linux/fs/btrfs/ordered-data.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include <linux/pagevec.h>
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "extent_io.h"
  27#include "disk-io.h"
  28
  29static struct kmem_cache *btrfs_ordered_extent_cache;
  30
  31static u64 entry_end(struct btrfs_ordered_extent *entry)
  32{
  33        if (entry->file_offset + entry->len < entry->file_offset)
  34                return (u64)-1;
  35        return entry->file_offset + entry->len;
  36}
  37
  38/* returns NULL if the insertion worked, or it returns the node it did find
  39 * in the tree
  40 */
  41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  42                                   struct rb_node *node)
  43{
  44        struct rb_node **p = &root->rb_node;
  45        struct rb_node *parent = NULL;
  46        struct btrfs_ordered_extent *entry;
  47
  48        while (*p) {
  49                parent = *p;
  50                entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  51
  52                if (file_offset < entry->file_offset)
  53                        p = &(*p)->rb_left;
  54                else if (file_offset >= entry_end(entry))
  55                        p = &(*p)->rb_right;
  56                else
  57                        return parent;
  58        }
  59
  60        rb_link_node(node, parent, p);
  61        rb_insert_color(node, root);
  62        return NULL;
  63}
  64
  65static void ordered_data_tree_panic(struct inode *inode, int errno,
  66                                               u64 offset)
  67{
  68        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  69        btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  70                    "%llu\n", offset);
  71}
  72
  73/*
  74 * look for a given offset in the tree, and if it can't be found return the
  75 * first lesser offset
  76 */
  77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  78                                     struct rb_node **prev_ret)
  79{
  80        struct rb_node *n = root->rb_node;
  81        struct rb_node *prev = NULL;
  82        struct rb_node *test;
  83        struct btrfs_ordered_extent *entry;
  84        struct btrfs_ordered_extent *prev_entry = NULL;
  85
  86        while (n) {
  87                entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  88                prev = n;
  89                prev_entry = entry;
  90
  91                if (file_offset < entry->file_offset)
  92                        n = n->rb_left;
  93                else if (file_offset >= entry_end(entry))
  94                        n = n->rb_right;
  95                else
  96                        return n;
  97        }
  98        if (!prev_ret)
  99                return NULL;
 100
 101        while (prev && file_offset >= entry_end(prev_entry)) {
 102                test = rb_next(prev);
 103                if (!test)
 104                        break;
 105                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 106                                      rb_node);
 107                if (file_offset < entry_end(prev_entry))
 108                        break;
 109
 110                prev = test;
 111        }
 112        if (prev)
 113                prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 114                                      rb_node);
 115        while (prev && file_offset < entry_end(prev_entry)) {
 116                test = rb_prev(prev);
 117                if (!test)
 118                        break;
 119                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 120                                      rb_node);
 121                prev = test;
 122        }
 123        *prev_ret = prev;
 124        return NULL;
 125}
 126
 127/*
 128 * helper to check if a given offset is inside a given entry
 129 */
 130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 131{
 132        if (file_offset < entry->file_offset ||
 133            entry->file_offset + entry->len <= file_offset)
 134                return 0;
 135        return 1;
 136}
 137
 138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 139                          u64 len)
 140{
 141        if (file_offset + len <= entry->file_offset ||
 142            entry->file_offset + entry->len <= file_offset)
 143                return 0;
 144        return 1;
 145}
 146
 147/*
 148 * look find the first ordered struct that has this offset, otherwise
 149 * the first one less than this offset
 150 */
 151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 152                                          u64 file_offset)
 153{
 154        struct rb_root *root = &tree->tree;
 155        struct rb_node *prev = NULL;
 156        struct rb_node *ret;
 157        struct btrfs_ordered_extent *entry;
 158
 159        if (tree->last) {
 160                entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 161                                 rb_node);
 162                if (offset_in_entry(entry, file_offset))
 163                        return tree->last;
 164        }
 165        ret = __tree_search(root, file_offset, &prev);
 166        if (!ret)
 167                ret = prev;
 168        if (ret)
 169                tree->last = ret;
 170        return ret;
 171}
 172
 173/* allocate and add a new ordered_extent into the per-inode tree.
 174 * file_offset is the logical offset in the file
 175 *
 176 * start is the disk block number of an extent already reserved in the
 177 * extent allocation tree
 178 *
 179 * len is the length of the extent
 180 *
 181 * The tree is given a single reference on the ordered extent that was
 182 * inserted.
