linux/fs/ecryptfs/crypto.c
<<
>>
Prefs
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 *
   4 * Copyright (C) 1997-2004 Erez Zadok
   5 * Copyright (C) 2001-2004 Stony Brook University
   6 * Copyright (C) 2004-2007 International Business Machines Corp.
   7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   8 *              Michael C. Thompson <mcthomps@us.ibm.com>
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 of the
  13 * License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23 * 02111-1307, USA.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/mount.h>
  28#include <linux/pagemap.h>
  29#include <linux/random.h>
  30#include <linux/compiler.h>
  31#include <linux/key.h>
  32#include <linux/namei.h>
  33#include <linux/crypto.h>
  34#include <linux/file.h>
  35#include <linux/scatterlist.h>
  36#include <linux/slab.h>
  37#include <asm/unaligned.h>
  38#include "ecryptfs_kernel.h"
  39
  40#define DECRYPT         0
  41#define ENCRYPT         1
  42
  43/**
  44 * ecryptfs_to_hex
  45 * @dst: Buffer to take hex character representation of contents of
  46 *       src; must be at least of size (src_size * 2)
  47 * @src: Buffer to be converted to a hex string respresentation
  48 * @src_size: number of bytes to convert
  49 */
  50void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
  51{
  52        int x;
  53
  54        for (x = 0; x < src_size; x++)
  55                sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
  56}
  57
  58/**
  59 * ecryptfs_from_hex
  60 * @dst: Buffer to take the bytes from src hex; must be at least of
  61 *       size (src_size / 2)
  62 * @src: Buffer to be converted from a hex string respresentation to raw value
  63 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  64 */
  65void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  66{
  67        int x;
  68        char tmp[3] = { 0, };
  69
  70        for (x = 0; x < dst_size; x++) {
  71                tmp[0] = src[x * 2];
  72                tmp[1] = src[x * 2 + 1];
  73                dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  74        }
  75}
  76
  77/**
  78 * ecryptfs_calculate_md5 - calculates the md5 of @src
  79 * @dst: Pointer to 16 bytes of allocated memory
  80 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  81 * @src: Data to be md5'd
  82 * @len: Length of @src
  83 *
  84 * Uses the allocated crypto context that crypt_stat references to
  85 * generate the MD5 sum of the contents of src.
  86 */
  87static int ecryptfs_calculate_md5(char *dst,
  88                                  struct ecryptfs_crypt_stat *crypt_stat,
  89                                  char *src, int len)
  90{
  91        struct scatterlist sg;
  92        struct hash_desc desc = {
  93                .tfm = crypt_stat->hash_tfm,
  94                .flags = CRYPTO_TFM_REQ_MAY_SLEEP
  95        };
  96        int rc = 0;
  97
  98        mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
  99        sg_init_one(&sg, (u8 *)src, len);
 100        if (!desc.tfm) {
 101                desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
 102                                             CRYPTO_ALG_ASYNC);
 103                if (IS_ERR(desc.tfm)) {
 104                        rc = PTR_ERR(desc.tfm);
 105                        ecryptfs_printk(KERN_ERR, "Error attempting to "
 106                                        "allocate crypto context; rc = [%d]\n",
 107                                        rc);
 108                        goto out;
 109                }
 110                crypt_stat->hash_tfm = desc.tfm;
 111        }
 112        rc = crypto_hash_init(&desc);
 113        if (rc) {
 114                printk(KERN_ERR
 115                       "%s: Error initializing crypto hash; rc = [%d]\n",
 116                       __func__, rc);
 117                goto out;
 118        }
 119        rc = crypto_hash_update(&desc, &sg, len);
 120        if (rc) {
 121                printk(KERN_ERR
 122                       "%s: Error updating crypto hash; rc = [%d]\n",
 123                       __func__, rc);
 124                goto out;
 125        }
 126        rc = crypto_hash_final(&desc, dst);
 127        if (rc) {
 128                printk(KERN_ERR
 129                       "%s: Error finalizing crypto hash; rc = [%d]\n",
 130                       __func__, rc);
 131                goto out;
 132        }
 133out:
 134        mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
 135        return rc;
 136}
 137
 138static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 139                                                  char *cipher_name,
 140                                                  char *chaining_modifier)
 141{
 142        int cipher_name_len = strlen(cipher_name);
 143        int chaining_modifier_len = strlen(chaining_modifier);
 144        int algified_name_len;
 145        int rc;
 146
 147        algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 148        (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 149        if (!(*algified_name)) {
 150                rc = -ENOMEM;
 151                goto out;
 152        }
 153        snprintf((*algified_name), algified_name_len, "%s(%s)",
 154                 chaining_modifier, cipher_name);
 155        rc = 0;
 156out:
 157        return rc;
 158}
 159
 160/**
 161 * ecryptfs_derive_iv
 162 * @iv: destination for the derived iv vale
 163 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 164 * @offset: Offset of the extent whose IV we are to derive
 165 *
 166 * Generate the initialization vector from the given root IV and page
 167 * offset.
 168 *
 169 * Returns zero on success; non-zero on error.
 170 */
 171int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 172                       loff_t offset)
 173{
 174        int rc = 0;
 175        char dst[MD5_DIGEST_SIZE];
 176        char src[ECRYPTFS_MAX_IV_BYTES + 16];
 177
 178        if (unlikely(ecryptfs_verbosity > 0)) {
 179                ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 180                ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 181        }
 182        /* TODO: It is probably secure to just cast the least
 183         * significant bits of the root IV into an unsigned long and
 184         * add the offset to that rather than go through all this
 185         * hashing business. -Halcrow */
 186        memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 187        memset((src + crypt_stat->iv_bytes), 0, 16);
 188        snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 189        if (unlikely(ecryptfs_verbosity > 0)) {
 190                ecryptfs_printk(KERN_DEBUG, "source:\n");
 191                ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 192        }
 193        rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 194                                    (crypt_stat->iv_bytes + 16));
 195        if (rc) {
 196                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 197                                "MD5 while generating IV for a page\n");
 198                goto out;
 199        }
 200        memcpy(iv, dst, crypt_stat->iv_bytes);
 201        if (unlikely(ecryptfs_verbosity > 0)) {
 202                ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 203                ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 204        }
 205out:
 206        return rc;
 207}
 208
 209/**
 210 * ecryptfs_init_crypt_stat
 211 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 212 *
 213 * Initialize the crypt_stat structure.
 214 */
 215void
 216ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 217{
 218        memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 219        INIT_LIST_HEAD(&crypt_stat->keysig_list);
 220        mutex_init(&crypt_stat->keysig_list_mutex);
 221        mutex_init(&crypt_stat->cs_mutex);
 222        mutex_init(&crypt_stat->cs_tfm_mutex);
 223        mutex_init(&crypt_stat->cs_hash_tfm_mutex);
 224        crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 225}
 226
 227/**
 228 * ecryptfs_destroy_crypt_stat
 229 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 230 *
 231 * Releases all memory associated with a crypt_stat struct.
 232 */
 233void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 234{
 235        struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 236
 237        if (crypt_stat->tfm)
 238                crypto_free_ablkcipher(crypt_stat->tfm);
 239        if (crypt_stat->hash_tfm)
 240                crypto_free_hash(crypt_stat->hash_tfm);
 241        list_for_each_entry_safe(key_sig, key_sig_tmp,
 242                                 &crypt_stat->keysig_list, crypt_stat_list) {
 243                list_del(&key_sig->crypt_stat_list);
 244                kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 245        }
 246        memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 247}
 248
 249void ecryptfs_destroy_mount_crypt_stat(
 250        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 251{
 252        struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 253
 254        if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 255                return;
 256        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 257        list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 258                                 &mount_crypt_stat->global_auth_tok_list,
 259                                 mount_crypt_stat_list) {
 260                list_del(&auth_tok->mount_crypt_stat_list);
 261                if (auth_tok->global_auth_tok_key
 262                    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 263                        key_put(auth_tok->global_auth_tok_key);
 264                kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 265        }
 266        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 267        memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 268}
 269
 270/**
 271 * virt_to_scatterlist
 272 * @addr: Virtual address
 273 * @size: Size of data; should be an even multiple of the block size
 274 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 275 *      the number of scatterlist structs required in array
 276 * @sg_size: Max array size
 277 *
 278 * Fills in a scatterlist array with page references for a passed
 279 * virtual address.
