linux/kernel/pid_namespace.c
<<
>>
Prefs
   1/*
   2 * Pid namespaces
   3 *
   4 * Authors:
   5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   7 *     Many thanks to Oleg Nesterov for comments and help
   8 *
   9 */
  10
  11#include <linux/pid.h>
  12#include <linux/pid_namespace.h>
  13#include <linux/user_namespace.h>
  14#include <linux/syscalls.h>
  15#include <linux/err.h>
  16#include <linux/acct.h>
  17#include <linux/slab.h>
  18#include <linux/proc_ns.h>
  19#include <linux/reboot.h>
  20#include <linux/export.h>
  21
  22struct pid_cache {
  23        int nr_ids;
  24        char name[16];
  25        struct kmem_cache *cachep;
  26        struct list_head list;
  27};
  28
  29static LIST_HEAD(pid_caches_lh);
  30static DEFINE_MUTEX(pid_caches_mutex);
  31static struct kmem_cache *pid_ns_cachep;
  32
  33/*
  34 * creates the kmem cache to allocate pids from.
  35 * @nr_ids: the number of numerical ids this pid will have to carry
  36 */
  37
  38static struct kmem_cache *create_pid_cachep(int nr_ids)
  39{
  40        struct pid_cache *pcache;
  41        struct kmem_cache *cachep;
  42
  43        mutex_lock(&pid_caches_mutex);
  44        list_for_each_entry(pcache, &pid_caches_lh, list)
  45                if (pcache->nr_ids == nr_ids)
  46                        goto out;
  47
  48        pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
  49        if (pcache == NULL)
  50                goto err_alloc;
  51
  52        snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
  53        cachep = kmem_cache_create(pcache->name,
  54                        sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
  55                        0, SLAB_HWCACHE_ALIGN, NULL);
  56        if (cachep == NULL)
  57                goto err_cachep;
  58
  59        pcache->nr_ids = nr_ids;
  60        pcache->cachep = cachep;
  61        list_add(&pcache->list, &pid_caches_lh);
  62out:
  63        mutex_unlock(&pid_caches_mutex);
  64        return pcache->cachep;
  65
  66err_cachep:
  67        kfree(pcache);
  68err_alloc:
  69        mutex_unlock(&pid_caches_mutex);
  70        return NULL;
  71}
  72
  73static void proc_cleanup_work(struct work_struct *work)
  74{
  75        struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
  76        pid_ns_release_proc(ns);
  77}
  78
  79/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
  80#define MAX_PID_NS_LEVEL 32
  81
  82static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  83        struct pid_namespace *parent_pid_ns)
  84{
  85        struct pid_namespace *ns;
  86        unsigned int level = parent_pid_ns->level + 1;
  87        int i;
  88        int err;
  89
  90        if (level > MAX_PID_NS_LEVEL) {
  91                err = -EINVAL;
  92                goto out;
  93        }
  94
  95        err = -ENOMEM;
  96        ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
  97        if (ns == NULL)
  98                goto out;
  99
 100        ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 101        if (!ns->pidmap[0].page)
 102                goto out_free;
 103
 104        ns->pid_cachep = create_pid_cachep(level + 1);
 105        if (ns->pid_cachep == NULL)
 106                goto out_free_map;
 107
 108        err = proc_alloc_inum(&ns->proc_inum);
 109        if (err)
 110                goto out_free_map;
 111
 112        kref_init(&ns->kref);
 113        ns->level = level;
 114        ns->parent = get_pid_ns(parent_pid_ns);
 115        ns->user_ns = get_user_ns(user_ns);
 116        ns->nr_hashed = PIDNS_HASH_ADDING;
 117        INIT_WORK(&ns->proc_work, proc_cleanup_work);
 118
 119        set_bit(0, ns->pidmap[0].page);
 120        atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
 121
 122        for (i = 1; i < PIDMAP_ENTRIES; i++)
 123                atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
 124
 125        return ns;
 126
 127out_free_map:
 128        kfree(ns->pidmap[0].page);
 129out_free:
 130        kmem_cache_free(pid_ns_cachep, ns);
 131out:
 132        return ERR_PTR(err);
 133}
 134
 135static void delayed_free_pidns(struct rcu_head *p)
 136{
 137        kmem_cache_free(pid_ns_cachep,
 138                        container_of(p, struct pid_namespace, rcu));
 139}
 140
 141static void destroy_pid_namespace(struct pid_namespace *ns)
 142{
 143        int i;
 144
 145        proc_free_inum(ns->proc_inum);
 146        for (i = 0; i < PIDMAP_ENTRIES; i++)