 183 */
 184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 185                                      u64 start, u64 len, u64 disk_len,
 186                                      int type, int dio, int compress_type)
 187{
 188        struct btrfs_root *root = BTRFS_I(inode)->root;
 189        struct btrfs_ordered_inode_tree *tree;
 190        struct rb_node *node;
 191        struct btrfs_ordered_extent *entry;
 192
 193        tree = &BTRFS_I(inode)->ordered_tree;
 194        entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 195        if (!entry)
 196                return -ENOMEM;
 197
 198        entry->file_offset = file_offset;
 199        entry->start = start;
 200        entry->len = len;
 201        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
 202            !(type == BTRFS_ORDERED_NOCOW))
 203                entry->csum_bytes_left = disk_len;
 204        entry->disk_len = disk_len;
 205        entry->bytes_left = len;
 206        entry->inode = igrab(inode);
 207        entry->compress_type = compress_type;
 208        entry->truncated_len = (u64)-1;
 209        if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 210                set_bit(type, &entry->flags);
 211
 212        if (dio)
 213                set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 214
 215        /* one ref for the tree */
 216        atomic_set(&entry->refs, 1);
 217        init_waitqueue_head(&entry->wait);
 218        INIT_LIST_HEAD(&entry->list);
 219        INIT_LIST_HEAD(&entry->root_extent_list);
 220        INIT_LIST_HEAD(&entry->work_list);
 221        init_completion(&entry->completion);
 222        INIT_LIST_HEAD(&entry->log_list);
 223
 224        trace_btrfs_ordered_extent_add(inode, entry);
 225
 226        spin_lock_irq(&tree->lock);
 227        node = tree_insert(&tree->tree, file_offset,
 228                           &entry->rb_node);
 229        if (node)
 230                ordered_data_tree_panic(inode, -EEXIST, file_offset);
 231        spin_unlock_irq(&tree->lock);
 232
 233        spin_lock(&root->ordered_extent_lock);
 234        list_add_tail(&entry->root_extent_list,
 235                      &root->ordered_extents);
 236        root->nr_ordered_extents++;
 237        if (root->nr_ordered_extents == 1) {
 238                spin_lock(&root->fs_info->ordered_root_lock);
 239                BUG_ON(!list_empty(&root->ordered_root));
 240                list_add_tail(&root->ordered_root,
 241                              &root->fs_info->ordered_roots);
 242                spin_unlock(&root->fs_info->ordered_root_lock);
 243        }
 244        spin_unlock(&root->ordered_extent_lock);
 245
 246        return 0;
 247}
 248
 249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 250                             u64 start, u64 len, u64 disk_len, int type)
 251{
 252        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 253                                          disk_len, type, 0,
 254                                          BTRFS_COMPRESS_NONE);
 255}
 256
 257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 258                                 u64 start, u64 len, u64 disk_len, int type)
 259{
 260        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 261                                          disk_len, type, 1,
 262                                          BTRFS_COMPRESS_NONE);
 263}
 264
 265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 266                                      u64 start, u64 len, u64 disk_len,
 267                                      int type, int compress_type)
 268{
 269        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 270                                          disk_len, type, 0,
 271                                          compress_type);
 272}
 273
 274/*
 275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 276 * when an ordered extent is finished.  If the list covers more than one
 277 * ordered extent, it is split across multiples.
 278 */
 279void btrfs_add_ordered_sum(struct inode *inode,
 280                           struct btrfs_ordered_extent *entry,
 281                           struct btrfs_ordered_sum *sum)
 282{
 283        struct btrfs_ordered_inode_tree *tree;
 284
 285        tree = &BTRFS_I(inode)->ordered_tree;
 286        spin_lock_irq(&tree->lock);
 287        list_add_tail(&sum->list, &entry->list);
 288        WARN_ON(entry->csum_bytes_left < sum->len);
 289        entry->csum_bytes_left -= sum->len;
 290        if (entry->csum_bytes_left == 0)
 291                wake_up(&entry->wait);
 292        spin_unlock_irq(&tree->lock);
 293}
 294
 295/*
 296 * this is used to account for finished IO across a given range
 297 * of the file.  The IO may span ordered extents.  If
 298 * a given ordered_extent is completely done, 1 is returned, otherwise
 299 * 0.
 300 *
 301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 302 * to make sure this function only returns 1 once for a given ordered extent.
 303 *
 304 * file_offset is updated to one byte past the range that is recorded as
 305 * complete.  This allows you to walk forward in the file.
