linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/random.h>
  24#include <linux/iocontext.h>
  25#include <linux/capability.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <linux/raid/pq.h>
  29#include <linux/semaphore.h>
  30#include <asm/div64.h>
  31#include "ctree.h"
  32#include "extent_map.h"
  33#include "disk-io.h"
  34#include "transaction.h"
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "raid56.h"
  38#include "async-thread.h"
  39#include "check-integrity.h"
  40#include "rcu-string.h"
  41#include "math.h"
  42#include "dev-replace.h"
  43
  44static int init_first_rw_device(struct btrfs_trans_handle *trans,
  45                                struct btrfs_root *root,
  46                                struct btrfs_device *device);
  47static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  48static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
  49static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
  50static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
  51
  52static DEFINE_MUTEX(uuid_mutex);
  53static LIST_HEAD(fs_uuids);
  54
  55static void lock_chunks(struct btrfs_root *root)
  56{
  57        mutex_lock(&root->fs_info->chunk_mutex);
  58}
  59
  60static void unlock_chunks(struct btrfs_root *root)
  61{
  62        mutex_unlock(&root->fs_info->chunk_mutex);
  63}
  64
  65static struct btrfs_fs_devices *__alloc_fs_devices(void)
  66{
  67        struct btrfs_fs_devices *fs_devs;
  68
  69        fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
  70        if (!fs_devs)
  71                return ERR_PTR(-ENOMEM);
  72
  73        mutex_init(&fs_devs->device_list_mutex);
  74
  75        INIT_LIST_HEAD(&fs_devs->devices);
  76        INIT_LIST_HEAD(&fs_devs->alloc_list);
  77        INIT_LIST_HEAD(&fs_devs->list);
  78
  79        return fs_devs;
  80}
  81
  82/**
  83 * alloc_fs_devices - allocate struct btrfs_fs_devices
  84 * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
  85 *              generated.
  86 *
  87 * Return: a pointer to a new &struct btrfs_fs_devices on success;
  88 * ERR_PTR() on error.  Returned struct is not linked onto any lists and
  89 * can be destroyed with kfree() right away.
  90 */
  91static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
  92{
  93        struct btrfs_fs_devices *fs_devs;
  94
  95        fs_devs = __alloc_fs_devices();
  96        if (IS_ERR(fs_devs))
  97                return fs_devs;
  98
  99        if (fsid)
 100                memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 101        else
 102                generate_random_uuid(fs_devs->fsid);
 103
 104        return fs_devs;
 105}
 106
 107static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 108{
 109        struct btrfs_device *device;
 110        WARN_ON(fs_devices->opened);
 111        while (!list_empty(&fs_devices->devices)) {
 112                device = list_entry(fs_devices->devices.next,
 113                                    struct btrfs_device, dev_list);
 114                list_del(&device->dev_list);
 115                rcu_string_free(device->name);
 116                kfree(device);
 117        }
 118        kfree(fs_devices);
 119}
 120
 121static void btrfs_kobject_uevent(struct block_device *bdev,
 122                                 enum kobject_action action)
 123{
 124        int ret;
 125
 126        ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
 127        if (ret)
 128                pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
 129                        action,
 130                        kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
 131                        &disk_to_dev(bdev->bd_disk)->kobj);
 132}
 133
 134void btrfs_cleanup_fs_uuids(void)
 135{
 136        struct btrfs_fs_devices *fs_devices;
 137
 138        while (!list_empty(&fs_uuids)) {
 139                fs_devices = list_entry(fs_uuids.next,
 140                                        struct btrfs_fs_devices, list);
 141                list_del(&fs_devices->list);
 142                free_fs_devices(fs_devices);
 143        }
 144}
 145
 146static struct btrfs_device *__alloc_device(void)
 147{
 148        struct btrfs_device *dev;
 149
 150        dev = kzalloc(sizeof(*dev), GFP_NOFS);
 151        if (!dev)
 152                return ERR_PTR(-ENOMEM);
 153
 154        INIT_LIST_HEAD(&dev->dev_list);
 155        INIT_LIST_HEAD(&dev->dev_alloc_list);
 156
 157        spin_lock_init(&dev->io_lock);
 158
 159        spin_lock_init(&dev->reada_lock);
 160        atomic_set(&dev->reada_in_flight, 0);
 161        INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
 162        INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
 163
 164        return dev;
 165}
 166
 167static noinline struct btrfs_device *__find_device(struct list_head *head,
 168                                                   u64 devid, u8 *uuid)
 169{
 170        struct btrfs_device *dev;
 171
 172        list_for_each_entry(dev, head, dev_list) {
 173                if (dev->devid == devid &&
 174                    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 175                        return dev;
 176                }
 177        }
 178        return NULL;
 179}
 180
 181static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 182{
 183        struct btrfs_fs_devices *fs_devices;
 184
 185        list_for_each_entry(fs_devices, &fs_uuids, list) {
 186                if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 187                        return fs_devices;
 188        }
 189        return NULL;
 190}
 191
 192static int
 193btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 194                      int flush, struct block_device **bdev,
 195                      struct buffer_head **bh)
 196{
 197        int ret;
 198
 199        *bdev = blkdev_get_by_path(device_path, flags, holder);
 200
 201        if (IS_ERR(*bdev)) {
 202                ret = PTR_ERR(*bdev);
 203                printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
 204                goto error;
 205        }
 206
 207        if (flush)
 208                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 209        ret = set_blocksize(*bdev, 4096);
 210        if (ret) {
 211                blkdev_put(*bdev, flags);
 212                goto error;
 213        }
 214        invalidate_bdev(*bdev);
 215        *bh = btrfs_read_dev_super(*bdev);
 216        if (!*bh) {
 217                ret = -EINVAL;
 218                blkdev_put(*bdev, flags);
 219                goto error;
 220        }
 221
 222        return 0;
 223
 224error:
 225        *bdev = NULL;
 226        *bh = NULL;
 227        return ret;
 228}
 229
 230static void requeue_list(struct btrfs_pending_bios *pending_bios,
 231                        struct bio *head, struct bio *tail)
 232{
 233
 234        struct bio *old_head;
 235
 236        old_head = pending_bios->head;
 237        pending_bios->head = head;
 238        if (pending_bios->tail)
 239                tail->bi_next = old_head;
 240        else
 241                pending_bios->tail = tail;
 242}
 243
 244/*
 245 * we try to collect pending bios for a device so we don't get a large
 246 * number of procs sending bios down to the same device.  This greatly
 247 * improves the schedulers ability to collect and merge the bios.
 248 *
 249 * But, it also turns into a long list of bios to process and that is sure
 250 * to eventually make the worker thread block.  The solution here is to
 251 * make some progress and then put this work struct back at the end of
 252 * the list if the block device is congested.  This way, multiple devices
 253 * can make progress from a single worker thread.
 254 */
 255static noinline void run_scheduled_bios(struct btrfs_device *device)
 256{
 257        struct bio *pending;
 258        struct backing_dev_info *bdi;
 259        struct btrfs_fs_info *fs_info;
 260        struct btrfs_pending_bios *pending_bios;
 261        struct bio *tail;
 262        struct bio *cur;
 263        int again = 0;
 264        unsigned long num_run;
 265        unsigned long batch_run = 0;
 266        unsigned long limit;
 267        unsigned long last_waited = 0;
 268        int force_reg = 0;
 269        int sync_pending = 0;
 270        struct blk_plug plug;
 271
 272        /*
 273         * this function runs all the bios we've collected for
 274         * a particular device.  We don't want to wander off to
 275         * another device without first sending all of these down.
 276         * So, setup a plug here and finish it off before we return
 277         */
 278        blk_start_plug(&plug);
 279
 280        bdi = blk_get_backing_dev_info(device->bdev);
 281        fs_info = device->dev_root->fs_info;
 282        limit = btrfs_async_submit_limit(fs_info);
 283        limit = limit * 2 / 3;
 284
 285loop:
 286        spin_lock(&device->io_lock);
 287
 288loop_lock:
 289        num_run = 0;
 290
 291        /* take all the bios off the list at once and process them
 292         * later on (without the lock held).  But, remember the
 293         * tail and other pointers so the bios can be properly reinserted
 294         * into the list if we hit congestion
 295         */
 296        if (!force_reg && device->pending_sync_bios.head) {
 297                pending_bios = &device->pending_sync_bios;
 298                force_reg = 1;
 299        } else {
 300                pending_bios = &device->pending_bios;
 301                force_reg = 0;
 302        }
 303
 304        pending = pending_bios->head;
 305        tail = pending_bios->tail;
 306        WARN_ON(pending && !tail);
 307
 308        /*
 309         * if pending was null this time around, no bios need processing
 310         * at all and we can stop.  Otherwise it'll loop back up again
 311         * and do an additional check so no bios are missed.
 312         *
 313         * device->running_pending is used to synchronize with the
 314         * schedule_bio code.
 315         */
 316        if (device->pending_sync_bios.head == NULL &&
 317            device->pending_bios.head == NULL) {
 318                again = 0;
 319                device->running_pending = 0;
 320        } else {
 321                again = 1;
 322                device->running_pending = 1;
 323        }
 324
 325        pending_bios->head = NULL;
 326        pending_bios->tail = NULL;
 327
 328        spin_unlock(&device->io_lock);
 329
 330        while (pending) {
 331
 332                rmb();
 333                /* we want to work on both lists, but do more bios on the
 334                 * sync list than the regular list
 335                 */
 336                if ((num_run > 32 &&
 337                    pending_bios != &device->pending_sync_bios &&
 338                    device->pending_sync_bios.head) ||
 339                   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 340                    device->pending_bios.head)) {
 341                        spin_lock(&device->io_lock);
 342                        requeue_list(pending_bios, pending, tail);
 343                        goto loop_lock;
 344                }
 345
 346                cur = pending;
 347                pending = pending->bi_next;
 348                cur->bi_next = NULL;
 349
 350                if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
 351                    waitqueue_active(&fs_info->async_submit_wait))
 352                        wake_up(&fs_info->async_submit_wait);
 353
 354                BUG_ON(atomic_read(&cur->bi_cnt) == 0);
 355
 356                /*
 357                 * if we're doing the sync list, record that our
 358                 * plug has some sync requests on it
 359                 *
 360                 * If we're doing the regular list and there are
 361                 * sync requests sitting around, unplug before
 362                 * we add more
 363                 */
 364                if (pending_bios == &device->pending_sync_bios) {
 365                        sync_pending = 1;
 366                } else if (sync_pending) {
 367                        blk_finish_plug(&plug);
 368                        blk_start_plug(&plug);
 369                        sync_pending = 0;
 370                }
 371
 372                btrfsic_submit_bio(cur->bi_rw, cur);
 373                num_run++;
 374                batch_run++;
 375                if (need_resched())
 376                        cond_resched();
 377
 378                /*
 379                 * we made progress, there is more work to do and the bdi
 380                 * is now congested.  Back off and let other work structs
 381                 * run instead
 382                 */
 383                if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 384                    fs_info->fs_devices->open_devices > 1) {
 385                        struct io_context *ioc;
 386
 387                        ioc = current->io_context;
 388
 389                        /*
 390                         * the main goal here is that we don't want to
 391                         * block if we're going to be able to submit
 392                         * more requests without blocking.
 393                         *
 394                         * This code does two great things, it pokes into
 395                         * the elevator code from a filesystem _and_
 396                         * it makes assumptions about how batching works.
 397                         */
 398                        if (ioc && ioc->nr_batch_requests > 0 &&
 399                            time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 400                            (last_waited == 0 ||
 401                             ioc->last_waited == last_waited)) {
 402                                /*
 403                                 * we want to go through our batch of
 404                                 * requests and stop.  So, we copy out
 405                                 * the ioc->last_waited time and test
 406                                 * against it before looping
 407                                 */
 408                                last_waited = ioc->last_waited;
 409                                if (need_resched())
 410                                        cond_resched();
 411                                continue;
 412                        }
 413                        spin_lock(&device->io_lock);
 414                        requeue_list(pending_bios, pending, tail);
 415                        device->running_pending = 1;
 416
 417                        spin_unlock(&device->io_lock);
 418                        btrfs_requeue_work(&device->work);
 419                        goto done;
 420                }
 421                /* unplug every 64 requests just for good measure */
 422                if (batch_run % 64 == 0) {
 423                        blk_finish_plug(&plug);
 424                        blk_start_plug(&plug);
 425                        sync_pending = 0;
 426                }
 427        }
 428
 429        cond_resched();
 430        if (again)
 431                goto loop;
 432
 433        spin_lock(&device->io_lock);
 434        if (device->pending_bios.head || device->pending_sync_bios.head)
 435                goto loop_lock;
 436        spin_unlock(&device->io_lock);
 437
 438done:
 439        blk_finish_plug(&plug);
 440}
 441
 442static void pending_bios_fn(struct btrfs_work *work)
 443{
 444        struct btrfs_device *device;
 445
 446        device = container_of(work, struct btrfs_device, work);
 447        run_scheduled_bios(device);
 448}
 449
 450static noinline int device_list_add(const char *path,
 451                           struct btrfs_super_block *disk_super,
 452                           u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 453{
 454        struct btrfs_device *device;
 455        struct btrfs_fs_devices *fs_devices;
 456        struct rcu_string *name;
 457        u64 found_transid = btrfs_super_generation(disk_super);
 458
 459        fs_devices = find_fsid(disk_super->fsid);
 460        if (!fs_devices) {
 461                fs_devices = alloc_fs_devices(disk_super->fsid);
 462                if (IS_ERR(fs_devices))
 463                        return PTR_ERR(fs_devices);
 464
 465                list_add(&fs_devices->list, &fs_uuids);
 466                fs_devices->latest_devid = devid;
 467                fs_devices->latest_trans = found_transid;
 468
 469                device = NULL;
 470        } else {
 471                device = __find_device(&fs_devices->devices, devid,
 472                                       disk_super->dev_item.uuid);
 473        }
 474        if (!device) {
 475                if (fs_devices->opened)
 476                        return -EBUSY;
 477
 478                device = btrfs_alloc_device(NULL, &devid,
 479                                            disk_super->dev_item.uuid);
 480                if (IS_ERR(device)) {
 481                        /* we can safely leave the fs_devices entry around */
 482                        return PTR_ERR(device);
 483                }
 484
 485                name = rcu_string_strdup(path, GFP_NOFS);
 486                if (!name) {
 487                        kfree(device);
 488                        return -ENOMEM;
 489                }
 490                rcu_assign_pointer(device->name, name);
 491
 492                mutex_lock(&fs_devices->device_list_mutex);
 493                list_add_rcu(&device->dev_list, &fs_devices->devices);
 494                fs_devices->num_devices++;
 495                mutex_unlock(&fs_devices->device_list_mutex);
 496
 497                device->fs_devices = fs_devices;
 498        } else if (!device->name || strcmp(device->name->str, path)) {
 499                name = rcu_string_strdup(path, GFP_NOFS);
 500                if (!name)
 501                        return -ENOMEM;
 502                rcu_string_free(device->name);
 503                rcu_assign_pointer(device->name, name);
 504                if (device->missing) {
 505                        fs_devices->missing_devices--;
 506                        device->missing = 0;
 507                }
 508        }
 509
 510        if (found_transid > fs_devices->latest_trans) {
 511                fs_devices->latest_devid = devid;
 512                fs_devices->latest_trans = found_transid;
 513        }
 514        *fs_devices_ret = fs_devices;
 515        return 0;
 516}
 517
 518static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 519{
 520        struct btrfs_fs_devices *fs_devices;
 521        struct btrfs_device *device;
 522        struct btrfs_device *orig_dev;
 523
 524        fs_devices = alloc_fs_devices(orig->fsid);
 525        if (IS_ERR(fs_devices))
 526                return fs_devices;
 527
 528        fs_devices->latest_devid = orig->latest_devid;
 529        fs_devices->latest_trans = orig->latest_trans;
 530        fs_devices->total_devices = orig->total_devices;
 531
 532        /* We have held the volume lock, it is safe to get the devices. */
 533        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 534                struct rcu_string *name;
 535
 536                device = btrfs_alloc_device(NULL, &orig_dev->devid,
 537                                            orig_dev->uuid);
 538                if (IS_ERR(device))
 539                        goto error;
 540
 541                /*
 542                 * This is ok to do without rcu read locked because we hold the
 543                 * uuid mutex so nothing we touch in here is going to disappear.
 544                 */
 545                name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
 546                if (!name) {
 547                        kfree(device);
 548                        goto error;
 549                }
 550                rcu_assign_pointer(device->name, name);
 551
 552                list_add(&device->dev_list, &fs_devices->devices);
 553                device->fs_devices = fs_devices;
 554                fs_devices->num_devices++;
 555        }
 556        return fs_devices;
 557error:
 558        free_fs_devices(fs_devices);
 559        return ERR_PTR(-ENOMEM);
 560}
 561
 562void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
 563                               struct btrfs_fs_devices *fs_devices, int step)
 564{
 565        struct btrfs_device *device, *next;
 566
 567        struct block_device *latest_bdev = NULL;
 568        u64 latest_devid = 0;
 569        u64 latest_transid = 0;
 570
 571        mutex_lock(&uuid_mutex);
 572again:
 573        /* This is the initialized path, it is safe to release the devices. */
 574        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 575                if (device->in_fs_metadata) {
 576                        if (!device->is_tgtdev_for_dev_replace &&
 577                            (!latest_transid ||
 578                             device->generation > latest_transid)) {
 579                                latest_devid = device->devid;
 580                                latest_transid = device->generation;
 581                                latest_bdev = device->bdev;
 582                        }
 583                        continue;
 584                }
 585
 586                if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
 587                        /*
 588                         * In the first step, keep the device which has
 589                         * the correct fsid and the devid that is used
 590                         * for the dev_replace procedure.
 591                         * In the second step, the dev_replace state is
 592                         * read from the device tree and it is known
 593                         * whether the procedure is really active or
 594                         * not, which means whether this device is
 595                         * used or whether it should be removed.
 596                         */
 597                        if (step == 0 || device->is_tgtdev_for_dev_replace) {
 598                                continue;
 599                        }
 600                }
 601                if (device->bdev) {
 602                        blkdev_put(device->bdev, device->mode);
 603                        device->bdev = NULL;
 604                        fs_devices->open_devices--;
 605                }
 606                if (device->writeable) {
 607                        list_del_init(&device->dev_alloc_list);
 608                        device->writeable = 0;
 609                        if (!device->is_tgtdev_for_dev_replace)
 610                                fs_devices->rw_devices--;
 611                }
 612                list_del_init(&device->dev_list);
 613                fs_devices->num_devices--;
 614                rcu_string_free(device->name);
 615                kfree(device);
 616        }
 617
 618        if (fs_devices->seed) {
 619                fs_devices = fs_devices->seed;
 620                goto again;
 621        }
 622
 623        fs_devices->latest_bdev = latest_bdev;
 624        fs_devices->latest_devid = latest_devid;
 625        fs_devices->latest_trans = latest_transid;
 626
 627        mutex_unlock(&uuid_mutex);
 628}
 629
 630static void __free_device(struct work_struct *work)
 631{
 632        struct btrfs_device *device;
 633
 634        device = container_of(work, struct btrfs_device, rcu_work);
 635
 636        if (device->bdev)
 637                blkdev_put(device->bdev, device->mode);
 638
 639        rcu_string_free(device->name);
 640        kfree(device);
 641}
 642
 643static void free_device(struct rcu_head *head)
 644{
 645        struct btrfs_device *device;
 646
 647        device = container_of(head, struct btrfs_device, rcu);
 648
 649        INIT_WORK(&device->rcu_work, __free_device);
 650        schedule_work(&device->rcu_work);
 651}
 652
 653static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 654{
 655        struct btrfs_device *device;
 656
 657        if (--fs_devices->opened > 0)
 658                return 0;
 659
 660        mutex_lock(&fs_devices->device_list_mutex);
 661        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 662                struct btrfs_device *new_device;
 663                struct rcu_string *name;
 664
 665                if (device->bdev)
 666                        fs_devices->open_devices--;
 667
 668                if (device->writeable &&
 669                    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 670                        list_del_init(&device->dev_alloc_list);
 671                        fs_devices->rw_devices--;
 672                }
 673
 674                if (device->can_discard)
 675                        fs_devices->num_can_discard--;
 676                if (device->missing)
 677                        fs_devices->missing_devices--;
 678
 679                new_device = btrfs_alloc_device(NULL, &device->devid,
 680                                                device->uuid);
 681                BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
 682
 683                /* Safe because we are under uuid_mutex */
 684                if (device->name) {
 685                        name = rcu_string_strdup(device->name->str, GFP_NOFS);
 686                        BUG_ON(!name); /* -ENOMEM */
 687                        rcu_assign_pointer(new_device->name, name);
 688                }
 689
 690                list_replace_rcu(&device->dev_list, &new_device->dev_list);
 691                new_device->fs_devices = device->fs_devices;
 692
 693                call_rcu(&device->rcu, free_device);
 694        }
 695        mutex_unlock(&fs_devices->device_list_mutex);
 696
 697        WARN_ON(fs_devices->open_devices);
 698        WARN_ON(fs_devices->rw_devices);
 699        fs_devices->opened = 0;
 700        fs_devices->seeding = 0;
 701
 702        return 0;
 703}
 704
 705int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 706{
 707        struct btrfs_fs_devices *seed_devices = NULL;
 708        int ret;
 709
 710        mutex_lock(&uuid_mutex);
 711        ret = __btrfs_close_devices(fs_devices);
 712        if (!fs_devices->opened) {
 713                seed_devices = fs_devices->seed;
 714                fs_devices->seed = NULL;
 715        }
 716        mutex_unlock(&uuid_mutex);
 717
 718        while (seed_devices) {
 719                fs_devices = seed_devices;
 720                seed_devices = fs_devices->seed;
 721                __btrfs_close_devices(fs_devices);
 722                free_fs_devices(fs_devices);
 723        }
 724        /*
 725         * Wait for rcu kworkers under __btrfs_close_devices
 726         * to finish all blkdev_puts so device is really
 727         * free when umount is done.
 728         */
 729        rcu_barrier();
 730        return ret;
 731}
 732
 733static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 734                                fmode_t flags, void *holder)
 735{
 736        struct request_queue *q;
 737        struct block_device *bdev;
 738        struct list_head *head = &fs_devices->devices;
 739        struct btrfs_device *device;
 740        struct block_device *latest_bdev = NULL;
 741        struct buffer_head *bh;
 742        struct btrfs_super_block *disk_super;
 743        u64 latest_devid = 0;
 744        u64 latest_transid = 0;
 745        u64 devid;
 746        int seeding = 1;
 747        int ret = 0;
 748
 749        flags |= FMODE_EXCL;
 750
 751        list_for_each_entry(device, head, dev_list) {
 752                if (device->bdev)
 753                        continue;
 754                if (!device->name)
 755                        continue;
 756
 757                /* Just open everything we can; ignore failures here */
 758                if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 759                                            &bdev, &bh))
 760                        continue;
 761
 762                disk_super = (struct btrfs_super_block *)bh->b_data;
 763                devid = btrfs_stack_device_id(&disk_super->dev_item);
 764                if (devid != device->devid)
 765                        goto error_brelse;
 766
 767                if (memcmp(device->uuid, disk_super->dev_item.uuid,
 768                           BTRFS_UUID_SIZE))
 769                        goto error_brelse;
 770
 771                device->generation = btrfs_super_generation(disk_super);
 772                if (!latest_transid || device->generation > latest_transid) {
 773                        latest_devid = devid;
 774                        latest_transid = device->generation;
 775                        latest_bdev = bdev;
 776                }
 777
 778                if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 779                        device->writeable = 0;
 780                } else {
 781                        device->writeable = !bdev_read_only(bdev);
 782                        seeding = 0;
 783                }
 784
 785                q = bdev_get_queue(bdev);
 786                if (blk_queue_discard(q)) {
 787                        device->can_discard = 1;
 788                        fs_devices->num_can_discard++;
 789                }
 790
 791                device->bdev = bdev;
 792                device->in_fs_metadata = 0;
 793                device->mode = flags;
 794
 795                if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 796                        fs_devices->rotating = 1;
 797
 798                fs_devices->open_devices++;
 799                if (device->writeable &&
 800                    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 801                        fs_devices->rw_devices++;
 802                        list_add(&device->dev_alloc_list,
 803                                 &fs_devices->alloc_list);
 804                }
 805                brelse(bh);
 806                continue;
 807
 808error_brelse:
 809                brelse(bh);
 810                blkdev_put(bdev, flags);
 811                continue;
 812        }
 813        if (fs_devices->open_devices == 0) {
 814                ret = -EINVAL;
 815                goto out;
 816        }
 817        fs_devices->seeding = seeding;
 818        fs_devices->opened = 1;
 819        fs_devices->latest_bdev = latest_bdev;
 820        fs_devices->latest_devid = latest_devid;
 821        fs_devices->latest_trans = latest_transid;
 822        fs_devices->total_rw_bytes = 0;
 823out:
 824        return ret;
 825}
 826
 827int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 828                       fmode_t flags, void *holder)
 829{
 830        int ret;
 831
 832        mutex_lock(&uuid_mutex);
 833        if (fs_devices->opened) {
 834                fs_devices->opened++;
 835                ret = 0;
 836        } else {
 837                ret = __btrfs_open_devices(fs_devices, flags, holder);
 838        }
 839        mutex_unlock(&uuid_mutex);
 840        return ret;
 841}
 842
 843/*
 844 * Look for a btrfs signature on a device. This may be called out of the mount path
 845 * and we are not allowed to call set_blocksize during the scan. The superblock
 846 * is read via pagecache
 847 */
 848int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 849                          struct btrfs_fs_devices **fs_devices_ret)
 850{
 851        struct btrfs_super_block *disk_super;
 852        struct block_device *bdev;
 853        struct page *page;
 854        void *p;
 855        int ret = -EINVAL;
 856        u64 devid;
 857        u64 transid;
 858        u64 total_devices;
 859        u64 bytenr;
 860        pgoff_t index;
 861
 862        /*
 863         * we would like to check all the supers, but that would make
 864         * a btrfs mount succeed after a mkfs from a different FS.