 147                kfree(ns->pidmap[i].page);
 148        put_user_ns(ns->user_ns);
 149        call_rcu(&ns->rcu, delayed_free_pidns);
 150}
 151
 152struct pid_namespace *copy_pid_ns(unsigned long flags,
 153        struct user_namespace *user_ns, struct pid_namespace *old_ns)
 154{
 155        if (!(flags & CLONE_NEWPID))
 156                return get_pid_ns(old_ns);
 157        if (task_active_pid_ns(current) != old_ns)
 158                return ERR_PTR(-EINVAL);
 159        return create_pid_namespace(user_ns, old_ns);
 160}
 161
 162static void free_pid_ns(struct kref *kref)
 163{
 164        struct pid_namespace *ns;
 165
 166        ns = container_of(kref, struct pid_namespace, kref);
 167        destroy_pid_namespace(ns);
 168}
 169
 170void put_pid_ns(struct pid_namespace *ns)
 171{
 172        struct pid_namespace *parent;
 173
 174        while (ns != &init_pid_ns) {
 175                parent = ns->parent;
 176                if (!kref_put(&ns->kref, free_pid_ns))
 177                        break;
 178                ns = parent;
 179        }
 180}
 181EXPORT_SYMBOL_GPL(put_pid_ns);
 182
 183void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 184{
 185        int nr;
 186        int rc;
 187        struct task_struct *task, *me = current;
 188        int init_pids = thread_group_leader(me) ? 1 : 2;
 189
 190        /* Don't allow any more processes into the pid namespace */
 191        disable_pid_allocation(pid_ns);
 192
 193        /* Ignore SIGCHLD causing any terminated children to autoreap */
 194        spin_lock_irq(&me->sighand->siglock);
 195        me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 196        spin_unlock_irq(&me->sighand->siglock);
 197
 198        /*
 199         * The last thread in the cgroup-init thread group is terminating.
 200         * Find remaining pid_ts in the namespace, signal and wait for them
 201         * to exit.
 202         *
 203         * Note:  This signals each threads in the namespace - even those that
 204         *        belong to the same thread group, To avoid this, we would have
 205         *        to walk the entire tasklist looking a processes in this
 206         *        namespace, but that could be unnecessarily expensive if the
 207         *        pid namespace has just a few processes. Or we need to
 208         *        maintain a tasklist for each pid namespace.
 209         *
 210         */
 211        read_lock(&tasklist_lock);
 212        nr = next_pidmap(pid_ns, 1);
 213        while (nr > 0) {
 214                rcu_read_lock();
 215
 216                task = pid_task(find_vpid(nr), PIDTYPE_PID);
 217                if (task && !__fatal_signal_pending(task))
 218                        send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
 219
 220                rcu_read_unlock();
 221
 222                nr = next_pidmap(pid_ns, nr);
 223        }
 224        read_unlock(&tasklist_lock);
 225
 226        /* Firstly reap the EXIT_ZOMBIE children we may have. */
 227        do {
 228                clear_thread_flag(TIF_SIGPENDING);
 229                rc = sys_wait4(-1, NULL, __WALL, NULL);
 230        } while (rc != -ECHILD);
 231
 232        /*
 233         * sys_wait4() above can't reap the TASK_DEAD children.
 234         * Make sure they all go away, see free_pid().
 235         */
 236        for (;;) {
 237                set_current_state(TASK_UNINTERRUPTIBLE);
 238                if (pid_ns->nr_hashed == init_pids)
 239                        break;
 240                schedule();
 241        }
 242        __set_current_state(TASK_RUNNING);
 243
 244        if (pid_ns->reboot)
 245                current->signal->group_exit_code = pid_ns->reboot;
 246
 247        acct_exit_ns(pid_ns);
 248        return;
 249}
 250
 251#ifdef CONFIG_CHECKPOINT_RESTORE
 252static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 253                void __user *buffer, size_t *lenp, loff_t *ppos)
 254{
 255        struct pid_namespace *pid_ns = task_active_pid_ns(current);
 256        struct ctl_table tmp = *table;
 257
 258        if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
 259                return -EPERM;
 260
 261        /*
 262         * Writing directly to ns' last_pid field is OK, since this field
 263         * is volatile in a living namespace anyway and a code writing to
 264         * it should synchronize its usage with external means.