 306 */
 307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 308                                   struct btrfs_ordered_extent **cached,
 309                                   u64 *file_offset, u64 io_size, int uptodate)
 310{
 311        struct btrfs_ordered_inode_tree *tree;
 312        struct rb_node *node;
 313        struct btrfs_ordered_extent *entry = NULL;
 314        int ret;
 315        unsigned long flags;
 316        u64 dec_end;
 317        u64 dec_start;
 318        u64 to_dec;
 319
 320        tree = &BTRFS_I(inode)->ordered_tree;
 321        spin_lock_irqsave(&tree->lock, flags);
 322        node = tree_search(tree, *file_offset);
 323        if (!node) {
 324                ret = 1;
 325                goto out;
 326        }
 327
 328        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 329        if (!offset_in_entry(entry, *file_offset)) {
 330                ret = 1;
 331                goto out;
 332        }
 333
 334        dec_start = max(*file_offset, entry->file_offset);
 335        dec_end = min(*file_offset + io_size, entry->file_offset +
 336                      entry->len);
 337        *file_offset = dec_end;
 338        if (dec_start > dec_end) {
 339                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 340                        "bad ordering dec_start %llu end %llu", dec_start, dec_end);
 341        }
 342        to_dec = dec_end - dec_start;
 343        if (to_dec > entry->bytes_left) {
 344                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 345                        "bad ordered accounting left %llu size %llu",
 346                        entry->bytes_left, to_dec);
 347        }
 348        entry->bytes_left -= to_dec;
 349        if (!uptodate)
 350                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 351
 352        if (entry->bytes_left == 0)
 353                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 354        else
 355                ret = 1;
 356out:
 357        if (!ret && cached && entry) {
 358                *cached = entry;
 359                atomic_inc(&entry->refs);
 360        }
 361        spin_unlock_irqrestore(&tree->lock, flags);
 362        return ret == 0;
 363}
 364
 365/*
 366 * this is used to account for finished IO across a given range
 367 * of the file.  The IO should not span ordered extents.  If
 368 * a given ordered_extent is completely done, 1 is returned, otherwise
 369 * 0.
 370 *
 371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 372 * to make sure this function only returns 1 once for a given ordered extent.
 373 */
 374int btrfs_dec_test_ordered_pending(struct inode *inode,
 375                                   struct btrfs_ordered_extent **cached,
 376                                   u64 file_offset, u64 io_size, int uptodate)
 377{
 378        struct btrfs_ordered_inode_tree *tree;
 379        struct rb_node *node;
 380        struct btrfs_ordered_extent *entry = NULL;
 381        unsigned long flags;
 382        int ret;
 383
 384        tree = &BTRFS_I(inode)->ordered_tree;
 385        spin_lock_irqsave(&tree->lock, flags);
 386        if (cached && *cached) {
 387                entry = *cached;
 388                goto have_entry;
 389        }
 390
 391        node = tree_search(tree, file_offset);
 392        if (!node) {
 393                ret = 1;
 394                goto out;
 395        }
 396
 397        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 398have_entry:
 399        if (!offset_in_entry(entry, file_offset)) {
 400                ret = 1;
 401                goto out;
 402        }
 403
 404        if (io_size > entry->bytes_left) {
 405                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 406                           "bad ordered accounting left %llu size %llu",
 407                       entry->bytes_left, io_size);
 408        }
 409        entry->bytes_left -= io_size;
 410        if (!uptodate)
 411                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 412
 413        if (entry->bytes_left == 0)
 414                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 415        else
 416                ret = 1;
 417out:
 418        if (!ret && cached && entry) {
 419                *cached = entry;
 420                atomic_inc(&entry->refs);
 421        }
 422        spin_unlock_irqrestore(&tree->lock, flags);
 423        return ret == 0;
 424}
 425
 426/* Needs to either be called under a log transaction or the log_mutex */
 427void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
 428{
 429        struct btrfs_ordered_inode_tree *tree;
 430        struct btrfs_ordered_extent *ordered;
 431        struct rb_node *n;
 432        int index = log->log_transid % 2;
 433
 434        tree = &BTRFS_I(inode)->ordered_tree;
 435        spin_lock_irq(&tree->lock);
 436        for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 437                ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 438                spin_lock(&log->log_extents_lock[index]);
 439                if (list_empty(&ordered->log_list)) {
 440                        list_add_tail(&ordered->log_list, &log->logged_list[index]);
