reada)
2533                reada_for_search(root, p, level, slot, key->objectid);
2534
2535        btrfs_release_path(p);
2536
2537        ret = -EAGAIN;
2538        tmp = read_tree_block(root, blocknr, blocksize, 0);
2539        if (tmp) {
2540                /*
2541                 * If the read above didn't mark this buffer up to date,
2542                 * it will never end up being up to date.  Set ret to EIO now
2543                 * and give up so that our caller doesn't loop forever
2544                 * on our EAGAINs.
2545                 */
2546                if (!btrfs_buffer_uptodate(tmp, 0, 0))
2547                        ret = -EIO;
2548                free_extent_buffer(tmp);
2549        }
2550        return ret;
2551}
2552
2553/*
2554 * helper function for btrfs_search_slot.  This does all of the checks
2555 * for node-level blocks and does any balancing required based on
2556 * the ins_len.
2557 *
2558 * If no extra work was required, zero is returned.  If we had to
2559 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2560 * start over
2561 */
2562static int
2563setup_nodes_for_search(struct btrfs_trans_handle *trans,
2564                       struct btrfs_root *root, struct btrfs_path *p,
2565                       struct extent_buffer *b, int level, int ins_len,
2566                       int *write_lock_level)
2567{
2568        int ret;
2569        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2570            BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2571                int sret;
2572
2573                if (*write_lock_level < level + 1) {
2574                        *write_lock_level = level + 1;
2575                        btrfs_release_path(p);
2576                        goto again;
2577                }
2578
2579                btrfs_set_path_blocking(p);
2580                reada_for_balance(root, p, level);
2581                sret = split_node(trans, root, p, level);
2582                btrfs_clear_path_blocking(p, NULL, 0);
2583
2584                BUG_ON(sret > 0);
2585                if (sret) {
2586                        ret = sret;
2587                        goto done;
2588                }
2589                b = p->nodes[level];
2590        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2591                   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2592                int sret;
2593
2594                if (*write_lock_level < level + 1) {
2595                        *write_lock_level = level + 1;
2596                        btrfs_release_path(p);
2597                        goto again;
2598                }
2599
2600                btrfs_set_path_blocking(p);
2601                reada_for_balance(root, p, level);
2602                sret = balance_level(trans, root, p, level);
2603                btrfs_clear_path_blocking(p, NULL, 0);
2604
2605                if (sret) {
2606                        ret = sret;
2607                        goto done;
2608                }
2609                b = p->nodes[level];
2610                if (!b) {
2611                        btrfs_release_path(p);
2612                        goto again;
2613                }
2614                BUG_ON(btrfs_header_nritems(b) == 1);
2615        }
2616        return 0;
2617
2618again:
2619        ret = -EAGAIN;
2620done:
2621        return ret;
2622}
2623
2624static void key_search_validate(struct extent_buffer *b,
2625                                struct btrfs_key *key,
2626                                int level)
2627{
2628#ifdef CONFIG_BTRFS_ASSERT
2629        struct btrfs_disk_key disk_key;
2630
2631        btrfs_cpu_key_to_disk(&disk_key, key);
2632
2633        if (level == 0)
2634                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2635                    offsetof(struct btrfs_leaf, items[0].key),
2636                    sizeof(disk_key)));
2637        else
2638                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2639                    offsetof(struct btrfs_node, ptrs[0].key),
2640                    sizeof(disk_key)));
2641#endif
2642}
2643
2644static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2645                      int level, int *prev_cmp, int *slot)
2646{
2647        if (*prev_cmp != 0) {
2648                *prev_cmp = bin_search(b, key, level, slot);
2649                return *prev_cmp;
2650        }
2651
2652        key_search_validate(b, key, level);
2653        *slot = 0;
2654
2655        return 0;
2656}
2657
2658int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2659                u64 iobjectid, u64 ioff, u8 key_type,
2660                struct btrfs_key *found_key)
2661{
2662        int ret;
2663        struct btrfs_key key;
2664        struct extent_buffer *eb;
2665        struct btrfs_path *path;
2666
2667        key.type = key_type;
2668        key.objectid = iobjectid;
2669        key.offset = ioff;
2670
2671        if (found_path == NULL) {
2672                path = btrfs_alloc_path();
2673                if (!path)
2674                        return -ENOMEM;
2675        } else
2676                path = found_path;
2677
2678        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2679        if ((ret < 0) || (found_key == NULL)) {
2680                if (path != found_path)
2681                        btrfs_free_path(path);
2682                return ret;
2683        }
2684
2685        eb = path->nodes[0];
2686        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2687                ret = btrfs_next_leaf(fs_root, path);
2688                if (ret)
2689                        return ret;
2690                eb = path->nodes[0];
2691        }
2692
2693        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2694        if (found_key->type != key.type ||
2695                        found_key->objectid != key.objectid)
2696                return 1;
2697
2698        return 0;
2699}
2700
2701/*
2702 * look for key in the tree.  path is filled in with nodes along the way
2703 * if key is found, we return zero and you can find the item in the leaf
2704 * level of the path (level 0)
2705 *
2706 * If the key isn't found, the path points to the slot where it should
2707 * be inserted, and 1 is returned.  If there are other errors during the
2708 * search a negative error number is returned.
2709 *
2710 * if ins_len > 0, nodes and leaves will be split as we walk down the
2711 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2712 * possible)
2713 */
2714int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2715                      *root, struct btrfs_key *key, struct btrfs_path *p, int
2716                      ins_len, int cow)
2717{
2718        struct extent_buffer *b;
2719        int slot;
2720        int ret;
2721        int err;
2722        int level;
2723        int lowest_unlock = 1;
2724        int root_lock;
2725        /* everything at write_lock_level or lower must be write locked */
2726        int write_lock_level = 0;
2727        u8 lowest_level = 0;
2728        int min_write_lock_level;
2729        int prev_cmp;
2730
2731        lowest_level = p->lowest_level;
2732        WARN_ON(lowest_level && ins_len > 0);
2733        WARN_ON(p->nodes[0] != NULL);
2734        BUG_ON(!cow && ins_len);
2735
2736        if (ins_len < 0) {
2737                lowest_unlock = 2;
2738
2739                /* when we are removing items, we might have to go up to level
2740                 * two as we update tree pointers  Make sure we keep write
2741                 * for those levels as well
2742                 */
2743                write_lock_level = 2;
2744        } else if (ins_len > 0) {
2745                /*
2746                 * for inserting items, make sure we have a write lock on
2747                 * level 1 so we can update keys
2748                 */
2749                write_lock_level = 1;
2750        }
2751
2752        if (!cow)
2753                write_lock_level = -1;
2754
2755        if (cow && (p->keep_locks || p->lowest_level))
2756                write_lock_level = BTRFS_MAX_LEVEL;
2757
2758        min_write_lock_level = write_lock_level;
2759
2760again:
2761        prev_cmp = -1;
2762        /*
2763         * we try very hard to do read locks on the root
2764         */
2765        root_lock = BTRFS_READ_LOCK;
2766        level = 0;
2767        if (p->search_commit_root) {
2768                /*
2769                 * the commit roots are read only
2770                 * so we always do read locks
2771                 */
2772                b = root->commit_root;
2773                extent_buffer_get(b);
2774                level = btrfs_header_level(b);
2775                if (!p->skip_locking)
2776                        btrfs_tree_read_lock(b);
2777        } else {
2778                if (p->skip_locking) {
2779                        b = btrfs_root_node(root);
2780                        level = btrfs_header_level(b);
2781                } else {
2782                        /* we don't know the level of the root node
2783                         * until we actually have it read locked
2784                         */
2785                        b = btrfs_read_lock_root_node(root);
2786                        level = btrfs_header_level(b);
2787                        if (level <= write_lock_level) {
2788                                /* whoops, must trade for write lock */
2789                                btrfs_tree_read_unlock(b);
2790                                free_extent_buffer(b);
2791                                b = btrfs_lock_root_node(root);
2792                                root_lock = BTRFS_WRITE_LOCK;
2793
2794                                /* the level might have changed, check again */
2795                                level = btrfs_header_level(b);
2796                        }
2797                }
2798        }
2799        p->nodes[level] = b;
2800        if (!p->skip_locking)
2801                p->locks[level] = root_lock;
2802
2803        while (b) {
2804                level = btrfs_header_level(b);
2805
2806                /*
2807                 * setup the path here so we can release it under lock
2808                 * contention with the cow code
2809                 */
2810                if (cow) {
2811                        /*
2812                         * if we don't really need to cow this block
2813                         * then we don't want to set the path blocking,
2814                         * so we test it here
2815                         */
2816                        if (!should_cow_block(trans, root, b))
2817                                goto cow_done;
2818
2819                        btrfs_set_path_blocking(p);
2820
2821                        /*
2822                         * must have write locks on this node and the
2823                         * parent
2824                         */
2825                        if (level > write_lock_level ||
2826                            (level + 1 > write_lock_level &&
2827                            level + 1 < BTRFS_MAX_LEVEL &&
2828                            p->nodes[level + 1])) {
2829                                write_lock_level = level + 1;
2830                                btrfs_release_path(p);
2831                                goto again;
2832                        }
2833
2834                        err = btrfs_cow_block(trans, root, b,
2835                                              p->nodes[level + 1],
2836                                              p->slots[level + 1], &b);
2837                        if (err) {
2838                                ret = err;
2839                                goto done;
2840                        }
2841                }
2842cow_done:
2843                p->nodes[level] = b;
2844                btrfs_clear_path_blocking(p, NULL, 0);
2845
2846                /*
2847                 * we have a lock on b and as long as we aren't changing
2848                 * the tree, there is no way to for the items in b to change.
2849                 * It is safe to drop the lock on our parent before we
2850                 * go through the expensive btree search on b.
2851                 *
2852                 * If we're inserting or deleting (ins_len != 0), then we might
2853                 * be changing slot zero, which may require changing the parent.
2854                 * So, we can't drop the lock until after we know which slot
2855                 * we're operating on.
2856                 */
2857                if (!ins_len && !p->keep_locks) {
2858                        int u = level + 1;
2859
2860                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2861                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2862                                p->locks[u] = 0;
2863                        }
2864                }
2865
2866                ret = key_search(b, key, level, &prev_cmp, &slot);
2867
2868                if (level != 0) {
2869                        int dec = 0;
2870                        if (ret && slot > 0) {
2871                                dec = 1;
2872                                slot -= 1;
2873                        }
2874                        p->slots[level] = slot;
2875                        err = setup_nodes_for_search(trans, root, p, b, level,
2876                                             ins_len, &write_lock_level);
2877                        if (err == -EAGAIN)
2878                                goto again;
2879                        if (err) {
2880                                ret = err;
2881                                goto done;
2882                        }
2883                        b = p->nodes[level];
2884                        slot = p->slots[level];
2885
2886                        /*
2887                         * slot 0 is special, if we change the key
2888                         * we have to update the parent pointer
2889                         * which means we must have a write lock
2890                         * on the parent
2891                         */
2892                        if (slot == 0 && ins_len &&
2893                            write_lock_level < level + 1) {
2894                                write_lock_level = level + 1;
2895                                btrfs_release_path(p);
2896                                goto again;
2897                        }
2898
2899                        unlock_up(p, level, lowest_unlock,
2900                                  min_write_lock_level, &write_lock_level);
2901
2902                        if (level == lowest_level) {
2903                                if (dec)
2904                                        p->slots[level]++;
2905                                goto done;
2906                        }
2907
2908                        err = read_block_for_search(trans, root, p,
2909                                                    &b, level, slot, key, 0);
2910                        if (err == -EAGAIN)
2911                                goto again;
2912                        if (err) {
2913                                ret = err;
2914                                goto done;
2915                        }
2916
2917                        if (!p->skip_locking) {
2918                                level = btrfs_header_level(b);
2919                                if (level <= write_lock_level) {
2920                                        err = btrfs_try_tree_write_lock(b);
2921                                        if (!err) {
2922                                                btrfs_set_path_blocking(p);
2923                                                btrfs_tree_lock(b);
2924                                                btrfs_clear_path_blocking(p, b,
2925                                                                  BTRFS_WRITE_LOCK);
2926                                        }
2927                                        p->locks[level] = BTRFS_WRITE_LOCK;
2928                                } else {
2929                                        err = btrfs_try_tree_read_lock(b);
2930                                        if (!err) {
2931                                                btrfs_set_path_blocking(p);
2932                                                btrfs_tree_read_lock(b);
2933                                                btrfs_clear_path_blocking(p, b,
2934                                                                  BTRFS_READ_LOCK);
2935                                        }
2936                                        p->locks[level] = BTRFS_READ_LOCK;
2937                                }
2938                                p->nodes[level] = b;
2939                        }
2940                } else {
2941                        p->slots[level] = slot;
2942                        if (ins_len > 0 &&
2943                            btrfs_leaf_free_space(root, b) < ins_len) {
2944                                if (write_lock_level < 1) {
2945                                        write_lock_level = 1;
2946                                        btrfs_release_path(p);
2947                                        goto again;
2948                                }
2949
2950                                btrfs_set_path_blocking(p);
2951                                err = split_leaf(trans, root, key,
2952                                                 p, ins_len, ret == 0);
2953                                btrfs_clear_path_blocking(p, NULL, 0);
2954
2955                                BUG_ON(err > 0);
2956                                if (err) {
2957                                        ret = err;
2958                                        goto done;
2959                                }
2960                        }
2961                        if (!p->search_for_split)
2962                                unlock_up(p, level, lowest_unlock,
2963                                          min_write_lock_level, &write_lock_level);
2964                        goto done;
2965                }
2966        }
2967        ret = 1;
2968done:
2969        /*
2970         * we don't really know what they plan on doing with the path
2971         * from here on, so for now just mark it as blocking
2972         */
2973        if (!p->leave_spinning)
2974                btrfs_set_path_blocking(p);
2975        if (ret < 0)
2976                btrfs_release_path(p);
2977        return ret;
2978}
2979
2980/*
2981 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2982 * current state of the tree together with the operations recorded in the tree
2983 * modification log to search for the key in a previous version of this tree, as
2984 * denoted by the time_seq parameter.