 280 *
 281 * Returns the number of scatterlist structs in array used
 282 */
 283int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 284                        int sg_size)
 285{
 286        int i = 0;
 287        struct page *pg;
 288        int offset;
 289        int remainder_of_page;
 290
 291        sg_init_table(sg, sg_size);
 292
 293        while (size > 0 && i < sg_size) {
 294                pg = virt_to_page(addr);
 295                offset = offset_in_page(addr);
 296                sg_set_page(&sg[i], pg, 0, offset);
 297                remainder_of_page = PAGE_CACHE_SIZE - offset;
 298                if (size >= remainder_of_page) {
 299                        sg[i].length = remainder_of_page;
 300                        addr += remainder_of_page;
 301                        size -= remainder_of_page;
 302                } else {
 303                        sg[i].length = size;
 304                        addr += size;
 305                        size = 0;
 306                }
 307                i++;
 308        }
 309        if (size > 0)
 310                return -ENOMEM;
 311        return i;
 312}
 313
 314struct extent_crypt_result {
 315        struct completion completion;
 316        int rc;
 317};
 318
 319static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 320{
 321        struct extent_crypt_result *ecr = req->data;
 322
 323        if (rc == -EINPROGRESS)
 324                return;
 325
 326        ecr->rc = rc;
 327        complete(&ecr->completion);
 328}
 329
 330/**
 331 * crypt_scatterlist
 332 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 333 * @dst_sg: Destination of the data after performing the crypto operation
 334 * @src_sg: Data to be encrypted or decrypted
 335 * @size: Length of data
 336 * @iv: IV to use
 337 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 338 *
 339 * Returns the number of bytes encrypted or decrypted; negative value on error
 340 */
 341static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 342                             struct scatterlist *dst_sg,
 343                             struct scatterlist *src_sg, int size,
 344                             unsigned char *iv, int op)
 345{
 346        struct ablkcipher_request *req = NULL;
 347        struct extent_crypt_result ecr;
 348        int rc = 0;
 349
 350        BUG_ON(!crypt_stat || !crypt_stat->tfm
 351               || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 352        if (unlikely(ecryptfs_verbosity > 0)) {
 353                ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 354                                crypt_stat->key_size);
 355                ecryptfs_dump_hex(crypt_stat->key,
 356                                  crypt_stat->key_size);
 357        }
 358
 359        init_completion(&ecr.completion);
 360
 361        mutex_lock(&crypt_stat->cs_tfm_mutex);
 362        req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 363        if (!req) {
 364                mutex_unlock(&crypt_stat->cs_tfm_mutex);
 365                rc = -ENOMEM;
 366                goto out;
 367        }
 368
 369        ablkcipher_request_set_callback(req,
 370                        CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 371                        extent_crypt_complete, &ecr);
 372        /* Consider doing this once, when the file is opened */
 373        if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 374                rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 375                                              crypt_stat->key_size);
 376                if (rc) {
 377                        ecryptfs_printk(KERN_ERR,
 378                                        "Error setting key; rc = [%d]\n",
 379                                        rc);
 380                        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 381                        rc = -EINVAL;
 382                        goto out;
 383                }
 384                crypt_stat->flags |= ECRYPTFS_KEY_SET;
 385        }
 386        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 387        ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
 388        rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
 389                             crypto_ablkcipher_decrypt(req);
 390        if (rc == -EINPROGRESS || rc == -EBUSY) {
 391                struct extent_crypt_result *ecr = req->base.data;
 392
 393                wait_for_completion(&ecr->completion);
 394                rc = ecr->rc;
 395                reinit_completion(&ecr->completion);
 396        }
 397out:
 398        ablkcipher_request_free(req);
 399        return rc;
 400}
 401
 402/**
 403 * lower_offset_for_page
 404 *
 405 * Convert an eCryptfs page index into a lower byte offset
 406 */
 407static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
 408                                    struct page *page)
 409{
 410        return ecryptfs_lower_header_size(crypt_stat) +
 411               ((loff_t)page->index << PAGE_CACHE_SHIFT);
 412}
 413
 414/**
 415 * crypt_extent
 416 * @crypt_stat: crypt_stat containing cryptographic context for the
 417 *              encryption operation
 418 * @dst_page: The page to write the result into
 419 * @src_page: The page to read from
 420 * @extent_offset: Page extent offset for use in generating IV
 421 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 422 *
 423 * Encrypts or decrypts one extent of data.
 424 *
 425 * Return zero on success; non-zero otherwise
 426 */
 427static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
 428                        struct page *dst_page,
 429                        struct page *src_page,
 430                        unsigned long extent_offset, int op)
 431{
 432        pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
 433        loff_t extent_base;
 434        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 435        struct scatterlist src_sg, dst_sg;
 436        size_t extent_size = crypt_stat->extent_size;
 437        int rc;
 438
 439        extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
 440        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 441                                (extent_base + extent_offset));
 442        if (rc) {
 443                ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 444                        "extent [0x%.16llx]; rc = [%d]\n",
 445                        (unsigned long long)(extent_base + extent_offset), rc);
 446                goto out;
 447        }
 448
 449        sg_init_table(&src_sg, 1);
 450        sg_init_table(&dst_sg, 1);
 451
 452        sg_set_page(&src_sg, src_page, extent_size,
 453                    extent_offset * extent_size);
 454        sg_set_page(&dst_sg, dst_page, extent_size,
 455                    extent_offset * extent_size);
 456
 457        rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
 458                               extent_iv, op);
 459        if (rc < 0) {
 460                printk(KERN_ERR "%s: Error attempting to crypt page with "
 461                       "page_index = [%ld], extent_offset = [%ld]; "
 462                       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
 463                goto out;
 464        }
 465        rc = 0;
 466out:
 467        return rc;
 468}
 469
 470/**
 471 * ecryptfs_encrypt_page
 472 * @page: Page mapped from the eCryptfs inode for the file; contains
 473 *        decrypted content that needs to be encrypted (to a temporary
 474 *        page; not in place) and written out to the lower file
 475 *
 476 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 477 * that eCryptfs pages may straddle the lower pages -- for instance,
 478 * if the file was created on a machine with an 8K page size
 479 * (resulting in an 8K header), and then the file is copied onto a
 480 * host with a 32K page size, then when reading page 0 of the eCryptfs
 481 * file, 24K of page 0 of the lower file will be read and decrypted,
 482 * and then 8K of page 1 of the lower file will be read and decrypted.
 483 *
 484 * Returns zero on success; negative on error
 485 */
 486int ecryptfs_encrypt_page(struct page *page)
 487{
 488        struct inode *ecryptfs_inode;
 489        struct ecryptfs_crypt_stat *crypt_stat;
 490        char *enc_extent_virt;
 491        struct page *enc_extent_page = NULL;
 492        loff_t extent_offset;
 493        loff_t lower_offset;
 494        int rc = 0;
 495
 496        ecryptfs_inode = page->mapping->host;
 497        crypt_stat =
 498                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 499        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 500        enc_extent_page = alloc_page(GFP_USER);
 501        if (!enc_extent_page) {
 502                rc = -ENOMEM;
 503                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 504                                "encrypted extent\n");
 505                goto out;
 506        }
 507
 508        for (extent_offset = 0;
 509             extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 510             extent_offset++) {
 511                rc = crypt_extent(crypt_stat, enc_extent_page, page,
 512                                  extent_offset, ENCRYPT);
 513                if (rc) {
 514                        printk(KERN_ERR "%s: Error encrypting extent; "
 515                               "rc = [%d]\n", __func__, rc);
 516                        goto out;
 517                }
 518        }
 519
 520        lower_offset = lower_offset_for_page(crypt_stat, page);
 521        enc_extent_virt = kmap(enc_extent_page);
 522        rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
 523                                  PAGE_CACHE_SIZE);
 524        kunmap(enc_extent_page);
 525        if (rc < 0) {
 526                ecryptfs_printk(KERN_ERR,
 527                        "Error attempting to write lower page; rc = [%d]\n",
 528                        rc);
 529                goto out;
 530        }
 531        rc = 0;
 532out:
 533        if (enc_extent_page) {
 534                __free_page(enc_extent_page);
 535        }
 536        return rc;
 537}
 538
 539/**
 540 * ecryptfs_decrypt_page
 541 * @page: Page mapped from the eCryptfs inode for the file; data read
 542 *        and decrypted from the lower file will be written into this
 543 *        page
 544 *
 545 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 546 * that eCryptfs pages may straddle the lower pages -- for instance,
 547 * if the file was created on a machine with an 8K page size
 548 * (resulting in an 8K header), and then the file is copied onto a
 549 * host with a 32K page size, then when reading page 0 of the eCryptfs
 550 * file, 24K of page 0 of the lower file will be read and decrypted,
 551 * and then 8K of page 1 of the lower file will be read and decrypted.
