linux/fs/coredump.c
<<
>>
Prefs
   1#include <linux/slab.h>
   2#include <linux/file.h>
   3#include <linux/fdtable.h>
   4#include <linux/mm.h>
   5#include <linux/stat.h>
   6#include <linux/fcntl.h>
   7#include <linux/swap.h>
   8#include <linux/string.h>
   9#include <linux/init.h>
  10#include <linux/pagemap.h>
  11#include <linux/perf_event.h>
  12#include <linux/highmem.h>
  13#include <linux/spinlock.h>
  14#include <linux/key.h>
  15#include <linux/personality.h>
  16#include <linux/binfmts.h>
  17#include <linux/coredump.h>
  18#include <linux/utsname.h>
  19#include <linux/pid_namespace.h>
  20#include <linux/module.h>
  21#include <linux/namei.h>
  22#include <linux/mount.h>
  23#include <linux/security.h>
  24#include <linux/syscalls.h>
  25#include <linux/tsacct_kern.h>
  26#include <linux/cn_proc.h>
  27#include <linux/audit.h>
  28#include <linux/tracehook.h>
  29#include <linux/kmod.h>
  30#include <linux/fsnotify.h>
  31#include <linux/fs_struct.h>
  32#include <linux/pipe_fs_i.h>
  33#include <linux/oom.h>
  34#include <linux/compat.h>
  35
  36#include <asm/uaccess.h>
  37#include <asm/mmu_context.h>
  38#include <asm/tlb.h>
  39#include <asm/exec.h>
  40
  41#include <trace/events/task.h>
  42#include "internal.h"
  43
  44#include <trace/events/sched.h>
  45
  46int core_uses_pid;
  47unsigned int core_pipe_limit;
  48char core_pattern[CORENAME_MAX_SIZE] = "core";
  49static int core_name_size = CORENAME_MAX_SIZE;
  50
  51struct core_name {
  52        char *corename;
  53        int used, size;
  54};
  55
  56/* The maximal length of core_pattern is also specified in sysctl.c */
  57
  58static int expand_corename(struct core_name *cn, int size)
  59{
  60        char *corename = krealloc(cn->corename, size, GFP_KERNEL);
  61
  62        if (!corename)
  63                return -ENOMEM;
  64
  65        if (size > core_name_size) /* racy but harmless */
  66                core_name_size = size;
  67
  68        cn->size = ksize(corename);
  69        cn->corename = corename;
  70        return 0;
  71}
  72
  73static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
  74{
  75        int free, need;
  76
  77again:
  78        free = cn->size - cn->used;
  79        need = vsnprintf(cn->corename + cn->used, free, fmt, arg);
  80        if (need < free) {
  81                cn->used += need;
  82                return 0;
  83        }
  84
  85        if (!expand_corename(cn, cn->size + need - free + 1))
  86                goto again;
  87
  88        return -ENOMEM;
  89}
  90
  91static int cn_printf(struct core_name *cn, const char *fmt, ...)