2985 *
2986 * Naturally, there is no support for insert, delete or cow operations.
2987 *
2988 * The resulting path and return value will be set up as if we called
2989 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2990 */
2991int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2992                          struct btrfs_path *p, u64 time_seq)
2993{
2994        struct extent_buffer *b;
2995        int slot;
2996        int ret;
2997        int err;
2998        int level;
2999        int lowest_unlock = 1;
3000        u8 lowest_level = 0;
3001        int prev_cmp = -1;
3002
3003        lowest_level = p->lowest_level;
3004        WARN_ON(p->nodes[0] != NULL);
3005
3006        if (p->search_commit_root) {
3007                BUG_ON(time_seq);
3008                return btrfs_search_slot(NULL, root, key, p, 0, 0);
3009        }
3010
3011again:
3012        b = get_old_root(root, time_seq);
3013        level = btrfs_header_level(b);
3014        p->locks[level] = BTRFS_READ_LOCK;
3015
3016        while (b) {
3017                level = btrfs_header_level(b);
3018                p->nodes[level] = b;
3019                btrfs_clear_path_blocking(p, NULL, 0);
3020
3021                /*
3022                 * we have a lock on b and as long as we aren't changing
3023                 * the tree, there is no way to for the items in b to change.
3024                 * It is safe to drop the lock on our parent before we
3025                 * go through the expensive btree search on b.
3026                 */
3027                btrfs_unlock_up_safe(p, level + 1);
3028
3029                /*
3030                 * Since we can unwind eb's we want to do a real search every
3031                 * time.
3032                 */
3033                prev_cmp = -1;
3034                ret = key_search(b, key, level, &prev_cmp, &slot);
3035
3036                if (level != 0) {
3037                        int dec = 0;
3038                        if (ret && slot > 0) {
3039                                dec = 1;
3040                                slot -= 1;
3041                        }
3042                        p->slots[level] = slot;
3043                        unlock_up(p, level, lowest_unlock, 0, NULL);
3044
3045                        if (level == lowest_level) {
3046                                if (dec)
3047                                        p->slots[level]++;
3048                                goto done;
3049                        }
3050
3051                        err = read_block_for_search(NULL, root, p, &b, level,
3052                                                    slot, key, time_seq);
3053                        if (err == -EAGAIN)
3054                                goto again;
3055                        if (err) {
3056                                ret = err;
3057                                goto done;
3058                        }
3059
3060                        level = btrfs_header_level(b);
3061                        err = btrfs_try_tree_read_lock(b);
3062                        if (!err) {
3063                                btrfs_set_path_blocking(p);
3064                                btrfs_tree_read_lock(b);
3065                                btrfs_clear_path_blocking(p, b,
3066                                                          BTRFS_READ_LOCK);
3067                        }
3068                        b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3069                        if (!b) {
3070                                ret = -ENOMEM;
3071                                goto done;
3072                        }
3073                        p->locks[level] = BTRFS_READ_LOCK;
3074                        p->nodes[level] = b;
3075                } else {
3076                        p->slots[level] = slot;
3077                        unlock_up(p, level, lowest_unlock, 0, NULL);
3078                        goto done;
3079                }
3080        }
3081        ret = 1;
3082done:
3083        if (!p->leave_spinning)
3084                btrfs_set_path_blocking(p);
3085        if (ret < 0)
3086                btrfs_release_path(p);
3087
3088        return ret;
3089}
3090
3091/*
3092 * helper to use instead of search slot if no exact match is needed but
3093 * instead the next or previous item should be returned.
3094 * When find_higher is true, the next higher item is returned, the next lower
3095 * otherwise.
3096 * When return_any and find_higher are both true, and no higher item is found,
3097 * return the next lower instead.
3098 * When return_any is true and find_higher is false, and no lower item is found,
3099 * return the next higher instead.
3100 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3101 * < 0 on error
3102 */
3103int btrfs_search_slot_for_read(struct btrfs_root *root,
3104                               struct btrfs_key *key, struct btrfs_path *p,
3105                               int find_higher, int return_any)
3106{
3107        int ret;
3108        struct extent_buffer *leaf;
3109
3110again:
3111        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3112        if (ret <= 0)
3113                return ret;
3114        /*
3115         * a return value of 1 means the path is at the position where the
3116         * item should be inserted. Normally this is the next bigger item,
3117         * but in case the previous item is the last in a leaf, path points
3118         * to the first free slot in the previous leaf, i.e. at an invalid
3119         * item.
3120         */
3121        leaf = p->nodes[0];
3122
3123        if (find_higher) {
3124                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3125                        ret = btrfs_next_leaf(root, p);
3126                        if (ret <= 0)
3127                                return ret;
3128                        if (!return_any)
3129                                return 1;
3130                        /*
3131                         * no higher item found, return the next
3132                         * lower instead
3133                         */
3134                        return_any = 0;
3135                        find_higher = 0;
3136                        btrfs_release_path(p);
3137                        goto again;
3138                }
3139        } else {
3140                if (p->slots[0] == 0) {
3141                        ret = btrfs_prev_leaf(root, p);
3142                        if (ret < 0)
3143                                return ret;
3144                        if (!ret) {
3145                                leaf = p->nodes[0];
3146                                if (p->slots[0] == btrfs_header_nritems(leaf))
3147                                        p->slots[0]--;
3148                                return 0;
3149                        }
3150                        if (!return_any)
3151                                return 1;
3152                        /*
3153                         * no lower item found, return the next
3154                         * higher instead
3155                         */
3156                        return_any = 0;
3157                        find_higher = 1;
3158                        btrfs_release_path(p);
3159                        goto again;
3160                } else {
3161                        --p->slots[0];
3162                }
3163        }
3164        return 0;
3165}
3166
3167/*
3168 * adjust the pointers going up the tree, starting at level
3169 * making sure the right key of each node is points to 'key'.
3170 * This is used after shifting pointers to the left, so it stops
3171 * fixing up pointers when a given leaf/node is not in slot 0 of the
3172 * higher levels
3173 *
3174 */
3175static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3176                           struct btrfs_disk_key *key, int level)
3177{
3178        int i;
3179        struct extent_buffer *t;
3180
3181        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3182                int tslot = path->slots[i];
3183                if (!path->nodes[i])
3184                        break;
3185                t = path->nodes[i];
3186                tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3187                btrfs_set_node_key(t, key, tslot);
3188                btrfs_mark_buffer_dirty(path->nodes[i]);
3189                if (tslot != 0)
3190                        break;
3191        }
3192}
3193
3194/*
3195 * update item key.
3196 *
3197 * This function isn't completely safe. It's the caller's responsibility
3198 * that the new key won't break the order
3199 */
3200void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3201                             struct btrfs_key *new_key)
3202{
3203        struct btrfs_disk_key disk_key;
3204        struct extent_buffer *eb;
3205        int slot;
3206
3207        eb = path->nodes[0];
3208        slot = path->slots[0];
3209        if (slot > 0) {
3210                btrfs_item_key(eb, &disk_key, slot - 1);
3211                BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3212        }
3213        if (slot < btrfs_header_nritems(eb) - 1) {
3214                btrfs_item_key(eb, &disk_key, slot + 1);
3215                BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3216        }
3217
3218        btrfs_cpu_key_to_disk(&disk_key, new_key);
3219        btrfs_set_item_key(eb, &disk_key, slot);
3220        btrfs_mark_buffer_dirty(eb);
3221        if (slot == 0)
3222                fixup_low_keys(root, path, &disk_key, 1);
3223}
3224
3225/*
3226 * try to push data from one node into the next node left in the
3227 * tree.
3228 *
3229 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3230 * error, and > 0 if there was no room in the left hand block.
3231 */
3232static int push_node_left(struct btrfs_trans_handle *trans,
3233                          struct btrfs_root *root, struct extent_buffer *dst,
3234                          struct extent_buffer *src, int empty)
3235{
3236        int push_items = 0;
3237        int src_nritems;
3238        int dst_nritems;
3239        int ret = 0;
3240
3241        src_nritems = btrfs_header_nritems(src);
3242        dst_nritems = btrfs_header_nritems(dst);
3243        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3244        WARN_ON(btrfs_header_generation(src) != trans->transid);
3245        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3246
3247        if (!empty && src_nritems <= 8)
3248                return 1;
3249
3250        if (push_items <= 0)
3251                return 1;
3252
3253        if (empty) {
3254                push_items = min(src_nritems, push_items);
3255                if (push_items < src_nritems) {
3256                        /* leave at least 8 pointers in the node if
3257                         * we aren't going to empty it
3258                         */
3259                        if (src_nritems - push_items < 8) {
3260                                if (push_items <= 8)
3261                                        return 1;
3262                                push_items -= 8;
3263                        }
3264                }
3265        } else
3266                push_items = min(src_nritems - 8, push_items);
3267
3268        ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3269                                   push_items);
3270        if (ret) {
3271                btrfs_abort_transaction(trans, root, ret);
3272                return ret;
3273        }
3274        copy_extent_buffer(dst, src,
3275                           btrfs_node_key_ptr_offset(dst_nritems),
3276                           btrfs_node_key_ptr_offset(0),
3277                           push_items * sizeof(struct btrfs_key_ptr));
3278
3279        if (push_items < src_nritems) {
3280                /*
3281                 * don't call tree_mod_log_eb_move here, key removal was already
3282                 * fully logged by tree_mod_log_eb_copy above.
3283                 */
3284                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3285                                      btrfs_node_key_ptr_offset(push_items),
3286                                      (src_nritems - push_items) *
3287                                      sizeof(struct btrfs_key_ptr));
3288        }
3289        btrfs_set_header_nritems(src, src_nritems - push_items);
3290        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3291        btrfs_mark_buffer_dirty(src);
3292        btrfs_mark_buffer_dirty(dst);
3293
3294        return ret;
3295}
3296
3297/*
3298 * try to push data from one node into the next node right in the
3299 * tree.
3300 *
3301 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3302 * error, and > 0 if there was no room in the right hand block.
3303 *
3304 * this will  only push up to 1/2 the contents of the left node over
3305 */
3306static int balance_node_right(struct btrfs_trans_handle *trans,
3307                              struct btrfs_root *root,
3308                              struct extent_buffer *dst,
3309                              struct extent_buffer *src)
3310{
3311        int push_items = 0;
3312        int max_push;
3313        int src_nritems;
3314        int dst_nritems;
3315        int ret = 0;
3316
3317        WARN_ON(btrfs_header_generation(src) != trans->transid);
3318        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3319
3320        src_nritems = btrfs_header_nritems(src);
3321        dst_nritems = btrfs_header_nritems(dst);
3322        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3323        if (push_items <= 0)
3324                return 1;
3325
3326        if (src_nritems < 4)
3327                return 1;
3328
3329        max_push = src_nritems / 2 + 1;
3330        /* don't try to empty the node */
3331        if (max_push >= src_nritems)
3332                return 1;
3333
3334        if (max_push < push_items)
3335                push_items = max_push;
3336
3337        tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3338        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3339                                      btrfs_node_key_ptr_offset(0),
3340                                      (dst_nritems) *
3341                                      sizeof(struct btrfs_key_ptr));
3342
3343        ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3344                                   src_nritems - push_items, push_items);
3345        if (ret) {
3346                btrfs_abort_transaction(trans, root, ret);
3347                return ret;
3348        }
3349        copy_extent_buffer(dst, src,
3350                           btrfs_node_key_ptr_offset(0),
3351                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3352                           push_items * sizeof(struct btrfs_key_ptr));
3353
3354        btrfs_set_header_nritems(src, src_nritems - push_items);
3355        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3356
3357        btrfs_mark_buffer_dirty(src);
3358        btrfs_mark_buffer_dirty(dst);
3359
3360        return ret;
3361}
3362
3363/*
3364 * helper function to insert a new root level in the tree.
3365 * A new node is allocated, and a single item is inserted to
3366 * point to the existing root
3367 *
3368 * returns zero on success or < 0 on failure.
3369 */
3370static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3371                           struct btrfs_root *root,
3372                           struct btrfs_path *path, int level)
3373{
3374        u64 lower_gen;
3375        struct extent_buffer *lower;
3376        struct extent_buffer *c;
3377        struct extent_buffer *old;
3378        struct btrfs_disk_key lower_key;
3379
3380        BUG_ON(path->nodes[level]);
3381        BUG_ON(path->nodes[level-1] != root->node);
3382
3383        lower = path->nodes[level-1];
3384        if (level == 1)
3385                btrfs_item_key(lower, &lower_key, 0);
3386        else
3387                btrfs_node_key(lower, &lower_key, 0);
3388
3389        c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3390                                   root->root_key.objectid, &lower_key,
3391                                   level, root->node->start, 0);
3392        if (IS_ERR(c))
3393                return PTR_ERR(c);
3394
3395        root_add_used(root, root->nodesize);
3396
3397        memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3398        btrfs_set_header_nritems(c, 1);
3399        btrfs_set_header_level(c, level);
3400        btrfs_set_header_bytenr(c, c->start);
3401        btrfs_set_header_generation(c, trans->transid);
3402        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3403        btrfs_set_header_owner(c, root->root_key.objectid);
3404
3405        write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3406                            BTRFS_FSID_SIZE);
3407
3408        write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3409                            btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3410
3411        btrfs_set_node_key(c, &lower_key, 0);
3412        btrfs_set_node_blockptr(c, 0, lower->start);
3413        lower_gen = btrfs_header_generation(lower);
3414        WARN_ON(lower_gen != trans->transid);
3415
3416        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3417
3418        btrfs_mark_buffer_dirty(c);
3419
3420        old = root->node;
3421        tree_mod_log_set_root_pointer(root, c, 0);
3422        rcu_assign_pointer(root->node, c);
3423
3424        /* the super has an extra ref to root->node */
3425        free_extent_buffer(old);
3426
3427        add_root_to_dirty_list(root);
3428        extent_buffer_get(c);
3429        path->nodes[level] = c;
3430        path->locks[level] = BTRFS_WRITE_LOCK;
3431        path->slots[level] = 0;
3432        return 0;
3433}
3434
3435/*
3436 * worker function to insert a single pointer in a node.
