linux/fs/fs-writeback.c
<<
>>
Prefs
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Split out of fs/inode.c
  13 *              Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include "internal.h"
  31
  32/*
  33 * 4MB minimal write chunk size
  34 */
  35#define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
  36
  37/*
  38 * Passed into wb_writeback(), essentially a subset of writeback_control
  39 */
  40struct wb_writeback_work {
  41        long nr_pages;
  42        struct super_block *sb;
  43        unsigned long *older_than_this;
  44        enum writeback_sync_modes sync_mode;
  45        unsigned int tagged_writepages:1;
  46        unsigned int for_kupdate:1;
  47        unsigned int range_cyclic:1;
  48        unsigned int for_background:1;
  49        unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
  50        enum wb_reason reason;          /* why was writeback initiated? */
  51
  52        struct list_head list;          /* pending work list */
  53        struct completion *done;        /* set if the caller waits */
  54};
  55
  56/**
  57 * writeback_in_progress - determine whether there is writeback in progress
  58 * @bdi: the device's backing_dev_info structure.
  59 *
  60 * Determine whether there is writeback waiting to be handled against a
  61 * backing device.
  62 */
  63int writeback_in_progress(struct backing_dev_info *bdi)
  64{
  65        return test_bit(BDI_writeback_running, &bdi->state);
  66}
  67EXPORT_SYMBOL(writeback_in_progress);
  68
  69static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
  70{
  71        struct super_block *sb = inode->i_sb;
  72
  73        if (sb_is_blkdev_sb(sb))
  74                return inode->i_mapping->backing_dev_info;
  75
  76        return sb->s_bdi;
  77}
  78
  79static inline struct inode *wb_inode(struct list_head *head)
  80{
  81        return list_entry(head, struct inode, i_wb_list);
  82}
  83
  84/*
  85 * Include the creation of the trace points after defining the
  86 * wb_writeback_work structure and inline functions so that the definition
  87 * remains local to this file.
  88 */
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/writeback.h>
  91
  92static void bdi_queue_work(struct backing_dev_info *bdi,
  93                           struct wb_writeback_work *work)
  94{
  95        trace_writeback_queue(bdi, work);
  96
  97        spin_lock_bh(&bdi->wb_lock);
  98        list_add_tail(&work->list, &bdi->work_list);
  99        spin_unlock_bh(&bdi->wb_lock);
 100
 101        mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
 102}
 103
 104static void
 105__bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
 106                      bool range_cyclic, enum wb_reason reason)
 107{
 108        struct wb_writeback_work *work;
 109
 110        /*
 111         * This is WB_SYNC_NONE writeback, so if allocation fails just
 112         * wakeup the thread for old dirty data writeback
 113         */
 114        work = kzalloc(sizeof(*work), GFP_ATOMIC);
 115        if (!work) {
 116                trace_writeback_nowork(bdi);
 117                mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
 118                return;
 119        }
 120
 121        work->sync_mode = WB_SYNC_NONE;
 122        work->nr_pages  = nr_pages;
 123        work->range_cyclic = range_cyclic;
 124        work->reason    = reason;
 125
 126        bdi_queue_work(bdi, work);
 127}
 128
 129/**
 130 * bdi_start_writeback - start writeback
 131 * @bdi: the backing device to write from
 132 * @nr_pages: the number of pages to write
 133 * @reason: reason why some writeback work was initiated
 134 *
 135 * Description:
 136 *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
 137 *   started when this function returns, we make no guarantees on
 138 *   completion. Caller need not hold sb s_umount semaphore.
 139 *
 140 */
 141void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
 142                        enum wb_reason reason)
 143{
 144        __bdi_start_writeback(bdi, nr_pages, true, reason);
 145}
 146
 147/**
 148 * bdi_start_background_writeback - start background writeback
 149 * @bdi: the backing device to write from
 150 *
 151 * Description:
 152 *   This makes sure WB_SYNC_NONE background writeback happens. When
 153 *   this function returns, it is only guaranteed that for given BDI
 154 *   some IO is happening if we are over background dirty threshold.
 155 *   Caller need not hold sb s_umount semaphore.
 156 */
 157void bdi_start_background_writeback(struct backing_dev_info *bdi)
 158{
 159        /*
 160         * We just wake up the flusher thread. It will perform background
 161         * writeback as soon as there is no other work to do.
 162         */
 163        trace_writeback_wake_background(bdi);
 164        mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
 165}
 166
 167/*
 168 * Remove the inode from the writeback list it is on.
 169 */
 170void inode_wb_list_del(struct inode *inode)
 171{
 172        struct backing_dev_info *bdi = inode_to_bdi(inode);
 173
 174        spin_lock(&bdi->wb.list_lock);
 175        list_del_init(&inode->i_wb_list);
 176        spin_unlock(&bdi->wb.list_lock);
 177}
 178
 179/*
 180 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 181 * furthest end of its superblock's dirty-inode list.
 182 *
 183 * Before stamping the inode's ->dirtied_when, we check to see whether it is
 184 * already the most-recently-dirtied inode on the b_dirty list.  If that is
 185 * the case then the inode must have been redirtied while it was being written
 186 * out and we don't reset its dirtied_when.
 187 */
 188static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
 189{
 190        assert_spin_locked(&wb->list_lock);
 191        if (!list_empty(&wb->b_dirty)) {
 192                struct inode *tail;
 193
 194                tail = wb_inode(wb->b_dirty.next);
 195                if (time_before(inode->dirtied_when, tail->dirtied_when))
 196                        inode->dirtied_when = jiffies;
 197        }
 198        list_move(&inode->i_wb_list, &wb->b_dirty);
 199}
 200
 201/*
 202 * requeue inode for re-scanning after bdi->b_io list is exhausted.