 441                        atomic_inc(&ordered->refs);
 442                }
 443                spin_unlock(&log->log_extents_lock[index]);
 444        }
 445        spin_unlock_irq(&tree->lock);
 446}
 447
 448void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
 449{
 450        struct btrfs_ordered_extent *ordered;
 451        int index = transid % 2;
 452
 453        spin_lock_irq(&log->log_extents_lock[index]);
 454        while (!list_empty(&log->logged_list[index])) {
 455                ordered = list_first_entry(&log->logged_list[index],
 456                                           struct btrfs_ordered_extent,
 457                                           log_list);
 458                list_del_init(&ordered->log_list);
 459                spin_unlock_irq(&log->log_extents_lock[index]);
 460                wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 461                                                   &ordered->flags));
 462                btrfs_put_ordered_extent(ordered);
 463                spin_lock_irq(&log->log_extents_lock[index]);
 464        }
 465        spin_unlock_irq(&log->log_extents_lock[index]);
 466}
 467
 468void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 469{
 470        struct btrfs_ordered_extent *ordered;
 471        int index = transid % 2;
 472
 473        spin_lock_irq(&log->log_extents_lock[index]);
 474        while (!list_empty(&log->logged_list[index])) {
 475                ordered = list_first_entry(&log->logged_list[index],
 476                                           struct btrfs_ordered_extent,
 477                                           log_list);
 478                list_del_init(&ordered->log_list);
 479                spin_unlock_irq(&log->log_extents_lock[index]);
 480                btrfs_put_ordered_extent(ordered);
 481                spin_lock_irq(&log->log_extents_lock[index]);
 482        }
 483        spin_unlock_irq(&log->log_extents_lock[index]);
 484}
 485
 486/*
 487 * used to drop a reference on an ordered extent.  This will free
 488 * the extent if the last reference is dropped
 489 */
 490void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 491{
 492        struct list_head *cur;
 493        struct btrfs_ordered_sum *sum;
 494
 495        trace_btrfs_ordered_extent_put(entry->inode, entry);
 496
 497        if (atomic_dec_and_test(&entry->refs)) {
 498                if (entry->inode)
 499                        btrfs_add_delayed_iput(entry->inode);
 500                while (!list_empty(&entry->list)) {
 501                        cur = entry->list.next;
 502                        sum = list_entry(cur, struct btrfs_ordered_sum, list);
 503                        list_del(&sum->list);
 504                        kfree(sum);
 505                }
 506                kmem_cache_free(btrfs_ordered_extent_cache, entry);
 507        }
 508}
 509
 510/*
 511 * remove an ordered extent from the tree.  No references are dropped
 512 * and waiters are woken up.
 513 */
 514void btrfs_remove_ordered_extent(struct inode *inode,
 515                                 struct btrfs_ordered_extent *entry)
 516{
 517        struct btrfs_ordered_inode_tree *tree;
 518        struct btrfs_root *root = BTRFS_I(inode)->root;
 519        struct rb_node *node;
 520
 521        tree = &BTRFS_I(inode)->ordered_tree;
 522        spin_lock_irq(&tree->lock);
 523        node = &entry->rb_node;
 524        rb_erase(node, &tree->tree);
 525        if (tree->last == node)
 526                tree->last = NULL;
 527        set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 528        spin_unlock_irq(&tree->lock);
 529
 530        spin_lock(&root->ordered_extent_lock);
 531        list_del_init(&entry->root_extent_list);
 532        root->nr_ordered_extents--;
 533
 534        trace_btrfs_ordered_extent_remove(inode, entry);
 535
 536        /*
 537         * we have no more ordered extents for this inode and
 538         * no dirty pages.  We can safely remove it from the
 539         * list of ordered extents
 540         */
 541        if (RB_EMPTY_ROOT(&tree->tree) &&
 542            !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
 543                spin_lock(&root->fs_info->ordered_root_lock);
 544                list_del_init(&BTRFS_I(inode)->ordered_operations);
 545                spin_unlock(&root->fs_info->ordered_root_lock);
 546        }
 547
 548        if (!root->nr_ordered_extents) {
 549                spin_lock(&root->fs_info->ordered_root_lock);
 550                BUG_ON(list_empty(&root->ordered_root));
 551                list_del_init(&root->ordered_root);
 552                spin_unlock(&root->fs_info->ordered_root_lock);
 553        }
 554        spin_unlock(&root->ordered_extent_lock);
 555        wake_up(&entry->wait);
 556}
 557
 558static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 559{
 560        struct btrfs_ordered_extent *ordered;
 561
 562        ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 563        btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 564        complete(&ordered->completion);
 565}
 566
 567/*
 568 * wait for all the ordered extents in a root.  This is done when balancing
 569 * space between drives.