3437 * the node should have enough room for the pointer already
3438 *
3439 * slot and level indicate where you want the key to go, and
3440 * blocknr is the block the key points to.
3441 */
3442static void insert_ptr(struct btrfs_trans_handle *trans,
3443                       struct btrfs_root *root, struct btrfs_path *path,
3444                       struct btrfs_disk_key *key, u64 bytenr,
3445                       int slot, int level)
3446{
3447        struct extent_buffer *lower;
3448        int nritems;
3449        int ret;
3450
3451        BUG_ON(!path->nodes[level]);
3452        btrfs_assert_tree_locked(path->nodes[level]);
3453        lower = path->nodes[level];
3454        nritems = btrfs_header_nritems(lower);
3455        BUG_ON(slot > nritems);
3456        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3457        if (slot != nritems) {
3458                if (level)
3459                        tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3460                                             slot, nritems - slot);
3461                memmove_extent_buffer(lower,
3462                              btrfs_node_key_ptr_offset(slot + 1),
3463                              btrfs_node_key_ptr_offset(slot),
3464                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3465        }
3466        if (level) {
3467                ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3468                                              MOD_LOG_KEY_ADD, GFP_NOFS);
3469                BUG_ON(ret < 0);
3470        }
3471        btrfs_set_node_key(lower, key, slot);
3472        btrfs_set_node_blockptr(lower, slot, bytenr);
3473        WARN_ON(trans->transid == 0);
3474        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3475        btrfs_set_header_nritems(lower, nritems + 1);
3476        btrfs_mark_buffer_dirty(lower);
3477}
3478
3479/*
3480 * split the node at the specified level in path in two.
3481 * The path is corrected to point to the appropriate node after the split
3482 *
3483 * Before splitting this tries to make some room in the node by pushing
3484 * left and right, if either one works, it returns right away.
3485 *
3486 * returns 0 on success and < 0 on failure
3487 */
3488static noinline int split_node(struct btrfs_trans_handle *trans,
3489                               struct btrfs_root *root,
3490                               struct btrfs_path *path, int level)
3491{
3492        struct extent_buffer *c;
3493        struct extent_buffer *split;
3494        struct btrfs_disk_key disk_key;
3495        int mid;
3496        int ret;
3497        u32 c_nritems;
3498
3499        c = path->nodes[level];
3500        WARN_ON(btrfs_header_generation(c) != trans->transid);
3501        if (c == root->node) {
3502                /*
3503                 * trying to split the root, lets make a new one
3504                 *
3505                 * tree mod log: We don't log_removal old root in
3506                 * insert_new_root, because that root buffer will be kept as a
3507                 * normal node. We are going to log removal of half of the
3508                 * elements below with tree_mod_log_eb_copy. We're holding a
3509                 * tree lock on the buffer, which is why we cannot race with
3510                 * other tree_mod_log users.
3511                 */
3512                ret = insert_new_root(trans, root, path, level + 1);
3513                if (ret)
3514                        return ret;
3515        } else {
3516                ret = push_nodes_for_insert(trans, root, path, level);
3517                c = path->nodes[level];
3518                if (!ret && btrfs_header_nritems(c) <
3519                    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3520                        return 0;
3521                if (ret < 0)
3522                        return ret;
3523        }
3524
3525        c_nritems = btrfs_header_nritems(c);
3526        mid = (c_nritems + 1) / 2;
3527        btrfs_node_key(c, &disk_key, mid);
3528
3529        split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3530                                        root->root_key.objectid,
3531                                        &disk_key, level, c->start, 0);
3532        if (IS_ERR(split))
3533                return PTR_ERR(split);
3534
3535        root_add_used(root, root->nodesize);
3536
3537        memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3538        btrfs_set_header_level(split, btrfs_header_level(c));
3539        btrfs_set_header_bytenr(split, split->start);
3540        btrfs_set_header_generation(split, trans->transid);
3541        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3542        btrfs_set_header_owner(split, root->root_key.objectid);
3543        write_extent_buffer(split, root->fs_info->fsid,
3544                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
3545        write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3546                            btrfs_header_chunk_tree_uuid(split),
3547                            BTRFS_UUID_SIZE);
3548
3549        ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3550                                   mid, c_nritems - mid);
3551        if (ret) {
3552                btrfs_abort_transaction(trans, root, ret);
3553                return ret;
3554        }
3555        copy_extent_buffer(split, c,
3556                           btrfs_node_key_ptr_offset(0),
3557                           btrfs_node_key_ptr_offset(mid),
3558                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3559        btrfs_set_header_nritems(split, c_nritems - mid);
3560        btrfs_set_header_nritems(c, mid);
3561        ret = 0;
3562
3563        btrfs_mark_buffer_dirty(c);
3564        btrfs_mark_buffer_dirty(split);
3565
3566        insert_ptr(trans, root, path, &disk_key, split->start,
3567                   path->slots[level + 1] + 1, level + 1);
3568
3569        if (path->slots[level] >= mid) {
3570                path->slots[level] -= mid;
3571                btrfs_tree_unlock(c);
3572                free_extent_buffer(c);
3573                path->nodes[level] = split;
3574                path->slots[level + 1] += 1;
3575        } else {
3576                btrfs_tree_unlock(split);
3577                free_extent_buffer(split);
3578        }
3579        return ret;
3580}
3581
3582/*
3583 * how many bytes are required to store the items in a leaf.  start
3584 * and nr indicate which items in the leaf to check.  This totals up the
3585 * space used both by the item structs and the item data
3586 */
3587static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3588{
3589        struct btrfs_item *start_item;
3590        struct btrfs_item *end_item;
3591        struct btrfs_map_token token;
3592        int data_len;
3593        int nritems = btrfs_header_nritems(l);
3594        int end = min(nritems, start + nr) - 1;
3595
3596        if (!nr)
3597                return 0;
3598        btrfs_init_map_token(&token);
3599        start_item = btrfs_item_nr(start);
3600        end_item = btrfs_item_nr(end);
3601        data_len = btrfs_token_item_offset(l, start_item, &token) +
3602                btrfs_token_item_size(l, start_item, &token);
3603        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3604        data_len += sizeof(struct btrfs_item) * nr;
3605        WARN_ON(data_len < 0);
3606        return data_len;
3607}
3608
3609/*
3610 * The space between the end of the leaf items and
3611 * the start of the leaf data.  IOW, how much room
3612 * the leaf has left for both items and data
3613 */
3614noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3615                                   struct extent_buffer *leaf)
3616{
3617        int nritems = btrfs_header_nritems(leaf);
3618        int ret;
3619        ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3620        if (ret < 0) {
3621                btrfs_crit(root->fs_info,
3622                        "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3623                       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3624                       leaf_space_used(leaf, 0, nritems), nritems);
3625        }
3626        return ret;
3627}
3628
3629/*
3630 * min slot controls the lowest index we're willing to push to the
3631 * right.  We'll push up to and including min_slot, but no lower
3632 */
3633static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3634                                      struct btrfs_root *root,
3635                                      struct btrfs_path *path,
3636                                      int data_size, int empty,
3637                                      struct extent_buffer *right,
3638                                      int free_space, u32 left_nritems,
3639                                      u32 min_slot)
3640{
3641        struct extent_buffer *left = path->nodes[0];
3642        struct extent_buffer *upper = path->nodes[1];
3643        struct btrfs_map_token token;
3644        struct btrfs_disk_key disk_key;
3645        int slot;
3646        u32 i;
3647        int push_space = 0;
3648        int push_items = 0;
3649        struct btrfs_item *item;
3650        u32 nr;
3651        u32 right_nritems;
3652        u32 data_end;
3653        u32 this_item_size;
3654
3655        btrfs_init_map_token(&token);
3656
3657        if (empty)
3658                nr = 0;
3659        else
3660                nr = max_t(u32, 1, min_slot);
3661
3662        if (path->slots[0] >= left_nritems)
3663                push_space += data_size;
3664
3665        slot = path->slots[1];
3666        i = left_nritems - 1;
3667        while (i >= nr) {
3668                item = btrfs_item_nr(i);
3669
3670                if (!empty && push_items > 0) {
3671                        if (path->slots[0] > i)
3672                                break;
3673                        if (path->slots[0] == i) {
3674                                int space = btrfs_leaf_free_space(root, left);
3675                                if (space + push_space * 2 > free_space)
3676                                        break;
3677                        }
3678                }
3679
3680                if (path->slots[0] == i)
3681                        push_space += data_size;
3682
3683                this_item_size = btrfs_item_size(left, item);
3684                if (this_item_size + sizeof(*item) + push_space > free_space)
3685                        break;
3686
3687                push_items++;
3688                push_space += this_item_size + sizeof(*item);
3689                if (i == 0)
3690                        break;
3691                i--;
3692        }
3693
3694        if (push_items == 0)
3695                goto out_unlock;
3696
3697        WARN_ON(!empty && push_items == left_nritems);
3698
3699        /* push left to right */
3700        right_nritems = btrfs_header_nritems(right);
3701
3702        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3703        push_space -= leaf_data_end(root, left);
3704
3705        /* make room in the right data area */
3706        data_end = leaf_data_end(root, right);
3707        memmove_extent_buffer(right,
3708                              btrfs_leaf_data(right) + data_end - push_space,
3709                              btrfs_leaf_data(right) + data_end,
3710                              BTRFS_LEAF_DATA_SIZE(root) - data_end);
3711
3712        /* copy from the left data area */
3713        copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3714                     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3715                     btrfs_leaf_data(left) + leaf_data_end(root, left),
3716                     push_space);
3717
3718        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3719                              btrfs_item_nr_offset(0),
3720                              right_nritems * sizeof(struct btrfs_item));
3721
3722        /* copy the items from left to right */
3723        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3724                   btrfs_item_nr_offset(left_nritems - push_items),
3725                   push_items * sizeof(struct btrfs_item));
3726
3727        /* update the item pointers */
3728        right_nritems += push_items;
3729        btrfs_set_header_nritems(right, right_nritems);
3730        push_space = BTRFS_LEAF_DATA_SIZE(root);
3731        for (i = 0; i < right_nritems; i++) {
3732                item = btrfs_item_nr(i);
3733                push_space -= btrfs_token_item_size(right, item, &token);
3734                btrfs_set_token_item_offset(right, item, push_space, &token);
3735        }
3736
3737        left_nritems -= push_items;
3738        btrfs_set_header_nritems(left, left_nritems);
3739
3740        if (left_nritems)
3741                btrfs_mark_buffer_dirty(left);
3742        else
3743                clean_tree_block(trans, root, left);
3744
3745        btrfs_mark_buffer_dirty(right);
3746
3747        btrfs_item_key(right, &disk_key, 0);
3748        btrfs_set_node_key(upper, &disk_key, slot + 1);
3749        btrfs_mark_buffer_dirty(upper);
3750
3751        /* then fixup the leaf pointer in the path */
3752        if (path->slots[0] >= left_nritems) {
3753                path->slots[0] -= left_nritems;
3754                if (btrfs_header_nritems(path->nodes[0]) == 0)
3755                        clean_tree_block(trans, root, path->nodes[0]);
3756                btrfs_tree_unlock(path->nodes[0]);
3757                free_extent_buffer(path->nodes[0]);
3758                path->nodes[0] = right;
3759                path->slots[1] += 1;
3760        } else {
3761                btrfs_tree_unlock(right);
3762                free_extent_buffer(right);
3763        }
3764        return 0;
3765
3766out_unlock:
3767        btrfs_tree_unlock(right);
3768        free_extent_buffer(right);
3769        return 1;
3770}
3771
3772/*
3773 * push some data in the path leaf to the right, trying to free up at
3774 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3775 *
3776 * returns 1 if the push failed because the other node didn't have enough
3777 * room, 0 if everything worked out and < 0 if there were major errors.