 203 */
 204static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
 205{
 206        assert_spin_locked(&wb->list_lock);
 207        list_move(&inode->i_wb_list, &wb->b_more_io);
 208}
 209
 210static void inode_sync_complete(struct inode *inode)
 211{
 212        inode->i_state &= ~I_SYNC;
 213        /* If inode is clean an unused, put it into LRU now... */
 214        inode_add_lru(inode);
 215        /* Waiters must see I_SYNC cleared before being woken up */
 216        smp_mb();
 217        wake_up_bit(&inode->i_state, __I_SYNC);
 218}
 219
 220static bool inode_dirtied_after(struct inode *inode, unsigned long t)
 221{
 222        bool ret = time_after(inode->dirtied_when, t);
 223#ifndef CONFIG_64BIT
 224        /*
 225         * For inodes being constantly redirtied, dirtied_when can get stuck.
 226         * It _appears_ to be in the future, but is actually in distant past.
 227         * This test is necessary to prevent such wrapped-around relative times
 228         * from permanently stopping the whole bdi writeback.
 229         */
 230        ret = ret && time_before_eq(inode->dirtied_when, jiffies);
 231#endif
 232        return ret;
 233}
 234
 235/*
 236 * Move expired (dirtied before work->older_than_this) dirty inodes from
 237 * @delaying_queue to @dispatch_queue.
 238 */
 239static int move_expired_inodes(struct list_head *delaying_queue,
 240                               struct list_head *dispatch_queue,
 241                               struct wb_writeback_work *work)
 242{
 243        LIST_HEAD(tmp);
 244        struct list_head *pos, *node;
 245        struct super_block *sb = NULL;
 246        struct inode *inode;
 247        int do_sb_sort = 0;
 248        int moved = 0;
 249
 250        while (!list_empty(delaying_queue)) {
 251                inode = wb_inode(delaying_queue->prev);
 252                if (work->older_than_this &&
 253                    inode_dirtied_after(inode, *work->older_than_this))
 254                        break;
 255                list_move(&inode->i_wb_list, &tmp);
 256                moved++;
 257                if (sb_is_blkdev_sb(inode->i_sb))
 258                        continue;
 259                if (sb && sb != inode->i_sb)
 260                        do_sb_sort = 1;
 261                sb = inode->i_sb;
 262        }
 263
 264        /* just one sb in list, splice to dispatch_queue and we're done */
 265        if (!do_sb_sort) {
 266                list_splice(&tmp, dispatch_queue);
 267                goto out;
 268        }
 269
 270        /* Move inodes from one superblock together */
 271        while (!list_empty(&tmp)) {
 272                sb = wb_inode(tmp.prev)->i_sb;
 273                list_for_each_prev_safe(pos, node, &tmp) {
 274                        inode = wb_inode(pos);
 275                        if (inode->i_sb == sb)
 276                                list_move(&inode->i_wb_list, dispatch_queue);
 277                }
 278        }
 279out:
 280        return moved;
 281}
 282
 283/*
 284 * Queue all expired dirty inodes for io, eldest first.
 285 * Before
 286 *         newly dirtied     b_dirty    b_io    b_more_io
 287 *         =============>    gf         edc     BA
 288 * After
 289 *         newly dirtied     b_dirty    b_io    b_more_io
 290 *         =============>    g          fBAedc
 291 *                                           |
 292 *                                           +--> dequeue for IO
 293 */
 294static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
 295{
 296        int moved;
 297        assert_spin_locked(&wb->list_lock);
 298        list_splice_init(&wb->b_more_io, &wb->b_io);
 299        moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
 300        trace_writeback_queue_io(wb, work, moved);
 301}
 302
 303static int write_inode(struct inode *inode, struct writeback_control *wbc)
 304{
 305        int ret;
 306
 307        if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
 308                trace_writeback_write_inode_start(inode, wbc);
 309                ret = inode->i_sb->s_op->write_inode(inode, wbc);
 310                trace_writeback_write_inode(inode, wbc);
 311                return ret;
 312        }
 313        return 0;
 314}
 315
 316/*
 317 * Wait for writeback on an inode to complete. Called with i_lock held.
 318 * Caller must make sure inode cannot go away when we drop i_lock.
 319 */
 320static void __inode_wait_for_writeback(struct inode *inode)
 321        __releases(inode->i_lock)
 322        __acquires(inode->i_lock)
 323{
 324        DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
 325        wait_queue_head_t *wqh;
 326
 327        wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
 328        while (inode->i_state & I_SYNC) {
 329                spin_unlock(&inode->i_lock);
 330                __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
 331                spin_lock(&inode->i_lock);
 332        }
 333}
 334
 335/*
 336 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 337 */
 338void inode_wait_for_writeback(struct inode *inode)
 339{
 340        spin_lock(&inode->i_lock);
 341        __inode_wait_for_writeback(inode);
 342        spin_unlock(&inode->i_lock);
 343}
 344
 345/*
 346 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 347 * held and drops it. It is aimed for callers not holding any inode reference
 348 * so once i_lock is dropped, inode can go away.
 349 */
 350static void inode_sleep_on_writeback(struct inode *inode)
 351        __releases(inode->i_lock)
 352{
 353        DEFINE_WAIT(wait);
 354        wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
 355        int sleep;
 356
 357        prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
 358        sleep = inode->i_state & I_SYNC;
 359        spin_unlock(&inode->i_lock);
 360        if (sleep)
 361                schedule();
 362        finish_wait(wqh, &wait);
 363}
 364
 365/*
 366 * Find proper writeback list for the inode depending on its current state and
 367 * possibly also change of its state while we were doing writeback.  Here we
 368 * handle things such as livelock prevention or fairness of writeback among
 369 * inodes. This function can be called only by flusher thread - noone else
 370 * processes all inodes in writeback lists and requeueing inodes behind flusher
 371 * thread's back can have unexpected consequences.
 372 */
 373static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
 374                          struct writeback_control *wbc)
 375{
 376        if (inode->i_state & I_FREEING)
 377                return;
 378
 379        /*
 380         * Sync livelock prevention. Each inode is tagged and synced in one
 381         * shot. If still dirty, it will be redirty_tail()'ed below.  Update
 382         * the dirty time to prevent enqueue and sync it again.