 265         */
 266
 267        tmp.data = &pid_ns->last_pid;
 268        return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 269}
 270
 271extern int pid_max;
 272static int zero = 0;
 273static struct ctl_table pid_ns_ctl_table[] = {
 274        {
 275                .procname = "ns_last_pid",
 276                .maxlen = sizeof(int),
 277                .mode = 0666, /* permissions are checked in the handler */
 278                .proc_handler = pid_ns_ctl_handler,
 279                .extra1 = &zero,
 280                .extra2 = &pid_max,
 281        },
 282        { }
 283};
 284static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 285#endif  /* CONFIG_CHECKPOINT_RESTORE */
 286
 287int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 288{
 289        if (pid_ns == &init_pid_ns)
 290                return 0;
 291
 292        switch (cmd) {
 293        case LINUX_REBOOT_CMD_RESTART2:
 294        case LINUX_REBOOT_CMD_RESTART:
 295                pid_ns->reboot = SIGHUP;
 296                break;
 297
 298        case LINUX_REBOOT_CMD_POWER_OFF:
 299        case LINUX_REBOOT_CMD_HALT:
 300                pid_ns->reboot = SIGINT;
 301                break;
 302        default:
 303                return -EINVAL;
 304        }
 305
 306        read_lock(&tasklist_lock);
 307        force_sig(SIGKILL, pid_ns->child_reaper);
 308        read_unlock(&tasklist_lock);
 309
 310        do_exit(0);
 311
 312        /* Not reached */
 313        return 0;
 314}
 315
 316static void *pidns_get(struct task_struct *task)
 317{
 318        struct pid_namespace *ns;
 319
 320        rcu_read_lock();
 321        ns = get_pid_ns(task_active_pid_ns(task));
 322        rcu_read_unlock();
 323
 324        return ns;
 325}
 326
 327static void pidns_put(void *ns)
 328{
 329        put_pid_ns(ns);
 330}
 331
 332static int pidns_install(struct nsproxy *nsproxy, void *ns)
 333{
 334        struct pid_namespace *active = task_active_pid_ns(current);
 335        struct pid_namespace *ancestor, *new = ns;
 336
 337        if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 338            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
 339                return -EPERM;
 340
 341        /*
 342         * Only allow entering the current active pid namespace
 343         * or a child of the current active pid namespace.
 344         *
 345         * This is required for fork to return a usable pid value and
 346         * this maintains the property that processes and their
 347         * children can not escape their current pid namespace.
 348         */
 349        if (new->level < active->level)
 350                return -EINVAL;
 351
 352        ancestor = new;
 353        while (ancestor->level > active->level)
 354                ancestor = ancestor->parent;
 355        if (ancestor != active)
 356                return -EINVAL;
 357
 358        put_pid_ns(nsproxy->pid_ns_for_children);
 359        nsproxy->pid_ns_for_children = get_pid_ns(new);
 360        return 0;
 361}
 362
 363static unsigned int pidns_inum(void *ns)
 364{
 365        struct pid_namespace *pid_ns = ns;
 366        return pid_ns->proc_inum;
 367}
 368
 369const struct proc_ns_operations pidns_operations = {
 370        .name           = "pid",
 371        .type           = CLONE_NEWPID,
 372        .get            = pidns_get,
 373        .put            = pidns_put,
 374        .install        = pidns_install,
 375        .inum           = pidns_inum,
 376};
 377
 378static __init int pid_namespaces_init(void)
 379{
 380        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 381
 382#ifdef CONFIG_CHECKPOINT_RESTORE
 383        register_sysctl_paths(kern_path, pid_ns_ctl_table);
 384#endif
 385        return 0;
 386}
 387
 388__initcall(pid_namespaces_init);
 389