 552 *
 553 * Returns zero on success; negative on error
 554 */
 555int ecryptfs_decrypt_page(struct page *page)
 556{
 557        struct inode *ecryptfs_inode;
 558        struct ecryptfs_crypt_stat *crypt_stat;
 559        char *page_virt;
 560        unsigned long extent_offset;
 561        loff_t lower_offset;
 562        int rc = 0;
 563
 564        ecryptfs_inode = page->mapping->host;
 565        crypt_stat =
 566                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 567        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 568
 569        lower_offset = lower_offset_for_page(crypt_stat, page);
 570        page_virt = kmap(page);
 571        rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
 572                                 ecryptfs_inode);
 573        kunmap(page);
 574        if (rc < 0) {
 575                ecryptfs_printk(KERN_ERR,
 576                        "Error attempting to read lower page; rc = [%d]\n",
 577                        rc);
 578                goto out;
 579        }
 580
 581        for (extent_offset = 0;
 582             extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 583             extent_offset++) {
 584                rc = crypt_extent(crypt_stat, page, page,
 585                                  extent_offset, DECRYPT);
 586                if (rc) {
 587                        printk(KERN_ERR "%s: Error encrypting extent; "
 588                               "rc = [%d]\n", __func__, rc);
 589                        goto out;
 590                }
 591        }
 592out:
 593        return rc;
 594}
 595
 596#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 597
 598/**
 599 * ecryptfs_init_crypt_ctx
 600 * @crypt_stat: Uninitialized crypt stats structure
 601 *
 602 * Initialize the crypto context.
 603 *
 604 * TODO: Performance: Keep a cache of initialized cipher contexts;
 605 * only init if needed
 606 */
 607int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 608{
 609        char *full_alg_name;
 610        int rc = -EINVAL;
 611
 612        ecryptfs_printk(KERN_DEBUG,
 613                        "Initializing cipher [%s]; strlen = [%d]; "
 614                        "key_size_bits = [%zd]\n",
 615                        crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 616                        crypt_stat->key_size << 3);
 617        mutex_lock(&crypt_stat->cs_tfm_mutex);
 618        if (crypt_stat->tfm) {
 619                rc = 0;
 620                goto out_unlock;
 621        }
 622        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 623                                                    crypt_stat->cipher, "cbc");
 624        if (rc)
 625                goto out_unlock;
 626        crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
 627        if (IS_ERR(crypt_stat->tfm)) {
 628                rc = PTR_ERR(crypt_stat->tfm);
 629                crypt_stat->tfm = NULL;
 630                ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 631                                "Error initializing cipher [%s]\n",
 632                                full_alg_name);
 633                goto out_free;
 634        }
 635        crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 636        rc = 0;
 637out_free:
 638        kfree(full_alg_name);
 639out_unlock:
 640        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 641        return rc;
 642}
 643
 644static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 645{
 646        int extent_size_tmp;
 647
 648        crypt_stat->extent_mask = 0xFFFFFFFF;
 649        crypt_stat->extent_shift = 0;
 650        if (crypt_stat->extent_size == 0)
 651                return;
 652        extent_size_tmp = crypt_stat->extent_size;
 653        while ((extent_size_tmp & 0x01) == 0) {
 654                extent_size_tmp >>= 1;
 655                crypt_stat->extent_mask <<= 1;
 656                crypt_stat->extent_shift++;
 657        }
 658}
 659
 660void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 661{
 662        /* Default values; may be overwritten as we are parsing the
 663         * packets. */
 664        crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 665        set_extent_mask_and_shift(crypt_stat);
 666        crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 667        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 668                crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 669        else {
 670                if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 671                        crypt_stat->metadata_size =
 672                                ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 673                else
 674                        crypt_stat->metadata_size = PAGE_CACHE_SIZE;
 675        }
 676}
 677
 678/**
 679 * ecryptfs_compute_root_iv
 680 * @crypt_stats
 681 *
 682 * On error, sets the root IV to all 0's.
 683 */
 684int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 685{
 686        int rc = 0;
 687        char dst[MD5_DIGEST_SIZE];
 688
 689        BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 690        BUG_ON(crypt_stat->iv_bytes <= 0);
 691        if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 692                rc = -EINVAL;
 693                ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 694                                "cannot generate root IV\n");
 695                goto out;
 696        }
 697        rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 698                                    crypt_stat->key_size);
 699        if (rc) {
 700                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 701                                "MD5 while generating root IV\n");
 702                goto out;
 703        }
 704        memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 705out:
 706        if (rc) {
 707                memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 708                crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 709        }
 710        return rc;
 711}
 712
 713static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 714{
 715        get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 716        crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 717        ecryptfs_compute_root_iv(crypt_stat);
 718        if (unlikely(ecryptfs_verbosity > 0)) {
 719                ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 720                ecryptfs_dump_hex(crypt_stat->key,
 721                                  crypt_stat->key_size);
 722        }
 723}
 724
 725/**
 726 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 727 * @crypt_stat: The inode's cryptographic context
 728 * @mount_crypt_stat: The mount point's cryptographic context
 729 *
 730 * This function propagates the mount-wide flags to individual inode
 731 * flags.
 732 */
 733static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 734        struct ecryptfs_crypt_stat *crypt_stat,
 735        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 736{
 737        if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 738                crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 739        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 740                crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 741        if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 742                crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 743                if (mount_crypt_stat->flags
 744                    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 745                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 746                else if (mount_crypt_stat->flags
 747                         & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 748                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 749        }
 750}
 751
 752static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 753        struct ecryptfs_crypt_stat *crypt_stat,
 754        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 755{
 756        struct ecryptfs_global_auth_tok *global_auth_tok;
 757        int rc = 0;
 758
 759        mutex_lock(&crypt_stat->keysig_list_mutex);
 760        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 761
 762        list_for_each_entry(global_auth_tok,
 763                            &mount_crypt_stat->global_auth_tok_list,
 764                            mount_crypt_stat_list) {
 765                if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 766                        continue;
 767                rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 768                if (rc) {
 769                        printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 770                        goto out;
 771                }
 772        }
 773
 774out:
 775        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 776        mutex_unlock(&crypt_stat->keysig_list_mutex);
 777        return rc;
 778}
 779
 780/**
 781 * ecryptfs_set_default_crypt_stat_vals
 782 * @crypt_stat: The inode's cryptographic context
 783 * @mount_crypt_stat: The mount point's cryptographic context
 784 *
 785 * Default values in the event that policy does not override them.
 786 */
 787static void ecryptfs_set_default_crypt_stat_vals(
 788        struct ecryptfs_crypt_stat *crypt_stat,
 789        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 790{
 791        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 792                                                      mount_crypt_stat);
 793        ecryptfs_set_default_sizes(crypt_stat);
 794        strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 795        crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 796        crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 797        crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 798        crypt_stat->mount_crypt_stat = mount_crypt_stat;
 799}
 800
 801/**
 802 * ecryptfs_new_file_context
 803 * @ecryptfs_inode: The eCryptfs inode
 804 *
 805 * If the crypto context for the file has not yet been established,
 806 * this is where we do that.  Establishing a new crypto context
 807 * involves the following decisions:
 808 *  - What cipher to use?
 809 *  - What set of authentication tokens to use?
 810 * Here we just worry about getting enough information into the
 811 * authentication tokens so that we know that they are available.
 812 * We associate the available authentication tokens with the new file
 813 * via the set of signatures in the crypt_stat struct.  Later, when
 814 * the headers are actually written out, we may again defer to
 815 * userspace to perform the encryption of the session key; for the
 816 * foreseeable future, this will be the case with public key packets.