 383         */
 384        if ((inode->i_state & I_DIRTY) &&
 385            (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
 386                inode->dirtied_when = jiffies;
 387
 388        if (wbc->pages_skipped) {
 389                /*
 390                 * writeback is not making progress due to locked
 391                 * buffers. Skip this inode for now.
 392                 */
 393                redirty_tail(inode, wb);
 394                return;
 395        }
 396
 397        if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
 398                /*
 399                 * We didn't write back all the pages.  nfs_writepages()
 400                 * sometimes bales out without doing anything.
 401                 */
 402                if (wbc->nr_to_write <= 0) {
 403                        /* Slice used up. Queue for next turn. */
 404                        requeue_io(inode, wb);
 405                } else {
 406                        /*
 407                         * Writeback blocked by something other than
 408                         * congestion. Delay the inode for some time to
 409                         * avoid spinning on the CPU (100% iowait)
 410                         * retrying writeback of the dirty page/inode
 411                         * that cannot be performed immediately.
 412                         */
 413                        redirty_tail(inode, wb);
 414                }
 415        } else if (inode->i_state & I_DIRTY) {
 416                /*
 417                 * Filesystems can dirty the inode during writeback operations,
 418                 * such as delayed allocation during submission or metadata
 419                 * updates after data IO completion.
 420                 */
 421                redirty_tail(inode, wb);
 422        } else {
 423                /* The inode is clean. Remove from writeback lists. */
 424                list_del_init(&inode->i_wb_list);
 425        }
 426}
 427
 428/*
 429 * Write out an inode and its dirty pages. Do not update the writeback list
 430 * linkage. That is left to the caller. The caller is also responsible for
 431 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
 432 */
 433static int
 434__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
 435{
 436        struct address_space *mapping = inode->i_mapping;
 437        long nr_to_write = wbc->nr_to_write;
 438        unsigned dirty;
 439        int ret;
 440
 441        WARN_ON(!(inode->i_state & I_SYNC));
 442
 443        trace_writeback_single_inode_start(inode, wbc, nr_to_write);
 444
 445        ret = do_writepages(mapping, wbc);
 446
 447        /*
 448         * Make sure to wait on the data before writing out the metadata.
 449         * This is important for filesystems that modify metadata on data
 450         * I/O completion. We don't do it for sync(2) writeback because it has a
 451         * separate, external IO completion path and ->sync_fs for guaranteeing
 452         * inode metadata is written back correctly.
 453         */
 454        if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
 455                int err = filemap_fdatawait(mapping);
 456                if (ret == 0)
 457                        ret = err;
 458        }
 459
 460        /*
 461         * Some filesystems may redirty the inode during the writeback
 462         * due to delalloc, clear dirty metadata flags right before
 463         * write_inode()
 464         */
 465        spin_lock(&inode->i_lock);
 466        /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
 467        if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 468                inode->i_state &= ~I_DIRTY_PAGES;
 469        dirty = inode->i_state & I_DIRTY;
 470        inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
 471        spin_unlock(&inode->i_lock);
 472        /* Don't write the inode if only I_DIRTY_PAGES was set */
 473        if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
 474                int err = write_inode(inode, wbc);
 475                if (ret == 0)
 476                        ret = err;
 477        }
 478        trace_writeback_single_inode(inode, wbc, nr_to_write);
 479        return ret;
 480}
 481
 482/*
 483 * Write out an inode's dirty pages. Either the caller has an active reference
 484 * on the inode or the inode has I_WILL_FREE set.
 485 *
 486 * This function is designed to be called for writing back one inode which
 487 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 488 * and does more profound writeback list handling in writeback_sb_inodes().
 489 */
 490static int
 491writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
 492                       struct writeback_control *wbc)
 493{
 494        int ret = 0;
 495
 496        spin_lock(&inode->i_lock);
 497        if (!atomic_read(&inode->i_count))
 498                WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
 499        else
 500                WARN_ON(inode->i_state & I_WILL_FREE);
 501
 502        if (inode->i_state & I_SYNC) {
 503                if (wbc->sync_mode != WB_SYNC_ALL)
 504                        goto out;
 505                /*
 506                 * It's a data-integrity sync. We must wait. Since callers hold
 507                 * inode reference or inode has I_WILL_FREE set, it cannot go
 508                 * away under us.
 509                 */
 510                __inode_wait_for_writeback(inode);
 511        }
 512        WARN_ON(inode->i_state & I_SYNC);
 513        /*
 514         * Skip inode if it is clean and we have no outstanding writeback in
 515         * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
 516         * function since flusher thread may be doing for example sync in
 517         * parallel and if we move the inode, it could get skipped. So here we
 518         * make sure inode is on some writeback list and leave it there unless
 519         * we have completely cleaned the inode.
 520         */
 521        if (!(inode->i_state & I_DIRTY) &&
 522            (wbc->sync_mode != WB_SYNC_ALL ||
 523             !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
 524                goto out;
 525        inode->i_state |= I_SYNC;
 526        spin_unlock(&inode->i_lock);
 527
 528        ret = __writeback_single_inode(inode, wbc);
 529
 530        spin_lock(&wb->list_lock);
 531        spin_lock(&inode->i_lock);
 532        /*
 533         * If inode is clean, remove it from writeback lists. Otherwise don't
 534         * touch it. See comment above for explanation.
 535         */
 536        if (!(inode->i_state & I_DIRTY))
 537                list_del_init(&inode->i_wb_list);
 538        spin_unlock(&wb->list_lock);
 539        inode_sync_complete(inode);
 540out:
 541        spin_unlock(&inode->i_lock);
 542        return ret;
 543}
 544
 545static long writeback_chunk_size(struct backing_dev_info *bdi,
 546                                 struct wb_writeback_work *work)
 547{
 548        long pages;
 549
 550        /*
 551         * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
 552         * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
 553         * here avoids calling into writeback_inodes_wb() more than once.