 570 */
 571int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
 572{
 573        struct list_head splice, works;
 574        struct btrfs_ordered_extent *ordered, *next;
 575        int count = 0;
 576
 577        INIT_LIST_HEAD(&splice);
 578        INIT_LIST_HEAD(&works);
 579
 580        mutex_lock(&root->fs_info->ordered_operations_mutex);
 581        spin_lock(&root->ordered_extent_lock);
 582        list_splice_init(&root->ordered_extents, &splice);
 583        while (!list_empty(&splice) && nr) {
 584                ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 585                                           root_extent_list);
 586                list_move_tail(&ordered->root_extent_list,
 587                               &root->ordered_extents);
 588                atomic_inc(&ordered->refs);
 589                spin_unlock(&root->ordered_extent_lock);
 590
 591                ordered->flush_work.func = btrfs_run_ordered_extent_work;
 592                list_add_tail(&ordered->work_list, &works);
 593                btrfs_queue_worker(&root->fs_info->flush_workers,
 594                                   &ordered->flush_work);
 595
 596                cond_resched();
 597                spin_lock(&root->ordered_extent_lock);
 598                if (nr != -1)
 599                        nr--;
 600                count++;
 601        }
 602        list_splice_tail(&splice, &root->ordered_extents);
 603        spin_unlock(&root->ordered_extent_lock);
 604
 605        list_for_each_entry_safe(ordered, next, &works, work_list) {
 606                list_del_init(&ordered->work_list);
 607                wait_for_completion(&ordered->completion);
 608                btrfs_put_ordered_extent(ordered);
 609                cond_resched();
 610        }
 611        mutex_unlock(&root->fs_info->ordered_operations_mutex);
 612
 613        return count;
 614}
 615
 616void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
 617{
 618        struct btrfs_root *root;
 619        struct list_head splice;
 620        int done;
 621
 622        INIT_LIST_HEAD(&splice);
 623
 624        spin_lock(&fs_info->ordered_root_lock);
 625        list_splice_init(&fs_info->ordered_roots, &splice);
 626        while (!list_empty(&splice) && nr) {
 627                root = list_first_entry(&splice, struct btrfs_root,
 628                                        ordered_root);
 629                root = btrfs_grab_fs_root(root);
 630                BUG_ON(!root);
 631                list_move_tail(&root->ordered_root,
 632                               &fs_info->ordered_roots);
 633                spin_unlock(&fs_info->ordered_root_lock);
 634
 635                done = btrfs_wait_ordered_extents(root, nr);
 636                btrfs_put_fs_root(root);
 637
 638                spin_lock(&fs_info->ordered_root_lock);
 639                if (nr != -1) {
 640                        nr -= done;
 641                        WARN_ON(nr < 0);
 642                }
 643        }
 644        list_splice_tail(&splice, &fs_info->ordered_roots);
 645        spin_unlock(&fs_info->ordered_root_lock);
 646}
 647
 648/*
 649 * this is used during transaction commit to write all the inodes
 650 * added to the ordered operation list.  These files must be fully on
 651 * disk before the transaction commits.
 652 *
 653 * we have two modes here, one is to just start the IO via filemap_flush
 654 * and the other is to wait for all the io.  When we wait, we have an
 655 * extra check to make sure the ordered operation list really is empty
 656 * before we return
 657 */
 658int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
 659                                 struct btrfs_root *root, int wait)
 660{
 661        struct btrfs_inode *btrfs_inode;
 662        struct inode *inode;
 663        struct btrfs_transaction *cur_trans = trans->transaction;
 664        struct list_head splice;
 665        struct list_head works;
 666        struct btrfs_delalloc_work *work, *next;
 667        int ret = 0;
 668
 669        INIT_LIST_HEAD(&splice);
 670        INIT_LIST_HEAD(&works);
 671
 672        mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
 673        spin_lock(&root->fs_info->ordered_root_lock);
 674        list_splice_init(&cur_trans->ordered_operations, &splice);
 675        while (!list_empty(&splice)) {
 676                btrfs_inode = list_entry(splice.next, struct btrfs_inode,
 677                                   ordered_operations);
 678                inode = &btrfs_inode->vfs_inode;
 679
 680                list_del_init(&btrfs_inode->ordered_operations);
 681
 682                /*
 683                 * the inode may be getting freed (in sys_unlink path).
 684                 */
 685                inode = igrab(inode);
 686                if (!inode)
 687                        continue;
 688
 689                if (!wait)
 690                        list_add_tail(&BTRFS_I(inode)->ordered_operations,
 691                                      &cur_trans->ordered_operations);
 692                spin_unlock(&root->fs_info->ordered_root_lock);
 693
 694                work = btrfs_alloc_delalloc_work(inode, wait, 1);
 695                if (!work) {
 696                        spin_lock(&root->fs_info->ordered_root_lock);
 697                        if (list_empty(&BTRFS_I(inode)->ordered_operations))
 698                                list_add_tail(&btrfs_inode->ordered_operations,
 699                                              &splice);
 700                        list_splice_tail(&splice,
 701                                         &cur_trans->ordered_operations);
 702                        spin_unlock(&root->fs_info->ordered_root_lock);
 703                        ret = -ENOMEM;
 704                        goto out;
 705                }
 706                list_add_tail(&work->list, &works);
 707                btrfs_queue_worker(&root->fs_info->flush_workers,
 708                                   &work->work);
 709
 710                cond_resched();
 711                spin_lock(&root->fs_info->ordered_root_lock);
 712        }
 713        spin_unlock(&root->fs_info->ordered_root_lock);
 714out:
 715        list_for_each_entry_safe(work, next, &works, list) {
 716                list_del_init(&work->list);
 717                btrfs_wait_and_free_delalloc_work(work);
 718        }
 719        mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
 720        return ret;
 721}
 722
 723/*
 724 * Used to start IO or wait for a given ordered extent to finish.