 817 *
 818 * Returns zero on success; non-zero otherwise
 819 */
 820int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 821{
 822        struct ecryptfs_crypt_stat *crypt_stat =
 823            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 824        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 825            &ecryptfs_superblock_to_private(
 826                    ecryptfs_inode->i_sb)->mount_crypt_stat;
 827        int cipher_name_len;
 828        int rc = 0;
 829
 830        ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 831        crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 832        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 833                                                      mount_crypt_stat);
 834        rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 835                                                         mount_crypt_stat);
 836        if (rc) {
 837                printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 838                       "to the inode key sigs; rc = [%d]\n", rc);
 839                goto out;
 840        }
 841        cipher_name_len =
 842                strlen(mount_crypt_stat->global_default_cipher_name);
 843        memcpy(crypt_stat->cipher,
 844               mount_crypt_stat->global_default_cipher_name,
 845               cipher_name_len);
 846        crypt_stat->cipher[cipher_name_len] = '\0';
 847        crypt_stat->key_size =
 848                mount_crypt_stat->global_default_cipher_key_size;
 849        ecryptfs_generate_new_key(crypt_stat);
 850        rc = ecryptfs_init_crypt_ctx(crypt_stat);
 851        if (rc)
 852                ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 853                                "context for cipher [%s]: rc = [%d]\n",
 854                                crypt_stat->cipher, rc);
 855out:
 856        return rc;
 857}
 858
 859/**
 860 * ecryptfs_validate_marker - check for the ecryptfs marker
 861 * @data: The data block in which to check
 862 *
 863 * Returns zero if marker found; -EINVAL if not found
 864 */
 865static int ecryptfs_validate_marker(char *data)
 866{
 867        u32 m_1, m_2;
 868
 869        m_1 = get_unaligned_be32(data);
 870        m_2 = get_unaligned_be32(data + 4);
 871        if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 872                return 0;
 873        ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 874                        "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 875                        MAGIC_ECRYPTFS_MARKER);
 876        ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 877                        "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 878        return -EINVAL;
 879}
 880
 881struct ecryptfs_flag_map_elem {
 882        u32 file_flag;
 883        u32 local_flag;
 884};
 885
 886/* Add support for additional flags by adding elements here. */
 887static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 888        {0x00000001, ECRYPTFS_ENABLE_HMAC},
 889        {0x00000002, ECRYPTFS_ENCRYPTED},
 890        {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
 891        {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
 892};
 893
 894/**
 895 * ecryptfs_process_flags
 896 * @crypt_stat: The cryptographic context
 897 * @page_virt: Source data to be parsed
 898 * @bytes_read: Updated with the number of bytes read
 899 *
 900 * Returns zero on success; non-zero if the flag set is invalid
 901 */
 902static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 903                                  char *page_virt, int *bytes_read)
 904{
 905        int rc = 0;
 906        int i;
 907        u32 flags;
 908
 909        flags = get_unaligned_be32(page_virt);
 910        for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 911                          / sizeof(struct ecryptfs_flag_map_elem))); i++)
 912                if (flags & ecryptfs_flag_map[i].file_flag) {
 913                        crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 914                } else
 915                        crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 916        /* Version is in top 8 bits of the 32-bit flag vector */
 917        crypt_stat->file_version = ((flags >> 24) & 0xFF);
 918        (*bytes_read) = 4;
 919        return rc;
 920}
 921
 922/**
 923 * write_ecryptfs_marker
 924 * @page_virt: The pointer to in a page to begin writing the marker
 925 * @written: Number of bytes written
 926 *
 927 * Marker = 0x3c81b7f5
 928 */
 929static void write_ecryptfs_marker(char *page_virt, size_t *written)
 930{
 931        u32 m_1, m_2;
 932
 933        get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 934        m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 935        put_unaligned_be32(m_1, page_virt);
 936        page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 937        put_unaligned_be32(m_2, page_virt);
 938        (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 939}
 940
 941void ecryptfs_write_crypt_stat_flags(char *page_virt,
 942                                     struct ecryptfs_crypt_stat *crypt_stat,
 943                                     size_t *written)
 944{
 945        u32 flags = 0;
 946        int i;
 947
 948        for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 949                          / sizeof(struct ecryptfs_flag_map_elem))); i++)
 950                if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 951                        flags |= ecryptfs_flag_map[i].file_flag;
 952        /* Version is in top 8 bits of the 32-bit flag vector */
 953        flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 954        put_unaligned_be32(flags, page_virt);
 955        (*written) = 4;
 956}
 957
 958struct ecryptfs_cipher_code_str_map_elem {
 959        char cipher_str[16];
 960        u8 cipher_code;
 961};
 962
 963/* Add support for additional ciphers by adding elements here. The
 964 * cipher_code is whatever OpenPGP applicatoins use to identify the
 965 * ciphers. List in order of probability. */
 966static struct ecryptfs_cipher_code_str_map_elem
 967ecryptfs_cipher_code_str_map[] = {
 968        {"aes",RFC2440_CIPHER_AES_128 },
 969        {"blowfish", RFC2440_CIPHER_BLOWFISH},
 970        {"des3_ede", RFC2440_CIPHER_DES3_EDE},
 971        {"cast5", RFC2440_CIPHER_CAST_5},
 972        {"twofish", RFC2440_CIPHER_TWOFISH},
 973        {"cast6", RFC2440_CIPHER_CAST_6},
 974        {"aes", RFC2440_CIPHER_AES_192},
 975        {"aes", RFC2440_CIPHER_AES_256}
 976};
 977
 978/**
 979 * ecryptfs_code_for_cipher_string
 980 * @cipher_name: The string alias for the cipher
 981 * @key_bytes: Length of key in bytes; used for AES code selection
 982 *
 983 * Returns zero on no match, or the cipher code on match
 984 */
 985u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
 986{
 987        int i;
 988        u8 code = 0;
 989        struct ecryptfs_cipher_code_str_map_elem *map =
 990                ecryptfs_cipher_code_str_map;
 991
 992        if (strcmp(cipher_name, "aes") == 0) {
 993                switch (key_bytes) {
 994                case 16:
 995                        code = RFC2440_CIPHER_AES_128;
 996                        break;
 997                case 24:
 998                        code = RFC2440_CIPHER_AES_192;
 999                        break;
1000                case 32:
1001                        code = RFC2440_CIPHER_AES_256;
1002                }
1003        } else {
1004                for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1005                        if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1006                                code = map[i].cipher_code;
1007                                break;
1008                        }
1009        }
1010        return code;
1011}
1012
1013/**
1014 * ecryptfs_cipher_code_to_string
1015 * @str: Destination to write out the cipher name
1016 * @cipher_code: The code to convert to cipher name string
1017 *
1018 * Returns zero on success
1019 */
1020int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1021{
1022        int rc = 0;
1023        int i;
1024
1025        str[0] = '\0';
1026        for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1027                if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1028                        strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1029        if (str[0] == '\0') {
1030                ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1031                                "[%d]\n", cipher_code);
1032                rc = -EINVAL;
1033        }
1034        return rc;
1035}
1036
1037int ecryptfs_read_and_validate_header_region(struct inode *inode)
1038{
1039        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1040        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1041        int rc;
1042
1043        rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1044                                 inode);
1045        if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1046                return rc >= 0 ? -EINVAL : rc;
1047        rc = ecryptfs_validate_marker(marker);
1048        if (!rc)
1049                ecryptfs_i_size_init(file_size, inode);
1050        return rc;
1051}
1052
1053void
1054ecryptfs_write_header_metadata(char *virt,
1055                               struct ecryptfs_crypt_stat *crypt_stat,
1056                               size_t *written)
1057{
1058        u32 header_extent_size;
1059        u16 num_header_extents_at_front;
1060
1061        header_extent_size = (u32)crypt_stat->extent_size;
1062        num_header_extents_at_front =
1063                (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1064        put_unaligned_be32(header_extent_size, virt);
1065        virt += 4;
1066        put_unaligned_be16(num_header_extents_at_front, virt);
1067        (*written) = 6;
1068}
1069
1070struct kmem_cache *ecryptfs_header_cache;
1071
1072/**
1073 * ecryptfs_write_headers_virt
1074 * @page_virt: The virtual address to write the headers to
1075 * @max: The size of memory allocated at page_virt
1076 * @size: Set to the number of bytes written by this function
1077 * @crypt_stat: The cryptographic context
1078 * @ecryptfs_dentry: The eCryptfs dentry
1079 *
1080 * Format version: 1
1081 *
1082 *   Header Extent:
1083 *     Octets 0-7:        Unencrypted file size (big-endian)
1084 *     Octets 8-15:       eCryptfs special marker
1085 *     Octets 16-19:      Flags
1086 *      Octet 16:         File format version number (between 0 and 255)
1087 *      Octets 17-18:     Reserved
1088 *      Octet 19:         Bit 1 (lsb): Reserved
1089 *                        Bit 2: Encrypted?