  92{
  93        va_list arg;
  94        int ret;
  95
  96        va_start(arg, fmt);
  97        ret = cn_vprintf(cn, fmt, arg);
  98        va_end(arg);
  99
 100        return ret;
 101}
 102
 103static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
 104{
 105        int cur = cn->used;
 106        va_list arg;
 107        int ret;
 108
 109        va_start(arg, fmt);
 110        ret = cn_vprintf(cn, fmt, arg);
 111        va_end(arg);
 112
 113        for (; cur < cn->used; ++cur) {
 114                if (cn->corename[cur] == '/')
 115                        cn->corename[cur] = '!';
 116        }
 117        return ret;
 118}
 119
 120static int cn_print_exe_file(struct core_name *cn)
 121{
 122        struct file *exe_file;
 123        char *pathbuf, *path;
 124        int ret;
 125
 126        exe_file = get_mm_exe_file(current->mm);
 127        if (!exe_file)
 128                return cn_esc_printf(cn, "%s (path unknown)", current->comm);
 129
 130        pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
 131        if (!pathbuf) {
 132                ret = -ENOMEM;
 133                goto put_exe_file;
 134        }
 135
 136        path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
 137        if (IS_ERR(path)) {
 138                ret = PTR_ERR(path);
 139                goto free_buf;
 140        }
 141
 142        ret = cn_esc_printf(cn, "%s", path);
 143
 144free_buf:
 145        kfree(pathbuf);
 146put_exe_file:
 147        fput(exe_file);
 148        return ret;
 149}
 150
 151/* format_corename will inspect the pattern parameter, and output a
 152 * name into corename, which must have space for at least
 153 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
 154 */
 155static int format_corename(struct core_name *cn, struct coredump_params *cprm)
 156{
 157        const struct cred *cred = current_cred();
 158        const char *pat_ptr = core_pattern;
 159        int ispipe = (*pat_ptr == '|');
 160        int pid_in_pattern = 0;
 161        int err = 0;
 162
 163        cn->used = 0;
 164        cn->corename = NULL;
 165        if (expand_corename(cn, core_name_size))
 166                return -ENOMEM;
 167        cn->corename[0] = '\0';
 168
 169        if (ispipe)
 170                ++pat_ptr;
 171
 172        /* Repeat as long as we have more pattern to process and more output
 173           space */
 174        while (*pat_ptr) {
 175                if (*pat_ptr != '%') {
 176                        err = cn_printf(cn, "%c", *pat_ptr++);
 177                } else {
 178                        switch (*++pat_ptr) {
 179                        /* single % at the end, drop that */
 180                        case 0:
 181                                goto out;
 182                        /* Double percent, output one percent */
 183                        case '%':
 184                                err = cn_printf(cn, "%c", '%');
 185                                break;
 186                        /* pid */
 187                        case 'p':
 188                                pid_in_pattern = 1;
 189                                err = cn_printf(cn, "%d",
 190                                              task_tgid_vnr(current));
 191                                break;
 192                        /* global pid */
 193                        case 'P':
 194                                err = cn_printf(cn, "%d",
 195                                              task_tgid_nr(current));
 196                                break;
 197                        /* uid */
 198                        case 'u':
 199                                err = cn_printf(cn, "%d", cred->uid);
 200                                break;
 201                        /* gid */
 202                        case 'g':
 203                                err = cn_printf(cn, "%d", cred->gid);
 204                                break;
 205                        case 'd':
 206                                err = cn_printf(cn, "%d",
 207                                        __get_dumpable(cprm->mm_flags));
 208                                break;
 209                        /* signal that caused the coredump */
 210                        case 's':
 211                                err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
 212                                break;
 213                        /* UNIX time of coredump */
 214                        case 't': {
 215                                struct timeval tv;
 216                                do_gettimeofday(&tv);
 217                                err = cn_printf(cn, "%lu", tv.tv_sec);
 218                                break;
 219                        }
 220                        /* hostname */
 221                        case 'h':
 222                                down_read(&uts_sem);
 223                                err = cn_esc_printf(cn, "%s",
 224                                              utsname()->nodename);
 225                                up_read(&uts_sem);
 226                                break;
 227                        /* executable */
 228                        case 'e':
 229                                err = cn_esc_printf(cn, "%s", current->comm);
 230                                break;
 231                        case 'E':
 232                                err = cn_print_exe_file(cn);
 233                                break;
 234                        /* core limit size */
 235                        case 'c':
 236                                err = cn_printf(cn, "%lu",
 237                                              rlimit(RLIMIT_CORE));
 238                                break;
 239                        default:
 240                                break;
 241                        }
 242                        ++pat_ptr;