 554         *
 555         * The intended call sequence for WB_SYNC_ALL writeback is:
 556         *
 557         *      wb_writeback()
 558         *          writeback_sb_inodes()       <== called only once
 559         *              write_cache_pages()     <== called once for each inode
 560         *                   (quickly) tag currently dirty pages
 561         *                   (maybe slowly) sync all tagged pages
 562         */
 563        if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
 564                pages = LONG_MAX;
 565        else {
 566                pages = min(bdi->avg_write_bandwidth / 2,
 567                            global_dirty_limit / DIRTY_SCOPE);
 568                pages = min(pages, work->nr_pages);
 569                pages = round_down(pages + MIN_WRITEBACK_PAGES,
 570                                   MIN_WRITEBACK_PAGES);
 571        }
 572
 573        return pages;
 574}
 575
 576/*
 577 * Write a portion of b_io inodes which belong to @sb.
 578 *
 579 * Return the number of pages and/or inodes written.
 580 */
 581static long writeback_sb_inodes(struct super_block *sb,
 582                                struct bdi_writeback *wb,
 583                                struct wb_writeback_work *work)
 584{
 585        struct writeback_control wbc = {
 586                .sync_mode              = work->sync_mode,
 587                .tagged_writepages      = work->tagged_writepages,
 588                .for_kupdate            = work->for_kupdate,
 589                .for_background         = work->for_background,
 590                .for_sync               = work->for_sync,
 591                .range_cyclic           = work->range_cyclic,
 592                .range_start            = 0,
 593                .range_end              = LLONG_MAX,
 594        };
 595        unsigned long start_time = jiffies;
 596        long write_chunk;
 597        long wrote = 0;  /* count both pages and inodes */
 598
 599        while (!list_empty(&wb->b_io)) {
 600                struct inode *inode = wb_inode(wb->b_io.prev);
 601
 602                if (inode->i_sb != sb) {
 603                        if (work->sb) {
 604                                /*
 605                                 * We only want to write back data for this
 606                                 * superblock, move all inodes not belonging
 607                                 * to it back onto the dirty list.
 608                                 */
 609                                redirty_tail(inode, wb);
 610                                continue;
 611                        }
 612
 613                        /*
 614                         * The inode belongs to a different superblock.
 615                         * Bounce back to the caller to unpin this and
 616                         * pin the next superblock.
 617                         */
 618                        break;
 619                }
 620
 621                /*
 622                 * Don't bother with new inodes or inodes being freed, first
 623                 * kind does not need periodic writeout yet, and for the latter
 624                 * kind writeout is handled by the freer.
 625                 */
 626                spin_lock(&inode->i_lock);
 627                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 628                        spin_unlock(&inode->i_lock);
 629                        redirty_tail(inode, wb);
 630                        continue;
 631                }
 632                if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
 633                        /*
 634                         * If this inode is locked for writeback and we are not
 635                         * doing writeback-for-data-integrity, move it to
 636                         * b_more_io so that writeback can proceed with the
 637                         * other inodes on s_io.
 638                         *
 639                         * We'll have another go at writing back this inode
 640                         * when we completed a full scan of b_io.
 641                         */
 642                        spin_unlock(&inode->i_lock);
 643                        requeue_io(inode, wb);
 644                        trace_writeback_sb_inodes_requeue(inode);
 645                        continue;
 646                }
 647                spin_unlock(&wb->list_lock);
 648
 649                /*
 650                 * We already requeued the inode if it had I_SYNC set and we
 651                 * are doing WB_SYNC_NONE writeback. So this catches only the
 652                 * WB_SYNC_ALL case.
 653                 */
 654                if (inode->i_state & I_SYNC) {
 655                        /* Wait for I_SYNC. This function drops i_lock... */
 656                        inode_sleep_on_writeback(inode);
 657                        /* Inode may be gone, start again */
 658                        spin_lock(&wb->list_lock);
 659                        continue;
 660                }
 661                inode->i_state |= I_SYNC;
 662                spin_unlock(&inode->i_lock);
 663
 664                write_chunk = writeback_chunk_size(wb->bdi, work);
 665                wbc.nr_to_write = write_chunk;
 666                wbc.pages_skipped = 0;
 667
 668                /*
 669                 * We use I_SYNC to pin the inode in memory. While it is set
 670                 * evict_inode() will wait so the inode cannot be freed.
 671                 */
 672                __writeback_single_inode(inode, &wbc);
 673
 674                work->nr_pages -= write_chunk - wbc.nr_to_write;
 675                wrote += write_chunk - wbc.nr_to_write;
 676                spin_lock(&wb->list_lock);
 677                spin_lock(&inode->i_lock);
 678                if (!(inode->i_state & I_DIRTY))
 679                        wrote++;
 680                requeue_inode(inode, wb, &wbc);
 681                inode_sync_complete(inode);
 682                spin_unlock(&inode->i_lock);
 683                cond_resched_lock(&wb->list_lock);
 684                /*
 685                 * bail out to wb_writeback() often enough to check
 686                 * background threshold and other termination conditions.
 687                 */
 688                if (wrote) {
 689                        if (time_is_before_jiffies(start_time + HZ / 10UL))
 690                                break;
 691                        if (work->nr_pages <= 0)
 692                                break;
 693                }
 694        }
 695        return wrote;
 696}
 697
 698static long __writeback_inodes_wb(struct bdi_writeback *wb,
 699                                  struct wb_writeback_work *work)
 700{
 701        unsigned long start_time = jiffies;
 702        long wrote = 0;
 703
 704        while (!list_empty(&wb->b_io)) {
 705                struct inode *inode = wb_inode(wb->b_io.prev);
 706                struct super_block *sb = inode->i_sb;
 707
 708                if (!grab_super_passive(sb)) {
 709                        /*
 710                         * grab_super_passive() may fail consistently due to
 711                         * s_umount being grabbed by someone else. Don't use
 712                         * requeue_io() to avoid busy retrying the inode/sb.