 865         * So, we need to add a special mount option to scan for
 866         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
 867         */
 868        bytenr = btrfs_sb_offset(0);
 869        flags |= FMODE_EXCL;
 870        mutex_lock(&uuid_mutex);
 871
 872        bdev = blkdev_get_by_path(path, flags, holder);
 873
 874        if (IS_ERR(bdev)) {
 875                ret = PTR_ERR(bdev);
 876                goto error;
 877        }
 878
 879        /* make sure our super fits in the device */
 880        if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
 881                goto error_bdev_put;
 882
 883        /* make sure our super fits in the page */
 884        if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
 885                goto error_bdev_put;
 886
 887        /* make sure our super doesn't straddle pages on disk */
 888        index = bytenr >> PAGE_CACHE_SHIFT;
 889        if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
 890                goto error_bdev_put;
 891
 892        /* pull in the page with our super */
 893        page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
 894                                   index, GFP_NOFS);
 895
 896        if (IS_ERR_OR_NULL(page))
 897                goto error_bdev_put;
 898
 899        p = kmap(page);
 900
 901        /* align our pointer to the offset of the super block */
 902        disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
 903
 904        if (btrfs_super_bytenr(disk_super) != bytenr ||
 905            btrfs_super_magic(disk_super) != BTRFS_MAGIC)
 906                goto error_unmap;
 907
 908        devid = btrfs_stack_device_id(&disk_super->dev_item);
 909        transid = btrfs_super_generation(disk_super);
 910        total_devices = btrfs_super_num_devices(disk_super);
 911
 912        if (disk_super->label[0]) {
 913                if (disk_super->label[BTRFS_LABEL_SIZE - 1])
 914                        disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
 915                printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
 916        } else {
 917                printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
 918        }
 919
 920        printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
 921
 922        ret = device_list_add(path, disk_super, devid, fs_devices_ret);
 923        if (!ret && fs_devices_ret)
 924                (*fs_devices_ret)->total_devices = total_devices;
 925
 926error_unmap:
 927        kunmap(page);
 928        page_cache_release(page);
 929
 930error_bdev_put:
 931        blkdev_put(bdev, flags);
 932error:
 933        mutex_unlock(&uuid_mutex);
 934        return ret;
 935}
 936
 937/* helper to account the used device space in the range */
 938int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
 939                                   u64 end, u64 *length)
 940{
 941        struct btrfs_key key;
 942        struct btrfs_root *root = device->dev_root;
 943        struct btrfs_dev_extent *dev_extent;
 944        struct btrfs_path *path;
 945        u64 extent_end;
 946        int ret;
 947        int slot;
 948        struct extent_buffer *l;
 949
 950        *length = 0;
 951
 952        if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
 953                return 0;
 954
 955        path = btrfs_alloc_path();
 956        if (!path)
 957                return -ENOMEM;
 958        path->reada = 2;
 959
 960        key.objectid = device->devid;
 961        key.offset = start;
 962        key.type = BTRFS_DEV_EXTENT_KEY;
 963
 964        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 965        if (ret < 0)
 966                goto out;
 967        if (ret > 0) {
 968                ret = btrfs_previous_item(root, path, key.objectid, key.type);
 969                if (ret < 0)
 970                        goto out;
 971        }
 972
 973        while (1) {
 974                l = path->nodes[0];
 975                slot = path->slots[0];
 976                if (slot >= btrfs_header_nritems(l)) {
 977                        ret = btrfs_next_leaf(root, path);
 978                        if (ret == 0)
 979                                continue;
 980                        if (ret < 0)
 981                                goto out;
 982
 983                        break;
 984                }
 985                btrfs_item_key_to_cpu(l, &key, slot);
 986
 987                if (key.objectid < device->devid)
 988                        goto next;
 989
 990                if (key.objectid > device->devid)
 991                        break;
 992
 993                if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 994                        goto next;
 995
 996                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 997                extent_end = key.offset + btrfs_dev_extent_length(l,
 998                                                                  dev_extent);
 999                if (key.offset <= start && extent_end > end) {
1000                        *length = end - start + 1;
1001                        break;
1002                } else if (key.offset <= start && extent_end > start)
1003                        *length += extent_end - start;
1004                else if (key.offset > start && extent_end <= end)
1005                        *length += extent_end - key.offset;
1006                else if (key.offset > start && key.offset <= end) {
1007                        *length += end - key.offset + 1;
1008                        break;
1009                } else if (key.offset > end)
1010                        break;
1011
1012next:
1013                path->slots[0]++;
1014        }
1015        ret = 0;
1016out:
1017        btrfs_free_path(path);
1018        return ret;
1019}
1020
1021static int contains_pending_extent(struct btrfs_trans_handle *trans,
1022                                   struct btrfs_device *device,
1023                                   u64 *start, u64 len)
1024{
1025        struct extent_map *em;
1026        int ret = 0;
1027
1028        list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1029                struct map_lookup *map;
1030                int i;
1031
1032                map = (struct map_lookup *)em->bdev;
1033                for (i = 0; i < map->num_stripes; i++) {
1034                        if (map->stripes[i].dev != device)
1035                                continue;
1036                        if (map->stripes[i].physical >= *start + len ||
1037                            map->stripes[i].physical + em->orig_block_len <=
1038                            *start)
1039                                continue;
1040                        *start = map->stripes[i].physical +
1041                                em->orig_block_len;
1042                        ret = 1;
1043                }
1044        }
1045
1046        return ret;
1047}
1048
1049
1050/*
1051 * find_free_dev_extent - find free space in the specified device
1052 * @device:     the device which we search the free space in
1053 * @num_bytes:  the size of the free space that we need
1054 * @start:      store the start of the free space.
1055 * @len:        the size of the free space. that we find, or the size of the max
1056 *              free space if we don't find suitable free space
1057 *
1058 * this uses a pretty simple search, the expectation is that it is
1059 * called very infrequently and that a given device has a small number
1060 * of extents
1061 *
1062 * @start is used to store the start of the free space if we find. But if we
1063 * don't find suitable free space, it will be used to store the start position
1064 * of the max free space.
1065 *
1066 * @len is used to store the size of the free space that we find.
1067 * But if we don't find suitable free space, it is used to store the size of
1068 * the max free space.
1069 */
1070int find_free_dev_extent(struct btrfs_trans_handle *trans,
1071                         struct btrfs_device *device, u64 num_bytes,
1072                         u64 *start, u64 *len)
1073{
1074        struct btrfs_key key;
1075        struct btrfs_root *root = device->dev_root;
1076        struct btrfs_dev_extent *dev_extent;
1077        struct btrfs_path *path;
1078        u64 hole_size;
1079        u64 max_hole_start;
1080        u64 max_hole_size;
1081        u64 extent_end;
1082        u64 search_start;
1083        u64 search_end = device->total_bytes;
1084        int ret;
1085        int slot;
1086        struct extent_buffer *l;
1087
1088        /* FIXME use last free of some kind */
1089
1090        /* we don't want to overwrite the superblock on the drive,
1091         * so we make sure to start at an offset of at least 1MB
1092         */
1093        search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1094
1095        path = btrfs_alloc_path();
1096        if (!path)
1097                return -ENOMEM;
1098again:
1099        max_hole_start = search_start;
1100        max_hole_size = 0;
1101        hole_size = 0;
1102
1103        if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1104                ret = -ENOSPC;
1105                goto out;
1106        }
1107
1108        path->reada = 2;
1109        path->search_commit_root = 1;
1110        path->skip_locking = 1;
1111
1112        key.objectid = device->devid;
1113        key.offset = search_start;
1114        key.type = BTRFS_DEV_EXTENT_KEY;
1115
1116        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1117        if (ret < 0)
1118                goto out;
1119        if (ret > 0) {
1120                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1121                if (ret < 0)
1122                        goto out;
1123        }
1124
1125        while (1) {
1126                l = path->nodes[0];
1127                slot = path->slots[0];
1128                if (slot >= btrfs_header_nritems(l)) {
1129                        ret = btrfs_next_leaf(root, path);
1130                        if (ret == 0)
1131                                continue;
1132                        if (ret < 0)
1133                                goto out;
1134
1135                        break;
1136                }
1137                btrfs_item_key_to_cpu(l, &key, slot);
1138
1139                if (key.objectid < device->devid)
1140                        goto next;
1141
1142                if (key.objectid > device->devid)
1143                        break;
1144
1145                if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1146                        goto next;
1147
1148                if (key.offset > search_start) {
1149                        hole_size = key.offset - search_start;
1150
1151                        /*
1152                         * Have to check before we set max_hole_start, otherwise
1153                         * we could end up sending back this offset anyway.
1154                         */
1155                        if (contains_pending_extent(trans, device,
1156                                                    &search_start,
1157                                                    hole_size))
1158                                hole_size = 0;
1159
1160                        if (hole_size > max_hole_size) {
1161                                max_hole_start = search_start;
1162                                max_hole_size = hole_size;
1163                        }
1164
1165                        /*
1166                         * If this free space is greater than which we need,
1167                         * it must be the max free space that we have found
1168                         * until now, so max_hole_start must point to the start
1169                         * of this free space and the length of this free space
1170                         * is stored in max_hole_size. Thus, we return
1171                         * max_hole_start and max_hole_size and go back to the
1172                         * caller.
1173                         */
1174                        if (hole_size >= num_bytes) {
1175                                ret = 0;
1176                                goto out;
1177                        }
1178                }
1179
1180                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1181                extent_end = key.offset + btrfs_dev_extent_length(l,
1182                                                                  dev_extent);
1183                if (extent_end > search_start)
1184                        search_start = extent_end;
1185next:
1186                path->slots[0]++;
1187                cond_resched();
1188        }
1189
1190        /*
1191         * At this point, search_start should be the end of
1192         * allocated dev extents, and when shrinking the device,
1193         * search_end may be smaller than search_start.
1194         */
1195        if (search_end > search_start)
1196                hole_size = search_end - search_start;
1197
1198        if (hole_size > max_hole_size) {
1199                max_hole_start = search_start;
1200                max_hole_size = hole_size;
1201        }
1202
1203        if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1204                btrfs_release_path(path);
1205                goto again;
1206        }
1207
1208        /* See above. */
1209        if (hole_size < num_bytes)
1210                ret = -ENOSPC;
1211        else
1212                ret = 0;
1213
1214out:
1215        btrfs_free_path(path);
1216        *start = max_hole_start;
1217        if (len)
1218                *len = max_hole_size;
1219        return ret;
1220}
1221
1222static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1223                          struct btrfs_device *device,
1224                          u64 start)
1225{
1226        int ret;
1227        struct btrfs_path *path;
1228        struct btrfs_root *root = device->dev_root;
1229        struct btrfs_key key;
1230        struct btrfs_key found_key;
1231        struct extent_buffer *leaf = NULL;
1232        struct btrfs_dev_extent *extent = NULL;
1233
1234        path = btrfs_alloc_path();
1235        if (!path)
1236                return -ENOMEM;
1237
1238        key.objectid = device->devid;
1239        key.offset = start;
1240        key.type = BTRFS_DEV_EXTENT_KEY;
1241again:
1242        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1243        if (ret > 0) {
1244                ret = btrfs_previous_item(root, path, key.objectid,
1245                                          BTRFS_DEV_EXTENT_KEY);
1246                if (ret)
1247                        goto out;
1248                leaf = path->nodes[0];
1249                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1250                extent = btrfs_item_ptr(leaf, path->slots[0],
1251                                        struct btrfs_dev_extent);
1252                BUG_ON(found_key.offset > start || found_key.offset +
1253                       btrfs_dev_extent_length(leaf, extent) < start);
1254                key = found_key;
1255                btrfs_release_path(path);
1256                goto again;
1257        } else if (ret == 0) {
1258                leaf = path->nodes[0];
1259                extent = btrfs_item_ptr(leaf, path->slots[0],
1260                                        struct btrfs_dev_extent);
1261        } else {
1262                btrfs_error(root->fs_info, ret, "Slot search failed");
1263                goto out;
1264        }
1265
1266        if (device->bytes_used > 0) {
1267                u64 len = btrfs_dev_extent_length(leaf, extent);
1268                device->bytes_used -= len;
1269                spin_lock(&root->fs_info->free_chunk_lock);
1270                root->fs_info->free_chunk_space += len;
1271                spin_unlock(&root->fs_info->free_chunk_lock);
1272        }
1273        ret = btrfs_del_item(trans, root, path);
1274        if (ret) {
1275                btrfs_error(root->fs_info, ret,
1276                            "Failed to remove dev extent item");
1277        }
1278out:
1279        btrfs_free_path(path);
1280        return ret;
1281}
1282
1283static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1284                                  struct btrfs_device *device,
1285                                  u64 chunk_tree, u64 chunk_objectid,
1286                                  u64 chunk_offset, u64 start, u64 num_bytes)
1287{
1288        int ret;
1289        struct btrfs_path *path;
1290        struct btrfs_root *root = device->dev_root;
1291        struct btrfs_dev_extent *extent;
1292        struct extent_buffer *leaf;
1293        struct btrfs_key key;
1294
1295        WARN_ON(!device->in_fs_metadata);
1296        WARN_ON(device->is_tgtdev_for_dev_replace);
1297        path = btrfs_alloc_path();
1298        if (!path)
1299                return -ENOMEM;
1300
1301        key.objectid = device->devid;
1302        key.offset = start;
1303        key.type = BTRFS_DEV_EXTENT_KEY;
1304        ret = btrfs_insert_empty_item(trans, root, path, &key,
1305                                      sizeof(*extent));
1306        if (ret)
1307                goto out;
1308
1309        leaf = path->nodes[0];
1310        extent = btrfs_item_ptr(leaf, path->slots[0],
1311                                struct btrfs_dev_extent);
1312        btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1313        btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1314        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1315
1316        write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1317                    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1318
1319        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1320        btrfs_mark_buffer_dirty(leaf);
1321out:
1322        btrfs_free_path(path);
1323        return ret;
1324}
1325
1326static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1327{
1328        struct extent_map_tree *em_tree;
1329        struct extent_map *em;
1330        struct rb_node *n;
1331        u64 ret = 0;
1332
1333        em_tree = &fs_info->mapping_tree.map_tree;
1334        read_lock(&em_tree->lock);
1335        n = rb_last(&em_tree->map);
1336        if (n) {
1337                em = rb_entry(n, struct extent_map, rb_node);
1338                ret = em->start + em->len;
1339        }
1340        read_unlock(&em_tree->lock);
1341
1342        return ret;
1343}
1344
1345static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1346                                    u64 *devid_ret)
1347{
1348        int ret;
1349        struct btrfs_key key;
1350        struct btrfs_key found_key;
1351        struct btrfs_path *path;
1352
1353        path = btrfs_alloc_path();
1354        if (!path)
1355                return -ENOMEM;
1356
1357        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1358        key.type = BTRFS_DEV_ITEM_KEY;
1359        key.offset = (u64)-1;
1360
1361        ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1362        if (ret < 0)
1363                goto error;
1364
1365        BUG_ON(ret == 0); /* Corruption */
1366
1367        ret = btrfs_previous_item(fs_info->chunk_root, path,
1368                                  BTRFS_DEV_ITEMS_OBJECTID,
1369                                  BTRFS_DEV_ITEM_KEY);
1370        if (ret) {
1371                *devid_ret = 1;
1372        } else {
1373                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1374                                      path->slots[0]);
1375                *devid_ret = found_key.offset + 1;
1376        }
1377        ret = 0;
1378error:
1379        btrfs_free_path(path);
1380        return ret;
1381}
1382
1383/*
1384 * the device information is stored in the chunk root
1385 * the btrfs_device struct should be fully filled in
1386 */
1387static int btrfs_add_device(struct btrfs_trans_handle *trans,
1388                            struct btrfs_root *root,
1389                            struct btrfs_device *device)
1390{
1391        int ret;
1392        struct btrfs_path *path;
1393        struct btrfs_dev_item *dev_item;
1394        struct extent_buffer *leaf;
1395        struct btrfs_key key;
1396        unsigned long ptr;
1397
1398        root = root->fs_info->chunk_root;
1399
1400        path = btrfs_alloc_path();
1401        if (!path)
1402                return -ENOMEM;
1403
1404        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1405        key.type = BTRFS_DEV_ITEM_KEY;
1406        key.offset = device->devid;
1407
1408        ret = btrfs_insert_empty_item(trans, root, path, &key,
1409                                      sizeof(*dev_item));
1410        if (ret)
1411                goto out;
1412
1413        leaf = path->nodes[0];
1414        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1415
1416        btrfs_set_device_id(leaf, dev_item, device->devid);
1417        btrfs_set_device_generation(leaf, dev_item, 0);
1418        btrfs_set_device_type(leaf, dev_item, device->type);
1419        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1420        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1421        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1422        btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1423        btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1424        btrfs_set_device_group(leaf, dev_item, 0);
1425        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1426        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1427        btrfs_set_device_start_offset(leaf, dev_item, 0);
1428
1429        ptr = btrfs_device_uuid(dev_item);
1430        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1431        ptr = btrfs_device_fsid(dev_item);
1432        write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1433        btrfs_mark_buffer_dirty(leaf);
1434
1435        ret = 0;
1436out:
1437        btrfs_free_path(path);
1438        return ret;
1439}
1440
1441static int btrfs_rm_dev_item(struct btrfs_root *root,
1442                             struct btrfs_device *device)
1443{
1444        int ret;
1445        struct btrfs_path *path;
1446        struct btrfs_key key;
1447        struct btrfs_trans_handle *trans;
1448
1449        root = root->fs_info->chunk_root;
1450
1451        path = btrfs_alloc_path();
1452        if (!path)
1453                return -ENOMEM;
1454
1455        trans = btrfs_start_transaction(root, 0);
1456        if (IS_ERR(trans)) {
1457                btrfs_free_path(path);
1458                return PTR_ERR(trans);
1459        }
1460        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1461        key.type = BTRFS_DEV_ITEM_KEY;
1462        key.offset = device->devid;
1463        lock_chunks(root);
1464
1465        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1466        if (ret < 0)
1467                goto out;
1468
1469        if (ret > 0) {
1470                ret = -ENOENT;
1471                goto out;
1472        }
1473
1474        ret = btrfs_del_item(trans, root, path);
1475        if (ret)
1476                goto out;
1477out:
1478        btrfs_free_path(path);
1479        unlock_chunks(root);
1480        btrfs_commit_transaction(trans, root);
1481        return ret;
1482}
1483
1484int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1485{
1486        struct btrfs_device *device;
1487        struct btrfs_device *next_device;
1488        struct block_device *bdev;
1489        struct buffer_head *bh = NULL;
1490        struct btrfs_super_block *disk_super;
1491        struct btrfs_fs_devices *cur_devices;
1492        u64 all_avail;
1493        u64 devid;
1494        u64 num_devices;
1495        u8 *dev_uuid;
1496        unsigned seq;
1497        int ret = 0;
1498        bool clear_super = false;
1499
1500        mutex_lock(&uuid_mutex);
1501
1502        do {
1503                seq = read_seqbegin(&root->fs_info->profiles_lock);
1504
1505                all_avail = root->fs_info->avail_data_alloc_bits |
1506                            root->fs_info->avail_system_alloc_bits |
1507                            root->fs_info->avail_metadata_alloc_bits;
1508        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1509
1510        num_devices = root->fs_info->fs_devices->num_devices;
1511        btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1512        if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1513                WARN_ON(num_devices < 1);
1514                num_devices--;
1515        }
1516        btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1517
1518        if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1519                ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1520                goto out;
1521        }
1522
1523        if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1524                ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1525                goto out;
1526        }
1527
1528        if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1529            root->fs_info->fs_devices->rw_devices <= 2) {
1530                ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1531                goto out;
1532        }
1533        if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1534            root->fs_info->fs_devices->rw_devices <= 3) {
1535                ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1536                goto out;
1537        }
1538
1539        if (strcmp(device_path, "missing") == 0) {
1540                struct list_head *devices;
1541                struct btrfs_device *tmp;
1542
1543                device = NULL;
1544                devices = &root->fs_info->fs_devices->devices;
1545                /*
1546                 * It is safe to read the devices since the volume_mutex
1547                 * is held.
1548                 */
1549                list_for_each_entry(tmp, devices, dev_list) {
1550                        if (tmp->in_fs_metadata &&
1551                            !tmp->is_tgtdev_for_dev_replace &&
1552                            !tmp->bdev) {
1553                                device = tmp;
1554                                break;
1555                        }
1556                }
1557                bdev = NULL;
1558                bh = NULL;
1559                disk_super = NULL;
1560                if (!device) {
1561                        ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1562                        goto out;
1563                }
1564        } else {
1565                ret = btrfs_get_bdev_and_sb(device_path,
1566                                            FMODE_WRITE | FMODE_EXCL,
1567                                            root->fs_info->bdev_holder, 0,
1568                                            &bdev, &bh);
1569                if (ret)
1570                        goto out;
1571                disk_super = (struct btrfs_super_block *)bh->b_data;
1572                devid = btrfs_stack_device_id(&disk_super->dev_item);
1573                dev_uuid = disk_super->dev_item.uuid;
1574                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1575                                           disk_super->fsid);
1576                if (!device) {
1577                        ret = -ENOENT;
1578                        goto error_brelse;
1579                }
1580        }
1581
1582        if (device->is_tgtdev_for_dev_replace) {
1583                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1584                goto error_brelse;
1585        }
1586
1587        if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1588                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1589                goto error_brelse;
1590        }
1591
1592        if (device->writeable) {
1593                lock_chunks(root);
1594                list_del_init(&device->dev_alloc_list);
1595                unlock_chunks(root);
1596                root->fs_info->fs_devices->rw_devices--;
1597                clear_super = true;
1598        }
1599
1600        mutex_unlock(&uuid_mutex);
1601        ret = btrfs_shrink_device(device, 0);
1602        mutex_lock(&uuid_mutex);
1603        if (ret)
1604                goto error_undo;
1605
1606        /*
1607         * TODO: the superblock still includes this device in its num_devices
1608         * counter although write_all_supers() is not locked out. This
1609         * could give a filesystem state which requires a degraded mount.