1090 *                        Bits 3-8: Reserved
1091 *     Octets 20-23:      Header extent size (big-endian)
1092 *     Octets 24-25:      Number of header extents at front of file
1093 *                        (big-endian)
1094 *     Octet  26:         Begin RFC 2440 authentication token packet set
1095 *   Data Extent 0:
1096 *     Lower data (CBC encrypted)
1097 *   Data Extent 1:
1098 *     Lower data (CBC encrypted)
1099 *   ...
1100 *
1101 * Returns zero on success
1102 */
1103static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1104                                       size_t *size,
1105                                       struct ecryptfs_crypt_stat *crypt_stat,
1106                                       struct dentry *ecryptfs_dentry)
1107{
1108        int rc;
1109        size_t written;
1110        size_t offset;
1111
1112        offset = ECRYPTFS_FILE_SIZE_BYTES;
1113        write_ecryptfs_marker((page_virt + offset), &written);
1114        offset += written;
1115        ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1116                                        &written);
1117        offset += written;
1118        ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1119                                       &written);
1120        offset += written;
1121        rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1122                                              ecryptfs_dentry, &written,
1123                                              max - offset);
1124        if (rc)
1125                ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1126                                "set; rc = [%d]\n", rc);
1127        if (size) {
1128                offset += written;
1129                *size = offset;
1130        }
1131        return rc;
1132}
1133
1134static int
1135ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1136                                    char *virt, size_t virt_len)
1137{
1138        int rc;
1139
1140        rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1141                                  0, virt_len);
1142        if (rc < 0)
1143                printk(KERN_ERR "%s: Error attempting to write header "
1144                       "information to lower file; rc = [%d]\n", __func__, rc);
1145        else
1146                rc = 0;
1147        return rc;
1148}
1149
1150static int
1151ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1152                                 char *page_virt, size_t size)
1153{
1154        int rc;
1155
1156        rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1157                               size, 0);
1158        return rc;
1159}
1160
1161static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1162                                               unsigned int order)
1163{
1164        struct page *page;
1165
1166        page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1167        if (page)
1168                return (unsigned long) page_address(page);
1169        return 0;
1170}
1171
1172/**
1173 * ecryptfs_write_metadata
1174 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1175 * @ecryptfs_inode: The newly created eCryptfs inode
1176 *
1177 * Write the file headers out.  This will likely involve a userspace
1178 * callout, in which the session key is encrypted with one or more
1179 * public keys and/or the passphrase necessary to do the encryption is
1180 * retrieved via a prompt.  Exactly what happens at this point should
1181 * be policy-dependent.
1182 *
1183 * Returns zero on success; non-zero on error
1184 */
1185int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1186                            struct inode *ecryptfs_inode)
1187{
1188        struct ecryptfs_crypt_stat *crypt_stat =
1189                &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1190        unsigned int order;
1191        char *virt;
1192        size_t virt_len;
1193        size_t size = 0;
1194        int rc = 0;
1195
1196        if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1197                if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1198                        printk(KERN_ERR "Key is invalid; bailing out\n");
1199                        rc = -EINVAL;
1200                        goto out;
1201                }
1202        } else {
1203                printk(KERN_WARNING "%s: Encrypted flag not set\n",
1204                       __func__);
1205                rc = -EINVAL;
1206                goto out;
1207        }
1208        virt_len = crypt_stat->metadata_size;
1209        order = get_order(virt_len);
1210        /* Released in this function */
1211        virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1212        if (!virt) {
1213                printk(KERN_ERR "%s: Out of memory\n", __func__);
1214                rc = -ENOMEM;
1215                goto out;
1216        }
1217        /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1218        rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1219                                         ecryptfs_dentry);
1220        if (unlikely(rc)) {
1221                printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1222                       __func__, rc);
1223                goto out_free;
1224        }
1225        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1226                rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1227                                                      size);
1228        else
1229                rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1230                                                         virt_len);
1231        if (rc) {
1232                printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1233                       "rc = [%d]\n", __func__, rc);
1234                goto out_free;
1235        }
1236out_free:
1237        free_pages((unsigned long)virt, order);
1238out:
1239        return rc;
1240}
1241
1242#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1243#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1244static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1245                                 char *virt, int *bytes_read,
1246                                 int validate_header_size)
1247{
1248        int rc = 0;
1249        u32 header_extent_size;
1250        u16 num_header_extents_at_front;
1251
1252        header_extent_size = get_unaligned_be32(virt);
1253        virt += sizeof(__be32);
1254        num_header_extents_at_front = get_unaligned_be16(virt);
1255        crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1256                                     * (size_t)header_extent_size));
1257        (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1258        if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1259            && (crypt_stat->metadata_size
1260                < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1261                rc = -EINVAL;
1262                printk(KERN_WARNING "Invalid header size: [%zd]\n",
1263                       crypt_stat->metadata_size);
1264        }
1265        return rc;
1266}
1267
1268/**
1269 * set_default_header_data
1270 * @crypt_stat: The cryptographic context
1271 *
1272 * For version 0 file format; this function is only for backwards
1273 * compatibility for files created with the prior versions of
1274 * eCryptfs.
1275 */
1276static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1277{
1278        crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1279}
1280
1281void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1282{
1283        struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1284        struct ecryptfs_crypt_stat *crypt_stat;
1285        u64 file_size;
1286
1287        crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1288        mount_crypt_stat =
1289                &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1290        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1291                file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1292                if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1293                        file_size += crypt_stat->metadata_size;
1294        } else
1295                file_size = get_unaligned_be64(page_virt);
1296        i_size_write(inode, (loff_t)file_size);
1297        crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1298}
1299
1300/**
1301 * ecryptfs_read_headers_virt
1302 * @page_virt: The virtual address into which to read the headers
1303 * @crypt_stat: The cryptographic context
1304 * @ecryptfs_dentry: The eCryptfs dentry
1305 * @validate_header_size: Whether to validate the header size while reading
1306 *
1307 * Read/parse the header data. The header format is detailed in the
1308 * comment block for the ecryptfs_write_headers_virt() function.
1309 *
1310 * Returns zero on success
1311 */
1312static int ecryptfs_read_headers_virt(char *page_virt,
1313                                      struct ecryptfs_crypt_stat *crypt_stat,
1314                                      struct dentry *ecryptfs_dentry,
1315                                      int validate_header_size)
1316{
1317        int rc = 0;
1318        int offset;
1319        int bytes_read;
1320
1321        ecryptfs_set_default_sizes(crypt_stat);
1322        crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1323                ecryptfs_dentry->d_sb)->mount_crypt_stat;
1324        offset = ECRYPTFS_FILE_SIZE_BYTES;
1325        rc = ecryptfs_validate_marker(page_virt + offset);
1326        if (rc)
1327                goto out;
1328        if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1329                ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1330        offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1331        rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1332                                    &bytes_read);
1333        if (rc) {
1334                ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1335                goto out;
1336        }
1337        if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1338                ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1339                                "file version [%d] is supported by this "
1340                                "version of eCryptfs\n",
1341                                crypt_stat->file_version,
1342                                ECRYPTFS_SUPPORTED_FILE_VERSION);
1343                rc = -EINVAL;
1344                goto out;
1345        }
1346        offset += bytes_read;
1347        if (crypt_stat->file_version >= 1) {
1348                rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1349                                           &bytes_read, validate_header_size);
1350                if (rc) {
1351                        ecryptfs_printk(KERN_WARNING, "Error reading header "
1352                                        "metadata; rc = [%d]\n", rc);
1353                }
1354                offset += bytes_read;
1355        } else
1356                set_default_header_data(crypt_stat);
1357        rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1358                                       ecryptfs_dentry);
1359out:
1360        return rc;
1361}
1362
1363/**
1364 * ecryptfs_read_xattr_region
1365 * @page_virt: The vitual address into which to read the xattr data
1366 * @ecryptfs_inode: The eCryptfs inode
1367 *
1368 * Attempts to read the crypto metadata from the extended attribute
1369 * region of the lower file.
