linux/kernel/rcu/srcu.c
<<
>>
Prefs
   1/*
   2 * Sleepable Read-Copy Update mechanism for mutual exclusion.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2006
  19 * Copyright (C) Fujitsu, 2012
  20 *
  21 * Author: Paul McKenney <paulmck@us.ibm.com>
  22 *         Lai Jiangshan <laijs@cn.fujitsu.com>
  23 *
  24 * For detailed explanation of Read-Copy Update mechanism see -
  25 *              Documentation/RCU/ *.txt
  26 *
  27 */
  28
  29#include <linux/export.h>
  30#include <linux/mutex.h>
  31#include <linux/percpu.h>
  32#include <linux/preempt.h>
  33#include <linux/rcupdate.h>
  34#include <linux/sched.h>
  35#include <linux/smp.h>
  36#include <linux/delay.h>
  37#include <linux/srcu.h>
  38
  39#include <trace/events/rcu.h>
  40
  41#include "rcu.h"
  42
  43/*
  44 * Initialize an rcu_batch structure to empty.
  45 */
  46static inline void rcu_batch_init(struct rcu_batch *b)
  47{
  48        b->head = NULL;
  49        b->tail = &b->head;
  50}
  51
  52/*
  53 * Enqueue a callback onto the tail of the specified rcu_batch structure.
  54 */
  55static inline void rcu_batch_queue(struct rcu_batch *b, struct rcu_head *head)
  56{
  57        *b->tail = head;
  58        b->tail = &head->next;
  59}
  60
  61/*
  62 * Is the specified rcu_batch structure empty?
  63 */
  64static inline bool rcu_batch_empty(struct rcu_batch *b)
  65{
  66        return b->tail == &b->head;
  67}
  68
  69/*
  70 * Remove the callback at the head of the specified rcu_batch structure
  71 * and return a pointer to it, or return NULL if the structure is empty.
  72 */
  73static inline struct rcu_head *rcu_batch_dequeue(struct rcu_batch *b)
  74{
  75        struct rcu_head *head;
  76
  77        if (rcu_batch_empty(b))
  78                return NULL;
  79
  80        head = b->head;
  81        b->head = head->next;
  82        if (b->tail == &head->next)
  83                rcu_batch_init(b);
  84
  85        return head;
  86}
  87
  88/*
  89 * Move all callbacks from the rcu_batch structure specified by "from" to
  90 * the structure specified by "to".
  91 */
  92static inline void rcu_batch_move(struct rcu_batch *to, struct rcu_batch *from)
  93{
  94        if (!rcu_batch_empty(from)) {
  95                *to->tail = from->head;
  96                to->tail = from->tail;
  97                rcu_batch_init(from);
  98        }
  99}
 100
 101static int init_srcu_struct_fields(struct srcu_struct *sp)
 102{
 103        sp->completed = 0;
 104        spin_lock_init(&sp->queue_lock);
 105        sp->running = false;
 106        rcu_batch_init(&sp->batch_queue);
 107        rcu_batch_init(&sp->batch_check0);
 108        rcu_batch_init(&sp->batch_check1);
 109        rcu_batch_init(&sp->batch_done);
 110        INIT_DELAYED_WORK(&sp->work, process_srcu);
 111        sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
 112        return sp->per_cpu_ref ? 0 : -ENOMEM;
 113}
 114
 115#ifdef CONFIG_DEBUG_LOCK_ALLOC
 116
 117int __init_srcu_struct(struct srcu_struct *sp, const char *name,
 118                       struct lock_class_key *key)
 119{
 120        /* Don't re-initialize a lock while it is held. */
 121        debug_check_no_locks_freed((void *)sp, sizeof(*sp));
 122        lockdep_init_map(&sp->dep_map, name, key, 0);
 123        return init_srcu_struct_fields(sp);
 124}
 125EXPORT_SYMBOL_GPL(__init_srcu_struct);
 126
 127#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 128
 129/**
 130 * init_srcu_struct - initialize a sleep-RCU structure
 131 * @sp: structure to initialize.
 132 *
 133 * Must invoke this on a given srcu_struct before passing that srcu_struct
 134 * to any other function.  Each srcu_struct represents a separate domain
 135 * of SRCU protection.