1610         */
1611        ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1612        if (ret)
1613                goto error_undo;
1614
1615        spin_lock(&root->fs_info->free_chunk_lock);
1616        root->fs_info->free_chunk_space = device->total_bytes -
1617                device->bytes_used;
1618        spin_unlock(&root->fs_info->free_chunk_lock);
1619
1620        device->in_fs_metadata = 0;
1621        btrfs_scrub_cancel_dev(root->fs_info, device);
1622
1623        /*
1624         * the device list mutex makes sure that we don't change
1625         * the device list while someone else is writing out all
1626         * the device supers. Whoever is writing all supers, should
1627         * lock the device list mutex before getting the number of
1628         * devices in the super block (super_copy). Conversely,
1629         * whoever updates the number of devices in the super block
1630         * (super_copy) should hold the device list mutex.
1631         */
1632
1633        cur_devices = device->fs_devices;
1634        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1635        list_del_rcu(&device->dev_list);
1636
1637        device->fs_devices->num_devices--;
1638        device->fs_devices->total_devices--;
1639
1640        if (device->missing)
1641                root->fs_info->fs_devices->missing_devices--;
1642
1643        next_device = list_entry(root->fs_info->fs_devices->devices.next,
1644                                 struct btrfs_device, dev_list);
1645        if (device->bdev == root->fs_info->sb->s_bdev)
1646                root->fs_info->sb->s_bdev = next_device->bdev;
1647        if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1648                root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1649
1650        if (device->bdev)
1651                device->fs_devices->open_devices--;
1652
1653        call_rcu(&device->rcu, free_device);
1654
1655        num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1656        btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1657        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1658
1659        if (cur_devices->open_devices == 0) {
1660                struct btrfs_fs_devices *fs_devices;
1661                fs_devices = root->fs_info->fs_devices;
1662                while (fs_devices) {
1663                        if (fs_devices->seed == cur_devices)
1664                                break;
1665                        fs_devices = fs_devices->seed;
1666                }
1667                fs_devices->seed = cur_devices->seed;
1668                cur_devices->seed = NULL;
1669                lock_chunks(root);
1670                __btrfs_close_devices(cur_devices);
1671                unlock_chunks(root);
1672                free_fs_devices(cur_devices);
1673        }
1674
1675        root->fs_info->num_tolerated_disk_barrier_failures =
1676                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1677
1678        /*
1679         * at this point, the device is zero sized.  We want to
1680         * remove it from the devices list and zero out the old super
1681         */
1682        if (clear_super && disk_super) {
1683                /* make sure this device isn't detected as part of
1684                 * the FS anymore
1685                 */
1686                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1687                set_buffer_dirty(bh);
1688                sync_dirty_buffer(bh);
1689        }
1690
1691        ret = 0;
1692
1693        /* Notify udev that device has changed */
1694        if (bdev)
1695                btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1696
1697error_brelse:
1698        brelse(bh);
1699        if (bdev)
1700                blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1701out:
1702        mutex_unlock(&uuid_mutex);
1703        return ret;
1704error_undo:
1705        if (device->writeable) {
1706                lock_chunks(root);
1707                list_add(&device->dev_alloc_list,
1708                         &root->fs_info->fs_devices->alloc_list);
1709                unlock_chunks(root);
1710                root->fs_info->fs_devices->rw_devices++;
1711        }
1712        goto error_brelse;
1713}
1714
1715void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1716                                 struct btrfs_device *srcdev)
1717{
1718        WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1719
1720        list_del_rcu(&srcdev->dev_list);
1721        list_del_rcu(&srcdev->dev_alloc_list);
1722        fs_info->fs_devices->num_devices--;
1723        if (srcdev->missing) {
1724                fs_info->fs_devices->missing_devices--;
1725                fs_info->fs_devices->rw_devices++;
1726        }
1727        if (srcdev->can_discard)
1728                fs_info->fs_devices->num_can_discard--;
1729        if (srcdev->bdev) {
1730                fs_info->fs_devices->open_devices--;
1731
1732                /* zero out the old super */
1733                btrfs_scratch_superblock(srcdev);
1734        }
1735
1736        call_rcu(&srcdev->rcu, free_device);
1737}
1738
1739void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1740                                      struct btrfs_device *tgtdev)
1741{
1742        struct btrfs_device *next_device;
1743
1744        WARN_ON(!tgtdev);
1745        mutex_lock(&fs_info->fs_devices->device_list_mutex);
1746        if (tgtdev->bdev) {
1747                btrfs_scratch_superblock(tgtdev);
1748                fs_info->fs_devices->open_devices--;
1749        }
1750        fs_info->fs_devices->num_devices--;
1751        if (tgtdev->can_discard)
1752                fs_info->fs_devices->num_can_discard++;
1753
1754        next_device = list_entry(fs_info->fs_devices->devices.next,
1755                                 struct btrfs_device, dev_list);
1756        if (tgtdev->bdev == fs_info->sb->s_bdev)
1757                fs_info->sb->s_bdev = next_device->bdev;
1758        if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1759                fs_info->fs_devices->latest_bdev = next_device->bdev;
1760        list_del_rcu(&tgtdev->dev_list);
1761
1762        call_rcu(&tgtdev->rcu, free_device);
1763
1764        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1765}
1766
1767static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1768                                     struct btrfs_device **device)
1769{
1770        int ret = 0;
1771        struct btrfs_super_block *disk_super;
1772        u64 devid;
1773        u8 *dev_uuid;
1774        struct block_device *bdev;
1775        struct buffer_head *bh;
1776
1777        *device = NULL;
1778        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1779                                    root->fs_info->bdev_holder, 0, &bdev, &bh);
1780        if (ret)
1781                return ret;
1782        disk_super = (struct btrfs_super_block *)bh->b_data;
1783        devid = btrfs_stack_device_id(&disk_super->dev_item);
1784        dev_uuid = disk_super->dev_item.uuid;
1785        *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1786                                    disk_super->fsid);
1787        brelse(bh);
1788        if (!*device)
1789                ret = -ENOENT;
1790        blkdev_put(bdev, FMODE_READ);
1791        return ret;
1792}
1793
1794int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1795                                         char *device_path,
1796                                         struct btrfs_device **device)
1797{
1798        *device = NULL;
1799        if (strcmp(device_path, "missing") == 0) {
1800                struct list_head *devices;
1801                struct btrfs_device *tmp;
1802
1803                devices = &root->fs_info->fs_devices->devices;
1804                /*
1805                 * It is safe to read the devices since the volume_mutex
1806                 * is held by the caller.
1807                 */
1808                list_for_each_entry(tmp, devices, dev_list) {
1809                        if (tmp->in_fs_metadata && !tmp->bdev) {
1810                                *device = tmp;
1811                                break;
1812                        }
1813                }
1814
1815                if (!*device) {
1816                        btrfs_err(root->fs_info, "no missing device found");
1817                        return -ENOENT;
1818                }
1819
1820                return 0;
1821        } else {
1822                return btrfs_find_device_by_path(root, device_path, device);
1823        }
1824}
1825
1826/*
1827 * does all the dirty work required for changing file system's UUID.
1828 */
1829static int btrfs_prepare_sprout(struct btrfs_root *root)
1830{
1831        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1832        struct btrfs_fs_devices *old_devices;
1833        struct btrfs_fs_devices *seed_devices;
1834        struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1835        struct btrfs_device *device;
1836        u64 super_flags;
1837
1838        BUG_ON(!mutex_is_locked(&uuid_mutex));
1839        if (!fs_devices->seeding)
1840                return -EINVAL;
1841
1842        seed_devices = __alloc_fs_devices();
1843        if (IS_ERR(seed_devices))
1844                return PTR_ERR(seed_devices);
1845
1846        old_devices = clone_fs_devices(fs_devices);
1847        if (IS_ERR(old_devices)) {
1848                kfree(seed_devices);
1849                return PTR_ERR(old_devices);
1850        }
1851
1852        list_add(&old_devices->list, &fs_uuids);
1853
1854        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1855        seed_devices->opened = 1;
1856        INIT_LIST_HEAD(&seed_devices->devices);
1857        INIT_LIST_HEAD(&seed_devices->alloc_list);
1858        mutex_init(&seed_devices->device_list_mutex);
1859
1860        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1861        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1862                              synchronize_rcu);
1863
1864        list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1865        list_for_each_entry(device, &seed_devices->devices, dev_list) {
1866                device->fs_devices = seed_devices;
1867        }
1868
1869        fs_devices->seeding = 0;
1870        fs_devices->num_devices = 0;
1871        fs_devices->open_devices = 0;
1872        fs_devices->total_devices = 0;
1873        fs_devices->seed = seed_devices;
1874
1875        generate_random_uuid(fs_devices->fsid);
1876        memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1877        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1878        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1879
1880        super_flags = btrfs_super_flags(disk_super) &
1881                      ~BTRFS_SUPER_FLAG_SEEDING;
1882        btrfs_set_super_flags(disk_super, super_flags);
1883
1884        return 0;
1885}
1886
1887/*
1888 * strore the expected generation for seed devices in device items.
1889 */
1890static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1891                               struct btrfs_root *root)
1892{
1893        struct btrfs_path *path;
1894        struct extent_buffer *leaf;
1895        struct btrfs_dev_item *dev_item;
1896        struct btrfs_device *device;
1897        struct btrfs_key key;
1898        u8 fs_uuid[BTRFS_UUID_SIZE];
1899        u8 dev_uuid[BTRFS_UUID_SIZE];
1900        u64 devid;
1901        int ret;
1902
1903        path = btrfs_alloc_path();
1904        if (!path)
1905                return -ENOMEM;
1906
1907        root = root->fs_info->chunk_root;
1908        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1909        key.offset = 0;
1910        key.type = BTRFS_DEV_ITEM_KEY;
1911
1912        while (1) {
1913                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1914                if (ret < 0)
1915                        goto error;
1916
1917                leaf = path->nodes[0];
1918next_slot:
1919                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1920                        ret = btrfs_next_leaf(root, path);
1921                        if (ret > 0)
1922                                break;
1923                        if (ret < 0)
1924                                goto error;
1925                        leaf = path->nodes[0];
1926                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1927                        btrfs_release_path(path);
1928                        continue;
1929                }
1930
1931                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1932                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1933                    key.type != BTRFS_DEV_ITEM_KEY)
1934                        break;
1935
1936                dev_item = btrfs_item_ptr(leaf, path->slots[0],
1937                                          struct btrfs_dev_item);
1938                devid = btrfs_device_id(leaf, dev_item);
1939                read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
1940                                   BTRFS_UUID_SIZE);
1941                read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
1942                                   BTRFS_UUID_SIZE);
1943                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1944                                           fs_uuid);
1945                BUG_ON(!device); /* Logic error */
1946
1947                if (device->fs_devices->seeding) {
1948                        btrfs_set_device_generation(leaf, dev_item,
1949                                                    device->generation);
1950                        btrfs_mark_buffer_dirty(leaf);
1951                }
1952
1953                path->slots[0]++;
1954                goto next_slot;
1955        }
1956        ret = 0;
1957error:
1958        btrfs_free_path(path);
1959        return ret;
1960}
1961
1962int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1963{
1964        struct request_queue *q;
1965        struct btrfs_trans_handle *trans;
1966        struct btrfs_device *device;
1967        struct block_device *bdev;
1968        struct list_head *devices;
1969        struct super_block *sb = root->fs_info->sb;
1970        struct rcu_string *name;
1971        u64 total_bytes;
1972        int seeding_dev = 0;
1973        int ret = 0;
1974
1975        if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1976                return -EROFS;
1977
1978        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1979                                  root->fs_info->bdev_holder);
1980        if (IS_ERR(bdev))
1981                return PTR_ERR(bdev);
1982
1983        if (root->fs_info->fs_devices->seeding) {
1984                seeding_dev = 1;
1985                down_write(&sb->s_umount);
1986                mutex_lock(&uuid_mutex);
1987        }
1988
1989        filemap_write_and_wait(bdev->bd_inode->i_mapping);
1990
1991        devices = &root->fs_info->fs_devices->devices;
1992
1993        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1994        list_for_each_entry(device, devices, dev_list) {
1995                if (device->bdev == bdev) {
1996                        ret = -EEXIST;
1997                        mutex_unlock(
1998                                &root->fs_info->fs_devices->device_list_mutex);
1999                        goto error;
2000                }
2001        }
2002        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2003
2004        device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2005        if (IS_ERR(device)) {
2006                /* we can safely leave the fs_devices entry around */
2007                ret = PTR_ERR(device);
2008                goto error;
2009        }
2010
2011        name = rcu_string_strdup(device_path, GFP_NOFS);
2012        if (!name) {
2013                kfree(device);
2014                ret = -ENOMEM;
2015                goto error;
2016        }
2017        rcu_assign_pointer(device->name, name);
2018
2019        trans = btrfs_start_transaction(root, 0);
2020        if (IS_ERR(trans)) {
2021                rcu_string_free(device->name);
2022                kfree(device);
2023                ret = PTR_ERR(trans);
2024                goto error;
2025        }
2026
2027        lock_chunks(root);
2028
2029        q = bdev_get_queue(bdev);
2030        if (blk_queue_discard(q))
2031                device->can_discard = 1;
2032        device->writeable = 1;
2033        device->generation = trans->transid;
2034        device->io_width = root->sectorsize;
2035        device->io_align = root->sectorsize;
2036        device->sector_size = root->sectorsize;
2037        device->total_bytes = i_size_read(bdev->bd_inode);
2038        device->disk_total_bytes = device->total_bytes;
2039        device->dev_root = root->fs_info->dev_root;
2040        device->bdev = bdev;
2041        device->in_fs_metadata = 1;
2042        device->is_tgtdev_for_dev_replace = 0;
2043        device->mode = FMODE_EXCL;
2044        device->dev_stats_valid = 1;
2045        set_blocksize(device->bdev, 4096);
2046
2047        if (seeding_dev) {
2048                sb->s_flags &= ~MS_RDONLY;
2049                ret = btrfs_prepare_sprout(root);
2050                BUG_ON(ret); /* -ENOMEM */
2051        }
2052
2053        device->fs_devices = root->fs_info->fs_devices;
2054
2055        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2056        list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2057        list_add(&device->dev_alloc_list,
2058                 &root->fs_info->fs_devices->alloc_list);
2059        root->fs_info->fs_devices->num_devices++;
2060        root->fs_info->fs_devices->open_devices++;
2061        root->fs_info->fs_devices->rw_devices++;
2062        root->fs_info->fs_devices->total_devices++;
2063        if (device->can_discard)
2064                root->fs_info->fs_devices->num_can_discard++;
2065        root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2066
2067        spin_lock(&root->fs_info->free_chunk_lock);
2068        root->fs_info->free_chunk_space += device->total_bytes;
2069        spin_unlock(&root->fs_info->free_chunk_lock);
2070
2071        if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2072                root->fs_info->fs_devices->rotating = 1;
2073
2074        total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2075        btrfs_set_super_total_bytes(root->fs_info->super_copy,
2076                                    total_bytes + device->total_bytes);
2077
2078        total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2079        btrfs_set_super_num_devices(root->fs_info->super_copy,
2080                                    total_bytes + 1);
2081        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2082
2083        if (seeding_dev) {
2084                ret = init_first_rw_device(trans, root, device);
2085                if (ret) {
2086                        btrfs_abort_transaction(trans, root, ret);
2087                        goto error_trans;
2088                }
2089                ret = btrfs_finish_sprout(trans, root);
2090                if (ret) {
2091                        btrfs_abort_transaction(trans, root, ret);
2092                        goto error_trans;
2093                }
2094        } else {
2095                ret = btrfs_add_device(trans, root, device);
2096                if (ret) {
2097                        btrfs_abort_transaction(trans, root, ret);
2098                        goto error_trans;
2099                }
2100        }
2101
2102        /*
2103         * we've got more storage, clear any full flags on the space
2104         * infos
2105         */
2106        btrfs_clear_space_info_full(root->fs_info);
2107
2108        unlock_chunks(root);
2109        root->fs_info->num_tolerated_disk_barrier_failures =
2110                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2111        ret = btrfs_commit_transaction(trans, root);
2112
2113        if (seeding_dev) {
2114                mutex_unlock(&uuid_mutex);
2115                up_write(&sb->s_umount);
2116
2117                if (ret) /* transaction commit */
2118                        return ret;
2119
2120                ret = btrfs_relocate_sys_chunks(root);
2121                if (ret < 0)
2122                        btrfs_error(root->fs_info, ret,
2123                                    "Failed to relocate sys chunks after "
2124                                    "device initialization. This can be fixed "
2125                                    "using the \"btrfs balance\" command.");
2126                trans = btrfs_attach_transaction(root);
2127                if (IS_ERR(trans)) {
2128                        if (PTR_ERR(trans) == -ENOENT)
2129                                return 0;
2130                        return PTR_ERR(trans);
2131                }
2132                ret = btrfs_commit_transaction(trans, root);
2133        }
2134
2135        return ret;
2136
2137error_trans:
2138        unlock_chunks(root);
2139        btrfs_end_transaction(trans, root);
2140        rcu_string_free(device->name);
2141        kfree(device);
2142error:
2143        blkdev_put(bdev, FMODE_EXCL);
2144        if (seeding_dev) {
2145                mutex_unlock(&uuid_mutex);
2146                up_write(&sb->s_umount);
2147        }
2148        return ret;
2149}
2150
2151int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2152                                  struct btrfs_device **device_out)
2153{
2154        struct request_queue *q;
2155        struct btrfs_device *device;
2156        struct block_device *bdev;
2157        struct btrfs_fs_info *fs_info = root->fs_info;
2158        struct list_head *devices;
2159        struct rcu_string *name;
2160        u64 devid = BTRFS_DEV_REPLACE_DEVID;
2161        int ret = 0;
2162
2163        *device_out = NULL;
2164        if (fs_info->fs_devices->seeding)
2165                return -EINVAL;
2166
2167        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2168                                  fs_info->bdev_holder);
2169        if (IS_ERR(bdev))
2170                return PTR_ERR(bdev);
2171
2172        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2173
2174        devices = &fs_info->fs_devices->devices;
2175        list_for_each_entry(device, devices, dev_list) {
2176                if (device->bdev == bdev) {
2177                        ret = -EEXIST;
2178                        goto error;
2179                }
2180        }
2181
2182        device = btrfs_alloc_device(NULL, &devid, NULL);
2183        if (IS_ERR(device)) {
2184                ret = PTR_ERR(device);
2185                goto error;
2186        }
2187
2188        name = rcu_string_strdup(device_path, GFP_NOFS);
2189        if (!name) {
2190                kfree(device);
2191                ret = -ENOMEM;
2192                goto error;
2193        }
2194        rcu_assign_pointer(device->name, name);
2195
2196        q = bdev_get_queue(bdev);
2197        if (blk_queue_discard(q))
2198                device->can_discard = 1;
2199        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2200        device->writeable = 1;
2201        device->generation = 0;
2202        device->io_width = root->sectorsize;
2203        device->io_align = root->sectorsize;
2204        device->sector_size = root->sectorsize;
2205        device->total_bytes = i_size_read(bdev->bd_inode);
2206        device->disk_total_bytes = device->total_bytes;
2207        device->dev_root = fs_info->dev_root;
2208        device->bdev = bdev;
2209        device->in_fs_metadata = 1;
2210        device->is_tgtdev_for_dev_replace = 1;
2211        device->mode = FMODE_EXCL;
2212        device->dev_stats_valid = 1;
2213        set_blocksize(device->bdev, 4096);
2214        device->fs_devices = fs_info->fs_devices;
2215        list_add(&device->dev_list, &fs_info->fs_devices->devices);
2216        fs_info->fs_devices->num_devices++;
2217        fs_info->fs_devices->open_devices++;
2218        if (device->can_discard)
2219                fs_info->fs_devices->num_can_discard++;
2220        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2221
2222        *device_out = device;
2223        return ret;
2224
2225error:
2226        blkdev_put(bdev, FMODE_EXCL);
2227        return ret;
2228}
2229
2230void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2231                                              struct btrfs_device *tgtdev)
2232{
2233        WARN_ON(fs_info->fs_devices->rw_devices == 0);
2234        tgtdev->io_width = fs_info->dev_root->sectorsize;
2235        tgtdev->io_align = fs_info->dev_root->sectorsize;
2236        tgtdev->sector_size = fs_info->dev_root->sectorsize;
2237        tgtdev->dev_root = fs_info->dev_root;
2238        tgtdev->in_fs_metadata = 1;
2239}
2240
2241static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2242                                        struct btrfs_device *device)
2243{
2244        int ret;
2245        struct btrfs_path *path;
2246        struct btrfs_root *root;
2247        struct btrfs_dev_item *dev_item;
2248        struct extent_buffer *leaf;
2249        struct btrfs_key key;
2250
2251        root = device->dev_root->fs_info->chunk_root;
2252
2253        path = btrfs_alloc_path();
2254        if (!path)
2255                return -ENOMEM;
2256
2257        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2258        key.type = BTRFS_DEV_ITEM_KEY;
2259        key.offset = device->devid;
2260
2261        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2262        if (ret < 0)
2263                goto out;
2264
2265        if (ret > 0) {
2266                ret = -ENOENT;
2267                goto out;
2268        }
2269
2270        leaf = path->nodes[0];
2271        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2272
2273        btrfs_set_device_id(leaf, dev_item, device->devid);
2274        btrfs_set_device_type(leaf, dev_item, device->type);
2275        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2276        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2277        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2278        btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2279        btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2280        btrfs_mark_buffer_dirty(leaf);
2281
2282out:
2283        btrfs_free_path(path);
2284        return ret;
2285}
2286
2287static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2288                      struct btrfs_device *device, u64 new_size)
2289{
2290        struct btrfs_super_block *super_copy =
2291                device->dev_root->fs_info->super_copy;
2292        u64 old_total = btrfs_super_total_bytes(super_copy);
2293        u64 diff = new_size - device->total_bytes;
2294
2295        if (!device->writeable)
2296                return -EACCES;
2297        if (new_size <= device->total_bytes ||
2298            device->is_tgtdev_for_dev_replace)
2299                return -EINVAL;
2300
2301        btrfs_set_super_total_bytes(super_copy, old_total + diff);
2302        device->fs_devices->total_rw_bytes += diff;
2303
2304        device->total_bytes = new_size;
2305        device->disk_total_bytes = new_size;
2306        btrfs_clear_space_info_full(device->dev_root->fs_info);
2307
2308        return btrfs_update_device(trans, device);
2309}
2310
2311int btrfs_grow_device(struct btrfs_trans_handle *trans,
2312                      struct btrfs_device *device, u64 new_size)
2313{
2314        int ret;
2315        lock_chunks(device->dev_root);
2316        ret = __btrfs_grow_device(trans, device, new_size);
2317        unlock_chunks(device->dev_root);
2318        return ret;
2319}
2320
2321static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2322                            struct btrfs_root *root,
2323                            u64 chunk_tree, u64 chunk_objectid,
2324                            u64 chunk_offset)
2325{
2326        int ret;
2327        struct btrfs_path *path;
2328        struct btrfs_key key;
2329
2330        root = root->fs_info->chunk_root;
2331        path = btrfs_alloc_path();
2332        if (!path)
2333                return -ENOMEM;
2334
2335        key.objectid = chunk_objectid;
2336        key.offset = chunk_offset;
2337        key.type = BTRFS_CHUNK_ITEM_KEY;
2338
2339        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2340        if (ret < 0)
2341                goto out;
2342        else if (ret > 0) { /* Logic error or corruption */
2343                btrfs_error(root->fs_info, -ENOENT,
2344                            "Failed lookup while freeing chunk.");
2345                ret = -ENOENT;