3778 *
3779 * this will push starting from min_slot to the end of the leaf.  It won't
3780 * push any slot lower than min_slot
3781 */
3782static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3783                           *root, struct btrfs_path *path,
3784                           int min_data_size, int data_size,
3785                           int empty, u32 min_slot)
3786{
3787        struct extent_buffer *left = path->nodes[0];
3788        struct extent_buffer *right;
3789        struct extent_buffer *upper;
3790        int slot;
3791        int free_space;
3792        u32 left_nritems;
3793        int ret;
3794
3795        if (!path->nodes[1])
3796                return 1;
3797
3798        slot = path->slots[1];
3799        upper = path->nodes[1];
3800        if (slot >= btrfs_header_nritems(upper) - 1)
3801                return 1;
3802
3803        btrfs_assert_tree_locked(path->nodes[1]);
3804
3805        right = read_node_slot(root, upper, slot + 1);
3806        if (right == NULL)
3807                return 1;
3808
3809        btrfs_tree_lock(right);
3810        btrfs_set_lock_blocking(right);
3811
3812        free_space = btrfs_leaf_free_space(root, right);
3813        if (free_space < data_size)
3814                goto out_unlock;
3815
3816        /* cow and double check */
3817        ret = btrfs_cow_block(trans, root, right, upper,
3818                              slot + 1, &right);
3819        if (ret)
3820                goto out_unlock;
3821
3822        free_space = btrfs_leaf_free_space(root, right);
3823        if (free_space < data_size)
3824                goto out_unlock;
3825
3826        left_nritems = btrfs_header_nritems(left);
3827        if (left_nritems == 0)
3828                goto out_unlock;
3829
3830        if (path->slots[0] == left_nritems && !empty) {
3831                /* Key greater than all keys in the leaf, right neighbor has
3832                 * enough room for it and we're not emptying our leaf to delete
3833                 * it, therefore use right neighbor to insert the new item and
3834                 * no need to touch/dirty our left leaft. */
3835                btrfs_tree_unlock(left);
3836                free_extent_buffer(left);
3837                path->nodes[0] = right;
3838                path->slots[0] = 0;
3839                path->slots[1]++;
3840                return 0;
3841        }
3842
3843        return __push_leaf_right(trans, root, path, min_data_size, empty,
3844                                right, free_space, left_nritems, min_slot);
3845out_unlock:
3846        btrfs_tree_unlock(right);
3847        free_extent_buffer(right);
3848        return 1;
3849}
3850
3851/*
3852 * push some data in the path leaf to the left, trying to free up at
3853 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3854 *
3855 * max_slot can put a limit on how far into the leaf we'll push items.  The
3856 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3857 * items
3858 */
3859static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3860                                     struct btrfs_root *root,
3861                                     struct btrfs_path *path, int data_size,
3862                                     int empty, struct extent_buffer *left,
3863                                     int free_space, u32 right_nritems,
3864                                     u32 max_slot)
3865{
3866        struct btrfs_disk_key disk_key;
3867        struct extent_buffer *right = path->nodes[0];
3868        int i;
3869        int push_space = 0;
3870        int push_items = 0;
3871        struct btrfs_item *item;
3872        u32 old_left_nritems;
3873        u32 nr;
3874        int ret = 0;
3875        u32 this_item_size;
3876        u32 old_left_item_size;
3877        struct btrfs_map_token token;
3878
3879        btrfs_init_map_token(&token);
3880
3881        if (empty)
3882                nr = min(right_nritems, max_slot);
3883        else
3884                nr = min(right_nritems - 1, max_slot);
3885
3886        for (i = 0; i < nr; i++) {
3887                item = btrfs_item_nr(i);
3888
3889                if (!empty && push_items > 0) {
3890                        if (path->slots[0] < i)
3891                                break;
3892                        if (path->slots[0] == i) {
3893                                int space = btrfs_leaf_free_space(root, right);
3894                                if (space + push_space * 2 > free_space)
3895                                        break;
3896                        }
3897                }
3898
3899                if (path->slots[0] == i)
3900                        push_space += data_size;
3901
3902                this_item_size = btrfs_item_size(right, item);
3903                if (this_item_size + sizeof(*item) + push_space > free_space)
3904                        break;
3905
3906                push_items++;
3907                push_space += this_item_size + sizeof(*item);
3908        }
3909
3910        if (push_items == 0) {
3911                ret = 1;
3912                goto out;
3913        }
3914        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3915
3916        /* push data from right to left */
3917        copy_extent_buffer(left, right,
3918                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3919                           btrfs_item_nr_offset(0),
3920                           push_items * sizeof(struct btrfs_item));
3921
3922        push_space = BTRFS_LEAF_DATA_SIZE(root) -
3923                     btrfs_item_offset_nr(right, push_items - 1);
3924
3925        copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3926                     leaf_data_end(root, left) - push_space,
3927                     btrfs_leaf_data(right) +
3928                     btrfs_item_offset_nr(right, push_items - 1),
3929                     push_space);
3930        old_left_nritems = btrfs_header_nritems(left);
3931        BUG_ON(old_left_nritems <= 0);
3932
3933        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3934        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3935                u32 ioff;
3936
3937                item = btrfs_item_nr(i);
3938
3939                ioff = btrfs_token_item_offset(left, item, &token);
3940                btrfs_set_token_item_offset(left, item,
3941                      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3942                      &token);
3943        }
3944        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3945
3946        /* fixup right node */
3947        if (push_items > right_nritems)
3948                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3949                       right_nritems);
3950
3951        if (push_items < right_nritems) {
3952                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3953                                                  leaf_data_end(root, right);
3954                memmove_extent_buffer(right, btrfs_leaf_data(right) +
3955                                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3956                                      btrfs_leaf_data(right) +
3957                                      leaf_data_end(root, right), push_space);
3958
3959                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3960                              btrfs_item_nr_offset(push_items),
3961                             (btrfs_header_nritems(right) - push_items) *
3962                             sizeof(struct btrfs_item));
3963        }
3964        right_nritems -= push_items;
3965        btrfs_set_header_nritems(right, right_nritems);
3966        push_space = BTRFS_LEAF_DATA_SIZE(root);
3967        for (i = 0; i < right_nritems; i++) {
3968                item = btrfs_item_nr(i);
3969
3970                push_space = push_space - btrfs_token_item_size(right,
3971                                                                item, &token);
3972                btrfs_set_token_item_offset(right, item, push_space, &token);
3973        }
3974
3975        btrfs_mark_buffer_dirty(left);
3976        if (right_nritems)
3977                btrfs_mark_buffer_dirty(right);
3978        else
3979                clean_tree_block(trans, root, right);
3980
3981        btrfs_item_key(right, &disk_key, 0);
3982        fixup_low_keys(root, path, &disk_key, 1);
3983
3984        /* then fixup the leaf pointer in the path */
3985        if (path->slots[0] < push_items) {
3986                path->slots[0] += old_left_nritems;
3987                btrfs_tree_unlock(path->nodes[0]);
3988                free_extent_buffer(path->nodes[0]);
3989                path->nodes[0] = left;
3990                path->slots[1] -= 1;
3991        } else {
3992                btrfs_tree_unlock(left);
3993                free_extent_buffer(left);
3994                path->slots[0] -= push_items;
3995        }
3996        BUG_ON(path->slots[0] < 0);
3997        return ret;
3998out:
3999        btrfs_tree_unlock(left);
4000        free_extent_buffer(left);
4001        return ret;
4002}
4003
4004/*
4005 * push some data in the path leaf to the left, trying to free up at
4006 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4007 *
4008 * max_slot can put a limit on how far into the leaf we'll push items.  The
4009 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4010 * items
4011 */
4012static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4013                          *root, struct btrfs_path *path, int min_data_size,
4014                          int data_size, int empty, u32 max_slot)
4015{
4016        struct extent_buffer *right = path->nodes[0];
4017        struct extent_buffer *left;
4018        int slot;
4019        int free_space;
4020        u32 right_nritems;
4021        int ret = 0;
4022
4023        slot = path->slots[1];
4024        if (slot == 0)
4025                return 1;
4026        if (!path->nodes[1])
4027                return 1;
4028
4029        right_nritems = btrfs_header_nritems(right);
4030        if (right_nritems == 0)
4031                return 1;
4032
4033        btrfs_assert_tree_locked(path->nodes[1]);
4034
4035        left = read_node_slot(root, path->nodes[1], slot - 1);
4036        if (left == NULL)
4037                return 1;
4038
4039        btrfs_tree_lock(left);
4040        btrfs_set_lock_blocking(left);
4041
4042        free_space = btrfs_leaf_free_space(root, left);
4043        if (free_space < data_size) {
4044                ret = 1;
4045                goto out;
4046        }
4047
4048        /* cow and double check */
4049        ret = btrfs_cow_block(trans, root, left,
4050                              path->nodes[1], slot - 1, &left);
4051        if (ret) {
4052                /* we hit -ENOSPC, but it isn't fatal here */
4053                if (ret == -ENOSPC)
4054                        ret = 1;
4055                goto out;
4056        }
4057
4058        free_space = btrfs_leaf_free_space(root, left);
4059        if (free_space < data_size) {
4060                ret = 1;
4061                goto out;
4062        }
4063
4064        return __push_leaf_left(trans, root, path, min_data_size,
4065                               empty, left, free_space, right_nritems,
4066                               max_slot);
4067out:
4068        btrfs_tree_unlock(left);
4069        free_extent_buffer(left);
4070        return ret;
4071}
4072
4073/*
4074 * split the path's leaf in two, making sure there is at least data_size
4075 * available for the resulting leaf level of the path.
4076 */
4077static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4078                                    struct btrfs_root *root,
4079                                    struct btrfs_path *path,
4080                                    struct extent_buffer *l,
4081                                    struct extent_buffer *right,
4082                                    int slot, int mid, int nritems)
4083{
4084        int data_copy_size;
4085        int rt_data_off;
4086        int i;
4087        struct btrfs_disk_key disk_key;
4088        struct btrfs_map_token token;
4089
4090        btrfs_init_map_token(&token);
4091
4092        nritems = nritems - mid;
4093        btrfs_set_header_nritems(right, nritems);
4094        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4095
4096        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4097                           btrfs_item_nr_offset(mid),
4098                           nritems * sizeof(struct btrfs_item));
4099
4100        copy_extent_buffer(right, l,
4101                     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4102                     data_copy_size, btrfs_leaf_data(l) +
4103                     leaf_data_end(root, l), data_copy_size);
4104
4105        rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4106                      btrfs_item_end_nr(l, mid);
4107
4108        for (i = 0; i < nritems; i++) {
4109                struct btrfs_item *item = btrfs_item_nr(i);
4110                u32 ioff;
4111
4112                ioff = btrfs_token_item_offset(right, item, &token);
4113                btrfs_set_token_item_offset(right, item,
4114                                            ioff + rt_data_off, &token);
4115        }
4116
4117        btrfs_set_header_nritems(l, mid);
4118        btrfs_item_key(right, &disk_key, 0);
4119        insert_ptr(trans, root, path, &disk_key, right->start,
4120                   path->slots[1] + 1, 1);
4121
4122        btrfs_mark_buffer_dirty(right);
4123        btrfs_mark_buffer_dirty(l);
4124        BUG_ON(path->slots[0] != slot);
4125
4126        if (mid <= slot) {
4127                btrfs_tree_unlock(path->nodes[0]);
4128                free_extent_buffer(path->nodes[0]);
4129                path->nodes[0] = right;
4130                path->slots[0] -= mid;
4131                path->slots[1] += 1;
4132        } else {
4133                btrfs_tree_unlock(right);
4134                free_extent_buffer(right);
4135        }
4136
4137        BUG_ON(path->slots[0] < 0);
4138}
4139
4140/*
4141 * double splits happen when we need to insert a big item in the middle
4142 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4143 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4144 *          A                 B                 C
4145 *
4146 * We avoid this by trying to push the items on either side of our target
4147 * into the adjacent leaves.  If all goes well we can avoid the double split
4148 * completely.
4149 */
4150static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4151                                          struct btrfs_root *root,
4152                                          struct btrfs_path *path,
4153                                          int data_size)
4154{
4155        int ret;
4156        int progress = 0;
4157        int slot;
4158        u32 nritems;
4159        int space_needed = data_size;
4160
4161        slot = path->slots[0];
4162        if (slot < btrfs_header_nritems(path->nodes[0]))
4163                space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4164
4165        /*
4166         * try to push all the items after our slot into the
4167         * right leaf
4168         */
4169        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4170        if (ret < 0)
4171                return ret;
4172
4173        if (ret == 0)
4174                progress++;
4175
4176        nritems = btrfs_header_nritems(path->nodes[0]);
4177        /*
4178         * our goal is to get our slot at the start or end of a leaf.  If
4179         * we've done so we're done
4180         */
4181        if (path->slots[0] == 0 || path->slots[0] == nritems)
4182                return 0;
4183
4184        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4185                return 0;
4186
4187        /* try to push all the items before our slot into the next leaf */
4188        slot = path->slots[0];
4189        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4190        if (ret < 0)
4191                return ret;
4192
4193        if (ret == 0)
4194                progress++;
4195
4196        if (progress)
4197                return 0;
4198        return 1;
4199}
4200
4201/*
4202 * split the path's leaf in two, making sure there is at least data_size
4203 * available for the resulting leaf level of the path.
4204 *
4205 * returns 0 if all went well and < 0 on failure.