 725 *
 726 * If wait is one, this effectively waits on page writeback for all the pages
 727 * in the extent, and it waits on the io completion code to insert
 728 * metadata into the btree corresponding to the extent
 729 */
 730void btrfs_start_ordered_extent(struct inode *inode,
 731                                       struct btrfs_ordered_extent *entry,
 732                                       int wait)
 733{
 734        u64 start = entry->file_offset;
 735        u64 end = start + entry->len - 1;
 736
 737        trace_btrfs_ordered_extent_start(inode, entry);
 738
 739        /*
 740         * pages in the range can be dirty, clean or writeback.  We
 741         * start IO on any dirty ones so the wait doesn't stall waiting
 742         * for the flusher thread to find them
 743         */
 744        if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 745                filemap_fdatawrite_range(inode->i_mapping, start, end);
 746        if (wait) {
 747                wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 748                                                 &entry->flags));
 749        }
 750}
 751
 752/*
 753 * Used to wait on ordered extents across a large range of bytes.
 754 */
 755int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 756{
 757        int ret = 0;
 758        u64 end;
 759        u64 orig_end;
 760        struct btrfs_ordered_extent *ordered;
 761
 762        if (start + len < start) {
 763                orig_end = INT_LIMIT(loff_t);
 764        } else {
 765                orig_end = start + len - 1;
 766                if (orig_end > INT_LIMIT(loff_t))
 767                        orig_end = INT_LIMIT(loff_t);
 768        }
 769
 770        /* start IO across the range first to instantiate any delalloc
 771         * extents
 772         */
 773        ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 774        if (ret)
 775                return ret;
 776        /*
 777         * So with compression we will find and lock a dirty page and clear the
 778         * first one as dirty, setup an async extent, and immediately return
 779         * with the entire range locked but with nobody actually marked with
 780         * writeback.  So we can't just filemap_write_and_wait_range() and
 781         * expect it to work since it will just kick off a thread to do the
 782         * actual work.  So we need to call filemap_fdatawrite_range _again_
 783         * since it will wait on the page lock, which won't be unlocked until
 784         * after the pages have been marked as writeback and so we're good to go
 785         * from there.  We have to do this otherwise we'll miss the ordered
 786         * extents and that results in badness.  Please Josef, do not think you
 787         * know better and pull this out at some point in the future, it is
 788         * right and you are wrong.
 789         */
 790        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 791                     &BTRFS_I(inode)->runtime_flags)) {
 792                ret = filemap_fdatawrite_range(inode->i_mapping, start,
 793                                               orig_end);
 794                if (ret)
 795                        return ret;
 796        }
 797        ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 798        if (ret)
 799                return ret;
 800
 801        end = orig_end;
 802        while (1) {
 803                ordered = btrfs_lookup_first_ordered_extent(inode, end);
 804                if (!ordered)
 805                        break;
 806                if (ordered->file_offset > orig_end) {
 807                        btrfs_put_ordered_extent(ordered);
 808                        break;
 809                }
 810                if (ordered->file_offset + ordered->len <= start) {
 811                        btrfs_put_ordered_extent(ordered);
 812                        break;
 813                }
 814                btrfs_start_ordered_extent(inode, ordered, 1);
 815                end = ordered->file_offset;
 816                if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 817                        ret = -EIO;
 818                btrfs_put_ordered_extent(ordered);
 819                if (ret || end == 0 || end == start)
 820                        break;
 821                end--;
 822        }
 823        return ret;
 824}
 825
 826/*
 827 * find an ordered extent corresponding to file_offset.  return NULL if
 828 * nothing is found, otherwise take a reference on the extent and return it
 829 */
 830struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 831                                                         u64 file_offset)
 832{
 833        struct btrfs_ordered_inode_tree *tree;
 834        struct rb_node *node;
 835        struct btrfs_ordered_extent *entry = NULL;
 836
 837        tree = &BTRFS_I(inode)->ordered_tree;
 838        spin_lock_irq(&tree->lock);
 839        node = tree_search(tree, file_offset);
 840        if (!node)
 841                goto out;
 842
 843        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 844        if (!offset_in_entry(entry, file_offset))
 845                entry = NULL;
 846        if (entry)
 847                atomic_inc(&entry->refs);
 848out:
 849        spin_unlock_irq(&tree->lock);
 850        return entry;
 851}
 852
 853/* Since the DIO code tries to lock a wide area we need to look for any ordered
 854 * extents that exist in the range, rather than just the start of the range.