 243                }
 244
 245                if (err)
 246                        return err;
 247        }
 248
 249out:
 250        /* Backward compatibility with core_uses_pid:
 251         *
 252         * If core_pattern does not include a %p (as is the default)
 253         * and core_uses_pid is set, then .%pid will be appended to
 254         * the filename. Do not do this for piped commands. */
 255        if (!ispipe && !pid_in_pattern && core_uses_pid) {
 256                err = cn_printf(cn, ".%d", task_tgid_vnr(current));
 257                if (err)
 258                        return err;
 259        }
 260        return ispipe;
 261}
 262
 263static int zap_process(struct task_struct *start, int exit_code)
 264{
 265        struct task_struct *t;
 266        int nr = 0;
 267
 268        start->signal->group_exit_code = exit_code;
 269        start->signal->group_stop_count = 0;
 270
 271        t = start;
 272        do {
 273                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 274                if (t != current && t->mm) {
 275                        sigaddset(&t->pending.signal, SIGKILL);
 276                        signal_wake_up(t, 1);
 277                        nr++;
 278                }
 279        } while_each_thread(start, t);
 280
 281        return nr;
 282}
 283
 284static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
 285                        struct core_state *core_state, int exit_code)
 286{
 287        struct task_struct *g, *p;
 288        unsigned long flags;
 289        int nr = -EAGAIN;
 290
 291        spin_lock_irq(&tsk->sighand->siglock);
 292        if (!signal_group_exit(tsk->signal)) {
 293                mm->core_state = core_state;
 294                nr = zap_process(tsk, exit_code);
 295                tsk->signal->group_exit_task = tsk;
 296                /* ignore all signals except SIGKILL, see prepare_signal() */
 297                tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
 298                clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 299        }
 300        spin_unlock_irq(&tsk->sighand->siglock);
 301        if (unlikely(nr < 0))
 302                return nr;
 303
 304        tsk->flags = PF_DUMPCORE;
 305        if (atomic_read(&mm->mm_users) == nr + 1)
 306                goto done;
 307        /*
 308         * We should find and kill all tasks which use this mm, and we should
 309         * count them correctly into ->nr_threads. We don't take tasklist
 310         * lock, but this is safe wrt:
 311         *
 312         * fork:
 313         *      None of sub-threads can fork after zap_process(leader). All
 314         *      processes which were created before this point should be
 315         *      visible to zap_threads() because copy_process() adds the new
 316         *      process to the tail of init_task.tasks list, and lock/unlock
 317         *      of ->siglock provides a memory barrier.
 318         *
 319         * do_exit:
 320         *      The caller holds mm->mmap_sem. This means that the task which
 321         *      uses this mm can't pass exit_mm(), so it can't exit or clear
 322         *      its ->mm.
 323         *
 324         * de_thread:
 325         *      It does list_replace_rcu(&leader->tasks, &current->tasks),
 326         *      we must see either old or new leader, this does not matter.
 327         *      However, it can change p->sighand, so lock_task_sighand(p)
 328         *      must be used. Since p->mm != NULL and we hold ->mmap_sem
 329         *      it can't fail.
 330         *
 331         *      Note also that "g" can be the old leader with ->mm == NULL
 332         *      and already unhashed and thus removed from ->thread_group.
 333         *      This is OK, __unhash_process()->list_del_rcu() does not
 334         *      clear the ->next pointer, we will find the new leader via
 335         *      next_thread().
 336         */
 337        rcu_read_lock();
 338        for_each_process(g) {
 339                if (g == tsk->group_leader)
 340                        continue;
 341                if (g->flags & PF_KTHREAD)
 342                        continue;
 343                p = g;
 344                do {
 345                        if (p->mm) {
 346                                if (unlikely(p->mm == mm)) {
 347                                        lock_task_sighand(p, &flags);
 348                                        nr += zap_process(p, exit_code);
 349                                        p->signal->flags = SIGNAL_GROUP_EXIT;
 350                                        unlock_task_sighand(p, &flags);
 351                                }
 352                                break;
 353                        }
 354                } while_each_thread(g, p);
 355        }
 356        rcu_read_unlock();
 357done:
 358        atomic_set(&core_state->nr_threads, nr);
 359        return nr;
 360}
 361
 362static int coredump_wait(int exit_code, struct core_state *core_state)
 363{
 364        struct task_struct *tsk = current;
 365        struct mm_struct *mm = tsk->mm;
 366        int core_waiters = -EBUSY;
 367
 368        init_completion(&core_state->startup);
 369        core_state->dumper.task = tsk;
 370        core_state->dumper.next = NULL;
 371
 372        down_write(&mm->mmap_sem);
 373        if (!mm->core_state)
 374                core_waiters = zap_threads(tsk, mm, core_state, exit_code);
 375        up_write(&mm->mmap_sem);
 376
 377        if (core_waiters > 0) {
 378                struct core_thread *ptr;
 379
 380                wait_for_completion(&core_state->startup);
 381                /*
 382                 * Wait for all the threads to become inactive, so that
 383                 * all the thread context (extended register state, like
 384                 * fpu etc) gets copied to the memory.