4206 */
4207static noinline int split_leaf(struct btrfs_trans_handle *trans,
4208                               struct btrfs_root *root,
4209                               struct btrfs_key *ins_key,
4210                               struct btrfs_path *path, int data_size,
4211                               int extend)
4212{
4213        struct btrfs_disk_key disk_key;
4214        struct extent_buffer *l;
4215        u32 nritems;
4216        int mid;
4217        int slot;
4218        struct extent_buffer *right;
4219        int ret = 0;
4220        int wret;
4221        int split;
4222        int num_doubles = 0;
4223        int tried_avoid_double = 0;
4224
4225        l = path->nodes[0];
4226        slot = path->slots[0];
4227        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4228            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4229                return -EOVERFLOW;
4230
4231        /* first try to make some room by pushing left and right */
4232        if (data_size && path->nodes[1]) {
4233                int space_needed = data_size;
4234
4235                if (slot < btrfs_header_nritems(l))
4236                        space_needed -= btrfs_leaf_free_space(root, l);
4237
4238                wret = push_leaf_right(trans, root, path, space_needed,
4239                                       space_needed, 0, 0);
4240                if (wret < 0)
4241                        return wret;
4242                if (wret) {
4243                        wret = push_leaf_left(trans, root, path, space_needed,
4244                                              space_needed, 0, (u32)-1);
4245                        if (wret < 0)
4246                                return wret;
4247                }
4248                l = path->nodes[0];
4249
4250                /* did the pushes work? */
4251                if (btrfs_leaf_free_space(root, l) >= data_size)
4252                        return 0;
4253        }
4254
4255        if (!path->nodes[1]) {
4256                ret = insert_new_root(trans, root, path, 1);
4257                if (ret)
4258                        return ret;
4259        }
4260again:
4261        split = 1;
4262        l = path->nodes[0];
4263        slot = path->slots[0];
4264        nritems = btrfs_header_nritems(l);
4265        mid = (nritems + 1) / 2;
4266
4267        if (mid <= slot) {
4268                if (nritems == 1 ||
4269                    leaf_space_used(l, mid, nritems - mid) + data_size >
4270                        BTRFS_LEAF_DATA_SIZE(root)) {
4271                        if (slot >= nritems) {
4272                                split = 0;
4273                        } else {
4274                                mid = slot;
4275                                if (mid != nritems &&
4276                                    leaf_space_used(l, mid, nritems - mid) +
4277                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4278                                        if (data_size && !tried_avoid_double)
4279                                                goto push_for_double;
4280                                        split = 2;
4281                                }
4282                        }
4283                }
4284        } else {
4285                if (leaf_space_used(l, 0, mid) + data_size >
4286                        BTRFS_LEAF_DATA_SIZE(root)) {
4287                        if (!extend && data_size && slot == 0) {
4288                                split = 0;
4289                        } else if ((extend || !data_size) && slot == 0) {
4290                                mid = 1;
4291                        } else {
4292                                mid = slot;
4293                                if (mid != nritems &&
4294                                    leaf_space_used(l, mid, nritems - mid) +
4295                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4296                                        if (data_size && !tried_avoid_double)
4297                                                goto push_for_double;
4298                                        split = 2;
4299                                }
4300                        }
4301                }
4302        }
4303
4304        if (split == 0)
4305                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4306        else
4307                btrfs_item_key(l, &disk_key, mid);
4308
4309        right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4310                                        root->root_key.objectid,
4311                                        &disk_key, 0, l->start, 0);
4312        if (IS_ERR(right))
4313                return PTR_ERR(right);
4314
4315        root_add_used(root, root->leafsize);
4316
4317        memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4318        btrfs_set_header_bytenr(right, right->start);
4319        btrfs_set_header_generation(right, trans->transid);
4320        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4321        btrfs_set_header_owner(right, root->root_key.objectid);
4322        btrfs_set_header_level(right, 0);
4323        write_extent_buffer(right, root->fs_info->fsid,
4324                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
4325
4326        write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4327                            btrfs_header_chunk_tree_uuid(right),
4328                            BTRFS_UUID_SIZE);
4329
4330        if (split == 0) {
4331                if (mid <= slot) {
4332                        btrfs_set_header_nritems(right, 0);
4333                        insert_ptr(trans, root, path, &disk_key, right->start,
4334                                   path->slots[1] + 1, 1);
4335                        btrfs_tree_unlock(path->nodes[0]);
4336                        free_extent_buffer(path->nodes[0]);
4337                        path->nodes[0] = right;
4338                        path->slots[0] = 0;
4339                        path->slots[1] += 1;
4340                } else {
4341                        btrfs_set_header_nritems(right, 0);
4342                        insert_ptr(trans, root, path, &disk_key, right->start,
4343                                          path->slots[1], 1);
4344                        btrfs_tree_unlock(path->nodes[0]);
4345                        free_extent_buffer(path->nodes[0]);
4346                        path->nodes[0] = right;
4347                        path->slots[0] = 0;
4348                        if (path->slots[1] == 0)
4349                                fixup_low_keys(root, path, &disk_key, 1);
4350                }
4351                btrfs_mark_buffer_dirty(right);
4352                return ret;
4353        }
4354
4355        copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4356
4357        if (split == 2) {
4358                BUG_ON(num_doubles != 0);
4359                num_doubles++;
4360                goto again;
4361        }
4362
4363        return 0;
4364
4365push_for_double:
4366        push_for_double_split(trans, root, path, data_size);
4367        tried_avoid_double = 1;
4368        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4369                return 0;
4370        goto again;
4371}
4372
4373static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4374                                         struct btrfs_root *root,
4375                                         struct btrfs_path *path, int ins_len)
4376{
4377        struct btrfs_key key;
4378        struct extent_buffer *leaf;
4379        struct btrfs_file_extent_item *fi;
4380        u64 extent_len = 0;
4381        u32 item_size;
4382        int ret;
4383
4384        leaf = path->nodes[0];
4385        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4386
4387        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4388               key.type != BTRFS_EXTENT_CSUM_KEY);
4389
4390        if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4391                return 0;
4392
4393        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4394        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4395                fi = btrfs_item_ptr(leaf, path->slots[0],
4396                                    struct btrfs_file_extent_item);
4397                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4398        }
4399        btrfs_release_path(path);
4400
4401        path->keep_locks = 1;
4402        path->search_for_split = 1;
4403        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4404        path->search_for_split = 0;
4405        if (ret < 0)
4406                goto err;
4407
4408        ret = -EAGAIN;
4409        leaf = path->nodes[0];
4410        /* if our item isn't there or got smaller, return now */
4411        if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4412                goto err;
4413
4414        /* the leaf has  changed, it now has room.  return now */
4415        if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4416                goto err;
4417
4418        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4419                fi = btrfs_item_ptr(leaf, path->slots[0],
4420                                    struct btrfs_file_extent_item);
4421                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4422                        goto err;
4423        }
4424
4425        btrfs_set_path_blocking(path);
4426        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4427        if (ret)
4428                goto err;
4429
4430        path->keep_locks = 0;
4431        btrfs_unlock_up_safe(path, 1);
4432        return 0;
4433err:
4434        path->keep_locks = 0;
4435        return ret;
4436}
4437
4438static noinline int split_item(struct btrfs_trans_handle *trans,
4439                               struct btrfs_root *root,
4440                               struct btrfs_path *path,
4441                               struct btrfs_key *new_key,
4442                               unsigned long split_offset)
4443{
4444        struct extent_buffer *leaf;
4445        struct btrfs_item *item;
4446        struct btrfs_item *new_item;
4447        int slot;
4448        char *buf;
4449        u32 nritems;
4450        u32 item_size;
4451        u32 orig_offset;
4452        struct btrfs_disk_key disk_key;
4453
4454        leaf = path->nodes[0];
4455        BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4456
4457        btrfs_set_path_blocking(path);
4458
4459        item = btrfs_item_nr(path->slots[0]);
4460        orig_offset = btrfs_item_offset(leaf, item);
4461        item_size = btrfs_item_size(leaf, item);
4462
4463        buf = kmalloc(item_size, GFP_NOFS);
4464        if (!buf)
4465                return -ENOMEM;
4466
4467        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4468                            path->slots[0]), item_size);
4469
4470        slot = path->slots[0] + 1;
4471        nritems = btrfs_header_nritems(leaf);
4472        if (slot != nritems) {
4473                /* shift the items */
4474                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4475                                btrfs_item_nr_offset(slot),
4476                                (nritems - slot) * sizeof(struct btrfs_item));
4477        }
4478
4479        btrfs_cpu_key_to_disk(&disk_key, new_key);
4480        btrfs_set_item_key(leaf, &disk_key, slot);
4481
4482        new_item = btrfs_item_nr(slot);
4483
4484        btrfs_set_item_offset(leaf, new_item, orig_offset);
4485        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4486
4487        btrfs_set_item_offset(leaf, item,
4488                              orig_offset + item_size - split_offset);
4489        btrfs_set_item_size(leaf, item, split_offset);
4490
4491        btrfs_set_header_nritems(leaf, nritems + 1);
4492
4493        /* write the data for the start of the original item */
4494        write_extent_buffer(leaf, buf,
4495                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4496                            split_offset);
4497
4498        /* write the data for the new item */
4499        write_extent_buffer(leaf, buf + split_offset,
4500                            btrfs_item_ptr_offset(leaf, slot),
4501                            item_size - split_offset);
4502        btrfs_mark_buffer_dirty(leaf);
4503
4504        BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4505        kfree(buf);
4506        return 0;
4507}
4508
4509/*
4510 * This function splits a single item into two items,
4511 * giving 'new_key' to the new item and splitting the
4512 * old one at split_offset (from the start of the item).
4513 *
4514 * The path may be released by this operation.  After
4515 * the split, the path is pointing to the old item.  The
4516 * new item is going to be in the same node as the old one.
4517 *
4518 * Note, the item being split must be smaller enough to live alone on
4519 * a tree block with room for one extra struct btrfs_item
4520 *
4521 * This allows us to split the item in place, keeping a lock on the
4522 * leaf the entire time.
4523 */
4524int btrfs_split_item(struct btrfs_trans_handle *trans,
4525                     struct btrfs_root *root,
4526                     struct btrfs_path *path,
4527                     struct btrfs_key *new_key,
4528                     unsigned long split_offset)
4529{
4530        int ret;
4531        ret = setup_leaf_for_split(trans, root, path,
4532                                   sizeof(struct btrfs_item));
4533        if (ret)
4534                return ret;
4535
4536        ret = split_item(trans, root, path, new_key, split_offset);
4537        return ret;
4538}
4539
4540/*
4541 * This function duplicate a item, giving 'new_key' to the new item.
4542 * It guarantees both items live in the same tree leaf and the new item
4543 * is contiguous with the original item.
4544 *
4545 * This allows us to split file extent in place, keeping a lock on the
4546 * leaf the entire time.
4547 */
4548int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4549                         struct btrfs_root *root,
4550                         struct btrfs_path *path,
4551                         struct btrfs_key *new_key)
4552{
4553        struct extent_buffer *leaf;
4554        int ret;
4555        u32 item_size;
4556
4557        leaf = path->nodes[0];
4558        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4559        ret = setup_leaf_for_split(trans, root, path,
4560                                   item_size + sizeof(struct btrfs_item));
4561        if (ret)
4562                return ret;
4563
4564        path->slots[0]++;
4565        setup_items_for_insert(root, path, new_key, &item_size,
4566                               item_size, item_size +
4567                               sizeof(struct btrfs_item), 1);
4568        leaf = path->nodes[0];
4569        memcpy_extent_buffer(leaf,
4570                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4571                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4572                             item_size);
4573        return 0;
4574}
4575
4576/*
4577 * make the item pointed to by the path smaller.  new_size indicates
4578 * how small to make it, and from_end tells us if we just chop bytes
4579 * off the end of the item or if we shift the item to chop bytes off
4580 * the front.
4581 */
4582void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4583                         u32 new_size, int from_end)
4584{
4585        int slot;
4586        struct extent_buffer *leaf;
4587        struct btrfs_item *item;
4588        u32 nritems;
4589        unsigned int data_end;
4590        unsigned int old_data_start;
4591        unsigned int old_size;
4592        unsigned int size_diff;
4593        int i;
4594        struct btrfs_map_token token;
4595
4596        btrfs_init_map_token(&token);
4597
4598        leaf = path->nodes[0];
4599        slot = path->slots[0];
4600
4601        old_size = btrfs_item_size_nr(leaf, slot);
4602        if (old_size == new_size)
4603                return;
4604
4605        nritems = btrfs_header_nritems(leaf);
4606        data_end = leaf_data_end(root, leaf);
4607
4608        old_data_start = btrfs_item_offset_nr(leaf, slot);
4609
4610        size_diff = old_size - new_size;
4611
4612        BUG_ON(slot < 0);
4613        BUG_ON(slot >= nritems);
4614
4615        /*
4616         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4617         */
4618        /* first correct the data pointers */
4619        for (i = slot; i < nritems; i++) {
4620                u32 ioff;
4621                item = btrfs_item_nr(i);
4622
4623                ioff = btrfs_token_item_offset(leaf, item, &token);
4624                btrfs_set_token_item_offset(leaf, item,
4625                                            ioff + size_diff, &token);
4626        }
4627
4628        /* shift the data */
4629        if (from_end) {
4630                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4631                              data_end + size_diff, btrfs_leaf_data(leaf) +
4632                              data_end, old_data_start + new_size - data_end);
4633        } else {
4634                struct btrfs_disk_key disk_key;
4635                u64 offset;
4636
4637                btrfs_item_key(leaf, &disk_key, slot);
4638
4639                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4640                        unsigned long ptr;
4641                        struct btrfs_file_extent_item *fi;
4642
4643                        fi = btrfs_item_ptr(leaf, slot,
4644                                            struct btrfs_file_extent_item);
4645                        fi = (struct btrfs_file_extent_item *)(
4646                             (unsigned long)fi - size_diff);
4647
4648                        if (btrfs_file_extent_type(leaf, fi) ==
4649                            BTRFS_FILE_EXTENT_INLINE) {
4650                                ptr = btrfs_item_ptr_offset(leaf, slot);
4651                                memmove_extent_buffer(leaf, ptr,
4652                                      (unsigned long)fi,
4653                                      offsetof(struct btrfs_file_extent_item,
4654                                                 disk_bytenr));
4655                        }
4656                }
4657
4658                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4659                              data_end + size_diff, btrfs_leaf_data(leaf) +
4660                              data_end, old_data_start - data_end);
4661
4662                offset = btrfs_disk_key_offset(&disk_key);
4663                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4664                btrfs_set_item_key(leaf, &disk_key, slot);
4665                if (slot == 0)
4666                        fixup_low_keys(root, path, &disk_key, 1);
4667        }
4668
4669        item = btrfs_item_nr(slot);
4670        btrfs_set_item_size(leaf, item, new_size);
4671        btrfs_mark_buffer_dirty(leaf);
4672
4673        if (btrfs_leaf_free_space(root, leaf) < 0) {
4674                btrfs_print_leaf(root, leaf);
4675                BUG();
4676        }
4677}
4678
4679/*
4680 * make the item pointed to by the path bigger, data_size is the added size.