 713                         */
 714                        redirty_tail(inode, wb);
 715                        continue;
 716                }
 717                wrote += writeback_sb_inodes(sb, wb, work);
 718                drop_super(sb);
 719
 720                /* refer to the same tests at the end of writeback_sb_inodes */
 721                if (wrote) {
 722                        if (time_is_before_jiffies(start_time + HZ / 10UL))
 723                                break;
 724                        if (work->nr_pages <= 0)
 725                                break;
 726                }
 727        }
 728        /* Leave any unwritten inodes on b_io */
 729        return wrote;
 730}
 731
 732static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
 733                                enum wb_reason reason)
 734{
 735        struct wb_writeback_work work = {
 736                .nr_pages       = nr_pages,
 737                .sync_mode      = WB_SYNC_NONE,
 738                .range_cyclic   = 1,
 739                .reason         = reason,
 740        };
 741
 742        spin_lock(&wb->list_lock);
 743        if (list_empty(&wb->b_io))
 744                queue_io(wb, &work);
 745        __writeback_inodes_wb(wb, &work);
 746        spin_unlock(&wb->list_lock);
 747
 748        return nr_pages - work.nr_pages;
 749}
 750
 751static bool over_bground_thresh(struct backing_dev_info *bdi)
 752{
 753        unsigned long background_thresh, dirty_thresh;
 754
 755        global_dirty_limits(&background_thresh, &dirty_thresh);
 756
 757        if (global_page_state(NR_FILE_DIRTY) +
 758            global_page_state(NR_UNSTABLE_NFS) > background_thresh)
 759                return true;
 760
 761        if (bdi_stat(bdi, BDI_RECLAIMABLE) >
 762                                bdi_dirty_limit(bdi, background_thresh))
 763                return true;
 764
 765        return false;
 766}
 767
 768/*
 769 * Called under wb->list_lock. If there are multiple wb per bdi,
 770 * only the flusher working on the first wb should do it.
 771 */
 772static void wb_update_bandwidth(struct bdi_writeback *wb,
 773                                unsigned long start_time)
 774{
 775        __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
 776}
 777
 778/*
 779 * Explicit flushing or periodic writeback of "old" data.
 780 *
 781 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 782 * dirtying-time in the inode's address_space.  So this periodic writeback code
 783 * just walks the superblock inode list, writing back any inodes which are
 784 * older than a specific point in time.
 785 *
 786 * Try to run once per dirty_writeback_interval.  But if a writeback event
 787 * takes longer than a dirty_writeback_interval interval, then leave a
 788 * one-second gap.
 789 *
 790 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 791 * all dirty pages if they are all attached to "old" mappings.
 792 */
 793static long wb_writeback(struct bdi_writeback *wb,
 794                         struct wb_writeback_work *work)
 795{
 796        unsigned long wb_start = jiffies;
 797        long nr_pages = work->nr_pages;
 798        unsigned long oldest_jif;
 799        struct inode *inode;
 800        long progress;
 801
 802        oldest_jif = jiffies;
 803        work->older_than_this = &oldest_jif;
 804
 805        spin_lock(&wb->list_lock);
 806        for (;;) {
 807                /*
 808                 * Stop writeback when nr_pages has been consumed
 809                 */
 810                if (work->nr_pages <= 0)
 811                        break;
 812
 813                /*
 814                 * Background writeout and kupdate-style writeback may
 815                 * run forever. Stop them if there is other work to do
 816                 * so that e.g. sync can proceed. They'll be restarted
 817                 * after the other works are all done.
 818                 */
 819                if ((work->for_background || work->for_kupdate) &&
 820                    !list_empty(&wb->bdi->work_list))
 821                        break;
 822
 823                /*
 824                 * For background writeout, stop when we are below the
 825                 * background dirty threshold
 826                 */
 827                if (work->for_background && !over_bground_thresh(wb->bdi))
 828                        break;
 829
 830                /*
 831                 * Kupdate and background works are special and we want to
 832                 * include all inodes that need writing. Livelock avoidance is
 833                 * handled by these works yielding to any other work so we are
 834                 * safe.
 835                 */
 836                if (work->for_kupdate) {
 837                        oldest_jif = jiffies -
 838                                msecs_to_jiffies(dirty_expire_interval * 10);
 839                } else if (work->for_background)
 840                        oldest_jif = jiffies;
 841
 842                trace_writeback_start(wb->bdi, work);
 843                if (list_empty(&wb->b_io))
 844                        queue_io(wb, work);
 845                if (work->sb)
 846                        progress = writeback_sb_inodes(work->sb, wb, work);
 847                else
 848                        progress = __writeback_inodes_wb(wb, work);
 849                trace_writeback_written(wb->bdi, work);
 850
 851                wb_update_bandwidth(wb, wb_start);
 852
 853                /*
 854                 * Did we write something? Try for more
 855                 *
 856                 * Dirty inodes are moved to b_io for writeback in batches.
 857                 * The completion of the current batch does not necessarily
 858                 * mean the overall work is done. So we keep looping as long
 859                 * as made some progress on cleaning pages or inodes.
 860                 */
 861                if (progress)
 862                        continue;
 863                /*
 864                 * No more inodes for IO, bail
 865                 */
 866                if (list_empty(&wb->b_more_io))
 867                        break;
 868                /*
 869                 * Nothing written. Wait for some inode to
 870                 * become available for writeback. Otherwise
 871                 * we'll just busyloop.
 872                 */
 873                if (!list_empty(&wb->b_more_io))  {
 874                        trace_writeback_wait(wb->bdi, work);
 875                        inode = wb_inode(wb->b_more_io.prev);
 876                        spin_lock(&inode->i_lock);
 877                        spin_unlock(&wb->list_lock);
 878                        /* This function drops i_lock... */
 879                        inode_sleep_on_writeback(inode);
 880                        spin_lock(&wb->list_lock);
 881                }
 882        }
 883        spin_unlock(&wb->list_lock);
 884
 885        return nr_pages - work->nr_pages;
 886}
 887
 888/*
 889 * Return the next wb_writeback_work struct that hasn't been processed yet.
 890 */
 891static struct wb_writeback_work *
 892get_next_work_item(struct backing_dev_info *bdi)
 893{
 894        struct wb_writeback_work *work = NULL;
 895
 896        spin_lock_bh(&bdi->wb_lock);
 897        if (!list_empty(&bdi->work_list)) {
 898                work = list_entry(bdi->work_list.next,
 899                                  struct wb_writeback_work, list);
 900                list_del_init(&work->list);
 901        }
 902        spin_unlock_bh(&bdi->wb_lock);
 903        return work;
 904}
 905
 906/*
 907 * Add in the number of potentially dirty inodes, because each inode
 908 * write can dirty pagecache in the underlying blockdev.