2346                goto out;
2347        }
2348
2349        ret = btrfs_del_item(trans, root, path);
2350        if (ret < 0)
2351                btrfs_error(root->fs_info, ret,
2352                            "Failed to delete chunk item.");
2353out:
2354        btrfs_free_path(path);
2355        return ret;
2356}
2357
2358static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2359                        chunk_offset)
2360{
2361        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2362        struct btrfs_disk_key *disk_key;
2363        struct btrfs_chunk *chunk;
2364        u8 *ptr;
2365        int ret = 0;
2366        u32 num_stripes;
2367        u32 array_size;
2368        u32 len = 0;
2369        u32 cur;
2370        struct btrfs_key key;
2371
2372        array_size = btrfs_super_sys_array_size(super_copy);
2373
2374        ptr = super_copy->sys_chunk_array;
2375        cur = 0;
2376
2377        while (cur < array_size) {
2378                disk_key = (struct btrfs_disk_key *)ptr;
2379                btrfs_disk_key_to_cpu(&key, disk_key);
2380
2381                len = sizeof(*disk_key);
2382
2383                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2384                        chunk = (struct btrfs_chunk *)(ptr + len);
2385                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2386                        len += btrfs_chunk_item_size(num_stripes);
2387                } else {
2388                        ret = -EIO;
2389                        break;
2390                }
2391                if (key.objectid == chunk_objectid &&
2392                    key.offset == chunk_offset) {
2393                        memmove(ptr, ptr + len, array_size - (cur + len));
2394                        array_size -= len;
2395                        btrfs_set_super_sys_array_size(super_copy, array_size);
2396                } else {
2397                        ptr += len;
2398                        cur += len;
2399                }
2400        }
2401        return ret;
2402}
2403
2404static int btrfs_relocate_chunk(struct btrfs_root *root,
2405                         u64 chunk_tree, u64 chunk_objectid,
2406                         u64 chunk_offset)
2407{
2408        struct extent_map_tree *em_tree;
2409        struct btrfs_root *extent_root;
2410        struct btrfs_trans_handle *trans;
2411        struct extent_map *em;
2412        struct map_lookup *map;
2413        int ret;
2414        int i;
2415
2416        root = root->fs_info->chunk_root;
2417        extent_root = root->fs_info->extent_root;
2418        em_tree = &root->fs_info->mapping_tree.map_tree;
2419
2420        ret = btrfs_can_relocate(extent_root, chunk_offset);
2421        if (ret)
2422                return -ENOSPC;
2423
2424        /* step one, relocate all the extents inside this chunk */
2425        ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2426        if (ret)
2427                return ret;
2428
2429        trans = btrfs_start_transaction(root, 0);
2430        if (IS_ERR(trans)) {
2431                ret = PTR_ERR(trans);
2432                btrfs_std_error(root->fs_info, ret);
2433                return ret;
2434        }
2435
2436        lock_chunks(root);
2437
2438        /*
2439         * step two, delete the device extents and the
2440         * chunk tree entries
2441         */
2442        read_lock(&em_tree->lock);
2443        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2444        read_unlock(&em_tree->lock);
2445
2446        BUG_ON(!em || em->start > chunk_offset ||
2447               em->start + em->len < chunk_offset);
2448        map = (struct map_lookup *)em->bdev;
2449
2450        for (i = 0; i < map->num_stripes; i++) {
2451                ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2452                                            map->stripes[i].physical);
2453                BUG_ON(ret);
2454
2455                if (map->stripes[i].dev) {
2456                        ret = btrfs_update_device(trans, map->stripes[i].dev);
2457                        BUG_ON(ret);
2458                }
2459        }
2460        ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2461                               chunk_offset);
2462
2463        BUG_ON(ret);
2464
2465        trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2466
2467        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2468                ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2469                BUG_ON(ret);
2470        }
2471
2472        ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2473        BUG_ON(ret);
2474
2475        write_lock(&em_tree->lock);
2476        remove_extent_mapping(em_tree, em);
2477        write_unlock(&em_tree->lock);
2478
2479        kfree(map);
2480        em->bdev = NULL;
2481
2482        /* once for the tree */
2483        free_extent_map(em);
2484        /* once for us */
2485        free_extent_map(em);
2486
2487        unlock_chunks(root);
2488        btrfs_end_transaction(trans, root);
2489        return 0;
2490}
2491
2492static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2493{
2494        struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2495        struct btrfs_path *path;
2496        struct extent_buffer *leaf;
2497        struct btrfs_chunk *chunk;
2498        struct btrfs_key key;
2499        struct btrfs_key found_key;
2500        u64 chunk_tree = chunk_root->root_key.objectid;
2501        u64 chunk_type;
2502        bool retried = false;
2503        int failed = 0;
2504        int ret;
2505
2506        path = btrfs_alloc_path();
2507        if (!path)
2508                return -ENOMEM;
2509
2510again:
2511        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2512        key.offset = (u64)-1;
2513        key.type = BTRFS_CHUNK_ITEM_KEY;
2514
2515        while (1) {
2516                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2517                if (ret < 0)
2518                        goto error;
2519                BUG_ON(ret == 0); /* Corruption */
2520
2521                ret = btrfs_previous_item(chunk_root, path, key.objectid,
2522                                          key.type);
2523                if (ret < 0)
2524                        goto error;
2525                if (ret > 0)
2526                        break;
2527
2528                leaf = path->nodes[0];
2529                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2530
2531                chunk = btrfs_item_ptr(leaf, path->slots[0],
2532                                       struct btrfs_chunk);
2533                chunk_type = btrfs_chunk_type(leaf, chunk);
2534                btrfs_release_path(path);
2535
2536                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2537                        ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2538                                                   found_key.objectid,
2539                                                   found_key.offset);
2540                        if (ret == -ENOSPC)
2541                                failed++;
2542                        else if (ret)
2543                                BUG();
2544                }
2545
2546                if (found_key.offset == 0)
2547                        break;
2548                key.offset = found_key.offset - 1;
2549        }
2550        ret = 0;
2551        if (failed && !retried) {
2552                failed = 0;
2553                retried = true;
2554                goto again;
2555        } else if (WARN_ON(failed && retried)) {
2556                ret = -ENOSPC;
2557        }
2558error:
2559        btrfs_free_path(path);
2560        return ret;
2561}
2562
2563static int insert_balance_item(struct btrfs_root *root,
2564                               struct btrfs_balance_control *bctl)
2565{
2566        struct btrfs_trans_handle *trans;
2567        struct btrfs_balance_item *item;
2568        struct btrfs_disk_balance_args disk_bargs;
2569        struct btrfs_path *path;
2570        struct extent_buffer *leaf;
2571        struct btrfs_key key;
2572        int ret, err;
2573
2574        path = btrfs_alloc_path();
2575        if (!path)
2576                return -ENOMEM;
2577
2578        trans = btrfs_start_transaction(root, 0);
2579        if (IS_ERR(trans)) {
2580                btrfs_free_path(path);
2581                return PTR_ERR(trans);
2582        }
2583
2584        key.objectid = BTRFS_BALANCE_OBJECTID;
2585        key.type = BTRFS_BALANCE_ITEM_KEY;
2586        key.offset = 0;
2587
2588        ret = btrfs_insert_empty_item(trans, root, path, &key,
2589                                      sizeof(*item));
2590        if (ret)
2591                goto out;
2592
2593        leaf = path->nodes[0];
2594        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2595
2596        memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2597
2598        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2599        btrfs_set_balance_data(leaf, item, &disk_bargs);
2600        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2601        btrfs_set_balance_meta(leaf, item, &disk_bargs);
2602        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2603        btrfs_set_balance_sys(leaf, item, &disk_bargs);
2604
2605        btrfs_set_balance_flags(leaf, item, bctl->flags);
2606
2607        btrfs_mark_buffer_dirty(leaf);
2608out:
2609        btrfs_free_path(path);
2610        err = btrfs_commit_transaction(trans, root);
2611        if (err && !ret)
2612                ret = err;
2613        return ret;
2614}
2615
2616static int del_balance_item(struct btrfs_root *root)
2617{
2618        struct btrfs_trans_handle *trans;
2619        struct btrfs_path *path;
2620        struct btrfs_key key;
2621        int ret, err;
2622
2623        path = btrfs_alloc_path();
2624        if (!path)
2625                return -ENOMEM;
2626
2627        trans = btrfs_start_transaction(root, 0);
2628        if (IS_ERR(trans)) {
2629                btrfs_free_path(path);
2630                return PTR_ERR(trans);
2631        }
2632
2633        key.objectid = BTRFS_BALANCE_OBJECTID;
2634        key.type = BTRFS_BALANCE_ITEM_KEY;
2635        key.offset = 0;
2636
2637        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2638        if (ret < 0)
2639                goto out;
2640        if (ret > 0) {
2641                ret = -ENOENT;
2642                goto out;
2643        }
2644
2645        ret = btrfs_del_item(trans, root, path);
2646out:
2647        btrfs_free_path(path);
2648        err = btrfs_commit_transaction(trans, root);
2649        if (err && !ret)
2650                ret = err;
2651        return ret;
2652}
2653
2654/*
2655 * This is a heuristic used to reduce the number of chunks balanced on
2656 * resume after balance was interrupted.
2657 */
2658static void update_balance_args(struct btrfs_balance_control *bctl)
2659{
2660        /*
2661         * Turn on soft mode for chunk types that were being converted.
2662         */
2663        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2664                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2665        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2666                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2667        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2668                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2669
2670        /*
2671         * Turn on usage filter if is not already used.  The idea is
2672         * that chunks that we have already balanced should be
2673         * reasonably full.  Don't do it for chunks that are being
2674         * converted - that will keep us from relocating unconverted
2675         * (albeit full) chunks.
2676         */
2677        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2678            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2679                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2680                bctl->data.usage = 90;
2681        }
2682        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2683            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2684                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2685                bctl->sys.usage = 90;
2686        }
2687        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2688            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2689                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2690                bctl->meta.usage = 90;
2691        }
2692}
2693
2694/*
2695 * Should be called with both balance and volume mutexes held to
2696 * serialize other volume operations (add_dev/rm_dev/resize) with
2697 * restriper.  Same goes for unset_balance_control.
2698 */
2699static void set_balance_control(struct btrfs_balance_control *bctl)
2700{
2701        struct btrfs_fs_info *fs_info = bctl->fs_info;
2702
2703        BUG_ON(fs_info->balance_ctl);
2704
2705        spin_lock(&fs_info->balance_lock);
2706        fs_info->balance_ctl = bctl;
2707        spin_unlock(&fs_info->balance_lock);
2708}
2709
2710static void unset_balance_control(struct btrfs_fs_info *fs_info)
2711{
2712        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2713
2714        BUG_ON(!fs_info->balance_ctl);
2715
2716        spin_lock(&fs_info->balance_lock);
2717        fs_info->balance_ctl = NULL;
2718        spin_unlock(&fs_info->balance_lock);
2719
2720        kfree(bctl);
2721}
2722
2723/*
2724 * Balance filters.  Return 1 if chunk should be filtered out
2725 * (should not be balanced).
2726 */
2727static int chunk_profiles_filter(u64 chunk_type,
2728                                 struct btrfs_balance_args *bargs)
2729{
2730        chunk_type = chunk_to_extended(chunk_type) &
2731                                BTRFS_EXTENDED_PROFILE_MASK;
2732
2733        if (bargs->profiles & chunk_type)
2734                return 0;
2735
2736        return 1;
2737}
2738
2739static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2740                              struct btrfs_balance_args *bargs)
2741{
2742        struct btrfs_block_group_cache *cache;
2743        u64 chunk_used, user_thresh;
2744        int ret = 1;
2745
2746        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2747        chunk_used = btrfs_block_group_used(&cache->item);
2748
2749        if (bargs->usage == 0)
2750                user_thresh = 1;
2751        else if (bargs->usage > 100)
2752                user_thresh = cache->key.offset;
2753        else
2754                user_thresh = div_factor_fine(cache->key.offset,
2755                                              bargs->usage);
2756
2757        if (chunk_used < user_thresh)
2758                ret = 0;
2759
2760        btrfs_put_block_group(cache);
2761        return ret;
2762}
2763
2764static int chunk_devid_filter(struct extent_buffer *leaf,
2765                              struct btrfs_chunk *chunk,
2766                              struct btrfs_balance_args *bargs)
2767{
2768        struct btrfs_stripe *stripe;
2769        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2770        int i;
2771
2772        for (i = 0; i < num_stripes; i++) {
2773                stripe = btrfs_stripe_nr(chunk, i);
2774                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2775                        return 0;
2776        }
2777
2778        return 1;
2779}
2780
2781/* [pstart, pend) */
2782static int chunk_drange_filter(struct extent_buffer *leaf,
2783                               struct btrfs_chunk *chunk,
2784                               u64 chunk_offset,
2785                               struct btrfs_balance_args *bargs)
2786{
2787        struct btrfs_stripe *stripe;
2788        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2789        u64 stripe_offset;
2790        u64 stripe_length;
2791        int factor;
2792        int i;
2793
2794        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2795                return 0;
2796
2797        if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2798             BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2799                factor = num_stripes / 2;
2800        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2801                factor = num_stripes - 1;
2802        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2803                factor = num_stripes - 2;
2804        } else {
2805                factor = num_stripes;
2806        }
2807
2808        for (i = 0; i < num_stripes; i++) {
2809                stripe = btrfs_stripe_nr(chunk, i);
2810                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2811                        continue;
2812
2813                stripe_offset = btrfs_stripe_offset(leaf, stripe);
2814                stripe_length = btrfs_chunk_length(leaf, chunk);
2815                do_div(stripe_length, factor);
2816
2817                if (stripe_offset < bargs->pend &&
2818                    stripe_offset + stripe_length > bargs->pstart)
2819                        return 0;
2820        }
2821
2822        return 1;
2823}
2824
2825/* [vstart, vend) */
2826static int chunk_vrange_filter(struct extent_buffer *leaf,
2827                               struct btrfs_chunk *chunk,
2828                               u64 chunk_offset,
2829                               struct btrfs_balance_args *bargs)
2830{
2831        if (chunk_offset < bargs->vend &&
2832            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2833                /* at least part of the chunk is inside this vrange */
2834                return 0;
2835
2836        return 1;
2837}
2838
2839static int chunk_soft_convert_filter(u64 chunk_type,
2840                                     struct btrfs_balance_args *bargs)
2841{
2842        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2843                return 0;
2844
2845        chunk_type = chunk_to_extended(chunk_type) &
2846                                BTRFS_EXTENDED_PROFILE_MASK;
2847
2848        if (bargs->target == chunk_type)
2849                return 1;
2850
2851        return 0;
2852}
2853
2854static int should_balance_chunk(struct btrfs_root *root,
2855                                struct extent_buffer *leaf,
2856                                struct btrfs_chunk *chunk, u64 chunk_offset)
2857{
2858        struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2859        struct btrfs_balance_args *bargs = NULL;
2860        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2861
2862        /* type filter */
2863        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2864              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2865                return 0;
2866        }
2867
2868        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2869                bargs = &bctl->data;
2870        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2871                bargs = &bctl->sys;
2872        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2873                bargs = &bctl->meta;
2874
2875        /* profiles filter */
2876        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2877            chunk_profiles_filter(chunk_type, bargs)) {
2878                return 0;
2879        }
2880
2881        /* usage filter */
2882        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2883            chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2884                return 0;
2885        }
2886
2887        /* devid filter */
2888        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2889            chunk_devid_filter(leaf, chunk, bargs)) {
2890                return 0;
2891        }
2892
2893        /* drange filter, makes sense only with devid filter */
2894        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2895            chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2896                return 0;
2897        }
2898
2899        /* vrange filter */
2900        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2901            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2902                return 0;
2903        }
2904
2905        /* soft profile changing mode */
2906        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2907            chunk_soft_convert_filter(chunk_type, bargs)) {
2908                return 0;
2909        }
2910
2911        return 1;
2912}
2913
2914static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2915{
2916        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2917        struct btrfs_root *chunk_root = fs_info->chunk_root;
2918        struct btrfs_root *dev_root = fs_info->dev_root;
2919        struct list_head *devices;
2920        struct btrfs_device *device;
2921        u64 old_size;
2922        u64 size_to_free;
2923        struct btrfs_chunk *chunk;
2924        struct btrfs_path *path;
2925        struct btrfs_key key;
2926        struct btrfs_key found_key;
2927        struct btrfs_trans_handle *trans;
2928        struct extent_buffer *leaf;
2929        int slot;
2930        int ret;
2931        int enospc_errors = 0;
2932        bool counting = true;
2933
2934        /* step one make some room on all the devices */
2935        devices = &fs_info->fs_devices->devices;
2936        list_for_each_entry(device, devices, dev_list) {
2937                old_size = device->total_bytes;
2938                size_to_free = div_factor(old_size, 1);
2939                size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2940                if (!device->writeable ||
2941                    device->total_bytes - device->bytes_used > size_to_free ||
2942                    device->is_tgtdev_for_dev_replace)
2943                        continue;
2944
2945                ret = btrfs_shrink_device(device, old_size - size_to_free);
2946                if (ret == -ENOSPC)
2947                        break;
2948                BUG_ON(ret);
2949
2950                trans = btrfs_start_transaction(dev_root, 0);
2951                BUG_ON(IS_ERR(trans));
2952
2953                ret = btrfs_grow_device(trans, device, old_size);
2954                BUG_ON(ret);
2955
2956                btrfs_end_transaction(trans, dev_root);
2957        }
2958
2959        /* step two, relocate all the chunks */
2960        path = btrfs_alloc_path();
2961        if (!path) {
2962                ret = -ENOMEM;
2963                goto error;
2964        }
2965
2966        /* zero out stat counters */
2967        spin_lock(&fs_info->balance_lock);
2968        memset(&bctl->stat, 0, sizeof(bctl->stat));
2969        spin_unlock(&fs_info->balance_lock);
2970again:
2971        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2972        key.offset = (u64)-1;
2973        key.type = BTRFS_CHUNK_ITEM_KEY;
2974
2975        while (1) {
2976                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2977                    atomic_read(&fs_info->balance_cancel_req)) {
2978                        ret = -ECANCELED;
2979                        goto error;
2980                }
2981
2982                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2983                if (ret < 0)
2984                        goto error;
2985
2986                /*
2987                 * this shouldn't happen, it means the last relocate
2988                 * failed
2989                 */
2990                if (ret == 0)
2991                        BUG(); /* FIXME break ? */
2992
2993                ret = btrfs_previous_item(chunk_root, path, 0,
2994                                          BTRFS_CHUNK_ITEM_KEY);
2995                if (ret) {
2996                        ret = 0;
2997                        break;
2998                }
2999
3000                leaf = path->nodes[0];
3001                slot = path->slots[0];
3002                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3003
3004                if (found_key.objectid != key.objectid)
3005                        break;
3006
3007                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3008
3009                if (!counting) {
3010                        spin_lock(&fs_info->balance_lock);
3011                        bctl->stat.considered++;
3012                        spin_unlock(&fs_info->balance_lock);
3013                }
3014
3015                ret = should_balance_chunk(chunk_root, leaf, chunk,
3016                                           found_key.offset);
3017                btrfs_release_path(path);
3018                if (!ret)
3019                        goto loop;
3020
3021                if (counting) {
3022                        spin_lock(&fs_info->balance_lock);
3023                        bctl->stat.expected++;
3024                        spin_unlock(&fs_info->balance_lock);
3025                        goto loop;
3026                }
3027
3028                ret = btrfs_relocate_chunk(chunk_root,
3029                                           chunk_root->root_key.objectid,
3030                                           found_key.objectid,
3031                                           found_key.offset);
3032                if (ret && ret != -ENOSPC)
3033                        goto error;
3034                if (ret == -ENOSPC) {
3035                        enospc_errors++;
3036                } else {
3037                        spin_lock(&fs_info->balance_lock);
3038                        bctl->stat.completed++;
3039                        spin_unlock(&fs_info->balance_lock);
3040                }
3041loop:
3042                if (found_key.offset == 0)
3043                        break;
3044                key.offset = found_key.offset - 1;
3045        }
3046
3047        if (counting) {
3048                btrfs_release_path(path);
3049                counting = false;
3050                goto again;
3051        }
3052error:
3053        btrfs_free_path(path);
3054        if (enospc_errors) {
3055                btrfs_info(fs_info, "%d enospc errors during balance",
3056                       enospc_errors);
3057                if (!ret)
3058                        ret = -ENOSPC;
3059        }
3060
3061        return ret;
3062}
3063
3064/**
3065 * alloc_profile_is_valid - see if a given profile is valid and reduced
3066 * @flags: profile to validate
3067 * @extended: if true @flags is treated as an extended profile
3068 */
3069static int alloc_profile_is_valid(u64 flags, int extended)
3070{
3071        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3072                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3073
3074        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3075
3076        /* 1) check that all other bits are zeroed */
3077        if (flags & ~mask)
3078                return 0;
3079
3080        /* 2) see if profile is reduced */
3081        if (flags == 0)
3082                return !extended; /* "0" is valid for usual profiles */
3083
3084        /* true if exactly one bit set */
3085        return (flags & (flags - 1)) == 0;
3086}
3087
3088static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3089{
3090        /* cancel requested || normal exit path */
3091        return atomic_read(&fs_info->balance_cancel_req) ||
3092                (atomic_read(&fs_info->balance_pause_req) == 0 &&
3093                 atomic_read(&fs_info->balance_cancel_req) == 0);
3094}
3095
3096static void __cancel_balance(struct btrfs_fs_info *fs_info)
3097{
3098        int ret;
3099
3100        unset_balance_control(fs_info);
3101        ret = del_balance_item(fs_info->tree_root);
3102        if (ret)
3103                btrfs_std_error(fs_info, ret);
3104
3105        atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3106}
3107
3108/*
3109 * Should be called with both balance and volume mutexes held
3110 */
3111int btrfs_balance(struct btrfs_balance_control *bctl,
3112                  struct btrfs_ioctl_balance_args *bargs)
3113{
3114        struct btrfs_fs_info *fs_info = bctl->fs_info;
3115        u64 allowed;
3116        int mixed = 0;
3117        int ret;
3118        u64 num_devices;
3119        unsigned seq;
3120
3121        if (btrfs_fs_closing(fs_info) ||
3122            atomic_read(&fs_info->balance_pause_req) ||
3123            atomic_read(&fs_info->balance_cancel_req)) {
3124                ret = -EINVAL;
3125                goto out;
3126        }
3127
3128        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3129        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3130                mixed = 1;
3131
3132        /*
3133         * In case of mixed groups both data and meta should be picked,
3134         * and identical options should be given for both of them.