1370 *
1371 * Returns zero on success; non-zero on error
1372 */
1373int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1374{
1375        struct dentry *lower_dentry =
1376                ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1377        ssize_t size;
1378        int rc = 0;
1379
1380        size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1381                                       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1382        if (size < 0) {
1383                if (unlikely(ecryptfs_verbosity > 0))
1384                        printk(KERN_INFO "Error attempting to read the [%s] "
1385                               "xattr from the lower file; return value = "
1386                               "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1387                rc = -EINVAL;
1388                goto out;
1389        }
1390out:
1391        return rc;
1392}
1393
1394int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1395                                            struct inode *inode)
1396{
1397        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1398        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1399        int rc;
1400
1401        rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1402                                     ECRYPTFS_XATTR_NAME, file_size,
1403                                     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1404        if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1405                return rc >= 0 ? -EINVAL : rc;
1406        rc = ecryptfs_validate_marker(marker);
1407        if (!rc)
1408                ecryptfs_i_size_init(file_size, inode);
1409        return rc;
1410}
1411
1412/**
1413 * ecryptfs_read_metadata
1414 *
1415 * Common entry point for reading file metadata. From here, we could
1416 * retrieve the header information from the header region of the file,
1417 * the xattr region of the file, or some other repostory that is
1418 * stored separately from the file itself. The current implementation
1419 * supports retrieving the metadata information from the file contents
1420 * and from the xattr region.
1421 *
1422 * Returns zero if valid headers found and parsed; non-zero otherwise
1423 */
1424int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1425{
1426        int rc;
1427        char *page_virt;
1428        struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1429        struct ecryptfs_crypt_stat *crypt_stat =
1430            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1431        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1432                &ecryptfs_superblock_to_private(
1433                        ecryptfs_dentry->d_sb)->mount_crypt_stat;
1434
1435        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1436                                                      mount_crypt_stat);
1437        /* Read the first page from the underlying file */
1438        page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1439        if (!page_virt) {
1440                rc = -ENOMEM;
1441                printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1442                       __func__);
1443                goto out;
1444        }
1445        rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1446                                 ecryptfs_inode);
1447        if (rc >= 0)
1448                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1449                                                ecryptfs_dentry,
1450                                                ECRYPTFS_VALIDATE_HEADER_SIZE);
1451        if (rc) {
1452                /* metadata is not in the file header, so try xattrs */
1453                memset(page_virt, 0, PAGE_CACHE_SIZE);
1454                rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1455                if (rc) {
1456                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1457                               "file header region or xattr region, inode %lu\n",
1458                                ecryptfs_inode->i_ino);
1459                        rc = -EINVAL;
1460                        goto out;
1461                }
1462                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1463                                                ecryptfs_dentry,
1464                                                ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1465                if (rc) {
1466                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1467                               "file xattr region either, inode %lu\n",
1468                                ecryptfs_inode->i_ino);
1469                        rc = -EINVAL;
1470                }
1471                if (crypt_stat->mount_crypt_stat->flags
1472                    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1473                        crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1474                } else {
1475                        printk(KERN_WARNING "Attempt to access file with "
1476                               "crypto metadata only in the extended attribute "
1477                               "region, but eCryptfs was mounted without "
1478                               "xattr support enabled. eCryptfs will not treat "
1479                               "this like an encrypted file, inode %lu\n",
1480                                ecryptfs_inode->i_ino);
1481                        rc = -EINVAL;
1482                }
1483        }
1484out:
1485        if (page_virt) {
1486                memset(page_virt, 0, PAGE_CACHE_SIZE);
1487                kmem_cache_free(ecryptfs_header_cache, page_virt);
1488        }
1489        return rc;
1490}
1491
1492/**
1493 * ecryptfs_encrypt_filename - encrypt filename
1494 *
1495 * CBC-encrypts the filename. We do not want to encrypt the same
1496 * filename with the same key and IV, which may happen with hard
1497 * links, so we prepend random bits to each filename.
1498 *
1499 * Returns zero on success; non-zero otherwise
1500 */
1501static int
1502ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1503                          struct ecryptfs_crypt_stat *crypt_stat,
1504                          struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1505{
1506        int rc = 0;
1507
1508        filename->encrypted_filename = NULL;
1509        filename->encrypted_filename_size = 0;
1510        if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1511            || (mount_crypt_stat && (mount_crypt_stat->flags
1512                                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1513                size_t packet_size;
1514                size_t remaining_bytes;
1515
1516                rc = ecryptfs_write_tag_70_packet(
1517                        NULL, NULL,
1518                        &filename->encrypted_filename_size,
1519                        mount_crypt_stat, NULL,
1520                        filename->filename_size);
1521                if (rc) {
1522                        printk(KERN_ERR "%s: Error attempting to get packet "
1523                               "size for tag 72; rc = [%d]\n", __func__,
1524                               rc);
1525                        filename->encrypted_filename_size = 0;
1526                        goto out;
1527                }
1528                filename->encrypted_filename =
1529                        kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1530                if (!filename->encrypted_filename) {
1531                        printk(KERN_ERR "%s: Out of memory whilst attempting "
1532                               "to kmalloc [%zd] bytes\n", __func__,
1533                               filename->encrypted_filename_size);
1534                        rc = -ENOMEM;
1535                        goto out;
1536                }
1537                remaining_bytes = filename->encrypted_filename_size;
1538                rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1539                                                  &remaining_bytes,
1540                                                  &packet_size,
1541                                                  mount_crypt_stat,
1542                                                  filename->filename,
1543                                                  filename->filename_size);
1544                if (rc) {
1545                        printk(KERN_ERR "%s: Error attempting to generate "
1546                               "tag 70 packet; rc = [%d]\n", __func__,
1547                               rc);
1548                        kfree(filename->encrypted_filename);
1549                        filename->encrypted_filename = NULL;
1550                        filename->encrypted_filename_size = 0;
1551                        goto out;
1552                }
1553                filename->encrypted_filename_size = packet_size;
1554        } else {
1555                printk(KERN_ERR "%s: No support for requested filename "
1556                       "encryption method in this release\n", __func__);
1557                rc = -EOPNOTSUPP;
1558                goto out;
1559        }
1560out:
1561        return rc;
1562}
1563
1564static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1565                                  const char *name, size_t name_size)
1566{
1567        int rc = 0;
1568
1569        (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1570        if (!(*copied_name)) {
1571                rc = -ENOMEM;
1572                goto out;
1573        }
1574        memcpy((void *)(*copied_name), (void *)name, name_size);
1575        (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1576                                                 * in printing out the
1577                                                 * string in debug
1578                                                 * messages */
1579        (*copied_name_size) = name_size;
1580out:
1581        return rc;
1582}
1583
1584/**
1585 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1586 * @key_tfm: Crypto context for key material, set by this function
1587 * @cipher_name: Name of the cipher
1588 * @key_size: Size of the key in bytes
1589 *
1590 * Returns zero on success. Any crypto_tfm structs allocated here
1591 * should be released by other functions, such as on a superblock put
1592 * event, regardless of whether this function succeeds for fails.