 909 */
 910static unsigned long get_nr_dirty_pages(void)
 911{
 912        return global_page_state(NR_FILE_DIRTY) +
 913                global_page_state(NR_UNSTABLE_NFS) +
 914                get_nr_dirty_inodes();
 915}
 916
 917static long wb_check_background_flush(struct bdi_writeback *wb)
 918{
 919        if (over_bground_thresh(wb->bdi)) {
 920
 921                struct wb_writeback_work work = {
 922                        .nr_pages       = LONG_MAX,
 923                        .sync_mode      = WB_SYNC_NONE,
 924                        .for_background = 1,
 925                        .range_cyclic   = 1,
 926                        .reason         = WB_REASON_BACKGROUND,
 927                };
 928
 929                return wb_writeback(wb, &work);
 930        }
 931
 932        return 0;
 933}
 934
 935static long wb_check_old_data_flush(struct bdi_writeback *wb)
 936{
 937        unsigned long expired;
 938        long nr_pages;
 939
 940        /*
 941         * When set to zero, disable periodic writeback
 942         */
 943        if (!dirty_writeback_interval)
 944                return 0;
 945
 946        expired = wb->last_old_flush +
 947                        msecs_to_jiffies(dirty_writeback_interval * 10);
 948        if (time_before(jiffies, expired))
 949                return 0;
 950
 951        wb->last_old_flush = jiffies;
 952        nr_pages = get_nr_dirty_pages();
 953
 954        if (nr_pages) {
 955                struct wb_writeback_work work = {
 956                        .nr_pages       = nr_pages,
 957                        .sync_mode      = WB_SYNC_NONE,
 958                        .for_kupdate    = 1,
 959                        .range_cyclic   = 1,
 960                        .reason         = WB_REASON_PERIODIC,
 961                };
 962
 963                return wb_writeback(wb, &work);
 964        }
 965
 966        return 0;
 967}
 968
 969/*
 970 * Retrieve work items and do the writeback they describe
 971 */
 972static long wb_do_writeback(struct bdi_writeback *wb)
 973{
 974        struct backing_dev_info *bdi = wb->bdi;
 975        struct wb_writeback_work *work;
 976        long wrote = 0;
 977
 978        set_bit(BDI_writeback_running, &wb->bdi->state);
 979        while ((work = get_next_work_item(bdi)) != NULL) {
 980
 981                trace_writeback_exec(bdi, work);
 982
 983                wrote += wb_writeback(wb, work);
 984
 985                /*
 986                 * Notify the caller of completion if this is a synchronous
 987                 * work item, otherwise just free it.
 988                 */
 989                if (work->done)
 990                        complete(work->done);
 991                else
 992                        kfree(work);
 993        }
 994
 995        /*
 996         * Check for periodic writeback, kupdated() style
 997         */
 998        wrote += wb_check_old_data_flush(wb);
 999        wrote += wb_check_background_flush(wb);
1000        clear_bit(BDI_writeback_running, &wb->bdi->state);
1001
1002        return wrote;
1003}
1004
1005/*
1006 * Handle writeback of dirty data for the device backed by this bdi. Also
1007 * reschedules periodically and does kupdated style flushing.
1008 */
1009void bdi_writeback_workfn(struct work_struct *work)
1010{
1011        struct bdi_writeback *wb = container_of(to_delayed_work(work),
1012                                                struct bdi_writeback, dwork);
1013        struct backing_dev_info *bdi = wb->bdi;
1014        long pages_written;
1015
1016        set_worker_desc("flush-%s", dev_name(bdi->dev));
1017        current->flags |= PF_SWAPWRITE;
1018
1019        if (likely(!current_is_workqueue_rescuer() ||
1020                   list_empty(&bdi->bdi_list))) {
1021                /*
1022                 * The normal path.  Keep writing back @bdi until its
1023                 * work_list is empty.  Note that this path is also taken
1024                 * if @bdi is shutting down even when we're running off the
1025                 * rescuer as work_list needs to be drained.
1026                 */
1027                do {
1028                        pages_written = wb_do_writeback(wb);
1029                        trace_writeback_pages_written(pages_written);
1030                } while (!list_empty(&bdi->work_list));
1031        } else {
1032                /*
1033                 * bdi_wq can't get enough workers and we're running off
1034                 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1035                 * enough for efficient IO.
1036                 */
1037                pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1038                                                    WB_REASON_FORKER_THREAD);
1039                trace_writeback_pages_written(pages_written);
1040        }
1041
1042        if (!list_empty(&bdi->work_list) ||
1043            (wb_has_dirty_io(wb) && dirty_writeback_interval))
1044                queue_delayed_work(bdi_wq, &wb->dwork,
1045                        msecs_to_jiffies(dirty_writeback_interval * 10));
1046
1047        current->flags &= ~PF_SWAPWRITE;
1048}
1049
1050/*
1051 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1052 * the whole world.
1053 */
1054void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1055{
1056        struct backing_dev_info *bdi;
1057
1058        if (!nr_pages)
1059                nr_pages = get_nr_dirty_pages();
1060
1061        rcu_read_lock();
1062        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1063                if (!bdi_has_dirty_io(bdi))
1064                        continue;
1065                __bdi_start_writeback(bdi, nr_pages, false, reason);
1066        }
1067        rcu_read_unlock();
1068}
1069
1070static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1071{
1072        if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1073                struct dentry *dentry;
1074                const char *name = "?";
1075
1076                dentry = d_find_alias(inode);
1077                if (dentry) {
1078                        spin_lock(&dentry->d_lock);
1079                        name = (const char *) dentry->d_name.name;
1080                }
1081                printk(KERN_DEBUG
1082                       "%s(%d): dirtied inode %lu (%s) on %s\n",
1083                       current->comm, task_pid_nr(current), inode->i_ino,
1084                       name, inode->i_sb->s_id);
1085                if (dentry) {
1086                        spin_unlock(&dentry->d_lock);
1087                        dput(dentry);
1088                }
1089        }
1090}
1091
1092/**
1093 *      __mark_inode_dirty -    internal function
1094 *      @inode: inode to mark
1095 *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1096 *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1097 *      mark_inode_dirty_sync.