3135         */
3136        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3137        if (mixed && (bctl->flags & allowed)) {
3138                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3139                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3140                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3141                        btrfs_err(fs_info, "with mixed groups data and "
3142                                   "metadata balance options must be the same");
3143                        ret = -EINVAL;
3144                        goto out;
3145                }
3146        }
3147
3148        num_devices = fs_info->fs_devices->num_devices;
3149        btrfs_dev_replace_lock(&fs_info->dev_replace);
3150        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3151                BUG_ON(num_devices < 1);
3152                num_devices--;
3153        }
3154        btrfs_dev_replace_unlock(&fs_info->dev_replace);
3155        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3156        if (num_devices == 1)
3157                allowed |= BTRFS_BLOCK_GROUP_DUP;
3158        else if (num_devices > 1)
3159                allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3160        if (num_devices > 2)
3161                allowed |= BTRFS_BLOCK_GROUP_RAID5;
3162        if (num_devices > 3)
3163                allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3164                            BTRFS_BLOCK_GROUP_RAID6);
3165        if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3166            (!alloc_profile_is_valid(bctl->data.target, 1) ||
3167             (bctl->data.target & ~allowed))) {
3168                btrfs_err(fs_info, "unable to start balance with target "
3169                           "data profile %llu",
3170                       bctl->data.target);
3171                ret = -EINVAL;
3172                goto out;
3173        }
3174        if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3175            (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3176             (bctl->meta.target & ~allowed))) {
3177                btrfs_err(fs_info,
3178                           "unable to start balance with target metadata profile %llu",
3179                       bctl->meta.target);
3180                ret = -EINVAL;
3181                goto out;
3182        }
3183        if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3184            (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3185             (bctl->sys.target & ~allowed))) {
3186                btrfs_err(fs_info,
3187                           "unable to start balance with target system profile %llu",
3188                       bctl->sys.target);
3189                ret = -EINVAL;
3190                goto out;
3191        }
3192
3193        /* allow dup'ed data chunks only in mixed mode */
3194        if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3195            (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3196                btrfs_err(fs_info, "dup for data is not allowed");
3197                ret = -EINVAL;
3198                goto out;
3199        }
3200
3201        /* allow to reduce meta or sys integrity only if force set */
3202        allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3203                        BTRFS_BLOCK_GROUP_RAID10 |
3204                        BTRFS_BLOCK_GROUP_RAID5 |
3205                        BTRFS_BLOCK_GROUP_RAID6;
3206        do {
3207                seq = read_seqbegin(&fs_info->profiles_lock);
3208
3209                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3210                     (fs_info->avail_system_alloc_bits & allowed) &&
3211                     !(bctl->sys.target & allowed)) ||
3212                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3213                     (fs_info->avail_metadata_alloc_bits & allowed) &&
3214                     !(bctl->meta.target & allowed))) {
3215                        if (bctl->flags & BTRFS_BALANCE_FORCE) {
3216                                btrfs_info(fs_info, "force reducing metadata integrity");
3217                        } else {
3218                                btrfs_err(fs_info, "balance will reduce metadata "
3219                                           "integrity, use force if you want this");
3220                                ret = -EINVAL;
3221                                goto out;
3222                        }
3223                }
3224        } while (read_seqretry(&fs_info->profiles_lock, seq));
3225
3226        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3227                int num_tolerated_disk_barrier_failures;
3228                u64 target = bctl->sys.target;
3229
3230                num_tolerated_disk_barrier_failures =
3231                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3232                if (num_tolerated_disk_barrier_failures > 0 &&
3233                    (target &
3234                     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3235                      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3236                        num_tolerated_disk_barrier_failures = 0;
3237                else if (num_tolerated_disk_barrier_failures > 1 &&
3238                         (target &
3239                          (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3240                        num_tolerated_disk_barrier_failures = 1;
3241
3242                fs_info->num_tolerated_disk_barrier_failures =
3243                        num_tolerated_disk_barrier_failures;
3244        }
3245
3246        ret = insert_balance_item(fs_info->tree_root, bctl);
3247        if (ret && ret != -EEXIST)
3248                goto out;
3249
3250        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3251                BUG_ON(ret == -EEXIST);
3252                set_balance_control(bctl);
3253        } else {
3254                BUG_ON(ret != -EEXIST);
3255                spin_lock(&fs_info->balance_lock);
3256                update_balance_args(bctl);
3257                spin_unlock(&fs_info->balance_lock);
3258        }
3259
3260        atomic_inc(&fs_info->balance_running);
3261        mutex_unlock(&fs_info->balance_mutex);
3262
3263        ret = __btrfs_balance(fs_info);
3264
3265        mutex_lock(&fs_info->balance_mutex);
3266        atomic_dec(&fs_info->balance_running);
3267
3268        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3269                fs_info->num_tolerated_disk_barrier_failures =
3270                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3271        }
3272
3273        if (bargs) {
3274                memset(bargs, 0, sizeof(*bargs));
3275                update_ioctl_balance_args(fs_info, 0, bargs);
3276        }
3277
3278        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3279            balance_need_close(fs_info)) {
3280                __cancel_balance(fs_info);
3281        }
3282
3283        wake_up(&fs_info->balance_wait_q);
3284
3285        return ret;
3286out:
3287        if (bctl->flags & BTRFS_BALANCE_RESUME)
3288                __cancel_balance(fs_info);
3289        else {
3290                kfree(bctl);
3291                atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3292        }
3293        return ret;
3294}
3295
3296static int balance_kthread(void *data)
3297{
3298        struct btrfs_fs_info *fs_info = data;
3299        int ret = 0;
3300
3301        mutex_lock(&fs_info->volume_mutex);
3302        mutex_lock(&fs_info->balance_mutex);
3303
3304        if (fs_info->balance_ctl) {
3305                btrfs_info(fs_info, "continuing balance");
3306                ret = btrfs_balance(fs_info->balance_ctl, NULL);
3307        }
3308
3309        mutex_unlock(&fs_info->balance_mutex);
3310        mutex_unlock(&fs_info->volume_mutex);
3311
3312        return ret;
3313}
3314
3315int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3316{
3317        struct task_struct *tsk;
3318
3319        spin_lock(&fs_info->balance_lock);
3320        if (!fs_info->balance_ctl) {
3321                spin_unlock(&fs_info->balance_lock);
3322                return 0;
3323        }
3324        spin_unlock(&fs_info->balance_lock);
3325
3326        if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3327                btrfs_info(fs_info, "force skipping balance");
3328                return 0;
3329        }
3330
3331        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3332        return PTR_ERR_OR_ZERO(tsk);
3333}
3334
3335int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3336{
3337        struct btrfs_balance_control *bctl;
3338        struct btrfs_balance_item *item;
3339        struct btrfs_disk_balance_args disk_bargs;
3340        struct btrfs_path *path;
3341        struct extent_buffer *leaf;
3342        struct btrfs_key key;
3343        int ret;
3344
3345        path = btrfs_alloc_path();
3346        if (!path)
3347                return -ENOMEM;
3348
3349        key.objectid = BTRFS_BALANCE_OBJECTID;
3350        key.type = BTRFS_BALANCE_ITEM_KEY;
3351        key.offset = 0;
3352
3353        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3354        if (ret < 0)
3355                goto out;
3356        if (ret > 0) { /* ret = -ENOENT; */
3357                ret = 0;
3358                goto out;
3359        }
3360
3361        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3362        if (!bctl) {
3363                ret = -ENOMEM;
3364                goto out;
3365        }
3366
3367        leaf = path->nodes[0];
3368        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3369
3370        bctl->fs_info = fs_info;
3371        bctl->flags = btrfs_balance_flags(leaf, item);
3372        bctl->flags |= BTRFS_BALANCE_RESUME;
3373
3374        btrfs_balance_data(leaf, item, &disk_bargs);
3375        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3376        btrfs_balance_meta(leaf, item, &disk_bargs);
3377        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3378        btrfs_balance_sys(leaf, item, &disk_bargs);
3379        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3380
3381        WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3382
3383        mutex_lock(&fs_info->volume_mutex);
3384        mutex_lock(&fs_info->balance_mutex);
3385
3386        set_balance_control(bctl);
3387
3388        mutex_unlock(&fs_info->balance_mutex);
3389        mutex_unlock(&fs_info->volume_mutex);
3390out:
3391        btrfs_free_path(path);
3392        return ret;
3393}
3394
3395int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3396{
3397        int ret = 0;
3398
3399        mutex_lock(&fs_info->balance_mutex);
3400        if (!fs_info->balance_ctl) {
3401                mutex_unlock(&fs_info->balance_mutex);
3402                return -ENOTCONN;
3403        }
3404
3405        if (atomic_read(&fs_info->balance_running)) {
3406                atomic_inc(&fs_info->balance_pause_req);
3407                mutex_unlock(&fs_info->balance_mutex);
3408
3409                wait_event(fs_info->balance_wait_q,
3410                           atomic_read(&fs_info->balance_running) == 0);
3411
3412                mutex_lock(&fs_info->balance_mutex);
3413                /* we are good with balance_ctl ripped off from under us */
3414                BUG_ON(atomic_read(&fs_info->balance_running));
3415                atomic_dec(&fs_info->balance_pause_req);
3416        } else {
3417                ret = -ENOTCONN;
3418        }
3419
3420        mutex_unlock(&fs_info->balance_mutex);
3421        return ret;
3422}
3423
3424int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3425{
3426        if (fs_info->sb->s_flags & MS_RDONLY)
3427                return -EROFS;
3428
3429        mutex_lock(&fs_info->balance_mutex);
3430        if (!fs_info->balance_ctl) {
3431                mutex_unlock(&fs_info->balance_mutex);
3432                return -ENOTCONN;
3433        }
3434
3435        atomic_inc(&fs_info->balance_cancel_req);
3436        /*
3437         * if we are running just wait and return, balance item is
3438         * deleted in btrfs_balance in this case
3439         */
3440        if (atomic_read(&fs_info->balance_running)) {
3441                mutex_unlock(&fs_info->balance_mutex);
3442                wait_event(fs_info->balance_wait_q,
3443                           atomic_read(&fs_info->balance_running) == 0);
3444                mutex_lock(&fs_info->balance_mutex);
3445        } else {
3446                /* __cancel_balance needs volume_mutex */
3447                mutex_unlock(&fs_info->balance_mutex);
3448                mutex_lock(&fs_info->volume_mutex);
3449                mutex_lock(&fs_info->balance_mutex);
3450
3451                if (fs_info->balance_ctl)
3452                        __cancel_balance(fs_info);
3453
3454                mutex_unlock(&fs_info->volume_mutex);
3455        }
3456
3457        BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3458        atomic_dec(&fs_info->balance_cancel_req);
3459        mutex_unlock(&fs_info->balance_mutex);
3460        return 0;
3461}
3462
3463static int btrfs_uuid_scan_kthread(void *data)
3464{
3465        struct btrfs_fs_info *fs_info = data;
3466        struct btrfs_root *root = fs_info->tree_root;
3467        struct btrfs_key key;
3468        struct btrfs_key max_key;
3469        struct btrfs_path *path = NULL;
3470        int ret = 0;
3471        struct extent_buffer *eb;
3472        int slot;
3473        struct btrfs_root_item root_item;
3474        u32 item_size;
3475        struct btrfs_trans_handle *trans = NULL;
3476
3477        path = btrfs_alloc_path();
3478        if (!path) {
3479                ret = -ENOMEM;
3480                goto out;
3481        }
3482
3483        key.objectid = 0;
3484        key.type = BTRFS_ROOT_ITEM_KEY;
3485        key.offset = 0;
3486
3487        max_key.objectid = (u64)-1;
3488        max_key.type = BTRFS_ROOT_ITEM_KEY;
3489        max_key.offset = (u64)-1;
3490
3491        path->keep_locks = 1;
3492
3493        while (1) {
3494                ret = btrfs_search_forward(root, &key, path, 0);
3495                if (ret) {
3496                        if (ret > 0)
3497                                ret = 0;
3498                        break;
3499                }
3500
3501                if (key.type != BTRFS_ROOT_ITEM_KEY ||
3502                    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3503                     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3504                    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3505                        goto skip;
3506
3507                eb = path->nodes[0];
3508                slot = path->slots[0];
3509                item_size = btrfs_item_size_nr(eb, slot);
3510                if (item_size < sizeof(root_item))
3511                        goto skip;
3512
3513                read_extent_buffer(eb, &root_item,
3514                                   btrfs_item_ptr_offset(eb, slot),
3515                                   (int)sizeof(root_item));
3516                if (btrfs_root_refs(&root_item) == 0)
3517                        goto skip;
3518
3519                if (!btrfs_is_empty_uuid(root_item.uuid) ||
3520                    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3521                        if (trans)
3522                                goto update_tree;
3523
3524                        btrfs_release_path(path);
3525                        /*
3526                         * 1 - subvol uuid item
3527                         * 1 - received_subvol uuid item
3528                         */
3529                        trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3530                        if (IS_ERR(trans)) {
3531                                ret = PTR_ERR(trans);
3532                                break;
3533                        }
3534                        continue;
3535                } else {
3536                        goto skip;
3537                }
3538update_tree:
3539                if (!btrfs_is_empty_uuid(root_item.uuid)) {
3540                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3541                                                  root_item.uuid,
3542                                                  BTRFS_UUID_KEY_SUBVOL,
3543                                                  key.objectid);
3544                        if (ret < 0) {
3545                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
3546                                        ret);
3547                                break;
3548                        }
3549                }
3550
3551                if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3552                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3553                                                  root_item.received_uuid,
3554                                                 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3555                                                  key.objectid);
3556                        if (ret < 0) {
3557                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
3558                                        ret);
3559                                break;
3560                        }
3561                }
3562
3563skip:
3564                if (trans) {
3565                        ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3566                        trans = NULL;
3567                        if (ret)
3568                                break;
3569                }
3570
3571                btrfs_release_path(path);
3572                if (key.offset < (u64)-1) {
3573                        key.offset++;
3574                } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3575                        key.offset = 0;
3576                        key.type = BTRFS_ROOT_ITEM_KEY;
3577                } else if (key.objectid < (u64)-1) {
3578                        key.offset = 0;
3579                        key.type = BTRFS_ROOT_ITEM_KEY;
3580                        key.objectid++;
3581                } else {
3582                        break;
3583                }
3584                cond_resched();
3585        }
3586
3587out:
3588        btrfs_free_path(path);
3589        if (trans && !IS_ERR(trans))
3590                btrfs_end_transaction(trans, fs_info->uuid_root);
3591        if (ret)
3592                btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3593        else
3594                fs_info->update_uuid_tree_gen = 1;
3595        up(&fs_info->uuid_tree_rescan_sem);
3596        return 0;
3597}
3598
3599/*
3600 * Callback for btrfs_uuid_tree_iterate().
3601 * returns:
3602 * 0    check succeeded, the entry is not outdated.
3603 * < 0  if an error occured.
3604 * > 0  if the check failed, which means the caller shall remove the entry.
3605 */
3606static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3607                                       u8 *uuid, u8 type, u64 subid)
3608{
3609        struct btrfs_key key;
3610        int ret = 0;
3611        struct btrfs_root *subvol_root;
3612
3613        if (type != BTRFS_UUID_KEY_SUBVOL &&
3614            type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3615                goto out;
3616
3617        key.objectid = subid;
3618        key.type = BTRFS_ROOT_ITEM_KEY;
3619        key.offset = (u64)-1;
3620        subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3621        if (IS_ERR(subvol_root)) {
3622                ret = PTR_ERR(subvol_root);
3623                if (ret == -ENOENT)
3624                        ret = 1;
3625                goto out;
3626        }
3627
3628        switch (type) {
3629        case BTRFS_UUID_KEY_SUBVOL:
3630                if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3631                        ret = 1;
3632                break;
3633        case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3634                if (memcmp(uuid, subvol_root->root_item.received_uuid,
3635                           BTRFS_UUID_SIZE))
3636                        ret = 1;
3637                break;
3638        }
3639
3640out:
3641        return ret;
3642}
3643
3644static int btrfs_uuid_rescan_kthread(void *data)
3645{
3646        struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3647        int ret;
3648
3649        /*
3650         * 1st step is to iterate through the existing UUID tree and
3651         * to delete all entries that contain outdated data.
3652         * 2nd step is to add all missing entries to the UUID tree.
3653         */
3654        ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3655        if (ret < 0) {
3656                btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3657                up(&fs_info->uuid_tree_rescan_sem);
3658                return ret;
3659        }
3660        return btrfs_uuid_scan_kthread(data);
3661}
3662
3663int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3664{
3665        struct btrfs_trans_handle *trans;
3666        struct btrfs_root *tree_root = fs_info->tree_root;
3667        struct btrfs_root *uuid_root;
3668        struct task_struct *task;
3669        int ret;
3670
3671        /*
3672         * 1 - root node
3673         * 1 - root item
3674         */
3675        trans = btrfs_start_transaction(tree_root, 2);
3676        if (IS_ERR(trans))
3677                return PTR_ERR(trans);
3678
3679        uuid_root = btrfs_create_tree(trans, fs_info,
3680                                      BTRFS_UUID_TREE_OBJECTID);
3681        if (IS_ERR(uuid_root)) {
3682                btrfs_abort_transaction(trans, tree_root,
3683                                        PTR_ERR(uuid_root));
3684                return PTR_ERR(uuid_root);
3685        }
3686
3687        fs_info->uuid_root = uuid_root;
3688
3689        ret = btrfs_commit_transaction(trans, tree_root);
3690        if (ret)
3691                return ret;
3692
3693        down(&fs_info->uuid_tree_rescan_sem);
3694        task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3695        if (IS_ERR(task)) {
3696                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3697                btrfs_warn(fs_info, "failed to start uuid_scan task");
3698                up(&fs_info->uuid_tree_rescan_sem);
3699                return PTR_ERR(task);
3700        }
3701
3702        return 0;
3703}
3704
3705int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3706{
3707        struct task_struct *task;
3708
3709        down(&fs_info->uuid_tree_rescan_sem);
3710        task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3711        if (IS_ERR(task)) {
3712                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3713                btrfs_warn(fs_info, "failed to start uuid_rescan task");
3714                up(&fs_info->uuid_tree_rescan_sem);
3715                return PTR_ERR(task);
3716        }
3717
3718        return 0;
3719}
3720
3721/*
3722 * shrinking a device means finding all of the device extents past
3723 * the new size, and then following the back refs to the chunks.
3724 * The chunk relocation code actually frees the device extent
3725 */
3726int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3727{
3728        struct btrfs_trans_handle *trans;
3729        struct btrfs_root *root = device->dev_root;
3730        struct btrfs_dev_extent *dev_extent = NULL;
3731        struct btrfs_path *path;
3732        u64 length;
3733        u64 chunk_tree;
3734        u64 chunk_objectid;
3735        u64 chunk_offset;
3736        int ret;
3737        int slot;
3738        int failed = 0;
3739        bool retried = false;
3740        struct extent_buffer *l;
3741        struct btrfs_key key;
3742        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3743        u64 old_total = btrfs_super_total_bytes(super_copy);
3744        u64 old_size = device->total_bytes;
3745        u64 diff = device->total_bytes - new_size;
3746
3747        if (device->is_tgtdev_for_dev_replace)
3748                return -EINVAL;
3749
3750        path = btrfs_alloc_path();
3751        if (!path)
3752                return -ENOMEM;
3753
3754        path->reada = 2;
3755
3756        lock_chunks(root);
3757
3758        device->total_bytes = new_size;
3759        if (device->writeable) {
3760                device->fs_devices->total_rw_bytes -= diff;
3761                spin_lock(&root->fs_info->free_chunk_lock);
3762                root->fs_info->free_chunk_space -= diff;
3763                spin_unlock(&root->fs_info->free_chunk_lock);
3764        }
3765        unlock_chunks(root);
3766
3767again:
3768        key.objectid = device->devid;
3769        key.offset = (u64)-1;
3770        key.type = BTRFS_DEV_EXTENT_KEY;
3771
3772        do {
3773                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3774                if (ret < 0)
3775                        goto done;
3776
3777                ret = btrfs_previous_item(root, path, 0, key.type);
3778                if (ret < 0)
3779                        goto done;
3780                if (ret) {
3781                        ret = 0;
3782                        btrfs_release_path(path);
3783                        break;
3784                }
3785
3786                l = path->nodes[0];
3787                slot = path->slots[0];
3788                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3789
3790                if (key.objectid != device->devid) {
3791                        btrfs_release_path(path);
3792                        break;
3793                }
3794
3795                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3796                length = btrfs_dev_extent_length(l, dev_extent);
3797
3798                if (key.offset + length <= new_size) {
3799                        btrfs_release_path(path);
3800                        break;
3801                }
3802
3803                chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3804                chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3805                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3806                btrfs_release_path(path);
3807
3808                ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3809                                           chunk_offset);
3810                if (ret && ret != -ENOSPC)
3811                        goto done;
3812                if (ret == -ENOSPC)
3813                        failed++;
3814        } while (key.offset-- > 0);
3815
3816        if (failed && !retried) {
3817                failed = 0;
3818                retried = true;
3819                goto again;
3820        } else if (failed && retried) {
3821                ret = -ENOSPC;
3822                lock_chunks(root);
3823
3824                device->total_bytes = old_size;
3825                if (device->writeable)
3826                        device->fs_devices->total_rw_bytes += diff;
3827                spin_lock(&root->fs_info->free_chunk_lock);
3828                root->fs_info->free_chunk_space += diff;
3829                spin_unlock(&root->fs_info->free_chunk_lock);
3830                unlock_chunks(root);
3831                goto done;
3832        }
3833
3834        /* Shrinking succeeded, else we would be at "done". */
3835        trans = btrfs_start_transaction(root, 0);
3836        if (IS_ERR(trans)) {
3837                ret = PTR_ERR(trans);
3838                goto done;
3839        }
3840
3841        lock_chunks(root);
3842
3843        device->disk_total_bytes = new_size;
3844        /* Now btrfs_update_device() will change the on-disk size. */
3845        ret = btrfs_update_device(trans, device);
3846        if (ret) {
3847                unlock_chunks(root);
3848                btrfs_end_transaction(trans, root);
3849                goto done;
3850        }
3851        WARN_ON(diff > old_total);
3852        btrfs_set_super_total_bytes(super_copy, old_total - diff);
3853        unlock_chunks(root);
3854        btrfs_end_transaction(trans, root);
3855done:
3856        btrfs_free_path(path);
3857        return ret;
3858}
3859
3860static int btrfs_add_system_chunk(struct btrfs_root *root,
3861                           struct btrfs_key *key,
3862                           struct btrfs_chunk *chunk, int item_size)
3863{
3864        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3865        struct btrfs_disk_key disk_key;
3866        u32 array_size;
3867        u8 *ptr;
3868
3869        array_size = btrfs_super_sys_array_size(super_copy);
3870        if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3871                return -EFBIG;
3872
3873        ptr = super_copy->sys_chunk_array + array_size;
3874        btrfs_cpu_key_to_disk(&disk_key, key);
3875        memcpy(ptr, &disk_key, sizeof(disk_key));
3876        ptr += sizeof(disk_key);
3877        memcpy(ptr, chunk, item_size);
3878        item_size += sizeof(disk_key);
3879        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3880        return 0;
3881}
3882
3883/*
3884 * sort the devices in descending order by max_avail, total_avail
3885 */
3886static int btrfs_cmp_device_info(const void *a, const void *b)
3887{
3888        const struct btrfs_device_info *di_a = a;
3889        const struct btrfs_device_info *di_b = b;
3890
3891        if (di_a->max_avail > di_b->max_avail)
3892                return -1;
3893        if (di_a->max_avail < di_b->max_avail)
3894                return 1;
3895        if (di_a->total_avail > di_b->total_avail)
3896                return -1;
3897        if (di_a->total_avail < di_b->total_avail)
3898                return 1;
3899        return 0;
3900}
3901
3902static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3903        [BTRFS_RAID_RAID10] = {
3904                .sub_stripes    = 2,
3905                .dev_stripes    = 1,
3906                .devs_max       = 0,    /* 0 == as many as possible */
3907                .devs_min       = 4,
3908                .devs_increment = 2,
3909                .ncopies        = 2,
3910        },
3911        [BTRFS_RAID_RAID1] = {
3912                .sub_stripes    = 1,
3913                .dev_stripes    = 1,
3914                .devs_max       = 2,
3915                .devs_min       = 2,
3916                .devs_increment = 2,
3917                .ncopies        = 2,
3918        },
3919        [BTRFS_RAID_DUP] = {
3920                .sub_stripes    = 1,
3921                .dev_stripes    = 2,
3922                .devs_max       = 1,
3923                .devs_min       = 1,
3924                .devs_increment = 1,
3925                .ncopies        = 2,
3926        },
3927        [BTRFS_RAID_RAID0] = {
3928                .sub_stripes    = 1,
3929                .dev_stripes    = 1,
3930                .devs_max       = 0,
3931                .devs_min       = 2,
3932                .devs_increment = 1,
3933                .ncopies        = 1,
3934        },
3935        [BTRFS_RAID_SINGLE] = {
3936                .sub_stripes    = 1,
3937                .dev_stripes    = 1,
3938                .devs_max       = 1,
3939                .devs_min       = 1,
3940                .devs_increment = 1,
3941                .ncopies        = 1,
3942        },
3943        [BTRFS_RAID_RAID5] = {
3944                .sub_stripes    = 1,
3945                .dev_stripes    = 1,
3946                .devs_max       = 0,
3947                .devs_min       = 2,
3948                .devs_increment = 1,
3949                .ncopies        = 2,
3950        },
3951        [BTRFS_RAID_RAID6] = {
3952                .sub_stripes    = 1,
3953                .dev_stripes    = 1,
3954                .devs_max       = 0,
3955                .devs_min       = 3,
3956                .devs_increment = 1,
3957                .ncopies        = 3,
3958        },
3959};
3960
3961static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3962{
3963        /* TODO allow them to set a preferred stripe size */
3964        return 64 * 1024;
3965}
3966
3967static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3968{
3969        if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3970                return;
3971
3972        btrfs_set_fs_incompat(info, RAID56);
3973}
3974
3975static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3976                               struct btrfs_root *extent_root, u64 start,
3977                               u64 type)
3978{
3979        struct btrfs_fs_info *info = extent_root->fs_info;
3980        struct btrfs_fs_devices *fs_devices = info->fs_devices;
3981        struct list_head *cur;
3982        struct map_lookup *map = NULL;
3983        struct extent_map_tree *em_tree;
3984        struct extent_map *em;
3985        struct btrfs_device_info *devices_info = NULL;
3986        u64 total_avail;
3987        int num_stripes;        /* total number of stripes to allocate */
3988        int data_stripes;       /* number of stripes that count for
3989                                   block group size */
3990        int sub_stripes;        /* sub_stripes info for map */
3991        int dev_stripes;        /* stripes per dev */
3992        int devs_max;           /* max devs to use */
3993        int devs_min;           /* min devs needed */
3994        int devs_increment;     /* ndevs has to be a multiple of this */
3995        int ncopies;            /* how many copies to data has */
3996        int ret;
3997        u64 max_stripe_size;
3998        u64 max_chunk_size;
3999        u64 stripe_size;
4000        u64 num_bytes;
4001        u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4002        int ndevs;
4003        int i;
4004        int j;
4005        int index;
4006
4007        BUG_ON(!alloc_profile_is_valid(type, 0));
4008
4009        if (list_empty(&fs_devices->alloc_list))
4010                return -ENOSPC;
4011
4012        index = __get_raid_index(type);
4013
4014        sub_stripes = btrfs_raid_array[index].sub_stripes;
4015        dev_stripes = btrfs_raid_array[index].dev_stripes;
4016        devs_max = btrfs_raid_array[index].devs_max;
4017        devs_min = btrfs_raid_array[index].devs_min;
4018        devs_increment = btrfs_raid_array[index].devs_increment;
4019        ncopies = btrfs_raid_array[index].ncopies;
4020
4021        if (type & BTRFS_BLOCK_GROUP_DATA) {
4022                max_stripe_size = 1024 * 1024 * 1024;
4023                max_chunk_size = 10 * max_stripe_size;
4024        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4025                /* for larger filesystems, use larger metadata chunks */
4026                if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4027                        max_stripe_size = 1024 * 1024 * 1024;
4028                else
4029                        max_stripe_size = 256 * 1024 * 1024;
4030                max_chunk_size = max_stripe_size;
4031        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4032                max_stripe_size = 32 * 1024 * 1024;
4033                max_chunk_size = 2 * max_stripe_size;
4034        } else {
4035                btrfs_err(info, "invalid chunk type 0x%llx requested\n",
4036                       type);
4037                BUG_ON(1);
4038        }
4039
4040        /* we don't want a chunk larger than 10% of writeable space */
4041        max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4042                             max_chunk_size);
4043
4044        devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4045                               GFP_NOFS);
4046        if (!devices_info)
4047                return -ENOMEM;
4048
4049        cur = fs_devices->alloc_list.next;
4050
4051        /*
4052         * in the first pass through the devices list, we gather information
4053         * about the available holes on each device.