1593 */
1594static int
1595ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1596                            char *cipher_name, size_t *key_size)
1597{
1598        char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1599        char *full_alg_name = NULL;
1600        int rc;
1601
1602        *key_tfm = NULL;
1603        if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1604                rc = -EINVAL;
1605                printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1606                      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1607                goto out;
1608        }
1609        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1610                                                    "ecb");
1611        if (rc)
1612                goto out;
1613        *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1614        if (IS_ERR(*key_tfm)) {
1615                rc = PTR_ERR(*key_tfm);
1616                printk(KERN_ERR "Unable to allocate crypto cipher with name "
1617                       "[%s]; rc = [%d]\n", full_alg_name, rc);
1618                goto out;
1619        }
1620        crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1621        if (*key_size == 0) {
1622                struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1623
1624                *key_size = alg->max_keysize;
1625        }
1626        get_random_bytes(dummy_key, *key_size);
1627        rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1628        if (rc) {
1629                printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1630                       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1631                       rc);
1632                rc = -EINVAL;
1633                goto out;
1634        }
1635out:
1636        kfree(full_alg_name);
1637        return rc;
1638}
1639
1640struct kmem_cache *ecryptfs_key_tfm_cache;
1641static struct list_head key_tfm_list;
1642struct mutex key_tfm_list_mutex;
1643
1644int __init ecryptfs_init_crypto(void)
1645{
1646        mutex_init(&key_tfm_list_mutex);
1647        INIT_LIST_HEAD(&key_tfm_list);
1648        return 0;
1649}
1650
1651/**
1652 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1653 *
1654 * Called only at module unload time
1655 */
1656int ecryptfs_destroy_crypto(void)
1657{
1658        struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1659
1660        mutex_lock(&key_tfm_list_mutex);
1661        list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1662                                 key_tfm_list) {
1663                list_del(&key_tfm->key_tfm_list);
1664                if (key_tfm->key_tfm)
1665                        crypto_free_blkcipher(key_tfm->key_tfm);
1666                kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1667        }
1668        mutex_unlock(&key_tfm_list_mutex);
1669        return 0;
1670}
1671
1672int
1673ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1674                         size_t key_size)
1675{
1676        struct ecryptfs_key_tfm *tmp_tfm;
1677        int rc = 0;
1678
1679        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1680
1681        tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1682        if (key_tfm != NULL)
1683                (*key_tfm) = tmp_tfm;
1684        if (!tmp_tfm) {
1685                rc = -ENOMEM;
1686                printk(KERN_ERR "Error attempting to allocate from "
1687                       "ecryptfs_key_tfm_cache\n");
1688                goto out;
1689        }
1690        mutex_init(&tmp_tfm->key_tfm_mutex);
1691        strncpy(tmp_tfm->cipher_name, cipher_name,
1692                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1693        tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1694        tmp_tfm->key_size = key_size;
1695        rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1696                                         tmp_tfm->cipher_name,
1697                                         &tmp_tfm->key_size);
1698        if (rc) {
1699                printk(KERN_ERR "Error attempting to initialize key TFM "
1700                       "cipher with name = [%s]; rc = [%d]\n",
1701                       tmp_tfm->cipher_name, rc);
1702                kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1703                if (key_tfm != NULL)
1704                        (*key_tfm) = NULL;
1705                goto out;
1706        }
1707        list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1708out:
1709        return rc;
1710}
1711
1712/**
1713 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1714 * @cipher_name: the name of the cipher to search for
1715 * @key_tfm: set to corresponding tfm if found
1716 *
1717 * Searches for cached key_tfm matching @cipher_name
1718 * Must be called with &key_tfm_list_mutex held
1719 * Returns 1 if found, with @key_tfm set
1720 * Returns 0 if not found, with @key_tfm set to NULL
1721 */
1722int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1723{
1724        struct ecryptfs_key_tfm *tmp_key_tfm;
1725
1726        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1727
1728        list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1729                if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1730                        if (key_tfm)
1731                                (*key_tfm) = tmp_key_tfm;
1732                        return 1;
1733                }
1734        }
1735        if (key_tfm)
1736                (*key_tfm) = NULL;
1737        return 0;
1738}
1739
1740/**
1741 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1742 *
1743 * @tfm: set to cached tfm found, or new tfm created
1744 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1745 * @cipher_name: the name of the cipher to search for and/or add
1746 *
1747 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1748 * Searches for cached item first, and creates new if not found.
1749 * Returns 0 on success, non-zero if adding new cipher failed
1750 */
1751int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1752                                               struct mutex **tfm_mutex,
1753                                               char *cipher_name)
1754{
1755        struct ecryptfs_key_tfm *key_tfm;
1756        int rc = 0;
1757
1758        (*tfm) = NULL;
1759        (*tfm_mutex) = NULL;
1760
1761        mutex_lock(&key_tfm_list_mutex);
1762        if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1763                rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1764                if (rc) {
1765                        printk(KERN_ERR "Error adding new key_tfm to list; "
1766                                        "rc = [%d]\n", rc);
1767                        goto out;
1768                }
1769        }
1770        (*tfm) = key_tfm->key_tfm;
1771        (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1772out:
1773        mutex_unlock(&key_tfm_list_mutex);
1774        return rc;
1775}
1776
1777/* 64 characters forming a 6-bit target field */
1778static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1779                                                 "EFGHIJKLMNOPQRST"
1780                                                 "UVWXYZabcdefghij"
1781                                                 "klmnopqrstuvwxyz");
1782
1783/* We could either offset on every reverse map or just pad some 0x00's
1784 * at the front here */
1785static const unsigned char filename_rev_map[256] = {
1786        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1787        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1788        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1789        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1790        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1791        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1792        0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1793        0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1794        0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1795        0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1796        0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1797        0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1798        0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1799        0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1800        0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1801        0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1802};
1803
1804/**
1805 * ecryptfs_encode_for_filename
1806 * @dst: Destination location for encoded filename
1807 * @dst_size: Size of the encoded filename in bytes
1808 * @src: Source location for the filename to encode
1809 * @src_size: Size of the source in bytes
1810 */
1811static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1812                                  unsigned char *src, size_t src_size)
1813{
1814        size_t num_blocks;
1815        size_t block_num = 0;
1816        size_t dst_offset = 0;
1817        unsigned char last_block[3];
1818
1819        if (src_size == 0) {
1820                (*dst_size) = 0;
1821                goto out;
1822        }
1823        num_blocks = (src_size / 3);
1824        if ((src_size % 3) == 0) {
1825                memcpy(last_block, (&src[src_size - 3]), 3);
1826        } else {
1827                num_blocks++;
1828                last_block[2] = 0x00;
1829                switch (src_size % 3) {
1830                case 1:
1831                        last_block[0] = src[src_size - 1];
1832                        last_block[1] = 0x00;
1833                        break;
1834                case 2:
1835                        last_block[0] = src[src_size - 2];
1836                        last_block[1] = src[src_size - 1];
1837                }
1838        }
1839        (*dst_size) = (num_blocks * 4);
1840        if (!dst)
1841                goto out;
1842        while (block_num < num_blocks) {
1843                unsigned char *src_block;
1844                unsigned char dst_block[4];
1845
1846                if (block_num == (num_blocks - 1))
1847                        src_block = last_block;
1848                else
1849                        src_block = &src[block_num * 3];
1850                dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1851                dst_block[1] = (((src_block[0] << 4) & 0x30)
1852                                | ((src_block[1] >> 4) & 0x0F));
1853                dst_block[2] = (((src_block[1] << 2) & 0x3C)
1854                                | ((src_block[2] >> 6) & 0x03));
1855                dst_block[3] = (src_block[2] & 0x3F);
1856                dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1857                dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1858                dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1859                dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1860                block_num++;
1861        }
1862out:
1863        return;
1864}
1865
1866static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1867{
1868        /* Not exact; conservatively long. Every block of 4
1869         * encoded characters decodes into a block of 3
1870         * decoded characters. This segment of code provides
1871         * the caller with the maximum amount of allocated
1872         * space that @dst will need to point to in a
1873         * subsequent call. */
1874        return ((encoded_size + 1) * 3) / 4;
1875}
1876
1877/**
1878 * ecryptfs_decode_from_filename
1879 * @dst: If NULL, this function only sets @dst_size and returns. If
1880 *       non-NULL, this function decodes the encoded octets in @src
1881 *       into the memory that @dst points to.
1882 * @dst_size: Set to the size of the decoded string.
1883 * @src: The encoded set of octets to decode.
1884 * @src_size: The size of the encoded set of octets to decode.