1098 *
1099 * Put the inode on the super block's dirty list.
1100 *
1101 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1102 * dirty list only if it is hashed or if it refers to a blockdev.
1103 * If it was not hashed, it will never be added to the dirty list
1104 * even if it is later hashed, as it will have been marked dirty already.
1105 *
1106 * In short, make sure you hash any inodes _before_ you start marking
1107 * them dirty.
1108 *
1109 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1110 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1111 * the kernel-internal blockdev inode represents the dirtying time of the
1112 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1113 * page->mapping->host, so the page-dirtying time is recorded in the internal
1114 * blockdev inode.
1115 */
1116void __mark_inode_dirty(struct inode *inode, int flags)
1117{
1118        struct super_block *sb = inode->i_sb;
1119        struct backing_dev_info *bdi = NULL;
1120
1121        /*
1122         * Don't do this for I_DIRTY_PAGES - that doesn't actually
1123         * dirty the inode itself
1124         */
1125        if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1126                trace_writeback_dirty_inode_start(inode, flags);
1127
1128                if (sb->s_op->dirty_inode)
1129                        sb->s_op->dirty_inode(inode, flags);
1130
1131                trace_writeback_dirty_inode(inode, flags);
1132        }
1133
1134        /*
1135         * make sure that changes are seen by all cpus before we test i_state
1136         * -- mikulas
1137         */
1138        smp_mb();
1139
1140        /* avoid the locking if we can */
1141        if ((inode->i_state & flags) == flags)
1142                return;
1143
1144        if (unlikely(block_dump))
1145                block_dump___mark_inode_dirty(inode);
1146
1147        spin_lock(&inode->i_lock);
1148        if ((inode->i_state & flags) != flags) {
1149                const int was_dirty = inode->i_state & I_DIRTY;
1150
1151                inode->i_state |= flags;
1152
1153                /*
1154                 * If the inode is being synced, just update its dirty state.
1155                 * The unlocker will place the inode on the appropriate
1156                 * superblock list, based upon its state.
1157                 */
1158                if (inode->i_state & I_SYNC)
1159                        goto out_unlock_inode;
1160
1161                /*
1162                 * Only add valid (hashed) inodes to the superblock's
1163                 * dirty list.  Add blockdev inodes as well.
1164                 */
1165                if (!S_ISBLK(inode->i_mode)) {
1166                        if (inode_unhashed(inode))
1167                                goto out_unlock_inode;
1168                }
1169                if (inode->i_state & I_FREEING)
1170                        goto out_unlock_inode;
1171
1172                /*
1173                 * If the inode was already on b_dirty/b_io/b_more_io, don't
1174                 * reposition it (that would break b_dirty time-ordering).
1175                 */
1176                if (!was_dirty) {
1177                        bool wakeup_bdi = false;
1178                        bdi = inode_to_bdi(inode);
1179
1180                        spin_unlock(&inode->i_lock);
1181                        spin_lock(&bdi->wb.list_lock);
1182                        if (bdi_cap_writeback_dirty(bdi)) {
1183                                WARN(!test_bit(BDI_registered, &bdi->state),
1184                                     "bdi-%s not registered\n", bdi->name);
1185
1186                                /*
1187                                 * If this is the first dirty inode for this
1188                                 * bdi, we have to wake-up the corresponding
1189                                 * bdi thread to make sure background
1190                                 * write-back happens later.
1191                                 */
1192                                if (!wb_has_dirty_io(&bdi->wb))
1193                                        wakeup_bdi = true;
1194                        }
1195
1196                        inode->dirtied_when = jiffies;
1197                        list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1198                        spin_unlock(&bdi->wb.list_lock);
1199
1200                        if (wakeup_bdi)
1201                                bdi_wakeup_thread_delayed(bdi);
1202                        return;
1203                }
1204        }
1205out_unlock_inode:
1206        spin_unlock(&inode->i_lock);
1207
1208}
1209EXPORT_SYMBOL(__mark_inode_dirty);
1210
1211static void wait_sb_inodes(struct super_block *sb)
1212{
1213        struct inode *inode, *old_inode = NULL;
1214
1215        /*
1216         * We need to be protected against the filesystem going from
1217         * r/o to r/w or vice versa.
1218         */
1219        WARN_ON(!rwsem_is_locked(&sb->s_umount));
1220
1221        spin_lock(&inode_sb_list_lock);
1222
1223        /*
1224         * Data integrity sync. Must wait for all pages under writeback,
1225         * because there may have been pages dirtied before our sync
1226         * call, but which had writeout started before we write it out.
1227         * In which case, the inode may not be on the dirty list, but
1228         * we still have to wait for that writeout.
1229         */
1230        list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1231                struct address_space *mapping = inode->i_mapping;
1232
1233                spin_lock(&inode->i_lock);
1234                if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1235                    (mapping->nrpages == 0)) {
1236                        spin_unlock(&inode->i_lock);
1237                        continue;
1238                }
1239                __iget(inode);
1240                spin_unlock(&inode->i_lock);
1241                spin_unlock(&inode_sb_list_lock);
1242
1243                /*
1244                 * We hold a reference to 'inode' so it couldn't have been
1245                 * removed from s_inodes list while we dropped the
1246                 * inode_sb_list_lock.  We cannot iput the inode now as we can
1247                 * be holding the last reference and we cannot iput it under
1248                 * inode_sb_list_lock. So we keep the reference and iput it
1249                 * later.