4054         */
4055        ndevs = 0;
4056        while (cur != &fs_devices->alloc_list) {
4057                struct btrfs_device *device;
4058                u64 max_avail;
4059                u64 dev_offset;
4060
4061                device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4062
4063                cur = cur->next;
4064
4065                if (!device->writeable) {
4066                        WARN(1, KERN_ERR
4067                               "BTRFS: read-only device in alloc_list\n");
4068                        continue;
4069                }
4070
4071                if (!device->in_fs_metadata ||
4072                    device->is_tgtdev_for_dev_replace)
4073                        continue;
4074
4075                if (device->total_bytes > device->bytes_used)
4076                        total_avail = device->total_bytes - device->bytes_used;
4077                else
4078                        total_avail = 0;
4079
4080                /* If there is no space on this device, skip it. */
4081                if (total_avail == 0)
4082                        continue;
4083
4084                ret = find_free_dev_extent(trans, device,
4085                                           max_stripe_size * dev_stripes,
4086                                           &dev_offset, &max_avail);
4087                if (ret && ret != -ENOSPC)
4088                        goto error;
4089
4090                if (ret == 0)
4091                        max_avail = max_stripe_size * dev_stripes;
4092
4093                if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4094                        continue;
4095
4096                if (ndevs == fs_devices->rw_devices) {
4097                        WARN(1, "%s: found more than %llu devices\n",
4098                             __func__, fs_devices->rw_devices);
4099                        break;
4100                }
4101                devices_info[ndevs].dev_offset = dev_offset;
4102                devices_info[ndevs].max_avail = max_avail;
4103                devices_info[ndevs].total_avail = total_avail;
4104                devices_info[ndevs].dev = device;
4105                ++ndevs;
4106        }
4107
4108        /*
4109         * now sort the devices by hole size / available space
4110         */
4111        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4112             btrfs_cmp_device_info, NULL);
4113
4114        /* round down to number of usable stripes */
4115        ndevs -= ndevs % devs_increment;
4116
4117        if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4118                ret = -ENOSPC;
4119                goto error;
4120        }
4121
4122        if (devs_max && ndevs > devs_max)
4123                ndevs = devs_max;
4124        /*
4125         * the primary goal is to maximize the number of stripes, so use as many
4126         * devices as possible, even if the stripes are not maximum sized.
4127         */
4128        stripe_size = devices_info[ndevs-1].max_avail;
4129        num_stripes = ndevs * dev_stripes;
4130
4131        /*
4132         * this will have to be fixed for RAID1 and RAID10 over
4133         * more drives
4134         */
4135        data_stripes = num_stripes / ncopies;
4136
4137        if (type & BTRFS_BLOCK_GROUP_RAID5) {
4138                raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4139                                 btrfs_super_stripesize(info->super_copy));
4140                data_stripes = num_stripes - 1;
4141        }
4142        if (type & BTRFS_BLOCK_GROUP_RAID6) {
4143                raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4144                                 btrfs_super_stripesize(info->super_copy));
4145                data_stripes = num_stripes - 2;
4146        }
4147
4148        /*
4149         * Use the number of data stripes to figure out how big this chunk
4150         * is really going to be in terms of logical address space,
4151         * and compare that answer with the max chunk size
4152         */
4153        if (stripe_size * data_stripes > max_chunk_size) {
4154                u64 mask = (1ULL << 24) - 1;
4155                stripe_size = max_chunk_size;
4156                do_div(stripe_size, data_stripes);
4157
4158                /* bump the answer up to a 16MB boundary */
4159                stripe_size = (stripe_size + mask) & ~mask;
4160
4161                /* but don't go higher than the limits we found
4162                 * while searching for free extents
4163                 */
4164                if (stripe_size > devices_info[ndevs-1].max_avail)
4165                        stripe_size = devices_info[ndevs-1].max_avail;
4166        }
4167
4168        do_div(stripe_size, dev_stripes);
4169
4170        /* align to BTRFS_STRIPE_LEN */
4171        do_div(stripe_size, raid_stripe_len);
4172        stripe_size *= raid_stripe_len;
4173
4174        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4175        if (!map) {
4176                ret = -ENOMEM;
4177                goto error;
4178        }
4179        map->num_stripes = num_stripes;
4180
4181        for (i = 0; i < ndevs; ++i) {
4182                for (j = 0; j < dev_stripes; ++j) {
4183                        int s = i * dev_stripes + j;
4184                        map->stripes[s].dev = devices_info[i].dev;
4185                        map->stripes[s].physical = devices_info[i].dev_offset +
4186                                                   j * stripe_size;
4187                }
4188        }
4189        map->sector_size = extent_root->sectorsize;
4190        map->stripe_len = raid_stripe_len;
4191        map->io_align = raid_stripe_len;
4192        map->io_width = raid_stripe_len;
4193        map->type = type;
4194        map->sub_stripes = sub_stripes;
4195
4196        num_bytes = stripe_size * data_stripes;
4197
4198        trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4199
4200        em = alloc_extent_map();
4201        if (!em) {
4202                ret = -ENOMEM;
4203                goto error;
4204        }
4205        em->bdev = (struct block_device *)map;
4206        em->start = start;
4207        em->len = num_bytes;
4208        em->block_start = 0;
4209        em->block_len = em->len;
4210        em->orig_block_len = stripe_size;
4211
4212        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4213        write_lock(&em_tree->lock);
4214        ret = add_extent_mapping(em_tree, em, 0);
4215        if (!ret) {
4216                list_add_tail(&em->list, &trans->transaction->pending_chunks);
4217                atomic_inc(&em->refs);
4218        }
4219        write_unlock(&em_tree->lock);
4220        if (ret) {
4221                free_extent_map(em);
4222                goto error;
4223        }
4224
4225        ret = btrfs_make_block_group(trans, extent_root, 0, type,
4226                                     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4227                                     start, num_bytes);
4228        if (ret)
4229                goto error_del_extent;
4230
4231        free_extent_map(em);
4232        check_raid56_incompat_flag(extent_root->fs_info, type);
4233
4234        kfree(devices_info);
4235        return 0;
4236
4237error_del_extent:
4238        write_lock(&em_tree->lock);
4239        remove_extent_mapping(em_tree, em);
4240        write_unlock(&em_tree->lock);
4241
4242        /* One for our allocation */
4243        free_extent_map(em);
4244        /* One for the tree reference */
4245        free_extent_map(em);
4246error:
4247        kfree(map);
4248        kfree(devices_info);
4249        return ret;
4250}
4251
4252int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4253                                struct btrfs_root *extent_root,
4254                                u64 chunk_offset, u64 chunk_size)
4255{
4256        struct btrfs_key key;
4257        struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4258        struct btrfs_device *device;
4259        struct btrfs_chunk *chunk;
4260        struct btrfs_stripe *stripe;
4261        struct extent_map_tree *em_tree;
4262        struct extent_map *em;
4263        struct map_lookup *map;
4264        size_t item_size;
4265        u64 dev_offset;
4266        u64 stripe_size;
4267        int i = 0;
4268        int ret;
4269
4270        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4271        read_lock(&em_tree->lock);
4272        em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4273        read_unlock(&em_tree->lock);
4274
4275        if (!em) {
4276                btrfs_crit(extent_root->fs_info, "unable to find logical "
4277                           "%Lu len %Lu", chunk_offset, chunk_size);
4278                return -EINVAL;
4279        }
4280
4281        if (em->start != chunk_offset || em->len != chunk_size) {
4282                btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4283                          " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4284                          chunk_size, em->start, em->len);
4285                free_extent_map(em);
4286                return -EINVAL;
4287        }
4288
4289        map = (struct map_lookup *)em->bdev;
4290        item_size = btrfs_chunk_item_size(map->num_stripes);
4291        stripe_size = em->orig_block_len;
4292
4293        chunk = kzalloc(item_size, GFP_NOFS);
4294        if (!chunk) {
4295                ret = -ENOMEM;
4296                goto out;
4297        }
4298
4299        for (i = 0; i < map->num_stripes; i++) {
4300                device = map->stripes[i].dev;
4301                dev_offset = map->stripes[i].physical;
4302
4303                device->bytes_used += stripe_size;
4304                ret = btrfs_update_device(trans, device);
4305                if (ret)
4306                        goto out;
4307                ret = btrfs_alloc_dev_extent(trans, device,
4308                                             chunk_root->root_key.objectid,
4309                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4310                                             chunk_offset, dev_offset,
4311                                             stripe_size);
4312                if (ret)
4313                        goto out;
4314        }
4315
4316        spin_lock(&extent_root->fs_info->free_chunk_lock);
4317        extent_root->fs_info->free_chunk_space -= (stripe_size *
4318                                                   map->num_stripes);
4319        spin_unlock(&extent_root->fs_info->free_chunk_lock);
4320
4321        stripe = &chunk->stripe;
4322        for (i = 0; i < map->num_stripes; i++) {
4323                device = map->stripes[i].dev;
4324                dev_offset = map->stripes[i].physical;
4325
4326                btrfs_set_stack_stripe_devid(stripe, device->devid);
4327                btrfs_set_stack_stripe_offset(stripe, dev_offset);
4328                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4329                stripe++;
4330        }
4331
4332        btrfs_set_stack_chunk_length(chunk, chunk_size);
4333        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4334        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4335        btrfs_set_stack_chunk_type(chunk, map->type);
4336        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4337        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4338        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4339        btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4340        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4341
4342        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4343        key.type = BTRFS_CHUNK_ITEM_KEY;
4344        key.offset = chunk_offset;
4345
4346        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4347        if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4348                /*
4349                 * TODO: Cleanup of inserted chunk root in case of
4350                 * failure.
4351                 */
4352                ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4353                                             item_size);
4354        }
4355
4356out:
4357        kfree(chunk);
4358        free_extent_map(em);
4359        return ret;
4360}
4361
4362/*
4363 * Chunk allocation falls into two parts. The first part does works
4364 * that make the new allocated chunk useable, but not do any operation
4365 * that modifies the chunk tree. The second part does the works that
4366 * require modifying the chunk tree. This division is important for the
4367 * bootstrap process of adding storage to a seed btrfs.
4368 */
4369int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4370                      struct btrfs_root *extent_root, u64 type)
4371{
4372        u64 chunk_offset;
4373
4374        chunk_offset = find_next_chunk(extent_root->fs_info);
4375        return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4376}
4377
4378static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4379                                         struct btrfs_root *root,
4380                                         struct btrfs_device *device)
4381{
4382        u64 chunk_offset;
4383        u64 sys_chunk_offset;
4384        u64 alloc_profile;
4385        struct btrfs_fs_info *fs_info = root->fs_info;
4386        struct btrfs_root *extent_root = fs_info->extent_root;
4387        int ret;
4388
4389        chunk_offset = find_next_chunk(fs_info);
4390        alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4391        ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4392                                  alloc_profile);
4393        if (ret)
4394                return ret;
4395
4396        sys_chunk_offset = find_next_chunk(root->fs_info);
4397        alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4398        ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4399                                  alloc_profile);
4400        if (ret) {
4401                btrfs_abort_transaction(trans, root, ret);
4402                goto out;
4403        }
4404
4405        ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4406        if (ret)
4407                btrfs_abort_transaction(trans, root, ret);
4408out:
4409        return ret;
4410}
4411
4412int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4413{
4414        struct extent_map *em;
4415        struct map_lookup *map;
4416        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4417        int readonly = 0;
4418        int i;
4419
4420        read_lock(&map_tree->map_tree.lock);
4421        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4422        read_unlock(&map_tree->map_tree.lock);
4423        if (!em)
4424                return 1;
4425
4426        if (btrfs_test_opt(root, DEGRADED)) {
4427                free_extent_map(em);
4428                return 0;
4429        }
4430
4431        map = (struct map_lookup *)em->bdev;
4432        for (i = 0; i < map->num_stripes; i++) {
4433                if (!map->stripes[i].dev->writeable) {
4434                        readonly = 1;
4435                        break;
4436                }
4437        }
4438        free_extent_map(em);
4439        return readonly;
4440}
4441
4442void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4443{
4444        extent_map_tree_init(&tree->map_tree);
4445}
4446
4447void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4448{
4449        struct extent_map *em;
4450
4451        while (1) {
4452                write_lock(&tree->map_tree.lock);
4453                em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4454                if (em)
4455                        remove_extent_mapping(&tree->map_tree, em);
4456                write_unlock(&tree->map_tree.lock);
4457                if (!em)
4458                        break;
4459                kfree(em->bdev);
4460                /* once for us */
4461                free_extent_map(em);
4462                /* once for the tree */
4463                free_extent_map(em);
4464        }
4465}
4466
4467int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4468{
4469        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4470        struct extent_map *em;
4471        struct map_lookup *map;
4472        struct extent_map_tree *em_tree = &map_tree->map_tree;
4473        int ret;
4474
4475        read_lock(&em_tree->lock);
4476        em = lookup_extent_mapping(em_tree, logical, len);
4477        read_unlock(&em_tree->lock);
4478
4479        /*
4480         * We could return errors for these cases, but that could get ugly and
4481         * we'd probably do the same thing which is just not do anything else
4482         * and exit, so return 1 so the callers don't try to use other copies.
4483         */
4484        if (!em) {
4485                btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
4486                            logical+len);
4487                return 1;
4488        }
4489
4490        if (em->start > logical || em->start + em->len < logical) {
4491                btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4492                            "%Lu-%Lu\n", logical, logical+len, em->start,
4493                            em->start + em->len);
4494                free_extent_map(em);
4495                return 1;
4496        }
4497
4498        map = (struct map_lookup *)em->bdev;
4499        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4500                ret = map->num_stripes;
4501        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4502                ret = map->sub_stripes;
4503        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4504                ret = 2;
4505        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4506                ret = 3;
4507        else
4508                ret = 1;
4509        free_extent_map(em);
4510
4511        btrfs_dev_replace_lock(&fs_info->dev_replace);
4512        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4513                ret++;
4514        btrfs_dev_replace_unlock(&fs_info->dev_replace);
4515
4516        return ret;
4517}
4518
4519unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4520                                    struct btrfs_mapping_tree *map_tree,
4521                                    u64 logical)
4522{
4523        struct extent_map *em;
4524        struct map_lookup *map;
4525        struct extent_map_tree *em_tree = &map_tree->map_tree;
4526        unsigned long len = root->sectorsize;
4527
4528        read_lock(&em_tree->lock);
4529        em = lookup_extent_mapping(em_tree, logical, len);
4530        read_unlock(&em_tree->lock);
4531        BUG_ON(!em);
4532
4533        BUG_ON(em->start > logical || em->start + em->len < logical);
4534        map = (struct map_lookup *)em->bdev;
4535        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4536                         BTRFS_BLOCK_GROUP_RAID6)) {
4537                len = map->stripe_len * nr_data_stripes(map);
4538        }
4539        free_extent_map(em);
4540        return len;
4541}
4542
4543int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4544                           u64 logical, u64 len, int mirror_num)
4545{
4546        struct extent_map *em;
4547        struct map_lookup *map;
4548        struct extent_map_tree *em_tree = &map_tree->map_tree;
4549        int ret = 0;
4550
4551        read_lock(&em_tree->lock);
4552        em = lookup_extent_mapping(em_tree, logical, len);
4553        read_unlock(&em_tree->lock);
4554        BUG_ON(!em);
4555
4556        BUG_ON(em->start > logical || em->start + em->len < logical);
4557        map = (struct map_lookup *)em->bdev;
4558        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4559                         BTRFS_BLOCK_GROUP_RAID6))
4560                ret = 1;
4561        free_extent_map(em);
4562        return ret;
4563}
4564
4565static int find_live_mirror(struct btrfs_fs_info *fs_info,
4566                            struct map_lookup *map, int first, int num,
4567                            int optimal, int dev_replace_is_ongoing)
4568{
4569        int i;
4570        int tolerance;
4571        struct btrfs_device *srcdev;
4572
4573        if (dev_replace_is_ongoing &&
4574            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4575             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4576                srcdev = fs_info->dev_replace.srcdev;
4577        else
4578                srcdev = NULL;
4579
4580        /*
4581         * try to avoid the drive that is the source drive for a
4582         * dev-replace procedure, only choose it if no other non-missing
4583         * mirror is available
4584         */
4585        for (tolerance = 0; tolerance < 2; tolerance++) {
4586                if (map->stripes[optimal].dev->bdev &&
4587                    (tolerance || map->stripes[optimal].dev != srcdev))
4588                        return optimal;
4589                for (i = first; i < first + num; i++) {
4590                        if (map->stripes[i].dev->bdev &&
4591                            (tolerance || map->stripes[i].dev != srcdev))
4592                                return i;
4593                }
4594        }
4595
4596        /* we couldn't find one that doesn't fail.  Just return something
4597         * and the io error handling code will clean up eventually
4598         */
4599        return optimal;
4600}
4601
4602static inline int parity_smaller(u64 a, u64 b)
4603{
4604        return a > b;
4605}
4606
4607/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4608static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4609{
4610        struct btrfs_bio_stripe s;
4611        int i;
4612        u64 l;
4613        int again = 1;
4614
4615        while (again) {
4616                again = 0;
4617                for (i = 0; i < bbio->num_stripes - 1; i++) {
4618                        if (parity_smaller(raid_map[i], raid_map[i+1])) {
4619                                s = bbio->stripes[i];
4620                                l = raid_map[i];
4621                                bbio->stripes[i] = bbio->stripes[i+1];
4622                                raid_map[i] = raid_map[i+1];
4623                                bbio->stripes[i+1] = s;
4624                                raid_map[i+1] = l;
4625                                again = 1;
4626                        }
4627                }
4628        }
4629}
4630
4631static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4632                             u64 logical, u64 *length,
4633                             struct btrfs_bio **bbio_ret,
4634                             int mirror_num, u64 **raid_map_ret)
4635{
4636        struct extent_map *em;
4637        struct map_lookup *map;
4638        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4639        struct extent_map_tree *em_tree = &map_tree->map_tree;
4640        u64 offset;
4641        u64 stripe_offset;
4642        u64 stripe_end_offset;
4643        u64 stripe_nr;
4644        u64 stripe_nr_orig;
4645        u64 stripe_nr_end;
4646        u64 stripe_len;
4647        u64 *raid_map = NULL;
4648        int stripe_index;
4649        int i;
4650        int ret = 0;
4651        int num_stripes;
4652        int max_errors = 0;
4653        struct btrfs_bio *bbio = NULL;
4654        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4655        int dev_replace_is_ongoing = 0;
4656        int num_alloc_stripes;
4657        int patch_the_first_stripe_for_dev_replace = 0;
4658        u64 physical_to_patch_in_first_stripe = 0;
4659        u64 raid56_full_stripe_start = (u64)-1;
4660
4661        read_lock(&em_tree->lock);
4662        em = lookup_extent_mapping(em_tree, logical, *length);
4663        read_unlock(&em_tree->lock);
4664
4665        if (!em) {
4666                btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4667                        logical, *length);
4668                return -EINVAL;
4669        }
4670
4671        if (em->start > logical || em->start + em->len < logical) {
4672                btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4673                           "found %Lu-%Lu\n", logical, em->start,
4674                           em->start + em->len);
4675                free_extent_map(em);
4676                return -EINVAL;
4677        }
4678
4679        map = (struct map_lookup *)em->bdev;
4680        offset = logical - em->start;
4681
4682        stripe_len = map->stripe_len;
4683        stripe_nr = offset;
4684        /*
4685         * stripe_nr counts the total number of stripes we have to stride
4686         * to get to this block
4687         */
4688        do_div(stripe_nr, stripe_len);
4689
4690        stripe_offset = stripe_nr * stripe_len;
4691        BUG_ON(offset < stripe_offset);
4692
4693        /* stripe_offset is the offset of this block in its stripe*/
4694        stripe_offset = offset - stripe_offset;
4695
4696        /* if we're here for raid56, we need to know the stripe aligned start */
4697        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4698                unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4699                raid56_full_stripe_start = offset;
4700
4701                /* allow a write of a full stripe, but make sure we don't
4702                 * allow straddling of stripes
4703                 */
4704                do_div(raid56_full_stripe_start, full_stripe_len);
4705                raid56_full_stripe_start *= full_stripe_len;
4706        }
4707
4708        if (rw & REQ_DISCARD) {
4709                /* we don't discard raid56 yet */
4710                if (map->type &
4711                    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4712                        ret = -EOPNOTSUPP;
4713                        goto out;
4714                }
4715                *length = min_t(u64, em->len - offset, *length);
4716        } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4717                u64 max_len;
4718                /* For writes to RAID[56], allow a full stripeset across all disks.
4719                   For other RAID types and for RAID[56] reads, just allow a single
4720                   stripe (on a single disk). */
4721                if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4722                    (rw & REQ_WRITE)) {
4723                        max_len = stripe_len * nr_data_stripes(map) -
4724                                (offset - raid56_full_stripe_start);
4725                } else {
4726                        /* we limit the length of each bio to what fits in a stripe */
4727                        max_len = stripe_len - stripe_offset;
4728                }
4729                *length = min_t(u64, em->len - offset, max_len);
4730        } else {
4731                *length = em->len - offset;
4732        }
4733
4734        /* This is for when we're called from btrfs_merge_bio_hook() and all
4735           it cares about is the length */
4736        if (!bbio_ret)
4737                goto out;
4738
4739        btrfs_dev_replace_lock(dev_replace);
4740        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4741        if (!dev_replace_is_ongoing)
4742                btrfs_dev_replace_unlock(dev_replace);
4743
4744        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4745            !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4746            dev_replace->tgtdev != NULL) {
4747                /*
4748                 * in dev-replace case, for repair case (that's the only
4749                 * case where the mirror is selected explicitly when
4750                 * calling btrfs_map_block), blocks left of the left cursor
4751                 * can also be read from the target drive.
4752                 * For REQ_GET_READ_MIRRORS, the target drive is added as
4753                 * the last one to the array of stripes. For READ, it also
4754                 * needs to be supported using the same mirror number.