1885 */
1886static void
1887ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1888                              const unsigned char *src, size_t src_size)
1889{
1890        u8 current_bit_offset = 0;
1891        size_t src_byte_offset = 0;
1892        size_t dst_byte_offset = 0;
1893
1894        if (dst == NULL) {
1895                (*dst_size) = ecryptfs_max_decoded_size(src_size);
1896                goto out;
1897        }
1898        while (src_byte_offset < src_size) {
1899                unsigned char src_byte =
1900                                filename_rev_map[(int)src[src_byte_offset]];
1901
1902                switch (current_bit_offset) {
1903                case 0:
1904                        dst[dst_byte_offset] = (src_byte << 2);
1905                        current_bit_offset = 6;
1906                        break;
1907                case 6:
1908                        dst[dst_byte_offset++] |= (src_byte >> 4);
1909                        dst[dst_byte_offset] = ((src_byte & 0xF)
1910                                                 << 4);
1911                        current_bit_offset = 4;
1912                        break;
1913                case 4:
1914                        dst[dst_byte_offset++] |= (src_byte >> 2);
1915                        dst[dst_byte_offset] = (src_byte << 6);
1916                        current_bit_offset = 2;
1917                        break;
1918                case 2:
1919                        dst[dst_byte_offset++] |= (src_byte);
1920                        dst[dst_byte_offset] = 0;
1921                        current_bit_offset = 0;
1922                        break;
1923                }
1924                src_byte_offset++;
1925        }
1926        (*dst_size) = dst_byte_offset;
1927out:
1928        return;
1929}
1930
1931/**
1932 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1933 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1934 * @name: The plaintext name
1935 * @length: The length of the plaintext
1936 * @encoded_name: The encypted name
1937 *
1938 * Encrypts and encodes a filename into something that constitutes a
1939 * valid filename for a filesystem, with printable characters.
1940 *
1941 * We assume that we have a properly initialized crypto context,
1942 * pointed to by crypt_stat->tfm.
1943 *
1944 * Returns zero on success; non-zero on otherwise
1945 */
1946int ecryptfs_encrypt_and_encode_filename(
1947        char **encoded_name,
1948        size_t *encoded_name_size,
1949        struct ecryptfs_crypt_stat *crypt_stat,
1950        struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1951        const char *name, size_t name_size)
1952{
1953        size_t encoded_name_no_prefix_size;
1954        int rc = 0;
1955
1956        (*encoded_name) = NULL;
1957        (*encoded_name_size) = 0;
1958        if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
1959            || (mount_crypt_stat && (mount_crypt_stat->flags
1960                                     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
1961                struct ecryptfs_filename *filename;
1962
1963                filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1964                if (!filename) {
1965                        printk(KERN_ERR "%s: Out of memory whilst attempting "
1966                               "to kzalloc [%zd] bytes\n", __func__,
1967                               sizeof(*filename));
1968                        rc = -ENOMEM;
1969                        goto out;
1970                }
1971                filename->filename = (char *)name;
1972                filename->filename_size = name_size;
1973                rc = ecryptfs_encrypt_filename(filename, crypt_stat,
1974                                               mount_crypt_stat);
1975                if (rc) {
1976                        printk(KERN_ERR "%s: Error attempting to encrypt "
1977                               "filename; rc = [%d]\n", __func__, rc);
1978                        kfree(filename);
1979                        goto out;
1980                }
1981                ecryptfs_encode_for_filename(
1982                        NULL, &encoded_name_no_prefix_size,
1983                        filename->encrypted_filename,
1984                        filename->encrypted_filename_size);
1985                if ((crypt_stat && (crypt_stat->flags
1986                                    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1987                    || (mount_crypt_stat
1988                        && (mount_crypt_stat->flags
1989                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
1990                        (*encoded_name_size) =
1991                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1992                                 + encoded_name_no_prefix_size);
1993                else
1994                        (*encoded_name_size) =
1995                                (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1996                                 + encoded_name_no_prefix_size);
1997                (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1998                if (!(*encoded_name)) {
1999                        printk(KERN_ERR "%s: Out of memory whilst attempting "
2000                               "to kzalloc [%zd] bytes\n", __func__,
2001                               (*encoded_name_size));
2002                        rc = -ENOMEM;
2003                        kfree(filename->encrypted_filename);
2004                        kfree(filename);
2005                        goto out;
2006                }
2007                if ((crypt_stat && (crypt_stat->flags
2008                                    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2009                    || (mount_crypt_stat
2010                        && (mount_crypt_stat->flags
2011                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2012                        memcpy((*encoded_name),
2013                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2014                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2015                        ecryptfs_encode_for_filename(
2016                            ((*encoded_name)
2017                             + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2018                            &encoded_name_no_prefix_size,
2019                            filename->encrypted_filename,
2020                            filename->encrypted_filename_size);
2021                        (*encoded_name_size) =
2022                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2023                                 + encoded_name_no_prefix_size);
2024                        (*encoded_name)[(*encoded_name_size)] = '\0';
2025                } else {
2026                        rc = -EOPNOTSUPP;
2027                }
2028                if (rc) {
2029                        printk(KERN_ERR "%s: Error attempting to encode "
2030                               "encrypted filename; rc = [%d]\n", __func__,
2031                               rc);
2032                        kfree((*encoded_name));
2033                        (*encoded_name) = NULL;
2034                        (*encoded_name_size) = 0;
2035                }
2036                kfree(filename->encrypted_filename);
2037                kfree(filename);
2038        } else {
2039                rc = ecryptfs_copy_filename(encoded_name,
2040                                            encoded_name_size,
2041                                            name, name_size);
2042        }
2043out:
2044        return rc;
2045}
2046
2047/**
2048 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2049 * @plaintext_name: The plaintext name
2050 * @plaintext_name_size: The plaintext name size
2051 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2052 * @name: The filename in cipher text
2053 * @name_size: The cipher text name size
2054 *
2055 * Decrypts and decodes the filename.
2056 *
2057 * Returns zero on error; non-zero otherwise
2058 */
2059int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2060                                         size_t *plaintext_name_size,
2061                                         struct super_block *sb,
2062                                         const char *name, size_t name_size)
2063{
2064        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2065                &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2066        char *decoded_name;
2067        size_t decoded_name_size;
2068        size_t packet_size;
2069        int rc = 0;
2070
2071        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2072            && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2073            && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2074            && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2075                        ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2076                const char *orig_name = name;
2077                size_t orig_name_size = name_size;
2078
2079                name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2080                name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2081                ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2082                                              name, name_size);
2083                decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2084                if (!decoded_name) {
2085                        printk(KERN_ERR "%s: Out of memory whilst attempting "
2086                               "to kmalloc [%zd] bytes\n", __func__,
2087                               decoded_name_size);
2088                        rc = -ENOMEM;
2089                        goto out;
2090                }
2091                ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2092                                              name, name_size);
2093                rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2094                                                  plaintext_name_size,
2095                                                  &packet_size,
2096                                                  mount_crypt_stat,
2097                                                  decoded_name,
2098                                                  decoded_name_size);
2099                if (rc) {
2100                        printk(KERN_INFO "%s: Could not parse tag 70 packet "
2101                               "from filename; copying through filename "
2102                               "as-is\n", __func__);
2103                        rc = ecryptfs_copy_filename(plaintext_name,
2104                                                    plaintext_name_size,
2105                                                    orig_name, orig_name_size);
2106                        goto out_free;
2107                }
2108        } else {
2109                rc = ecryptfs_copy_filename(plaintext_name,
2110                                            plaintext_name_size,
2111                                            name, name_size);
2112                goto out;
2113        }
2114out_free:
2115        kfree(decoded_name);
2116out:
2117        return rc;
2118}
2119
2120#define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2121
2122int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2123                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2124{
2125        struct blkcipher_desc desc;
2126        struct mutex *tfm_mutex;
2127        size_t cipher_blocksize;
2128        int rc;
2129
2130        if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2131                (*namelen) = lower_namelen;
2132                return 0;
2133        }
2134
2135        rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2136                        mount_crypt_stat->global_default_fn_cipher_name);
2137        if (unlikely(rc)) {
2138                (*namelen) = 0;
2139                return rc;
2140        }
2141
2142        mutex_lock(tfm_mutex);
2143        cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2144        mutex_unlock(tfm_mutex);
2145
2146        /* Return an exact amount for the common cases */
2147        if (lower_namelen == NAME_MAX
2148            && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2149                (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2150                return 0;
2151        }
2152
2153        /* Return a safe estimate for the uncommon cases */
2154        (*namelen) = lower_namelen;
2155        (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2156        /* Since this is the max decoded size, subtract 1 "decoded block" len */
2157        (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2158        (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2159        (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2160        /* Worst case is that the filename is padded nearly a full block size */
2161        (*namelen) -= cipher_blocksize - 1;
2162
2163        if ((*namelen) < 0)
2164                (*namelen) = 0;
2165
2166        return 0;
2167}
2168