 385                 */
 386                ptr = core_state->dumper.next;
 387                while (ptr != NULL) {
 388                        wait_task_inactive(ptr->task, 0);
 389                        ptr = ptr->next;
 390                }
 391        }
 392
 393        return core_waiters;
 394}
 395
 396static void coredump_finish(struct mm_struct *mm, bool core_dumped)
 397{
 398        struct core_thread *curr, *next;
 399        struct task_struct *task;
 400
 401        spin_lock_irq(&current->sighand->siglock);
 402        if (core_dumped && !__fatal_signal_pending(current))
 403                current->signal->group_exit_code |= 0x80;
 404        current->signal->group_exit_task = NULL;
 405        current->signal->flags = SIGNAL_GROUP_EXIT;
 406        spin_unlock_irq(&current->sighand->siglock);
 407
 408        next = mm->core_state->dumper.next;
 409        while ((curr = next) != NULL) {
 410                next = curr->next;
 411                task = curr->task;
 412                /*
 413                 * see exit_mm(), curr->task must not see
 414                 * ->task == NULL before we read ->next.
 415                 */
 416                smp_mb();
 417                curr->task = NULL;
 418                wake_up_process(task);
 419        }
 420
 421        mm->core_state = NULL;
 422}
 423
 424static bool dump_interrupted(void)
 425{
 426        /*
 427         * SIGKILL or freezing() interrupt the coredumping. Perhaps we
 428         * can do try_to_freeze() and check __fatal_signal_pending(),
 429         * but then we need to teach dump_write() to restart and clear
 430         * TIF_SIGPENDING.
 431         */
 432        return signal_pending(current);
 433}
 434
 435static void wait_for_dump_helpers(struct file *file)
 436{
 437        struct pipe_inode_info *pipe = file->private_data;
 438
 439        pipe_lock(pipe);
 440        pipe->readers++;
 441        pipe->writers--;
 442        wake_up_interruptible_sync(&pipe->wait);
 443        kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 444        pipe_unlock(pipe);
 445
 446        /*
 447         * We actually want wait_event_freezable() but then we need
 448         * to clear TIF_SIGPENDING and improve dump_interrupted().
 449         */
 450        wait_event_interruptible(pipe->wait, pipe->readers == 1);
 451
 452        pipe_lock(pipe);
 453        pipe->readers--;
 454        pipe->writers++;
 455        pipe_unlock(pipe);
 456}
 457
 458/*
 459 * umh_pipe_setup
 460 * helper function to customize the process used
 461 * to collect the core in userspace.  Specifically
 462 * it sets up a pipe and installs it as fd 0 (stdin)
 463 * for the process.  Returns 0 on success, or
 464 * PTR_ERR on failure.
 465 * Note that it also sets the core limit to 1.  This
 466 * is a special value that we use to trap recursive
 467 * core dumps
 468 */
 469static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
 470{
 471        struct file *files[2];
 472        struct coredump_params *cp = (struct coredump_params *)info->data;
 473        int err = create_pipe_files(files, 0);
 474        if (err)
 475                return err;
 476
 477        cp->file = files[1];
 478
 479        err = replace_fd(0, files[0], 0);
 480        fput(files[0]);
 481        /* and disallow core files too */
 482        current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
 483
 484        return err;
 485}
 486
 487void do_coredump(const siginfo_t *siginfo)
 488{
 489        struct core_state core_state;
 490        struct core_name cn;
 491        struct mm_struct *mm = current->mm;
 492        struct linux_binfmt * binfmt;
 493        const struct cred *old_cred;
 494        struct cred *cred;
 495        int retval = 0;
 496        int flag = 0;
 497        int ispipe;
 498        struct files_struct *displaced;
 499        bool need_nonrelative = false;
 500        bool core_dumped = false;
 501        static atomic_t core_dump_count = ATOMIC_INIT(0);
 502        struct coredump_params cprm = {
 503                .siginfo = siginfo,
 504                .regs = signal_pt_regs(),
 505                .limit = rlimit(RLIMIT_CORE),
 506                /*
 507                 * We must use the same mm->flags while dumping core to avoid
 508                 * inconsistency of bit flags, since this flag is not protected
 509                 * by any locks.