4755                 * If the requested block is not left of the left cursor,
4756                 * EIO is returned. This can happen because btrfs_num_copies()
4757                 * returns one more in the dev-replace case.
4758                 */
4759                u64 tmp_length = *length;
4760                struct btrfs_bio *tmp_bbio = NULL;
4761                int tmp_num_stripes;
4762                u64 srcdev_devid = dev_replace->srcdev->devid;
4763                int index_srcdev = 0;
4764                int found = 0;
4765                u64 physical_of_found = 0;
4766
4767                ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4768                             logical, &tmp_length, &tmp_bbio, 0, NULL);
4769                if (ret) {
4770                        WARN_ON(tmp_bbio != NULL);
4771                        goto out;
4772                }
4773
4774                tmp_num_stripes = tmp_bbio->num_stripes;
4775                if (mirror_num > tmp_num_stripes) {
4776                        /*
4777                         * REQ_GET_READ_MIRRORS does not contain this
4778                         * mirror, that means that the requested area
4779                         * is not left of the left cursor
4780                         */
4781                        ret = -EIO;
4782                        kfree(tmp_bbio);
4783                        goto out;
4784                }
4785
4786                /*
4787                 * process the rest of the function using the mirror_num
4788                 * of the source drive. Therefore look it up first.
4789                 * At the end, patch the device pointer to the one of the
4790                 * target drive.
4791                 */
4792                for (i = 0; i < tmp_num_stripes; i++) {
4793                        if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4794                                /*
4795                                 * In case of DUP, in order to keep it
4796                                 * simple, only add the mirror with the
4797                                 * lowest physical address
4798                                 */
4799                                if (found &&
4800                                    physical_of_found <=
4801                                     tmp_bbio->stripes[i].physical)
4802                                        continue;
4803                                index_srcdev = i;
4804                                found = 1;
4805                                physical_of_found =
4806                                        tmp_bbio->stripes[i].physical;
4807                        }
4808                }
4809
4810                if (found) {
4811                        mirror_num = index_srcdev + 1;
4812                        patch_the_first_stripe_for_dev_replace = 1;
4813                        physical_to_patch_in_first_stripe = physical_of_found;
4814                } else {
4815                        WARN_ON(1);
4816                        ret = -EIO;
4817                        kfree(tmp_bbio);
4818                        goto out;
4819                }
4820
4821                kfree(tmp_bbio);
4822        } else if (mirror_num > map->num_stripes) {
4823                mirror_num = 0;
4824        }
4825
4826        num_stripes = 1;
4827        stripe_index = 0;
4828        stripe_nr_orig = stripe_nr;
4829        stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4830        do_div(stripe_nr_end, map->stripe_len);
4831        stripe_end_offset = stripe_nr_end * map->stripe_len -
4832                            (offset + *length);
4833
4834        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4835                if (rw & REQ_DISCARD)
4836                        num_stripes = min_t(u64, map->num_stripes,
4837                                            stripe_nr_end - stripe_nr_orig);
4838                stripe_index = do_div(stripe_nr, map->num_stripes);
4839        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4840                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4841                        num_stripes = map->num_stripes;
4842                else if (mirror_num)
4843                        stripe_index = mirror_num - 1;
4844                else {
4845                        stripe_index = find_live_mirror(fs_info, map, 0,
4846                                            map->num_stripes,
4847                                            current->pid % map->num_stripes,
4848                                            dev_replace_is_ongoing);
4849                        mirror_num = stripe_index + 1;
4850                }
4851
4852        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4853                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4854                        num_stripes = map->num_stripes;
4855                } else if (mirror_num) {
4856                        stripe_index = mirror_num - 1;
4857                } else {
4858                        mirror_num = 1;
4859                }
4860
4861        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4862                int factor = map->num_stripes / map->sub_stripes;
4863
4864                stripe_index = do_div(stripe_nr, factor);
4865                stripe_index *= map->sub_stripes;
4866
4867                if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4868                        num_stripes = map->sub_stripes;
4869                else if (rw & REQ_DISCARD)
4870                        num_stripes = min_t(u64, map->sub_stripes *
4871                                            (stripe_nr_end - stripe_nr_orig),
4872                                            map->num_stripes);
4873                else if (mirror_num)
4874                        stripe_index += mirror_num - 1;
4875                else {
4876                        int old_stripe_index = stripe_index;
4877                        stripe_index = find_live_mirror(fs_info, map,
4878                                              stripe_index,
4879                                              map->sub_stripes, stripe_index +
4880                                              current->pid % map->sub_stripes,
4881                                              dev_replace_is_ongoing);
4882                        mirror_num = stripe_index - old_stripe_index + 1;
4883                }
4884
4885        } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4886                                BTRFS_BLOCK_GROUP_RAID6)) {
4887                u64 tmp;
4888
4889                if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4890                    && raid_map_ret) {
4891                        int i, rot;
4892
4893                        /* push stripe_nr back to the start of the full stripe */
4894                        stripe_nr = raid56_full_stripe_start;
4895                        do_div(stripe_nr, stripe_len);
4896
4897                        stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4898
4899                        /* RAID[56] write or recovery. Return all stripes */
4900                        num_stripes = map->num_stripes;
4901                        max_errors = nr_parity_stripes(map);
4902
4903                        raid_map = kmalloc_array(num_stripes, sizeof(u64),
4904                                           GFP_NOFS);
4905                        if (!raid_map) {
4906                                ret = -ENOMEM;
4907                                goto out;
4908                        }
4909
4910                        /* Work out the disk rotation on this stripe-set */
4911                        tmp = stripe_nr;
4912                        rot = do_div(tmp, num_stripes);
4913
4914                        /* Fill in the logical address of each stripe */
4915                        tmp = stripe_nr * nr_data_stripes(map);
4916                        for (i = 0; i < nr_data_stripes(map); i++)
4917                                raid_map[(i+rot) % num_stripes] =
4918                                        em->start + (tmp + i) * map->stripe_len;
4919
4920                        raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4921                        if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4922                                raid_map[(i+rot+1) % num_stripes] =
4923                                        RAID6_Q_STRIPE;
4924
4925                        *length = map->stripe_len;
4926                        stripe_index = 0;
4927                        stripe_offset = 0;
4928                } else {
4929                        /*
4930                         * Mirror #0 or #1 means the original data block.
4931                         * Mirror #2 is RAID5 parity block.
4932                         * Mirror #3 is RAID6 Q block.
4933                         */
4934                        stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4935                        if (mirror_num > 1)
4936                                stripe_index = nr_data_stripes(map) +
4937                                                mirror_num - 2;
4938
4939                        /* We distribute the parity blocks across stripes */
4940                        tmp = stripe_nr + stripe_index;
4941                        stripe_index = do_div(tmp, map->num_stripes);
4942                }
4943        } else {
4944                /*
4945                 * after this do_div call, stripe_nr is the number of stripes
4946                 * on this device we have to walk to find the data, and
4947                 * stripe_index is the number of our device in the stripe array
4948                 */
4949                stripe_index = do_div(stripe_nr, map->num_stripes);
4950                mirror_num = stripe_index + 1;
4951        }
4952        BUG_ON(stripe_index >= map->num_stripes);
4953
4954        num_alloc_stripes = num_stripes;
4955        if (dev_replace_is_ongoing) {
4956                if (rw & (REQ_WRITE | REQ_DISCARD))
4957                        num_alloc_stripes <<= 1;
4958                if (rw & REQ_GET_READ_MIRRORS)
4959                        num_alloc_stripes++;
4960        }
4961        bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
4962        if (!bbio) {
4963                kfree(raid_map);
4964                ret = -ENOMEM;
4965                goto out;
4966        }
4967        atomic_set(&bbio->error, 0);
4968
4969        if (rw & REQ_DISCARD) {
4970                int factor = 0;
4971                int sub_stripes = 0;
4972                u64 stripes_per_dev = 0;
4973                u32 remaining_stripes = 0;
4974                u32 last_stripe = 0;
4975
4976                if (map->type &
4977                    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4978                        if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4979                                sub_stripes = 1;
4980                        else
4981                                sub_stripes = map->sub_stripes;
4982
4983                        factor = map->num_stripes / sub_stripes;
4984                        stripes_per_dev = div_u64_rem(stripe_nr_end -
4985                                                      stripe_nr_orig,
4986                                                      factor,
4987                                                      &remaining_stripes);
4988                        div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4989                        last_stripe *= sub_stripes;
4990                }
4991
4992                for (i = 0; i < num_stripes; i++) {
4993                        bbio->stripes[i].physical =
4994                                map->stripes[stripe_index].physical +
4995                                stripe_offset + stripe_nr * map->stripe_len;
4996                        bbio->stripes[i].dev = map->stripes[stripe_index].dev;
4997
4998                        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4999                                         BTRFS_BLOCK_GROUP_RAID10)) {
5000                                bbio->stripes[i].length = stripes_per_dev *
5001                                                          map->stripe_len;
5002
5003                                if (i / sub_stripes < remaining_stripes)
5004                                        bbio->stripes[i].length +=
5005                                                map->stripe_len;
5006
5007                                /*
5008                                 * Special for the first stripe and
5009                                 * the last stripe:
5010                                 *
5011                                 * |-------|...|-------|
5012                                 *     |----------|
5013                                 *    off     end_off
5014                                 */
5015                                if (i < sub_stripes)
5016                                        bbio->stripes[i].length -=
5017                                                stripe_offset;
5018
5019                                if (stripe_index >= last_stripe &&
5020                                    stripe_index <= (last_stripe +
5021                                                     sub_stripes - 1))
5022                                        bbio->stripes[i].length -=
5023                                                stripe_end_offset;
5024
5025                                if (i == sub_stripes - 1)
5026                                        stripe_offset = 0;
5027                        } else
5028                                bbio->stripes[i].length = *length;
5029
5030                        stripe_index++;
5031                        if (stripe_index == map->num_stripes) {
5032                                /* This could only happen for RAID0/10 */
5033                                stripe_index = 0;
5034                                stripe_nr++;
5035                        }
5036                }
5037        } else {
5038                for (i = 0; i < num_stripes; i++) {
5039                        bbio->stripes[i].physical =
5040                                map->stripes[stripe_index].physical +
5041                                stripe_offset +
5042                                stripe_nr * map->stripe_len;
5043                        bbio->stripes[i].dev =
5044                                map->stripes[stripe_index].dev;
5045                        stripe_index++;
5046                }
5047        }
5048
5049        if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5050                if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5051                                 BTRFS_BLOCK_GROUP_RAID10 |
5052                                 BTRFS_BLOCK_GROUP_RAID5 |
5053                                 BTRFS_BLOCK_GROUP_DUP)) {
5054                        max_errors = 1;
5055                } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5056                        max_errors = 2;
5057                }
5058        }
5059
5060        if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5061            dev_replace->tgtdev != NULL) {
5062                int index_where_to_add;
5063                u64 srcdev_devid = dev_replace->srcdev->devid;
5064
5065                /*
5066                 * duplicate the write operations while the dev replace
5067                 * procedure is running. Since the copying of the old disk
5068                 * to the new disk takes place at run time while the
5069                 * filesystem is mounted writable, the regular write
5070                 * operations to the old disk have to be duplicated to go
5071                 * to the new disk as well.
5072                 * Note that device->missing is handled by the caller, and
5073                 * that the write to the old disk is already set up in the
5074                 * stripes array.
5075                 */
5076                index_where_to_add = num_stripes;
5077                for (i = 0; i < num_stripes; i++) {
5078                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5079                                /* write to new disk, too */
5080                                struct btrfs_bio_stripe *new =
5081                                        bbio->stripes + index_where_to_add;
5082                                struct btrfs_bio_stripe *old =
5083                                        bbio->stripes + i;
5084
5085                                new->physical = old->physical;
5086                                new->length = old->length;
5087                                new->dev = dev_replace->tgtdev;
5088                                index_where_to_add++;
5089                                max_errors++;
5090                        }
5091                }
5092                num_stripes = index_where_to_add;
5093        } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5094                   dev_replace->tgtdev != NULL) {
5095                u64 srcdev_devid = dev_replace->srcdev->devid;
5096                int index_srcdev = 0;
5097                int found = 0;
5098                u64 physical_of_found = 0;
5099
5100                /*
5101                 * During the dev-replace procedure, the target drive can
5102                 * also be used to read data in case it is needed to repair
5103                 * a corrupt block elsewhere. This is possible if the
5104                 * requested area is left of the left cursor. In this area,
5105                 * the target drive is a full copy of the source drive.
5106                 */
5107                for (i = 0; i < num_stripes; i++) {
5108                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5109                                /*
5110                                 * In case of DUP, in order to keep it
5111                                 * simple, only add the mirror with the
5112                                 * lowest physical address
5113                                 */
5114                                if (found &&
5115                                    physical_of_found <=
5116                                     bbio->stripes[i].physical)
5117                                        continue;
5118                                index_srcdev = i;
5119                                found = 1;
5120                                physical_of_found = bbio->stripes[i].physical;
5121                        }
5122                }
5123                if (found) {
5124                        u64 length = map->stripe_len;
5125
5126                        if (physical_of_found + length <=
5127                            dev_replace->cursor_left) {
5128                                struct btrfs_bio_stripe *tgtdev_stripe =
5129                                        bbio->stripes + num_stripes;
5130
5131                                tgtdev_stripe->physical = physical_of_found;
5132                                tgtdev_stripe->length =
5133                                        bbio->stripes[index_srcdev].length;
5134                                tgtdev_stripe->dev = dev_replace->tgtdev;
5135
5136                                num_stripes++;
5137                        }
5138                }
5139        }
5140
5141        *bbio_ret = bbio;
5142        bbio->num_stripes = num_stripes;
5143        bbio->max_errors = max_errors;
5144        bbio->mirror_num = mirror_num;
5145
5146        /*
5147         * this is the case that REQ_READ && dev_replace_is_ongoing &&
5148         * mirror_num == num_stripes + 1 && dev_replace target drive is
5149         * available as a mirror
5150         */
5151        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5152                WARN_ON(num_stripes > 1);
5153                bbio->stripes[0].dev = dev_replace->tgtdev;
5154                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5155                bbio->mirror_num = map->num_stripes + 1;
5156        }
5157        if (raid_map) {
5158                sort_parity_stripes(bbio, raid_map);
5159                *raid_map_ret = raid_map;
5160        }
5161out:
5162        if (dev_replace_is_ongoing)
5163                btrfs_dev_replace_unlock(dev_replace);
5164        free_extent_map(em);
5165        return ret;
5166}
5167
5168int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5169                      u64 logical, u64 *length,
5170                      struct btrfs_bio **bbio_ret, int mirror_num)
5171{
5172        return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5173                                 mirror_num, NULL);
5174}
5175
5176int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5177                     u64 chunk_start, u64 physical, u64 devid,
5178                     u64 **logical, int *naddrs, int *stripe_len)
5179{
5180        struct extent_map_tree *em_tree = &map_tree->map_tree;
5181        struct extent_map *em;
5182        struct map_lookup *map;
5183        u64 *buf;
5184        u64 bytenr;
5185        u64 length;
5186        u64 stripe_nr;
5187        u64 rmap_len;
5188        int i, j, nr = 0;
5189
5190        read_lock(&em_tree->lock);
5191        em = lookup_extent_mapping(em_tree, chunk_start, 1);
5192        read_unlock(&em_tree->lock);
5193
5194        if (!em) {
5195                printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5196                       chunk_start);
5197                return -EIO;
5198        }
5199
5200        if (em->start != chunk_start) {
5201                printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5202                       em->start, chunk_start);
5203                free_extent_map(em);
5204                return -EIO;
5205        }
5206        map = (struct map_lookup *)em->bdev;
5207
5208        length = em->len;
5209        rmap_len = map->stripe_len;
5210
5211        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5212                do_div(length, map->num_stripes / map->sub_stripes);
5213        else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5214                do_div(length, map->num_stripes);
5215        else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5216                              BTRFS_BLOCK_GROUP_RAID6)) {
5217                do_div(length, nr_data_stripes(map));
5218                rmap_len = map->stripe_len * nr_data_stripes(map);
5219        }
5220
5221        buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5222        BUG_ON(!buf); /* -ENOMEM */
5223
5224        for (i = 0; i < map->num_stripes; i++) {
5225                if (devid && map->stripes[i].dev->devid != devid)
5226                        continue;
5227                if (map->stripes[i].physical > physical ||
5228                    map->stripes[i].physical + length <= physical)
5229                        continue;
5230
5231                stripe_nr = physical - map->stripes[i].physical;
5232                do_div(stripe_nr, map->stripe_len);
5233
5234                if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5235                        stripe_nr = stripe_nr * map->num_stripes + i;
5236                        do_div(stripe_nr, map->sub_stripes);
5237                } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5238                        stripe_nr = stripe_nr * map->num_stripes + i;
5239                } /* else if RAID[56], multiply by nr_data_stripes().
5240                   * Alternatively, just use rmap_len below instead of
5241                   * map->stripe_len */
5242
5243                bytenr = chunk_start + stripe_nr * rmap_len;
5244                WARN_ON(nr >= map->num_stripes);
5245                for (j = 0; j < nr; j++) {
5246                        if (buf[j] == bytenr)
5247                                break;
5248                }
5249                if (j == nr) {
5250                        WARN_ON(nr >= map->num_stripes);
5251                        buf[nr++] = bytenr;
5252                }
5253        }
5254
5255        *logical = buf;
5256        *naddrs = nr;
5257        *stripe_len = rmap_len;
5258
5259        free_extent_map(em);
5260        return 0;
5261}
5262
5263static void btrfs_end_bio(struct bio *bio, int err)
5264{
5265        struct btrfs_bio *bbio = bio->bi_private;
5266        int is_orig_bio = 0;
5267
5268        if (err) {
5269                atomic_inc(&bbio->error);
5270                if (err == -EIO || err == -EREMOTEIO) {
5271                        unsigned int stripe_index =
5272                                btrfs_io_bio(bio)->stripe_index;
5273                        struct btrfs_device *dev;
5274
5275                        BUG_ON(stripe_index >= bbio->num_stripes);
5276                        dev = bbio->stripes[stripe_index].dev;
5277                        if (dev->bdev) {
5278                                if (bio->bi_rw & WRITE)
5279                                        btrfs_dev_stat_inc(dev,
5280                                                BTRFS_DEV_STAT_WRITE_ERRS);
5281                                else
5282                                        btrfs_dev_stat_inc(dev,
5283                                                BTRFS_DEV_STAT_READ_ERRS);
5284                                if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5285                                        btrfs_dev_stat_inc(dev,
5286                                                BTRFS_DEV_STAT_FLUSH_ERRS);
5287                                btrfs_dev_stat_print_on_error(dev);
5288                        }
5289                }
5290        }
5291
5292        if (bio == bbio->orig_bio)
5293                is_orig_bio = 1;
5294
5295        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5296                if (!is_orig_bio) {
5297                        bio_put(bio);
5298                        bio = bbio->orig_bio;
5299                }
5300
5301                /*
5302                 * We have original bio now. So increment bi_remaining to
5303                 * account for it in endio
5304                 */
5305                atomic_inc(&bio->bi_remaining);
5306
5307                bio->bi_private = bbio->private;
5308                bio->bi_end_io = bbio->end_io;
5309                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5310                /* only send an error to the higher layers if it is
5311                 * beyond the tolerance of the btrfs bio
5312                 */
5313                if (atomic_read(&bbio->error) > bbio->max_errors) {
5314                        err = -EIO;
5315                } else {
5316                        /*
5317                         * this bio is actually up to date, we didn't
5318                         * go over the max number of errors
5319                         */
5320                        set_bit(BIO_UPTODATE, &bio->bi_flags);
5321                        err = 0;
5322                }
5323                kfree(bbio);
5324
5325                bio_endio(bio, err);
5326        } else if (!is_orig_bio) {
5327                bio_put(bio);
5328        }
5329}
5330
5331struct async_sched {
5332        struct bio *bio;
5333        int rw;
5334        struct btrfs_fs_info *info;
5335        struct btrfs_work work;
5336};
5337
5338/*
5339 * see run_scheduled_bios for a description of why bios are collected for
5340 * async submit.
5341 *
5342 * This will add one bio to the pending list for a device and make sure
5343 * the work struct is scheduled.
5344 */
5345static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5346                                        struct btrfs_device *device,
5347                                        int rw, struct bio *bio)
5348{
5349        int should_queue = 1;
5350        struct btrfs_pending_bios *pending_bios;
5351
5352        if (device->missing || !device->bdev) {
5353                bio_endio(bio, -EIO);
5354                return;
5355        }
5356
5357        /* don't bother with additional async steps for reads, right now */
5358        if (!(rw & REQ_WRITE)) {
5359                bio_get(bio);
5360                btrfsic_submit_bio(rw, bio);
5361                bio_put(bio);
5362                return;
5363        }
5364
5365        /*
5366         * nr_async_bios allows us to reliably return congestion to the
5367         * higher layers.  Otherwise, the async bio makes it appear we have
5368         * made progress against dirty pages when we've really just put it
5369         * on a queue for later
5370         */
5371        atomic_inc(&root->fs_info->nr_async_bios);
5372        WARN_ON(bio->bi_next);
5373        bio->bi_next = NULL;
5374        bio->bi_rw |= rw;
5375
5376        spin_lock(&device->io_lock);
5377        if (bio->bi_rw & REQ_SYNC)
5378                pending_bios = &device->pending_sync_bios;
5379        else
5380                pending_bios = &device->pending_bios;
5381
5382        if (pending_bios->tail)
5383                pending_bios->tail->bi_next = bio;
5384
5385        pending_bios->tail = bio;
5386        if (!pending_bios->head)
5387                pending_bios->head = bio;
5388        if (device->running_pending)
5389                should_queue = 0;
5390
5391        spin_unlock(&device->io_lock);
5392
5393        if (should_queue)
5394                btrfs_queue_worker(&root->fs_info->submit_workers,
5395                                   &device->work);
5396}
5397
5398static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5399                       sector_t sector)
5400{
5401        struct bio_vec *prev;
5402        struct request_queue *q = bdev_get_queue(bdev);
5403        unsigned int max_sectors = queue_max_sectors(q);
5404        struct bvec_merge_data bvm = {
5405                .bi_bdev = bdev,
5406                .bi_sector = sector,
5407                .bi_rw = bio->bi_rw,
5408        };
5409
5410        if (WARN_ON(bio->bi_vcnt == 0))
5411                return 1;
5412
5413        prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5414        if (bio_sectors(bio) > max_sectors)
5415                return 0;
5416
5417        if (!q->merge_bvec_fn)
5418                return 1;
5419
5420        bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5421        if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5422                return 0;
5423        return 1;
5424}
5425
5426static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5427                              struct bio *bio, u64 physical, int dev_nr,
5428                              int rw, int async)
5429{
5430        struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5431
5432        bio->bi_private = bbio;
5433        btrfs_io_bio(bio)->stripe_index = dev_nr;
5434        bio->bi_end_io = btrfs_end_bio;
5435        bio->bi_iter.bi_sector = physical >> 9;
5436#ifdef DEBUG
5437        {
5438                struct rcu_string *name;
5439
5440                rcu_read_lock();
5441                name = rcu_dereference(dev->name);
5442                pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5443                         "(%s id %llu), size=%u\n", rw,
5444                         (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5445                         name->str, dev->devid, bio->bi_size);
5446                rcu_read_unlock();
5447        }
5448#endif
5449        bio->bi_bdev = dev->bdev;
5450        if (async)
5451                btrfs_schedule_bio(root, dev, rw, bio);
5452        else
5453                btrfsic_submit_bio(rw, bio);
5454}
5455
5456static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5457                              struct bio *first_bio, struct btrfs_device *dev,
5458                              int dev_nr, int rw, int async)
5459{
5460        struct bio_vec *bvec = first_bio->bi_io_vec;
5461        struct bio *bio;
5462        int nr_vecs = bio_get_nr_vecs(dev->bdev);
5463        u64 physical = bbio->stripes[dev_nr].physical;
5464
5465again:
5466        bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5467        if (!bio)
5468                return -ENOMEM;
5469
5470        while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5471                if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5472                                 bvec->bv_offset) < bvec->bv_len) {
5473                        u64 len = bio->bi_iter.bi_size;
5474
5475                        atomic_inc(&bbio->stripes_pending);
5476                        submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5477                                          rw, async);
5478                        physical += len;
5479                        goto again;
5480                }
5481                bvec++;
5482        }
5483
5484        submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5485        return 0;
5486}
5487
5488static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5489{
5490        atomic_inc(&bbio->error);
5491        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5492                bio->bi_private = bbio->private;
5493                bio->bi_end_io = bbio->end_io;
5494                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5495                bio->bi_iter.bi_sector = logical >> 9;
5496                kfree(bbio);
5497                bio_endio(bio, -EIO);
5498        }
5499}
5500
5501int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5502                  int mirror_num, int async_submit)
5503{
5504        struct btrfs_device *dev;
5505        struct bio *first_bio = bio;
5506        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5507        u64 length = 0;
5508        u64 map_length;
5509        u64 *raid_map = NULL;
5510        int ret;
5511        int dev_nr = 0;
5512        int total_devs = 1;
5513        struct btrfs_bio *bbio = NULL;
5514
5515        length = bio->bi_iter.bi_size;
5516        map_length = length;
5517
5518        ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5519                              mirror_num, &raid_map);
5520        if (ret) /* -ENOMEM */
5521                return ret;
5522
5523        total_devs = bbio->num_stripes;
5524        bbio->orig_bio = first_bio;
5525        bbio->private = first_bio->bi_private;
5526        bbio->end_io = first_bio->bi_end_io;
5527        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5528
5529        if (raid_map) {
5530                /* In this case, map_length has been set to the length of
5531                   a single stripe; not the whole write */
5532                if (rw & WRITE) {
5533                        return raid56_parity_write(root, bio, bbio,
5534                                                   raid_map, map_length);
5535                } else {
5536                        return raid56_parity_recover(root, bio, bbio,
5537                                                     raid_map, map_length,
5538                                                     mirror_num);
5539                }
5540        }
5541
5542        if (map_length < length) {
5543                btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5544                        logical, length, map_length);
5545                BUG();
5546        }
5547
5548        while (dev_nr < total_devs) {
5549                dev = bbio->stripes[dev_nr].dev;
5550                if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5551                        bbio_error(bbio, first_bio, logical);
5552                        dev_nr++;
5553                        continue;
5554                }
5555
5556                /*
5557                 * Check and see if we're ok with this bio based on it's size
5558                 * and offset with the given device.