 855 */
 856struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
 857                                                        u64 file_offset,
 858                                                        u64 len)
 859{
 860        struct btrfs_ordered_inode_tree *tree;
 861        struct rb_node *node;
 862        struct btrfs_ordered_extent *entry = NULL;
 863
 864        tree = &BTRFS_I(inode)->ordered_tree;
 865        spin_lock_irq(&tree->lock);
 866        node = tree_search(tree, file_offset);
 867        if (!node) {
 868                node = tree_search(tree, file_offset + len);
 869                if (!node)
 870                        goto out;
 871        }
 872
 873        while (1) {
 874                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 875                if (range_overlaps(entry, file_offset, len))
 876                        break;
 877
 878                if (entry->file_offset >= file_offset + len) {
 879                        entry = NULL;
 880                        break;
 881                }
 882                entry = NULL;
 883                node = rb_next(node);
 884                if (!node)
 885                        break;
 886        }
 887out:
 888        if (entry)
 889                atomic_inc(&entry->refs);
 890        spin_unlock_irq(&tree->lock);
 891        return entry;
 892}
 893
 894/*
 895 * lookup and return any extent before 'file_offset'.  NULL is returned
 896 * if none is found
 897 */
 898struct btrfs_ordered_extent *
 899btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 900{
 901        struct btrfs_ordered_inode_tree *tree;
 902        struct rb_node *node;
 903        struct btrfs_ordered_extent *entry = NULL;
 904
 905        tree = &BTRFS_I(inode)->ordered_tree;
 906        spin_lock_irq(&tree->lock);
 907        node = tree_search(tree, file_offset);
 908        if (!node)
 909                goto out;
 910
 911        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 912        atomic_inc(&entry->refs);
 913out:
 914        spin_unlock_irq(&tree->lock);
 915        return entry;
 916}
 917
 918/*
 919 * After an extent is done, call this to conditionally update the on disk
 920 * i_size.  i_size is updated to cover any fully written part of the file.
 921 */
 922int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 923                                struct btrfs_ordered_extent *ordered)
 924{
 925        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 926        u64 disk_i_size;
 927        u64 new_i_size;
 928        u64 i_size = i_size_read(inode);
 929        struct rb_node *node;
 930        struct rb_node *prev = NULL;
 931        struct btrfs_ordered_extent *test;
 932        int ret = 1;
 933
 934        spin_lock_irq(&tree->lock);
 935        if (ordered) {
 936                offset = entry_end(ordered);
 937                if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 938                        offset = min(offset,
 939                                     ordered->file_offset +
 940                                     ordered->truncated_len);
 941        } else {
 942                offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
 943        }
 944        disk_i_size = BTRFS_I(inode)->disk_i_size;
 945
 946        /* truncate file */
 947        if (disk_i_size > i_size) {
 948                BTRFS_I(inode)->disk_i_size = i_size;
 949                ret = 0;
 950                goto out;
 951        }
 952
 953        /*
 954         * if the disk i_size is already at the inode->i_size, or
 955         * this ordered extent is inside the disk i_size, we're done
 956         */
 957        if (disk_i_size == i_size)
 958                goto out;
 959
 960        /*
 961         * We still need to update disk_i_size if outstanding_isize is greater
 962         * than disk_i_size.
 963         */
 964        if (offset <= disk_i_size &&
 965            (!ordered || ordered->outstanding_isize <= disk_i_size))
 966                goto out;
 967
 968        /*
 969         * walk backward from this ordered extent to disk_i_size.
 970         * if we find an ordered extent then we can't update disk i_size
 971         * yet
 972         */
 973        if (ordered) {
 974                node = rb_prev(&ordered->rb_node);
 975        } else {
 976                prev = tree_search(tree, offset);
 977                /*
 978                 * we insert file extents without involving ordered struct,
 979                 * so there should be no ordered struct cover this offset
 980                 */
 981                if (prev) {
 982                        test = rb_entry(prev, struct btrfs_ordered_extent,
 983                                        rb_node);
 984                        BUG_ON(offset_in_entry(test, offset));
 985                }
 986                node = prev;
 987        }
 988        for (; node; node = rb_prev(node)) {
 989                test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 990
 991                /* We treat this entry as if it doesnt exist */
 992                if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
 993                        continue;
 994                if (test->file_offset + test->len <= disk_i_size)
 995                        break;
 996                if (test->file_offset >= i_size)
 997                        break;
 998                if (entry_end(test) > disk_i_size) {
 999                        /*
1000                         * we don't update disk_i_size now, so record this
1001                         * undealt i_size. Or we will not know the real
1002                         * i_size.