 510                 */
 511                .mm_flags = mm->flags,
 512        };
 513
 514        audit_core_dumps(siginfo->si_signo);
 515
 516        binfmt = mm->binfmt;
 517        if (!binfmt || !binfmt->core_dump)
 518                goto fail;
 519        if (!__get_dumpable(cprm.mm_flags))
 520                goto fail;
 521
 522        cred = prepare_creds();
 523        if (!cred)
 524                goto fail;
 525        /*
 526         * We cannot trust fsuid as being the "true" uid of the process
 527         * nor do we know its entire history. We only know it was tainted
 528         * so we dump it as root in mode 2, and only into a controlled
 529         * environment (pipe handler or fully qualified path).
 530         */
 531        if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
 532                /* Setuid core dump mode */
 533                flag = O_EXCL;          /* Stop rewrite attacks */
 534                cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
 535                need_nonrelative = true;
 536        }
 537
 538        retval = coredump_wait(siginfo->si_signo, &core_state);
 539        if (retval < 0)
 540                goto fail_creds;
 541
 542        old_cred = override_creds(cred);
 543
 544        ispipe = format_corename(&cn, &cprm);
 545
 546        if (ispipe) {
 547                int dump_count;
 548                char **helper_argv;
 549                struct subprocess_info *sub_info;
 550
 551                if (ispipe < 0) {
 552                        printk(KERN_WARNING "format_corename failed\n");
 553                        printk(KERN_WARNING "Aborting core\n");
 554                        goto fail_unlock;
 555                }
 556
 557                if (cprm.limit == 1) {
 558                        /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
 559                         *
 560                         * Normally core limits are irrelevant to pipes, since
 561                         * we're not writing to the file system, but we use
 562                         * cprm.limit of 1 here as a speacial value, this is a
 563                         * consistent way to catch recursive crashes.
 564                         * We can still crash if the core_pattern binary sets
 565                         * RLIM_CORE = !1, but it runs as root, and can do
 566                         * lots of stupid things.
 567                         *
 568                         * Note that we use task_tgid_vnr here to grab the pid
 569                         * of the process group leader.  That way we get the
 570                         * right pid if a thread in a multi-threaded
 571                         * core_pattern process dies.
 572                         */
 573                        printk(KERN_WARNING
 574                                "Process %d(%s) has RLIMIT_CORE set to 1\n",
 575                                task_tgid_vnr(current), current->comm);
 576                        printk(KERN_WARNING "Aborting core\n");
 577                        goto fail_unlock;
 578                }
 579                cprm.limit = RLIM_INFINITY;
 580
 581                dump_count = atomic_inc_return(&core_dump_count);
 582                if (core_pipe_limit && (core_pipe_limit < dump_count)) {
 583                        printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
 584                               task_tgid_vnr(current), current->comm);
 585                        printk(KERN_WARNING "Skipping core dump\n");
 586                        goto fail_dropcount;
 587                }
 588
 589                helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
 590                if (!helper_argv) {
 591                        printk(KERN_WARNING "%s failed to allocate memory\n",
 592                               __func__);
 593                        goto fail_dropcount;
 594                }
 595
 596                retval = -ENOMEM;
 597                sub_info = call_usermodehelper_setup(helper_argv[0],
 598                                                helper_argv, NULL, GFP_KERNEL,
 599                                                umh_pipe_setup, NULL, &cprm);
 600                if (sub_info)
 601                        retval = call_usermodehelper_exec(sub_info,
 602                                                          UMH_WAIT_EXEC);
 603
 604                argv_free(helper_argv);
 605                if (retval) {
 606                        printk(KERN_INFO "Core dump to |%s pipe failed\n",
 607                               cn.corename);
 608                        goto close_fail;
 609                }
 610        } else {
 611                struct inode *inode;
 612
 613                if (cprm.limit < binfmt->min_coredump)
 614                        goto fail_unlock;
 615
 616                if (need_nonrelative && cn.corename[0] != '/') {
 617                        printk(KERN_WARNING "Pid %d(%s) can only dump core "\
 618                                "to fully qualified path!\n",
 619                                task_tgid_vnr(current), current->comm);
 620                        printk(KERN_WARNING "Skipping core dump\n");
 621                        goto fail_unlock;
 622                }
 623
 624                cprm.file = filp_open(cn.corename,
 625                                 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
 626                                 0600);
 627                if (IS_ERR(cprm.file))
 628                        goto fail_unlock;
 629
 630                inode = file_inode(cprm.file);
 631                if (inode->i_nlink > 1)
 632                        goto close_fail;
 633                if (d_unhashed(cprm.file->f_path.dentry))
 634                        goto close_fail;
 635                /*
 636                 * AK: actually i see no reason to not allow this for named
 637                 * pipes etc, but keep the previous behaviour for now.