 136 */
 137int init_srcu_struct(struct srcu_struct *sp)
 138{
 139        return init_srcu_struct_fields(sp);
 140}
 141EXPORT_SYMBOL_GPL(init_srcu_struct);
 142
 143#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 144
 145/*
 146 * Returns approximate total of the readers' ->seq[] values for the
 147 * rank of per-CPU counters specified by idx.
 148 */
 149static unsigned long srcu_readers_seq_idx(struct srcu_struct *sp, int idx)
 150{
 151        int cpu;
 152        unsigned long sum = 0;
 153        unsigned long t;
 154
 155        for_each_possible_cpu(cpu) {
 156                t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->seq[idx]);
 157                sum += t;
 158        }
 159        return sum;
 160}
 161
 162/*
 163 * Returns approximate number of readers active on the specified rank
 164 * of the per-CPU ->c[] counters.
 165 */
 166static unsigned long srcu_readers_active_idx(struct srcu_struct *sp, int idx)
 167{
 168        int cpu;
 169        unsigned long sum = 0;
 170        unsigned long t;
 171
 172        for_each_possible_cpu(cpu) {
 173                t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]);
 174                sum += t;
 175        }
 176        return sum;
 177}
 178
 179/*
 180 * Return true if the number of pre-existing readers is determined to
 181 * be stably zero.  An example unstable zero can occur if the call
 182 * to srcu_readers_active_idx() misses an __srcu_read_lock() increment,
 183 * but due to task migration, sees the corresponding __srcu_read_unlock()
 184 * decrement.  This can happen because srcu_readers_active_idx() takes
 185 * time to sum the array, and might in fact be interrupted or preempted
 186 * partway through the summation.
 187 */
 188static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
 189{
 190        unsigned long seq;
 191
 192        seq = srcu_readers_seq_idx(sp, idx);
 193
 194        /*
 195         * The following smp_mb() A pairs with the smp_mb() B located in
 196         * __srcu_read_lock().  This pairing ensures that if an
 197         * __srcu_read_lock() increments its counter after the summation
 198         * in srcu_readers_active_idx(), then the corresponding SRCU read-side
 199         * critical section will see any changes made prior to the start
 200         * of the current SRCU grace period.
 201         *
 202         * Also, if the above call to srcu_readers_seq_idx() saw the
 203         * increment of ->seq[], then the call to srcu_readers_active_idx()
 204         * must see the increment of ->c[].
 205         */
 206        smp_mb(); /* A */
 207
 208        /*
 209         * Note that srcu_readers_active_idx() can incorrectly return
 210         * zero even though there is a pre-existing reader throughout.
 211         * To see this, suppose that task A is in a very long SRCU
 212         * read-side critical section that started on CPU 0, and that
 213         * no other reader exists, so that the sum of the counters
 214         * is equal to one.  Then suppose that task B starts executing
 215         * srcu_readers_active_idx(), summing up to CPU 1, and then that
 216         * task C starts reading on CPU 0, so that its increment is not
 217         * summed, but finishes reading on CPU 2, so that its decrement
 218         * -is- summed.  Then when task B completes its sum, it will
 219         * incorrectly get zero, despite the fact that task A has been
 220         * in its SRCU read-side critical section the whole time.
 221         *
 222         * We therefore do a validation step should srcu_readers_active_idx()
 223         * return zero.
 224         */
 225        if (srcu_readers_active_idx(sp, idx) != 0)
 226                return false;
 227
 228        /*
 229         * The remainder of this function is the validation step.
 230         * The following smp_mb() D pairs with the smp_mb() C in
 231         * __srcu_read_unlock().  If the __srcu_read_unlock() was seen
 232         * by srcu_readers_active_idx() above, then any destructive
 233         * operation performed after the grace period will happen after
 234         * the corresponding SRCU read-side critical section.
 235         *
 236         * Note that there can be at most NR_CPUS worth of readers using
 237         * the old index, which is not enough to overflow even a 32-bit
 238         * integer.  (Yes, this does mean that systems having more than
 239         * a billion or so CPUs need to be 64-bit systems.)  Therefore,
 240         * the sum of the ->seq[] counters cannot possibly overflow.