5559                 */
5560                if (!bio_size_ok(dev->bdev, first_bio,
5561                                 bbio->stripes[dev_nr].physical >> 9)) {
5562                        ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5563                                                 dev_nr, rw, async_submit);
5564                        BUG_ON(ret);
5565                        dev_nr++;
5566                        continue;
5567                }
5568
5569                if (dev_nr < total_devs - 1) {
5570                        bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5571                        BUG_ON(!bio); /* -ENOMEM */
5572                } else {
5573                        bio = first_bio;
5574                }
5575
5576                submit_stripe_bio(root, bbio, bio,
5577                                  bbio->stripes[dev_nr].physical, dev_nr, rw,
5578                                  async_submit);
5579                dev_nr++;
5580        }
5581        return 0;
5582}
5583
5584struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5585                                       u8 *uuid, u8 *fsid)
5586{
5587        struct btrfs_device *device;
5588        struct btrfs_fs_devices *cur_devices;
5589
5590        cur_devices = fs_info->fs_devices;
5591        while (cur_devices) {
5592                if (!fsid ||
5593                    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5594                        device = __find_device(&cur_devices->devices,
5595                                               devid, uuid);
5596                        if (device)
5597                                return device;
5598                }
5599                cur_devices = cur_devices->seed;
5600        }
5601        return NULL;
5602}
5603
5604static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5605                                            u64 devid, u8 *dev_uuid)
5606{
5607        struct btrfs_device *device;
5608        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5609
5610        device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5611        if (IS_ERR(device))
5612                return NULL;
5613
5614        list_add(&device->dev_list, &fs_devices->devices);
5615        device->fs_devices = fs_devices;
5616        fs_devices->num_devices++;
5617
5618        device->missing = 1;
5619        fs_devices->missing_devices++;
5620
5621        return device;
5622}
5623
5624/**
5625 * btrfs_alloc_device - allocate struct btrfs_device
5626 * @fs_info:    used only for generating a new devid, can be NULL if
5627 *              devid is provided (i.e. @devid != NULL).
5628 * @devid:      a pointer to devid for this device.  If NULL a new devid
5629 *              is generated.
5630 * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
5631 *              is generated.
5632 *
5633 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5634 * on error.  Returned struct is not linked onto any lists and can be
5635 * destroyed with kfree() right away.
5636 */
5637struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5638                                        const u64 *devid,
5639                                        const u8 *uuid)
5640{
5641        struct btrfs_device *dev;
5642        u64 tmp;
5643
5644        if (WARN_ON(!devid && !fs_info))
5645                return ERR_PTR(-EINVAL);
5646
5647        dev = __alloc_device();
5648        if (IS_ERR(dev))
5649                return dev;
5650
5651        if (devid)
5652                tmp = *devid;
5653        else {
5654                int ret;
5655
5656                ret = find_next_devid(fs_info, &tmp);
5657                if (ret) {
5658                        kfree(dev);
5659                        return ERR_PTR(ret);
5660                }
5661        }
5662        dev->devid = tmp;
5663
5664        if (uuid)
5665                memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5666        else
5667                generate_random_uuid(dev->uuid);
5668
5669        dev->work.func = pending_bios_fn;
5670
5671        return dev;
5672}
5673
5674static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5675                          struct extent_buffer *leaf,
5676                          struct btrfs_chunk *chunk)
5677{
5678        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5679        struct map_lookup *map;
5680        struct extent_map *em;
5681        u64 logical;
5682        u64 length;
5683        u64 devid;
5684        u8 uuid[BTRFS_UUID_SIZE];
5685        int num_stripes;
5686        int ret;
5687        int i;
5688
5689        logical = key->offset;
5690        length = btrfs_chunk_length(leaf, chunk);
5691
5692        read_lock(&map_tree->map_tree.lock);
5693        em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5694        read_unlock(&map_tree->map_tree.lock);
5695
5696        /* already mapped? */
5697        if (em && em->start <= logical && em->start + em->len > logical) {
5698                free_extent_map(em);
5699                return 0;
5700        } else if (em) {
5701                free_extent_map(em);
5702        }
5703
5704        em = alloc_extent_map();
5705        if (!em)
5706                return -ENOMEM;
5707        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5708        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5709        if (!map) {
5710                free_extent_map(em);
5711                return -ENOMEM;
5712        }
5713
5714        em->bdev = (struct block_device *)map;
5715        em->start = logical;
5716        em->len = length;
5717        em->orig_start = 0;
5718        em->block_start = 0;
5719        em->block_len = em->len;
5720
5721        map->num_stripes = num_stripes;
5722        map->io_width = btrfs_chunk_io_width(leaf, chunk);
5723        map->io_align = btrfs_chunk_io_align(leaf, chunk);
5724        map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5725        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5726        map->type = btrfs_chunk_type(leaf, chunk);
5727        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5728        for (i = 0; i < num_stripes; i++) {
5729                map->stripes[i].physical =
5730                        btrfs_stripe_offset_nr(leaf, chunk, i);
5731                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5732                read_extent_buffer(leaf, uuid, (unsigned long)
5733                                   btrfs_stripe_dev_uuid_nr(chunk, i),
5734                                   BTRFS_UUID_SIZE);
5735                map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5736                                                        uuid, NULL);
5737                if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5738                        kfree(map);
5739                        free_extent_map(em);
5740                        return -EIO;
5741                }
5742                if (!map->stripes[i].dev) {
5743                        map->stripes[i].dev =
5744                                add_missing_dev(root, devid, uuid);
5745                        if (!map->stripes[i].dev) {
5746                                kfree(map);
5747                                free_extent_map(em);
5748                                return -EIO;
5749                        }
5750                }
5751                map->stripes[i].dev->in_fs_metadata = 1;
5752        }
5753
5754        write_lock(&map_tree->map_tree.lock);
5755        ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5756        write_unlock(&map_tree->map_tree.lock);
5757        BUG_ON(ret); /* Tree corruption */
5758        free_extent_map(em);
5759
5760        return 0;
5761}
5762
5763static void fill_device_from_item(struct extent_buffer *leaf,
5764                                 struct btrfs_dev_item *dev_item,
5765                                 struct btrfs_device *device)
5766{
5767        unsigned long ptr;
5768
5769        device->devid = btrfs_device_id(leaf, dev_item);
5770        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5771        device->total_bytes = device->disk_total_bytes;
5772        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5773        device->type = btrfs_device_type(leaf, dev_item);
5774        device->io_align = btrfs_device_io_align(leaf, dev_item);
5775        device->io_width = btrfs_device_io_width(leaf, dev_item);
5776        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5777        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5778        device->is_tgtdev_for_dev_replace = 0;
5779
5780        ptr = btrfs_device_uuid(dev_item);
5781        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5782}
5783
5784static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5785{
5786        struct btrfs_fs_devices *fs_devices;
5787        int ret;
5788
5789        BUG_ON(!mutex_is_locked(&uuid_mutex));
5790
5791        fs_devices = root->fs_info->fs_devices->seed;
5792        while (fs_devices) {
5793                if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5794                        ret = 0;
5795                        goto out;
5796                }
5797                fs_devices = fs_devices->seed;
5798        }
5799
5800        fs_devices = find_fsid(fsid);
5801        if (!fs_devices) {
5802                ret = -ENOENT;
5803                goto out;
5804        }
5805
5806        fs_devices = clone_fs_devices(fs_devices);
5807        if (IS_ERR(fs_devices)) {
5808                ret = PTR_ERR(fs_devices);
5809                goto out;
5810        }
5811
5812        ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5813                                   root->fs_info->bdev_holder);
5814        if (ret) {
5815                free_fs_devices(fs_devices);
5816                goto out;
5817        }
5818
5819        if (!fs_devices->seeding) {
5820                __btrfs_close_devices(fs_devices);
5821                free_fs_devices(fs_devices);
5822                ret = -EINVAL;
5823                goto out;
5824        }
5825
5826        fs_devices->seed = root->fs_info->fs_devices->seed;
5827        root->fs_info->fs_devices->seed = fs_devices;
5828out:
5829        return ret;
5830}
5831
5832static int read_one_dev(struct btrfs_root *root,
5833                        struct extent_buffer *leaf,
5834                        struct btrfs_dev_item *dev_item)
5835{
5836        struct btrfs_device *device;
5837        u64 devid;
5838        int ret;
5839        u8 fs_uuid[BTRFS_UUID_SIZE];
5840        u8 dev_uuid[BTRFS_UUID_SIZE];
5841
5842        devid = btrfs_device_id(leaf, dev_item);
5843        read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5844                           BTRFS_UUID_SIZE);
5845        read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5846                           BTRFS_UUID_SIZE);
5847
5848        if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5849                ret = open_seed_devices(root, fs_uuid);
5850                if (ret && !btrfs_test_opt(root, DEGRADED))
5851                        return ret;
5852        }
5853
5854        device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5855        if (!device || !device->bdev) {
5856                if (!btrfs_test_opt(root, DEGRADED))
5857                        return -EIO;
5858
5859                if (!device) {
5860                        btrfs_warn(root->fs_info, "devid %llu missing", devid);
5861                        device = add_missing_dev(root, devid, dev_uuid);
5862                        if (!device)
5863                                return -ENOMEM;
5864                } else if (!device->missing) {
5865                        /*
5866                         * this happens when a device that was properly setup
5867                         * in the device info lists suddenly goes bad.
5868                         * device->bdev is NULL, and so we have to set
5869                         * device->missing to one here
5870                         */
5871                        root->fs_info->fs_devices->missing_devices++;
5872                        device->missing = 1;
5873                }
5874        }
5875
5876        if (device->fs_devices != root->fs_info->fs_devices) {
5877                BUG_ON(device->writeable);
5878                if (device->generation !=
5879                    btrfs_device_generation(leaf, dev_item))
5880                        return -EINVAL;
5881        }
5882
5883        fill_device_from_item(leaf, dev_item, device);
5884        device->in_fs_metadata = 1;
5885        if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5886                device->fs_devices->total_rw_bytes += device->total_bytes;
5887                spin_lock(&root->fs_info->free_chunk_lock);
5888                root->fs_info->free_chunk_space += device->total_bytes -
5889                        device->bytes_used;
5890                spin_unlock(&root->fs_info->free_chunk_lock);
5891        }
5892        ret = 0;
5893        return ret;
5894}
5895
5896int btrfs_read_sys_array(struct btrfs_root *root)
5897{
5898        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
5899        struct extent_buffer *sb;
5900        struct btrfs_disk_key *disk_key;
5901        struct btrfs_chunk *chunk;
5902        u8 *ptr;
5903        unsigned long sb_ptr;
5904        int ret = 0;
5905        u32 num_stripes;
5906        u32 array_size;
5907        u32 len = 0;
5908        u32 cur;
5909        struct btrfs_key key;
5910
5911        sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
5912                                          BTRFS_SUPER_INFO_SIZE);
5913        if (!sb)
5914                return -ENOMEM;
5915        btrfs_set_buffer_uptodate(sb);
5916        btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
5917        /*
5918         * The sb extent buffer is artifical and just used to read the system array.
5919         * btrfs_set_buffer_uptodate() call does not properly mark all it's
5920         * pages up-to-date when the page is larger: extent does not cover the
5921         * whole page and consequently check_page_uptodate does not find all
5922         * the page's extents up-to-date (the hole beyond sb),
5923         * write_extent_buffer then triggers a WARN_ON.
5924         *
5925         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5926         * but sb spans only this function. Add an explicit SetPageUptodate call
5927         * to silence the warning eg. on PowerPC 64.
5928         */
5929        if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
5930                SetPageUptodate(sb->pages[0]);
5931
5932        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
5933        array_size = btrfs_super_sys_array_size(super_copy);
5934
5935        ptr = super_copy->sys_chunk_array;
5936        sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5937        cur = 0;
5938
5939        while (cur < array_size) {
5940                disk_key = (struct btrfs_disk_key *)ptr;
5941                btrfs_disk_key_to_cpu(&key, disk_key);
5942
5943                len = sizeof(*disk_key); ptr += len;
5944                sb_ptr += len;
5945                cur += len;
5946
5947                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
5948                        chunk = (struct btrfs_chunk *)sb_ptr;
5949                        ret = read_one_chunk(root, &key, sb, chunk);
5950                        if (ret)
5951                                break;
5952                        num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5953                        len = btrfs_chunk_item_size(num_stripes);
5954                } else {
5955                        ret = -EIO;
5956                        break;
5957                }
5958                ptr += len;
5959                sb_ptr += len;
5960                cur += len;
5961        }
5962        free_extent_buffer(sb);
5963        return ret;
5964}
5965
5966int btrfs_read_chunk_tree(struct btrfs_root *root)
5967{
5968        struct btrfs_path *path;
5969        struct extent_buffer *leaf;
5970        struct btrfs_key key;
5971        struct btrfs_key found_key;
5972        int ret;
5973        int slot;
5974
5975        root = root->fs_info->chunk_root;
5976
5977        path = btrfs_alloc_path();
5978        if (!path)
5979                return -ENOMEM;
5980
5981        mutex_lock(&uuid_mutex);
5982        lock_chunks(root);
5983
5984        /*
5985         * Read all device items, and then all the chunk items. All
5986         * device items are found before any chunk item (their object id
5987         * is smaller than the lowest possible object id for a chunk
5988         * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
5989         */
5990        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5991        key.offset = 0;
5992        key.type = 0;
5993        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5994        if (ret < 0)
5995                goto error;
5996        while (1) {
5997                leaf = path->nodes[0];
5998                slot = path->slots[0];
5999                if (slot >= btrfs_header_nritems(leaf)) {
6000                        ret = btrfs_next_leaf(root, path);
6001                        if (ret == 0)
6002                                continue;
6003                        if (ret < 0)
6004                                goto error;
6005                        break;
6006                }
6007                btrfs_item_key_to_cpu(leaf, &found_key, slot);
6008                if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6009                        struct btrfs_dev_item *dev_item;
6010                        dev_item = btrfs_item_ptr(leaf, slot,
6011                                                  struct btrfs_dev_item);
6012                        ret = read_one_dev(root, leaf, dev_item);
6013                        if (ret)
6014                                goto error;
6015                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6016                        struct btrfs_chunk *chunk;
6017                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6018                        ret = read_one_chunk(root, &found_key, leaf, chunk);
6019                        if (ret)
6020                                goto error;
6021                }
6022                path->slots[0]++;
6023        }
6024        ret = 0;
6025error:
6026        unlock_chunks(root);
6027        mutex_unlock(&uuid_mutex);
6028
6029        btrfs_free_path(path);
6030        return ret;
6031}
6032
6033void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6034{
6035        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6036        struct btrfs_device *device;
6037
6038        mutex_lock(&fs_devices->device_list_mutex);
6039        list_for_each_entry(device, &fs_devices->devices, dev_list)
6040                device->dev_root = fs_info->dev_root;
6041        mutex_unlock(&fs_devices->device_list_mutex);
6042}
6043
6044static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6045{
6046        int i;
6047
6048        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6049                btrfs_dev_stat_reset(dev, i);
6050}
6051
6052int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6053{
6054        struct btrfs_key key;
6055        struct btrfs_key found_key;
6056        struct btrfs_root *dev_root = fs_info->dev_root;
6057        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6058        struct extent_buffer *eb;
6059        int slot;
6060        int ret = 0;
6061        struct btrfs_device *device;
6062        struct btrfs_path *path = NULL;
6063        int i;
6064
6065        path = btrfs_alloc_path();
6066        if (!path) {
6067                ret = -ENOMEM;
6068                goto out;
6069        }
6070
6071        mutex_lock(&fs_devices->device_list_mutex);
6072        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6073                int item_size;
6074                struct btrfs_dev_stats_item *ptr;
6075
6076                key.objectid = 0;
6077                key.type = BTRFS_DEV_STATS_KEY;
6078                key.offset = device->devid;
6079                ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6080                if (ret) {
6081                        __btrfs_reset_dev_stats(device);
6082                        device->dev_stats_valid = 1;
6083                        btrfs_release_path(path);
6084                        continue;
6085                }
6086                slot = path->slots[0];
6087                eb = path->nodes[0];
6088                btrfs_item_key_to_cpu(eb, &found_key, slot);
6089                item_size = btrfs_item_size_nr(eb, slot);
6090
6091                ptr = btrfs_item_ptr(eb, slot,
6092                                     struct btrfs_dev_stats_item);
6093
6094                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6095                        if (item_size >= (1 + i) * sizeof(__le64))
6096                                btrfs_dev_stat_set(device, i,
6097                                        btrfs_dev_stats_value(eb, ptr, i));
6098                        else
6099                                btrfs_dev_stat_reset(device, i);
6100                }
6101
6102                device->dev_stats_valid = 1;
6103                btrfs_dev_stat_print_on_load(device);
6104                btrfs_release_path(path);
6105        }
6106        mutex_unlock(&fs_devices->device_list_mutex);
6107
6108out:
6109        btrfs_free_path(path);
6110        return ret < 0 ? ret : 0;
6111}
6112
6113static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6114                                struct btrfs_root *dev_root,
6115                                struct btrfs_device *device)
6116{
6117        struct btrfs_path *path;
6118        struct btrfs_key key;
6119        struct extent_buffer *eb;
6120        struct btrfs_dev_stats_item *ptr;
6121        int ret;
6122        int i;
6123
6124        key.objectid = 0;
6125        key.type = BTRFS_DEV_STATS_KEY;
6126        key.offset = device->devid;
6127
6128        path = btrfs_alloc_path();
6129        BUG_ON(!path);
6130        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6131        if (ret < 0) {
6132                printk_in_rcu(KERN_WARNING "BTRFS: "
6133                        "error %d while searching for dev_stats item for device %s!\n",
6134                              ret, rcu_str_deref(device->name));
6135                goto out;
6136        }
6137
6138        if (ret == 0 &&
6139            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6140                /* need to delete old one and insert a new one */
6141                ret = btrfs_del_item(trans, dev_root, path);
6142                if (ret != 0) {
6143                        printk_in_rcu(KERN_WARNING "BTRFS: "
6144                                "delete too small dev_stats item for device %s failed %d!\n",
6145                                      rcu_str_deref(device->name), ret);
6146                        goto out;
6147                }
6148                ret = 1;
6149        }
6150
6151        if (ret == 1) {
6152                /* need to insert a new item */
6153                btrfs_release_path(path);
6154                ret = btrfs_insert_empty_item(trans, dev_root, path,
6155                                              &key, sizeof(*ptr));
6156                if (ret < 0) {
6157                        printk_in_rcu(KERN_WARNING "BTRFS: "
6158                                          "insert dev_stats item for device %s failed %d!\n",
6159                                      rcu_str_deref(device->name), ret);
6160                        goto out;
6161                }
6162        }
6163
6164        eb = path->nodes[0];
6165        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6166        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6167                btrfs_set_dev_stats_value(eb, ptr, i,
6168                                          btrfs_dev_stat_read(device, i));
6169        btrfs_mark_buffer_dirty(eb);
6170
6171out:
6172        btrfs_free_path(path);
6173        return ret;
6174}
6175
6176/*
6177 * called from commit_transaction. Writes all changed device stats to disk.
6178 */
6179int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6180                        struct btrfs_fs_info *fs_info)
6181{
6182        struct btrfs_root *dev_root = fs_info->dev_root;
6183        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6184        struct btrfs_device *device;
6185        int ret = 0;
6186
6187        mutex_lock(&fs_devices->device_list_mutex);
6188        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6189                if (!device->dev_stats_valid || !device->dev_stats_dirty)
6190                        continue;
6191
6192                ret = update_dev_stat_item(trans, dev_root, device);
6193                if (!ret)
6194                        device->dev_stats_dirty = 0;
6195        }
6196        mutex_unlock(&fs_devices->device_list_mutex);
6197
6198        return ret;
6199}
6200
6201void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6202{
6203        btrfs_dev_stat_inc(dev, index);
6204        btrfs_dev_stat_print_on_error(dev);
6205}
6206
6207static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6208{
6209        if (!dev->dev_stats_valid)
6210                return;
6211        printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6212                           "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6213                           rcu_str_deref(dev->name),
6214                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6215                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6216                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6217                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6218                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6219}
6220
6221static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6222{
6223        int i;
6224
6225        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6226                if (btrfs_dev_stat_read(dev, i) != 0)
6227                        break;
6228        if (i == BTRFS_DEV_STAT_VALUES_MAX)
6229                return; /* all values == 0, suppress message */
6230
6231        printk_in_rcu(KERN_INFO "BTRFS: "
6232                   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6233               rcu_str_deref(dev->name),
6234               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6235               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6236               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6237               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6238               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6239}
6240
6241int btrfs_get_dev_stats(struct btrfs_root *root,
6242                        struct btrfs_ioctl_get_dev_stats *stats)
6243{
6244        struct btrfs_device *dev;
6245        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6246        int i;
6247
6248        mutex_lock(&fs_devices->device_list_mutex);
6249        dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6250        mutex_unlock(&fs_devices->device_list_mutex);
6251
6252        if (!dev) {
6253                btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6254                return -ENODEV;
6255        } else if (!dev->dev_stats_valid) {
6256                btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6257                return -ENODEV;
6258        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6259                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6260                        if (stats->nr_items > i)
6261                                stats->values[i] =
6262                                        btrfs_dev_stat_read_and_reset(dev, i);
6263                        else
6264                                btrfs_dev_stat_reset(dev, i);
6265                }
6266        } else {
6267                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6268                        if (stats->nr_items > i)
6269                                stats->values[i] = btrfs_dev_stat_read(dev, i);
6270        }
6271        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6272                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6273        return 0;
6274}
6275
6276int btrfs_scratch_superblock(struct btrfs_device *device)
6277{
6278        struct buffer_head *bh;
6279        struct btrfs_super_block *disk_super;
6280
6281        bh = btrfs_read_dev_super(device->bdev);
6282        if (!bh)
6283                return -EINVAL;
6284        disk_super = (struct btrfs_super_block *)bh->b_data;
6285
6286        memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6287        set_buffer_dirty(bh);
6288        sync_dirty_buffer(bh);
6289        brelse(bh);
6290
6291        return 0;
6292}
6293