 638                 */
 639                if (!S_ISREG(inode->i_mode))
 640                        goto close_fail;
 641                /*
 642                 * Dont allow local users get cute and trick others to coredump
 643                 * into their pre-created files.
 644                 */
 645                if (!uid_eq(inode->i_uid, current_fsuid()))
 646                        goto close_fail;
 647                if (!cprm.file->f_op->write)
 648                        goto close_fail;
 649                if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
 650                        goto close_fail;
 651        }
 652
 653        /* get us an unshared descriptor table; almost always a no-op */
 654        retval = unshare_files(&displaced);
 655        if (retval)
 656                goto close_fail;
 657        if (displaced)
 658                put_files_struct(displaced);
 659        if (!dump_interrupted()) {
 660                file_start_write(cprm.file);
 661                core_dumped = binfmt->core_dump(&cprm);
 662                file_end_write(cprm.file);
 663        }
 664        if (ispipe && core_pipe_limit)
 665                wait_for_dump_helpers(cprm.file);
 666close_fail:
 667        if (cprm.file)
 668                filp_close(cprm.file, NULL);
 669fail_dropcount:
 670        if (ispipe)
 671                atomic_dec(&core_dump_count);
 672fail_unlock:
 673        kfree(cn.corename);
 674        coredump_finish(mm, core_dumped);
 675        revert_creds(old_cred);
 676fail_creds:
 677        put_cred(cred);
 678fail:
 679        return;
 680}
 681
 682/*
 683 * Core dumping helper functions.  These are the only things you should
 684 * do on a core-file: use only these functions to write out all the
 685 * necessary info.
 686 */
 687int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
 688{
 689        struct file *file = cprm->file;
 690        loff_t pos = file->f_pos;
 691        ssize_t n;
 692        if (cprm->written + nr > cprm->limit)
 693                return 0;
 694        while (nr) {
 695                if (dump_interrupted())
 696                        return 0;
 697                n = __kernel_write(file, addr, nr, &pos);
 698                if (n <= 0)
 699                        return 0;
 700                file->f_pos = pos;
 701                cprm->written += n;
 702                nr -= n;
 703        }
 704        return 1;
 705}
 706EXPORT_SYMBOL(dump_emit);
 707
 708int dump_skip(struct coredump_params *cprm, size_t nr)
 709{
 710        static char zeroes[PAGE_SIZE];
 711        struct file *file = cprm->file;
 712        if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
 713                if (cprm->written + nr > cprm->limit)
 714                        return 0;
 715                if (dump_interrupted() ||
 716                    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
 717                        return 0;
 718                cprm->written += nr;
 719                return 1;
 720        } else {
 721                while (nr > PAGE_SIZE) {
 722                        if (!dump_emit(cprm, zeroes, PAGE_SIZE))
 723                                return 0;
 724                        nr -= PAGE_SIZE;
 725                }
 726                return dump_emit(cprm, zeroes, nr);
 727        }
 728}
 729EXPORT_SYMBOL(dump_skip);
 730
 731int dump_align(struct coredump_params *cprm, int align)
 732{
 733        unsigned mod = cprm->written & (align - 1);
 734        if (align & (align - 1))
 735                return 0;
 736        return mod ? dump_skip(cprm, align - mod) : 1;
 737}
 738EXPORT_SYMBOL(dump_align);
 739