 241         * Therefore, the only way that the return values of the two
 242         * calls to srcu_readers_seq_idx() can be equal is if there were
 243         * no increments of the corresponding rank of ->seq[] counts
 244         * in the interim.  But the missed-increment scenario laid out
 245         * above includes an increment of the ->seq[] counter by
 246         * the corresponding __srcu_read_lock().  Therefore, if this
 247         * scenario occurs, the return values from the two calls to
 248         * srcu_readers_seq_idx() will differ, and thus the validation
 249         * step below suffices.
 250         */
 251        smp_mb(); /* D */
 252
 253        return srcu_readers_seq_idx(sp, idx) == seq;
 254}
 255
 256/**
 257 * srcu_readers_active - returns approximate number of readers.
 258 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
 259 *
 260 * Note that this is not an atomic primitive, and can therefore suffer
 261 * severe errors when invoked on an active srcu_struct.  That said, it
 262 * can be useful as an error check at cleanup time.
 263 */
 264static int srcu_readers_active(struct srcu_struct *sp)
 265{
 266        int cpu;
 267        unsigned long sum = 0;
 268
 269        for_each_possible_cpu(cpu) {
 270                sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[0]);
 271                sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[1]);
 272        }
 273        return sum;
 274}
 275
 276/**
 277 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
 278 * @sp: structure to clean up.
 279 *
 280 * Must invoke this after you are finished using a given srcu_struct that
 281 * was initialized via init_srcu_struct(), else you leak memory.
 282 */
 283void cleanup_srcu_struct(struct srcu_struct *sp)
 284{
 285        if (WARN_ON(srcu_readers_active(sp)))
 286                return; /* Leakage unless caller handles error. */
 287        free_percpu(sp->per_cpu_ref);
 288        sp->per_cpu_ref = NULL;
 289}
 290EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
 291
 292/*
 293 * Counts the new reader in the appropriate per-CPU element of the
 294 * srcu_struct.  Must be called from process context.
 295 * Returns an index that must be passed to the matching srcu_read_unlock().
 296 */
 297int __srcu_read_lock(struct srcu_struct *sp)
 298{
 299        int idx;
 300
 301        idx = ACCESS_ONCE(sp->completed) & 0x1;
 302        preempt_disable();
 303        ACCESS_ONCE(this_cpu_ptr(sp->per_cpu_ref)->c[idx]) += 1;
 304        smp_mb(); /* B */  /* Avoid leaking the critical section. */
 305        ACCESS_ONCE(this_cpu_ptr(sp->per_cpu_ref)->seq[idx]) += 1;
 306        preempt_enable();
 307        return idx;
 308}
 309EXPORT_SYMBOL_GPL(__srcu_read_lock);
 310
 311/*
 312 * Removes the count for the old reader from the appropriate per-CPU
 313 * element of the srcu_struct.  Note that this may well be a different
 314 * CPU than that which was incremented by the corresponding srcu_read_lock().
 315 * Must be called from process context.
 316 */
 317void __srcu_read_unlock(struct srcu_struct *sp, int idx)
 318{
 319        smp_mb(); /* C */  /* Avoid leaking the critical section. */
 320        this_cpu_dec(sp->per_cpu_ref->c[idx]);
 321}
 322EXPORT_SYMBOL_GPL(__srcu_read_unlock);
 323
 324/*
 325 * We use an adaptive strategy for synchronize_srcu() and especially for
 326 * synchronize_srcu_expedited().  We spin for a fixed time period
 327 * (defined below) to allow SRCU readers to exit their read-side critical
 328 * sections.  If there are still some readers after 10 microseconds,
 329 * we repeatedly block for 1-millisecond time periods.  This approach
 330 * has done well in testing, so there is no need for a config parameter.
 331 */
 332#define SRCU_RETRY_CHECK_DELAY          5
 333#define SYNCHRONIZE_SRCU_TRYCOUNT       2
 334#define SYNCHRONIZE_SRCU_EXP_TRYCOUNT   12
 335
 336/*
 337 * @@@ Wait until all pre-existing readers complete.  Such readers
 338 * will have used the index specified by "idx".
 339 * the caller should ensures the ->completed is not changed while checking
 340 * and idx = (->completed & 1) ^ 1
 341 */
 342static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
 343{
 344        for (;;) {
 345                if (srcu_readers_active_idx_check(sp, idx))
 346                        return true;
 347                if (--trycount <= 0)
 348                        return false;
 349                udelay(SRCU_RETRY_CHECK_DELAY);
 350        }
 351}
 352
 353/*
 354 * Increment the ->completed counter so that future SRCU readers will
 355 * use the other rank of the ->c[] and ->seq[] arrays.  This allows
 356 * us to wait for pre-existing readers in a starvation-free manner.