4681 */
4682void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4683                       u32 data_size)
4684{
4685        int slot;
4686        struct extent_buffer *leaf;
4687        struct btrfs_item *item;
4688        u32 nritems;
4689        unsigned int data_end;
4690        unsigned int old_data;
4691        unsigned int old_size;
4692        int i;
4693        struct btrfs_map_token token;
4694
4695        btrfs_init_map_token(&token);
4696
4697        leaf = path->nodes[0];
4698
4699        nritems = btrfs_header_nritems(leaf);
4700        data_end = leaf_data_end(root, leaf);
4701
4702        if (btrfs_leaf_free_space(root, leaf) < data_size) {
4703                btrfs_print_leaf(root, leaf);
4704                BUG();
4705        }
4706        slot = path->slots[0];
4707        old_data = btrfs_item_end_nr(leaf, slot);
4708
4709        BUG_ON(slot < 0);
4710        if (slot >= nritems) {
4711                btrfs_print_leaf(root, leaf);
4712                btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4713                       slot, nritems);
4714                BUG_ON(1);
4715        }
4716
4717        /*
4718         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4719         */
4720        /* first correct the data pointers */
4721        for (i = slot; i < nritems; i++) {
4722                u32 ioff;
4723                item = btrfs_item_nr(i);
4724
4725                ioff = btrfs_token_item_offset(leaf, item, &token);
4726                btrfs_set_token_item_offset(leaf, item,
4727                                            ioff - data_size, &token);
4728        }
4729
4730        /* shift the data */
4731        memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4732                      data_end - data_size, btrfs_leaf_data(leaf) +
4733                      data_end, old_data - data_end);
4734
4735        data_end = old_data;
4736        old_size = btrfs_item_size_nr(leaf, slot);
4737        item = btrfs_item_nr(slot);
4738        btrfs_set_item_size(leaf, item, old_size + data_size);
4739        btrfs_mark_buffer_dirty(leaf);
4740
4741        if (btrfs_leaf_free_space(root, leaf) < 0) {
4742                btrfs_print_leaf(root, leaf);
4743                BUG();
4744        }
4745}
4746
4747/*
4748 * this is a helper for btrfs_insert_empty_items, the main goal here is
4749 * to save stack depth by doing the bulk of the work in a function
4750 * that doesn't call btrfs_search_slot
4751 */
4752void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4753                            struct btrfs_key *cpu_key, u32 *data_size,
4754                            u32 total_data, u32 total_size, int nr)
4755{
4756        struct btrfs_item *item;
4757        int i;
4758        u32 nritems;
4759        unsigned int data_end;
4760        struct btrfs_disk_key disk_key;
4761        struct extent_buffer *leaf;
4762        int slot;
4763        struct btrfs_map_token token;
4764
4765        btrfs_init_map_token(&token);
4766
4767        leaf = path->nodes[0];
4768        slot = path->slots[0];
4769
4770        nritems = btrfs_header_nritems(leaf);
4771        data_end = leaf_data_end(root, leaf);
4772
4773        if (btrfs_leaf_free_space(root, leaf) < total_size) {
4774                btrfs_print_leaf(root, leaf);
4775                btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4776                       total_size, btrfs_leaf_free_space(root, leaf));
4777                BUG();
4778        }
4779
4780        if (slot != nritems) {
4781                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4782
4783                if (old_data < data_end) {
4784                        btrfs_print_leaf(root, leaf);
4785                        btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4786                               slot, old_data, data_end);
4787                        BUG_ON(1);
4788                }
4789                /*
4790                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4791                 */
4792                /* first correct the data pointers */
4793                for (i = slot; i < nritems; i++) {
4794                        u32 ioff;
4795
4796                        item = btrfs_item_nr( i);
4797                        ioff = btrfs_token_item_offset(leaf, item, &token);
4798                        btrfs_set_token_item_offset(leaf, item,
4799                                                    ioff - total_data, &token);
4800                }
4801                /* shift the items */
4802                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4803                              btrfs_item_nr_offset(slot),
4804                              (nritems - slot) * sizeof(struct btrfs_item));
4805
4806                /* shift the data */
4807                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4808                              data_end - total_data, btrfs_leaf_data(leaf) +
4809                              data_end, old_data - data_end);
4810                data_end = old_data;
4811        }
4812
4813        /* setup the item for the new data */
4814        for (i = 0; i < nr; i++) {
4815                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4816                btrfs_set_item_key(leaf, &disk_key, slot + i);
4817                item = btrfs_item_nr(slot + i);
4818                btrfs_set_token_item_offset(leaf, item,
4819                                            data_end - data_size[i], &token);
4820                data_end -= data_size[i];
4821                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4822        }
4823
4824        btrfs_set_header_nritems(leaf, nritems + nr);
4825
4826        if (slot == 0) {
4827                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4828                fixup_low_keys(root, path, &disk_key, 1);
4829        }
4830        btrfs_unlock_up_safe(path, 1);
4831        btrfs_mark_buffer_dirty(leaf);
4832
4833        if (btrfs_leaf_free_space(root, leaf) < 0) {
4834                btrfs_print_leaf(root, leaf);
4835                BUG();
4836        }
4837}
4838
4839/*
4840 * Given a key and some data, insert items into the tree.
4841 * This does all the path init required, making room in the tree if needed.
4842 */
4843int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4844                            struct btrfs_root *root,
4845                            struct btrfs_path *path,
4846                            struct btrfs_key *cpu_key, u32 *data_size,
4847                            int nr)
4848{
4849        int ret = 0;
4850        int slot;
4851        int i;
4852        u32 total_size = 0;
4853        u32 total_data = 0;
4854
4855        for (i = 0; i < nr; i++)
4856                total_data += data_size[i];
4857
4858        total_size = total_data + (nr * sizeof(struct btrfs_item));
4859        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4860        if (ret == 0)
4861                return -EEXIST;
4862        if (ret < 0)
4863                return ret;
4864
4865        slot = path->slots[0];
4866        BUG_ON(slot < 0);
4867
4868        setup_items_for_insert(root, path, cpu_key, data_size,
4869                               total_data, total_size, nr);
4870        return 0;
4871}
4872
4873/*
4874 * Given a key and some data, insert an item into the tree.
4875 * This does all the path init required, making room in the tree if needed.
4876 */
4877int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4878                      *root, struct btrfs_key *cpu_key, void *data, u32
4879                      data_size)
4880{
4881        int ret = 0;
4882        struct btrfs_path *path;
4883        struct extent_buffer *leaf;
4884        unsigned long ptr;
4885
4886        path = btrfs_alloc_path();
4887        if (!path)
4888                return -ENOMEM;
4889        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4890        if (!ret) {
4891                leaf = path->nodes[0];
4892                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4893                write_extent_buffer(leaf, data, ptr, data_size);
4894                btrfs_mark_buffer_dirty(leaf);
4895        }
4896        btrfs_free_path(path);
4897        return ret;
4898}
4899
4900/*
4901 * delete the pointer from a given node.
4902 *
4903 * the tree should have been previously balanced so the deletion does not
4904 * empty a node.
4905 */
4906static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4907                    int level, int slot)
4908{
4909        struct extent_buffer *parent = path->nodes[level];
4910        u32 nritems;
4911        int ret;
4912
4913        nritems = btrfs_header_nritems(parent);
4914        if (slot != nritems - 1) {
4915                if (level)
4916                        tree_mod_log_eb_move(root->fs_info, parent, slot,
4917                                             slot + 1, nritems - slot - 1);
4918                memmove_extent_buffer(parent,
4919                              btrfs_node_key_ptr_offset(slot),
4920                              btrfs_node_key_ptr_offset(slot + 1),
4921                              sizeof(struct btrfs_key_ptr) *
4922                              (nritems - slot - 1));
4923        } else if (level) {
4924                ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4925                                              MOD_LOG_KEY_REMOVE, GFP_NOFS);
4926                BUG_ON(ret < 0);
4927        }
4928
4929        nritems--;
4930        btrfs_set_header_nritems(parent, nritems);
4931        if (nritems == 0 && parent == root->node) {
4932                BUG_ON(btrfs_header_level(root->node) != 1);
4933                /* just turn the root into a leaf and break */
4934                btrfs_set_header_level(root->node, 0);
4935        } else if (slot == 0) {
4936                struct btrfs_disk_key disk_key;
4937
4938                btrfs_node_key(parent, &disk_key, 0);
4939                fixup_low_keys(root, path, &disk_key, level + 1);
4940        }
4941        btrfs_mark_buffer_dirty(parent);
4942}
4943
4944/*
4945 * a helper function to delete the leaf pointed to by path->slots[1] and
4946 * path->nodes[1].
4947 *
4948 * This deletes the pointer in path->nodes[1] and frees the leaf
4949 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4950 *
4951 * The path must have already been setup for deleting the leaf, including
4952 * all the proper balancing.  path->nodes[1] must be locked.
4953 */
4954static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4955                                    struct btrfs_root *root,
4956                                    struct btrfs_path *path,
4957                                    struct extent_buffer *leaf)
4958{
4959        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4960        del_ptr(root, path, 1, path->slots[1]);
4961
4962        /*
4963         * btrfs_free_extent is expensive, we want to make sure we
4964         * aren't holding any locks when we call it
4965         */
4966        btrfs_unlock_up_safe(path, 0);
4967
4968        root_sub_used(root, leaf->len);
4969
4970        extent_buffer_get(leaf);
4971        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4972        free_extent_buffer_stale(leaf);
4973}
4974/*
4975 * delete the item at the leaf level in path.  If that empties
4976 * the leaf, remove it from the tree
4977 */
4978int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4979                    struct btrfs_path *path, int slot, int nr)
4980{
4981        struct extent_buffer *leaf;
4982        struct btrfs_item *item;
4983        int last_off;
4984        int dsize = 0;
4985        int ret = 0;
4986        int wret;
4987        int i;
4988        u32 nritems;
4989        struct btrfs_map_token token;
4990
4991        btrfs_init_map_token(&token);
4992
4993        leaf = path->nodes[0];
4994        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4995
4996        for (i = 0; i < nr; i++)
4997                dsize += btrfs_item_size_nr(leaf, slot + i);
4998
4999        nritems = btrfs_header_nritems(leaf);
5000
5001        if (slot + nr != nritems) {
5002                int data_end = leaf_data_end(root, leaf);
5003
5004                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
5005                              data_end + dsize,
5006                              btrfs_leaf_data(leaf) + data_end,
5007                              last_off - data_end);
5008
5009                for (i = slot + nr; i < nritems; i++) {
5010                        u32 ioff;
5011
5012                        item = btrfs_item_nr(i);
5013                        ioff = btrfs_token_item_offset(leaf, item, &token);
5014                        btrfs_set_token_item_offset(leaf, item,
5015                                                    ioff + dsize, &token);
5016                }
5017
5018                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5019                              btrfs_item_nr_offset(slot + nr),
5020                              sizeof(struct btrfs_item) *
5021                              (nritems - slot - nr));
5022        }
5023        btrfs_set_header_nritems(leaf, nritems - nr);
5024        nritems -= nr;
5025
5026        /* delete the leaf if we've emptied it */
5027        if (nritems == 0) {
5028                if (leaf == root->node) {
5029                        btrfs_set_header_level(leaf, 0);
5030                } else {
5031                        btrfs_set_path_blocking(path);
5032                        clean_tree_block(trans, root, leaf);
5033                        btrfs_del_leaf(trans, root, path, leaf);
5034                }
5035        } else {
5036                int used = leaf_space_used(leaf, 0, nritems);
5037                if (slot == 0) {
5038                        struct btrfs_disk_key disk_key;
5039
5040                        btrfs_item_key(leaf, &disk_key, 0);
5041                        fixup_low_keys(root, path, &disk_key, 1);
5042                }
5043
5044                /* delete the leaf if it is mostly empty */
5045                if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5046                        /* push_leaf_left fixes the path.
5047                         * make sure the path still points to our leaf
5048                         * for possible call to del_ptr below
5049                         */
5050                        slot = path->slots[1];
5051                        extent_buffer_get(leaf);
5052
5053                        btrfs_set_path_blocking(path);
5054                        wret = push_leaf_left(trans, root, path, 1, 1,
5055                                              1, (u32)-1);
5056                        if (wret < 0 && wret != -ENOSPC)
5057                                ret = wret;
5058
5059                        if (path->nodes[0] == leaf &&
5060                            btrfs_header_nritems(leaf)) {
5061                                wret = push_leaf_right(trans, root, path, 1,
5062                                                       1, 1, 0);
5063                                if (wret < 0 && wret != -ENOSPC)
5064                                        ret = wret;
5065                        }
5066
5067                        if (btrfs_header_nritems(leaf) == 0) {
5068                                path->slots[1] = slot;
5069                                btrfs_del_leaf(trans, root, path, leaf);
5070                                free_extent_buffer(leaf);
5071                                ret = 0;
5072                        } else {
5073                                /* if we're still in the path, make sure
5074                                 * we're dirty.  Otherwise, one of the
5075                                 * push_leaf functions must have already
5076                                 * dirtied this buffer
5077                                 */
5078                                if (path->nodes[0] == leaf)
5079                                        btrfs_mark_buffer_dirty(leaf);
5080                                free_extent_buffer(leaf);
5081                        }
5082                } else {
5083                        btrfs_mark_buffer_dirty(leaf);
5084                }
5085        }
5086        return ret;
5087}
5088
5089/*
5090 * search the tree again to find a leaf with lesser keys
5091 * returns 0 if it found something or 1 if there are no lesser leaves.
5092 * returns < 0 on io errors.
5093 *
5094 * This may release the path, and so you may lose any locks held at the
5095 * time you call it.
5096 */
5097int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5098{
5099        struct btrfs_key key;
5100        struct btrfs_disk_key found_key;
5101        int ret;
5102
5103        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5104
5105        if (key.offset > 0) {
5106                key.offset--;
5107        } else if (key.type > 0) {
5108                key.type--;
5109                key.offset = (u64)-1;
5110        } else if (key.objectid > 0) {
5111                key.objectid--;
5112                key.type = (u8)-1;
5113                key.offset = (u64)-1;
5114        } else {
5115                return 1;
5116        }
5117
5118        btrfs_release_path(path);
5119        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5120        if (ret < 0)
5121                return ret;
5122        btrfs_item_key(path->nodes[0], &found_key, 0);
5123        ret = comp_keys(&found_key, &key);
5124        if (ret < 0)
5125                return 0;
5126        return 1;
5127}
5128
5129/*
5130 * A helper function to walk down the tree starting at min_key, and looking
5131 * for nodes or leaves that are have a minimum transaction id.
5132 * This is used by the btree defrag code, and tree logging
5133 *
5134 * This does not cow, but it does stuff the starting key it finds back
5135 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5136 * key and get a writable path.
5137 *
5138 * This does lock as it descends, and path->keep_locks should be set
5139 * to 1 by the caller.
5140 *
5141 * This honors path->lowest_level to prevent descent past a given level
5142 * of the tree.