1003                         */
1004                        if (test->outstanding_isize < offset)
1005                                test->outstanding_isize = offset;
1006                        if (ordered &&
1007                            ordered->outstanding_isize >
1008                            test->outstanding_isize)
1009                                test->outstanding_isize =
1010                                                ordered->outstanding_isize;
1011                        goto out;
1012                }
1013        }
1014        new_i_size = min_t(u64, offset, i_size);
1015
1016        /*
1017         * Some ordered extents may completed before the current one, and
1018         * we hold the real i_size in ->outstanding_isize.
1019         */
1020        if (ordered && ordered->outstanding_isize > new_i_size)
1021                new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1022        BTRFS_I(inode)->disk_i_size = new_i_size;
1023        ret = 0;
1024out:
1025        /*
1026         * We need to do this because we can't remove ordered extents until
1027         * after the i_disk_size has been updated and then the inode has been
1028         * updated to reflect the change, so we need to tell anybody who finds
1029         * this ordered extent that we've already done all the real work, we
1030         * just haven't completed all the other work.
1031         */
1032        if (ordered)
1033                set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1034        spin_unlock_irq(&tree->lock);
1035        return ret;
1036}
1037
1038/*
1039 * search the ordered extents for one corresponding to 'offset' and
1040 * try to find a checksum.  This is used because we allow pages to
1041 * be reclaimed before their checksum is actually put into the btree
1042 */
1043int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1044                           u32 *sum, int len)
1045{
1046        struct btrfs_ordered_sum *ordered_sum;
1047        struct btrfs_ordered_extent *ordered;
1048        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1049        unsigned long num_sectors;
1050        unsigned long i;
1051        u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1052        int index = 0;
1053
1054        ordered = btrfs_lookup_ordered_extent(inode, offset);
1055        if (!ordered)
1056                return 0;
1057
1058        spin_lock_irq(&tree->lock);
1059        list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1060                if (disk_bytenr >= ordered_sum->bytenr &&
1061                    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1062                        i = (disk_bytenr - ordered_sum->bytenr) >>
1063                            inode->i_sb->s_blocksize_bits;
1064                        num_sectors = ordered_sum->len >>
1065                                      inode->i_sb->s_blocksize_bits;
1066                        num_sectors = min_t(int, len - index, num_sectors - i);
1067                        memcpy(sum + index, ordered_sum->sums + i,
1068                               num_sectors);
1069
1070                        index += (int)num_sectors;
1071                        if (index == len)
1072                                goto out;
1073                        disk_bytenr += num_sectors * sectorsize;
1074                }
1075        }
1076out:
1077        spin_unlock_irq(&tree->lock);
1078        btrfs_put_ordered_extent(ordered);
1079        return index;
1080}
1081
1082
1083/*
1084 * add a given inode to the list of inodes that must be fully on
1085 * disk before a transaction commit finishes.
1086 *
1087 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1088 * used to make sure renamed files are fully on disk.
1089 *
1090 * It is a noop if the inode is already fully on disk.
1091 *
1092 * If trans is not null, we'll do a friendly check for a transaction that
1093 * is already flushing things and force the IO down ourselves.
1094 */
1095void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1096                                 struct btrfs_root *root, struct inode *inode)
1097{
1098        struct btrfs_transaction *cur_trans = trans->transaction;
1099        u64 last_mod;
1100
1101        last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1102
1103        /*
1104         * if this file hasn't been changed since the last transaction
1105         * commit, we can safely return without doing anything
1106         */
1107        if (last_mod <= root->fs_info->last_trans_committed)
1108                return;
1109
1110        spin_lock(&root->fs_info->ordered_root_lock);
1111        if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1112                list_add_tail(&BTRFS_I(inode)->ordered_operations,
1113                              &cur_trans->ordered_operations);
1114        }
1115        spin_unlock(&root->fs_info->ordered_root_lock);
1116}
1117
1118int __init ordered_data_init(void)
1119{
1120        btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1121                                     sizeof(struct btrfs_ordered_extent), 0,
1122                                     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1123                                     NULL);
1124        if (!btrfs_ordered_extent_cache)
1125                return -ENOMEM;
1126
1127        return 0;
1128}
1129
1130void ordered_data_exit(void)
1131{
1132        if (btrfs_ordered_extent_cache)
1133                kmem_cache_destroy(btrfs_ordered_extent_cache);
1134}
1135