1250                 */
1251                iput(old_inode);
1252                old_inode = inode;
1253
1254                filemap_fdatawait(mapping);
1255
1256                cond_resched();
1257
1258                spin_lock(&inode_sb_list_lock);
1259        }
1260        spin_unlock(&inode_sb_list_lock);
1261        iput(old_inode);
1262}
1263
1264/**
1265 * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1266 * @sb: the superblock
1267 * @nr: the number of pages to write
1268 * @reason: reason why some writeback work initiated
1269 *
1270 * Start writeback on some inodes on this super_block. No guarantees are made
1271 * on how many (if any) will be written, and this function does not wait
1272 * for IO completion of submitted IO.
1273 */
1274void writeback_inodes_sb_nr(struct super_block *sb,
1275                            unsigned long nr,
1276                            enum wb_reason reason)
1277{
1278        DECLARE_COMPLETION_ONSTACK(done);
1279        struct wb_writeback_work work = {
1280                .sb                     = sb,
1281                .sync_mode              = WB_SYNC_NONE,
1282                .tagged_writepages      = 1,
1283                .done                   = &done,
1284                .nr_pages               = nr,
1285                .reason                 = reason,
1286        };
1287
1288        if (sb->s_bdi == &noop_backing_dev_info)
1289                return;
1290        WARN_ON(!rwsem_is_locked(&sb->s_umount));
1291        bdi_queue_work(sb->s_bdi, &work);
1292        wait_for_completion(&done);
1293}
1294EXPORT_SYMBOL(writeback_inodes_sb_nr);
1295
1296/**
1297 * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1298 * @sb: the superblock
1299 * @reason: reason why some writeback work was initiated
1300 *
1301 * Start writeback on some inodes on this super_block. No guarantees are made
1302 * on how many (if any) will be written, and this function does not wait
1303 * for IO completion of submitted IO.
1304 */
1305void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1306{
1307        return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1308}
1309EXPORT_SYMBOL(writeback_inodes_sb);
1310
1311/**
1312 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1313 * @sb: the superblock
1314 * @nr: the number of pages to write
1315 * @reason: the reason of writeback
1316 *
1317 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1318 * Returns 1 if writeback was started, 0 if not.
1319 */
1320int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1321                                  unsigned long nr,
1322                                  enum wb_reason reason)
1323{
1324        if (writeback_in_progress(sb->s_bdi))
1325                return 1;
1326
1327        if (!down_read_trylock(&sb->s_umount))
1328                return 0;
1329
1330        writeback_inodes_sb_nr(sb, nr, reason);
1331        up_read(&sb->s_umount);
1332        return 1;
1333}
1334EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1335
1336/**
1337 * try_to_writeback_inodes_sb - try to start writeback if none underway
1338 * @sb: the superblock
1339 * @reason: reason why some writeback work was initiated
1340 *
1341 * Implement by try_to_writeback_inodes_sb_nr()
1342 * Returns 1 if writeback was started, 0 if not.
1343 */
1344int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1345{
1346        return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1347}
1348EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1349
1350/**
1351 * sync_inodes_sb       -       sync sb inode pages
1352 * @sb: the superblock
1353 *
1354 * This function writes and waits on any dirty inode belonging to this
1355 * super_block.
1356 */
1357void sync_inodes_sb(struct super_block *sb)
1358{
1359        DECLARE_COMPLETION_ONSTACK(done);
1360        struct wb_writeback_work work = {
1361                .sb             = sb,
1362                .sync_mode      = WB_SYNC_ALL,
1363                .nr_pages       = LONG_MAX,
1364                .range_cyclic   = 0,
1365                .done           = &done,
1366                .reason         = WB_REASON_SYNC,
1367                .for_sync       = 1,
1368        };
1369
1370        /* Nothing to do? */
1371        if (sb->s_bdi == &noop_backing_dev_info)
1372                return;
1373        WARN_ON(!rwsem_is_locked(&sb->s_umount));
1374
1375        bdi_queue_work(sb->s_bdi, &work);
1376        wait_for_completion(&done);
1377
1378        wait_sb_inodes(sb);
1379}
1380EXPORT_SYMBOL(sync_inodes_sb);
1381
1382/**
1383 * write_inode_now      -       write an inode to disk
1384 * @inode: inode to write to disk
1385 * @sync: whether the write should be synchronous or not
1386 *
1387 * This function commits an inode to disk immediately if it is dirty. This is
1388 * primarily needed by knfsd.
1389 *
1390 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1391 */
1392int write_inode_now(struct inode *inode, int sync)
1393{
1394        struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1395        struct writeback_control wbc = {
1396                .nr_to_write = LONG_MAX,
1397                .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1398                .range_start = 0,
1399                .range_end = LLONG_MAX,
1400        };
1401
1402        if (!mapping_cap_writeback_dirty(inode->i_mapping))
1403                wbc.nr_to_write = 0;
1404
1405        might_sleep();
1406        return writeback_single_inode(inode, wb, &wbc);
1407}
1408EXPORT_SYMBOL(write_inode_now);
1409
1410/**
1411 * sync_inode - write an inode and its pages to disk.
1412 * @inode: the inode to sync
1413 * @wbc: controls the writeback mode
1414 *
1415 * sync_inode() will write an inode and its pages to disk.  It will also
1416 * correctly update the inode on its superblock's dirty inode lists and will
1417 * update inode->i_state.
1418 *
1419 * The caller must have a ref on the inode.
1420 */
1421int sync_inode(struct inode *inode, struct writeback_control *wbc)
1422{
1423        return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1424}
1425EXPORT_SYMBOL(sync_inode);
1426
1427/**
1428 * sync_inode_metadata - write an inode to disk
1429 * @inode: the inode to sync
1430 * @wait: wait for I/O to complete.
1431 *
1432 * Write an inode to disk and adjust its dirty state after completion.
1433 *
1434 * Note: only writes the actual inode, no associated data or other metadata.
1435 */
1436int sync_inode_metadata(struct inode *inode, int wait)
1437{
1438        struct writeback_control wbc = {
1439                .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1440                .nr_to_write = 0, /* metadata-only */
1441        };
1442
1443        return sync_inode(inode, &wbc);
1444}
1445EXPORT_SYMBOL(sync_inode_metadata);
1446