5143 *
5144 * min_trans indicates the oldest transaction that you are interested
5145 * in walking through.  Any nodes or leaves older than min_trans are
5146 * skipped over (without reading them).
5147 *
5148 * returns zero if something useful was found, < 0 on error and 1 if there
5149 * was nothing in the tree that matched the search criteria.
5150 */
5151int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5152                         struct btrfs_path *path,
5153                         u64 min_trans)
5154{
5155        struct extent_buffer *cur;
5156        struct btrfs_key found_key;
5157        int slot;
5158        int sret;
5159        u32 nritems;
5160        int level;
5161        int ret = 1;
5162
5163        WARN_ON(!path->keep_locks);
5164again:
5165        cur = btrfs_read_lock_root_node(root);
5166        level = btrfs_header_level(cur);
5167        WARN_ON(path->nodes[level]);
5168        path->nodes[level] = cur;
5169        path->locks[level] = BTRFS_READ_LOCK;
5170
5171        if (btrfs_header_generation(cur) < min_trans) {
5172                ret = 1;
5173                goto out;
5174        }
5175        while (1) {
5176                nritems = btrfs_header_nritems(cur);
5177                level = btrfs_header_level(cur);
5178                sret = bin_search(cur, min_key, level, &slot);
5179
5180                /* at the lowest level, we're done, setup the path and exit */
5181                if (level == path->lowest_level) {
5182                        if (slot >= nritems)
5183                                goto find_next_key;
5184                        ret = 0;
5185                        path->slots[level] = slot;
5186                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5187                        goto out;
5188                }
5189                if (sret && slot > 0)
5190                        slot--;
5191                /*
5192                 * check this node pointer against the min_trans parameters.
5193                 * If it is too old, old, skip to the next one.
5194                 */
5195                while (slot < nritems) {
5196                        u64 gen;
5197
5198                        gen = btrfs_node_ptr_generation(cur, slot);
5199                        if (gen < min_trans) {
5200                                slot++;
5201                                continue;
5202                        }
5203                        break;
5204                }
5205find_next_key:
5206                /*
5207                 * we didn't find a candidate key in this node, walk forward
5208                 * and find another one
5209                 */
5210                if (slot >= nritems) {
5211                        path->slots[level] = slot;
5212                        btrfs_set_path_blocking(path);
5213                        sret = btrfs_find_next_key(root, path, min_key, level,
5214                                                  min_trans);
5215                        if (sret == 0) {
5216                                btrfs_release_path(path);
5217                                goto again;
5218                        } else {
5219                                goto out;
5220                        }
5221                }
5222                /* save our key for returning back */
5223                btrfs_node_key_to_cpu(cur, &found_key, slot);
5224                path->slots[level] = slot;
5225                if (level == path->lowest_level) {
5226                        ret = 0;
5227                        unlock_up(path, level, 1, 0, NULL);
5228                        goto out;
5229                }
5230                btrfs_set_path_blocking(path);
5231                cur = read_node_slot(root, cur, slot);
5232                BUG_ON(!cur); /* -ENOMEM */
5233
5234                btrfs_tree_read_lock(cur);
5235
5236                path->locks[level - 1] = BTRFS_READ_LOCK;
5237                path->nodes[level - 1] = cur;
5238                unlock_up(path, level, 1, 0, NULL);
5239                btrfs_clear_path_blocking(path, NULL, 0);
5240        }
5241out:
5242        if (ret == 0)
5243                memcpy(min_key, &found_key, sizeof(found_key));
5244        btrfs_set_path_blocking(path);
5245        return ret;
5246}
5247
5248static void tree_move_down(struct btrfs_root *root,
5249                           struct btrfs_path *path,
5250                           int *level, int root_level)
5251{
5252        BUG_ON(*level == 0);
5253        path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5254                                        path->slots[*level]);
5255        path->slots[*level - 1] = 0;
5256        (*level)--;
5257}
5258
5259static int tree_move_next_or_upnext(struct btrfs_root *root,
5260                                    struct btrfs_path *path,
5261                                    int *level, int root_level)
5262{
5263        int ret = 0;
5264        int nritems;
5265        nritems = btrfs_header_nritems(path->nodes[*level]);
5266
5267        path->slots[*level]++;
5268
5269        while (path->slots[*level] >= nritems) {
5270                if (*level == root_level)
5271                        return -1;
5272
5273                /* move upnext */
5274                path->slots[*level] = 0;
5275                free_extent_buffer(path->nodes[*level]);
5276                path->nodes[*level] = NULL;
5277                (*level)++;
5278                path->slots[*level]++;
5279
5280                nritems = btrfs_header_nritems(path->nodes[*level]);
5281                ret = 1;
5282        }
5283        return ret;
5284}
5285
5286/*
5287 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5288 * or down.
5289 */
5290static int tree_advance(struct btrfs_root *root,
5291                        struct btrfs_path *path,
5292                        int *level, int root_level,
5293                        int allow_down,
5294                        struct btrfs_key *key)
5295{
5296        int ret;
5297
5298        if (*level == 0 || !allow_down) {
5299                ret = tree_move_next_or_upnext(root, path, level, root_level);
5300        } else {
5301                tree_move_down(root, path, level, root_level);
5302                ret = 0;
5303        }
5304        if (ret >= 0) {
5305                if (*level == 0)
5306                        btrfs_item_key_to_cpu(path->nodes[*level], key,
5307                                        path->slots[*level]);
5308                else
5309                        btrfs_node_key_to_cpu(path->nodes[*level], key,
5310                                        path->slots[*level]);
5311        }
5312        return ret;
5313}
5314
5315static int tree_compare_item(struct btrfs_root *left_root,
5316                             struct btrfs_path *left_path,
5317                             struct btrfs_path *right_path,
5318                             char *tmp_buf)
5319{
5320        int cmp;
5321        int len1, len2;
5322        unsigned long off1, off2;
5323
5324        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5325        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5326        if (len1 != len2)
5327                return 1;
5328
5329        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5330        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5331                                right_path->slots[0]);
5332
5333        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5334
5335        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5336        if (cmp)
5337                return 1;
5338        return 0;
5339}
5340
5341#define ADVANCE 1
5342#define ADVANCE_ONLY_NEXT -1
5343
5344/*
5345 * This function compares two trees and calls the provided callback for
5346 * every changed/new/deleted item it finds.
5347 * If shared tree blocks are encountered, whole subtrees are skipped, making
5348 * the compare pretty fast on snapshotted subvolumes.
5349 *
5350 * This currently works on commit roots only. As commit roots are read only,
5351 * we don't do any locking. The commit roots are protected with transactions.
5352 * Transactions are ended and rejoined when a commit is tried in between.
5353 *
5354 * This function checks for modifications done to the trees while comparing.
5355 * If it detects a change, it aborts immediately.
5356 */
5357int btrfs_compare_trees(struct btrfs_root *left_root,
5358                        struct btrfs_root *right_root,
5359                        btrfs_changed_cb_t changed_cb, void *ctx)
5360{
5361        int ret;
5362        int cmp;
5363        struct btrfs_trans_handle *trans = NULL;
5364        struct btrfs_path *left_path = NULL;
5365        struct btrfs_path *right_path = NULL;
5366        struct btrfs_key left_key;
5367        struct btrfs_key right_key;
5368        char *tmp_buf = NULL;
5369        int left_root_level;
5370        int right_root_level;
5371        int left_level;
5372        int right_level;
5373        int left_end_reached;
5374        int right_end_reached;
5375        int advance_left;
5376        int advance_right;
5377        u64 left_blockptr;
5378        u64 right_blockptr;
5379        u64 left_start_ctransid;
5380        u64 right_start_ctransid;
5381        u64 ctransid;
5382
5383        left_path = btrfs_alloc_path();
5384        if (!left_path) {
5385                ret = -ENOMEM;
5386                goto out;
5387        }
5388        right_path = btrfs_alloc_path();
5389        if (!right_path) {
5390                ret = -ENOMEM;
5391                goto out;
5392        }
5393
5394        tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5395        if (!tmp_buf) {
5396                ret = -ENOMEM;
5397                goto out;
5398        }
5399
5400        left_path->search_commit_root = 1;
5401        left_path->skip_locking = 1;
5402        right_path->search_commit_root = 1;
5403        right_path->skip_locking = 1;
5404
5405        spin_lock(&left_root->root_item_lock);
5406        left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5407        spin_unlock(&left_root->root_item_lock);
5408
5409        spin_lock(&right_root->root_item_lock);
5410        right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5411        spin_unlock(&right_root->root_item_lock);
5412
5413        trans = btrfs_join_transaction(left_root);
5414        if (IS_ERR(trans)) {
5415                ret = PTR_ERR(trans);
5416                trans = NULL;
5417                goto out;
5418        }
5419
5420        /*
5421         * Strategy: Go to the first items of both trees. Then do
5422         *
5423         * If both trees are at level 0
5424         *   Compare keys of current items
5425         *     If left < right treat left item as new, advance left tree
5426         *       and repeat
5427         *     If left > right treat right item as deleted, advance right tree
5428         *       and repeat
5429         *     If left == right do deep compare of items, treat as changed if
5430         *       needed, advance both trees and repeat
5431         * If both trees are at the same level but not at level 0
5432         *   Compare keys of current nodes/leafs
5433         *     If left < right advance left tree and repeat
5434         *     If left > right advance right tree and repeat
5435         *     If left == right compare blockptrs of the next nodes/leafs
5436         *       If they match advance both trees but stay at the same level
5437         *         and repeat
5438         *       If they don't match advance both trees while allowing to go
5439         *         deeper and repeat
5440         * If tree levels are different
5441         *   Advance the tree that needs it and repeat
5442         *
5443         * Advancing a tree means:
5444         *   If we are at level 0, try to go to the next slot. If that's not
5445         *   possible, go one level up and repeat. Stop when we found a level
5446         *   where we could go to the next slot. We may at this point be on a
5447         *   node or a leaf.
5448         *
5449         *   If we are not at level 0 and not on shared tree blocks, go one
5450         *   level deeper.
5451         *
5452         *   If we are not at level 0 and on shared tree blocks, go one slot to
5453         *   the right if possible or go up and right.
5454         */
5455
5456        left_level = btrfs_header_level(left_root->commit_root);
5457        left_root_level = left_level;
5458        left_path->nodes[left_level] = left_root->commit_root;
5459        extent_buffer_get(left_path->nodes[left_level]);
5460
5461        right_level = btrfs_header_level(right_root->commit_root);
5462        right_root_level = right_level;
5463        right_path->nodes[right_level] = right_root->commit_root;
5464        extent_buffer_get(right_path->nodes[right_level]);
5465
5466        if (left_level == 0)
5467                btrfs_item_key_to_cpu(left_path->nodes[left_level],
5468                                &left_key, left_path->slots[left_level]);
5469        else
5470                btrfs_node_key_to_cpu(left_path->nodes[left_level],
5471                                &left_key, left_path->slots[left_level]);
5472        if (right_level == 0)
5473                btrfs_item_key_to_cpu(right_path->nodes[right_level],
5474                                &right_key, right_path->slots[right_level]);
5475        else
5476                btrfs_node_key_to_cpu(right_path->nodes[right_level],
5477                                &right_key, right_path->slots[right_level]);
5478
5479        left_end_reached = right_end_reached = 0;
5480        advance_left = advance_right = 0;
5481
5482        while (1) {
5483                /*
5484                 * We need to make sure the transaction does not get committed
5485                 * while we do anything on commit roots. This means, we need to
5486                 * join and leave transactions for every item that we process.
5487                 */
5488                if (trans && btrfs_should_end_transaction(trans, left_root)) {
5489                        btrfs_release_path(left_path);
5490                        btrfs_release_path(right_path);
5491
5492                        ret = btrfs_end_transaction(trans, left_root);
5493                        trans = NULL;
5494                        if (ret < 0)
5495                                goto out;
5496                }
5497                /* now rejoin the transaction */
5498                if (!trans) {
5499                        trans = btrfs_join_transaction(left_root);
5500                        if (IS_ERR(trans)) {
5501                                ret = PTR_ERR(trans);
5502                                trans = NULL;
5503                                goto out;
5504                        }
5505
5506                        spin_lock(&left_root->root_item_lock);
5507                        ctransid = btrfs_root_ctransid(&left_root->root_item);
5508                        spin_unlock(&left_root->root_item_lock);
5509                        if (ctransid != left_start_ctransid)
5510                                left_start_ctransid = 0;
5511
5512                        spin_lock(&right_root->root_item_lock);
5513                        ctransid = btrfs_root_ctransid(&right_root->root_item);
5514                        spin_unlock(&right_root->root_item_lock);
5515                        if (ctransid != right_start_ctransid)
5516                                right_start_ctransid = 0;
5517
5518                        if (!left_start_ctransid || !right_start_ctransid) {
5519                                WARN(1, KERN_WARNING
5520                                        "BTRFS: btrfs_compare_tree detected "
5521                                        "a change in one of the trees while "
5522                                        "iterating. This is probably a "
5523                                        "bug.\n");
5524                                ret = -EIO;
5525                                goto out;
5526                        }
5527
5528                        /*
5529                         * the commit root may have changed, so start again
5530                         * where we stopped
5531                         */
5532                        left_path->lowest_level = left_level;
5533                        right_path->lowest_level = right_level;
5534                        ret = btrfs_search_slot(NULL, left_root,
5535                                        &left_key, left_path, 0, 0);
5536                        if (ret < 0)
5537                                goto out;
5538                        ret = btrfs_search_slot(NULL, right_root,
5539                                        &right_key, right_path, 0, 0);
5540                        if (ret < 0)
5541                                goto out;
5542                }
5543
5544                if (advance_left && !left_end_reached) {
5545                        ret = tree_advance(left_root, left_path, &left_level,
5546                                        left_root_level,
5547                                        advance_left != ADVANCE_ONLY_NEXT,
5548                                        &left_key);
5549                        if (ret < 0)
5550                                left_end_reached = ADVANCE;
5551                        advance_left = 0;
5552                }
5553                if (advance_right && !right_end_reached) {
5554                        ret = tree_advance(right_root, right_path, &right_level,
5555                                        right_root_level,
5556                                        advance_right != ADVANCE_ONLY_NEXT,
5557                                        &right_key);
5558                        if (ret < 0)
5559                                right_end_reached = ADVANCE;
5560                        advance_right = 0;
5561                }
5562
5563                if (left_end_reached && right_end_reached) {
5564                        ret = 0;
5565                        goto out;
5566                } else if (left_end_reached) {
5567                        if (right_level == 0) {
5568                                ret = changed_cb(left_root, right_root,
5569                                                left_path, right_path,
5570                                                &right_key,
5571                                                BTRFS_COMPARE_TREE_DELETED,
5572                                                ctx);
5573                                if (ret < 0)
5574                                        goto out;
5575                        }
5576                        advance_right = ADVANCE;
5577                        continue;
5578                } else if (right_end_reached) {
5579                        if (left_level == 0) {
5580                                ret = changed_cb(left_root, right_root,
5581                                                left_path, right_path,
5582                                                &left_key,
5583                                                BTRFS_COMPARE_TREE_NEW,
5584                                                ctx);
5585                                if (ret < 0)
5586                                        goto out;
5587                        }
5588                        advance_left = ADVANCE;
5589                        continue;
5590                }
5591
5592                if (left_level == 0 && right_level == 0) {
5593                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5594                        if (cmp < 0) {
5595                                ret = changed_cb(left_root, right_root,
5596                                                left_path, right_path,
5597                                                &left_key,
5598                                                BTRFS_COMPARE_TREE_NEW,
5599                                                ctx);
5600                                if (ret < 0)
5601                                        goto out;
5602                                advance_left = ADVANCE;
5603                        } else if (cmp > 0) {
5604                                ret = changed_cb(left_root, right_root,
5605                                                left_path, right_path,
5606                                                &right_key,
5607                                                BTRFS_COMPARE_TREE_DELETED,
5608                                                ctx);
5609                                if (ret < 0)
5610                                        goto out;
5611                                advance_right = ADVANCE;
5612                        } else {
5613                                enum btrfs_compare_tree_result cmp;
5614
5615                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5616                                ret = tree_compare_item(left_root, left_path,
5617                                                right_path, tmp_buf);
5618                                if (ret)
5619                                        cmp = BTRFS_COMPARE_TREE_CHANGED;
5620                                else
5621                                        cmp = BTRFS_COMPARE_TREE_SAME;
5622                                ret = changed_cb(left_root, right_root,
5623                                                 left_path, right_path,
5624                                                 &left_key, cmp, ctx);
5625                                if (ret < 0)
5626                                        goto out;
5627                                advance_left = ADVANCE;
5628                                advance_right = ADVANCE;
5629                        }
5630                } else if (left_level == right_level) {
5631                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5632                        if (cmp < 0) {
5633                                advance_left = ADVANCE;
5634                        } else if (cmp > 0) {
5635                                advance_right = ADVANCE;
5636                        } else {
5637                                left_blockptr = btrfs_node_blockptr(
5638                                                left_path->nodes[left_level],
5639                                                left_path->slots[left_level]);
5640                                right_blockptr = btrfs_node_blockptr(
5641                                                right_path->nodes[right_level],
5642                                                right_path->slots[right_level]);
5643                                if (left_blockptr == right_blockptr) {
5644                                        /*
5645                                         * As we're on a shared block, don't
5646                                         * allow to go deeper.
5647                                         */
5648                                        advance_left = ADVANCE_ONLY_NEXT;
5649                                        advance_right = ADVANCE_ONLY_NEXT;
5650                                } else {
5651                                        advance_left = ADVANCE;
5652                                        advance_right = ADVANCE;
5653                                }
5654                        }
5655                } else if (left_level < right_level) {
5656                        advance_right = ADVANCE;
5657                } else {
5658                        advance_left = ADVANCE;
5659                }
5660        }
5661
5662out:
5663        btrfs_free_path(left_path);
5664        btrfs_free_path(right_path);
5665        kfree(tmp_buf);
5666
5667        if (trans) {
5668                if (!ret)
5669                        ret = btrfs_end_transaction(trans, left_root);
5670                else
5671                        btrfs_end_transaction(trans, left_root);
5672        }
5673
5674        return ret;
5675}
5676
5677/*
5678 * this is similar to btrfs_next_leaf, but does not try to preserve
5679 * and fixup the path.  It looks for and returns the next key in the
5680 * tree based on the current path and the min_trans parameters.
5681 *
5682 * 0 is returned if another key is found, < 0 if there are any errors
5683 * and 1 is returned if there are no higher keys in the tree
5684 *
5685 * path->keep_locks should be set to 1 on the search made before
5686 * calling this function.
5687 */
5688int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5689                        struct btrfs_key *key, int level, u64 min_trans)
5690{
5691        int slot;
5692        struct extent_buffer *c;
5693
5694        WARN_ON(!path->keep_locks);
5695        while (level < BTRFS_MAX_LEVEL) {
5696                if (!path->nodes[level])
5697                        return 1;
5698
5699                slot = path->slots[level] + 1;
5700                c = path->nodes[level];
5701next:
5702                if (slot >= btrfs_header_nritems(c)) {
5703                        int ret;
5704                        int orig_lowest;
5705                        struct btrfs_key cur_key;
5706                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5707                            !path->nodes[level + 1])
5708                                return 1;
5709
5710                        if (path->locks[level + 1]) {
5711                                level++;
5712                                continue;
5713                        }
5714
5715                        slot = btrfs_header_nritems(c) - 1;
5716                        if (level == 0)
5717                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5718                        else
5719                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5720
5721                        orig_lowest = path->lowest_level;
5722                        btrfs_release_path(path);
5723                        path->lowest_level = level;
5724                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5725                                                0, 0);
5726                        path->lowest_level = orig_lowest;
5727                        if (ret < 0)
5728                                return ret;
5729
5730                        c = path->nodes[level];
5731                        slot = path->slots[level];
5732                        if (ret == 0)
5733                                slot++;
5734                        goto next;
5735                }
5736
5737                if (level == 0)
5738                        btrfs_item_key_to_cpu(c, key, slot);
5739                else {
5740                        u64 gen = btrfs_node_ptr_generation(c, slot);
5741
5742                        if (gen < min_trans) {
5743                                slot++;
5744                                goto next;
5745                        }
5746                        btrfs_node_key_to_cpu(c, key, slot);
5747                }
5748                return 0;
5749        }
5750        return 1;
5751}
5752
5753/*
5754 * search the tree again to find a leaf with greater keys
5755 * returns 0 if it found something or 1 if there are no greater leaves.
5756 * returns < 0 on io errors.
5757 */
5758int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5759{
5760        return btrfs_next_old_leaf(root, path, 0);
5761}
5762
5763int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5764                        u64 time_seq)
5765{
5766        int slot;
5767        int level;
5768        struct extent_buffer *c;
5769        struct extent_buffer *next;
5770        struct btrfs_key key;
5771        u32 nritems;
5772        int ret;
5773        int old_spinning = path->leave_spinning;
5774        int next_rw_lock = 0;
5775
5776        nritems = btrfs_header_nritems(path->nodes[0]);
5777        if (nritems == 0)
5778                return 1;
5779
5780        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5781again:
5782        level = 1;
5783        next = NULL;
5784        next_rw_lock = 0;
5785        btrfs_release_path(path);
5786
5787        path->keep_locks = 1;
5788        path->leave_spinning = 1;
5789
5790        if (time_seq)
5791                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5792        else
5793                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5794        path->keep_locks = 0;
5795
5796        if (ret < 0)
5797                return ret;
5798
5799        nritems = btrfs_header_nritems(path->nodes[0]);
5800        /*
5801         * by releasing the path above we dropped all our locks.  A balance
5802         * could have added more items next to the key that used to be
5803         * at the very end of the block.  So, check again here and
5804         * advance the path if there are now more items available.
5805         */
5806        if (nritems > 0 && path->slots[0] < nritems - 1) {
5807                if (ret == 0)
5808                        path->slots[0]++;
5809                ret = 0;
5810                goto done;
5811        }
5812
5813        while (level < BTRFS_MAX_LEVEL) {
5814                if (!path->nodes[level]) {
5815                        ret = 1;
5816                        goto done;
5817                }
5818
5819                slot = path->slots[level] + 1;
5820                c = path->nodes[level];
5821                if (slot >= btrfs_header_nritems(c)) {
5822                        level++;
5823                        if (level == BTRFS_MAX_LEVEL) {
5824                                ret = 1;
5825                                goto done;
5826                        }
5827                        continue;
5828                }
5829
5830                if (next) {
5831                        btrfs_tree_unlock_rw(next, next_rw_lock);
5832                        free_extent_buffer(next);
5833                }
5834
5835                next = c;
5836                next_rw_lock = path->locks[level];
5837                ret = read_block_for_search(NULL, root, path, &next, level,
5838                                            slot, &key, 0);
5839                if (ret == -EAGAIN)
5840                        goto again;
5841
5842                if (ret < 0) {
5843                        btrfs_release_path(path);
5844                        goto done;
5845                }
5846
5847                if (!path->skip_locking) {
5848                        ret = btrfs_try_tree_read_lock(next);
5849                        if (!ret && time_seq) {
5850                                /*
5851                                 * If we don't get the lock, we may be racing
5852                                 * with push_leaf_left, holding that lock while
5853                                 * itself waiting for the leaf we've currently
5854                                 * locked. To solve this situation, we give up
5855                                 * on our lock and cycle.
5856                                 */
5857                                free_extent_buffer(next);
5858                                btrfs_release_path(path);
5859                                cond_resched();
5860                                goto again;
5861                        }
5862                        if (!ret) {
5863                                btrfs_set_path_blocking(path);
5864                                btrfs_tree_read_lock(next);
5865                                btrfs_clear_path_blocking(path, next,
5866                                                          BTRFS_READ_LOCK);
5867                        }
5868                        next_rw_lock = BTRFS_READ_LOCK;
5869                }
5870                break;
5871        }
5872        path->slots[level] = slot;
5873        while (1) {
5874                level--;
5875                c = path->nodes[level];
5876                if (path->locks[level])
5877                        btrfs_tree_unlock_rw(c, path->locks[level]);
5878
5879                free_extent_buffer(c);
5880                path->nodes[level] = next;
5881                path->slots[level] = 0;
5882                if (!path->skip_locking)
5883                        path->locks[level] = next_rw_lock;
5884                if (!level)
5885                        break;
5886
5887                ret = read_block_for_search(NULL, root, path, &next, level,
5888                                            0, &key, 0);
5889                if (ret == -EAGAIN)
5890                        goto again;
5891
5892                if (ret < 0) {
5893                        btrfs_release_path(path);
5894                        goto done;
5895                }
5896
5897                if (!path->skip_locking) {
5898                        ret = btrfs_try_tree_read_lock(next);
5899                        if (!ret) {
5900                                btrfs_set_path_blocking(path);
5901                                btrfs_tree_read_lock(next);
5902                                btrfs_clear_path_blocking(path, next,
5903                                                          BTRFS_READ_LOCK);
5904                        }
5905                        next_rw_lock = BTRFS_READ_LOCK;
5906                }
5907        }
5908        ret = 0;
5909done:
5910        unlock_up(path, 0, 1, 0, NULL);
5911        path->leave_spinning = old_spinning;
5912        if (!old_spinning)
5913                btrfs_set_path_blocking(path);
5914
5915        return ret;
5916}
5917
5918/*
5919 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5920 * searching until it gets past min_objectid or finds an item of 'type'
5921 *
5922 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5923 */
5924int btrfs_previous_item(struct btrfs_root *root,
5925                        struct btrfs_path *path, u64 min_objectid,
5926                        int type)
5927{
5928        struct btrfs_key found_key;
5929        struct extent_buffer *leaf;
5930        u32 nritems;
5931        int ret;
5932
5933        while (1) {
5934                if (path->slots[0] == 0) {
5935                        btrfs_set_path_blocking(path);
5936                        ret = btrfs_prev_leaf(root, path);
5937                        if (ret != 0)
5938                                return ret;
5939                } else {
5940                        path->slots[0]--;
5941                }
5942                leaf = path->nodes[0];
5943                nritems = btrfs_header_nritems(leaf);
5944                if (nritems == 0)
5945                        return 1;
5946                if (path->slots[0] == nritems)
5947                        path->slots[0]--;
5948
5949                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5950                if (found_key.objectid < min_objectid)
5951                        break;
5952                if (found_key.type == type)
5953                        return 0;
5954                if (found_key.objectid == min_objectid &&
5955                    found_key.type < type)
5956                        break;
5957        }
5958        return 1;
5959}
5960
5961/*
5962 * search in extent tree to find a previous Metadata/Data extent item with
5963 * min objecitd.
5964 *
5965 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5966 */
5967int btrfs_previous_extent_item(struct btrfs_root *root,
5968                        struct btrfs_path *path, u64 min_objectid)
5969{
5970        struct btrfs_key found_key;
5971        struct extent_buffer *leaf;
5972        u32 nritems;
5973        int ret;
5974
5975        while (1) {
5976                if (path->slots[0] == 0) {
5977                        btrfs_set_path_blocking(path);
5978                        ret = btrfs_prev_leaf(root, path);
5979                        if (ret != 0)
5980                                return ret;
5981                } else {
5982                        path->slots[0]--;
5983                }
5984                leaf = path->nodes[0];
5985                nritems = btrfs_header_nritems(leaf);
5986                if (nritems == 0)
5987                        return 1;
5988                if (path->slots[0] == nritems)
5989                        path->slots[0]--;
5990
5991                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5992                if (found_key.objectid < min_objectid)
5993                        break;
5994                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5995                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5996                        return 0;
5997                if (found_key.objectid == min_objectid &&
5998                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5999                        break;
6000        }
6001        return 1;
6002}
6003