 357 */
 358static void srcu_flip(struct srcu_struct *sp)
 359{
 360        sp->completed++;
 361}
 362
 363/*
 364 * Enqueue an SRCU callback on the specified srcu_struct structure,
 365 * initiating grace-period processing if it is not already running.
 366 *
 367 * Note that all CPUs must agree that the grace period extended beyond
 368 * all pre-existing SRCU read-side critical section.  On systems with
 369 * more than one CPU, this means that when "func()" is invoked, each CPU
 370 * is guaranteed to have executed a full memory barrier since the end of
 371 * its last corresponding SRCU read-side critical section whose beginning
 372 * preceded the call to call_rcu().  It also means that each CPU executing
 373 * an SRCU read-side critical section that continues beyond the start of
 374 * "func()" must have executed a memory barrier after the call_rcu()
 375 * but before the beginning of that SRCU read-side critical section.
 376 * Note that these guarantees include CPUs that are offline, idle, or
 377 * executing in user mode, as well as CPUs that are executing in the kernel.
 378 *
 379 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 380 * resulting SRCU callback function "func()", then both CPU A and CPU
 381 * B are guaranteed to execute a full memory barrier during the time
 382 * interval between the call to call_rcu() and the invocation of "func()".
 383 * This guarantee applies even if CPU A and CPU B are the same CPU (but
 384 * again only if the system has more than one CPU).
 385 *
 386 * Of course, these guarantees apply only for invocations of call_srcu(),
 387 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
 388 * srcu_struct structure.
 389 */
 390void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
 391                void (*func)(struct rcu_head *head))
 392{
 393        unsigned long flags;
 394
 395        head->next = NULL;
 396        head->func = func;
 397        spin_lock_irqsave(&sp->queue_lock, flags);
 398        rcu_batch_queue(&sp->batch_queue, head);
 399        if (!sp->running) {
 400                sp->running = true;
 401                schedule_delayed_work(&sp->work, 0);
 402        }
 403        spin_unlock_irqrestore(&sp->queue_lock, flags);
 404}
 405EXPORT_SYMBOL_GPL(call_srcu);
 406
 407struct rcu_synchronize {
 408        struct rcu_head head;
 409        struct completion completion;
 410};
 411
 412/*
 413 * Awaken the corresponding synchronize_srcu() instance now that a
 414 * grace period has elapsed.
 415 */
 416static void wakeme_after_rcu(struct rcu_head *head)
 417{
 418        struct rcu_synchronize *rcu;
 419
 420        rcu = container_of(head, struct rcu_synchronize, head);
 421        complete(&rcu->completion);
 422}
 423
 424static void srcu_advance_batches(struct srcu_struct *sp, int trycount);
 425static void srcu_reschedule(struct srcu_struct *sp);
 426
 427/*
 428 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
 429 */
 430static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
 431{
 432        struct rcu_synchronize rcu;
 433        struct rcu_head *head = &rcu.head;
 434        bool done = false;
 435
 436        rcu_lockdep_assert(!lock_is_held(&sp->dep_map) &&
 437                           !lock_is_held(&rcu_bh_lock_map) &&
 438                           !lock_is_held(&rcu_lock_map) &&
 439                           !lock_is_held(&rcu_sched_lock_map),
 440                           "Illegal synchronize_srcu() in same-type SRCU (or RCU) read-side critical section");
 441
 442        might_sleep();
 443        init_completion(&rcu.completion);
 444
 445        head->next = NULL;
 446        head->func = wakeme_after_rcu;
 447        spin_lock_irq(&sp->queue_lock);
 448        if (!sp->running) {
 449                /* steal the processing owner */
 450                sp->running = true;
 451                rcu_batch_queue(&sp->batch_check0, head);
 452                spin_unlock_irq(&sp->queue_lock);
 453
 454                srcu_advance_batches(sp, trycount);
 455                if (!rcu_batch_empty(&sp->batch_done)) {
 456                        BUG_ON(sp->batch_done.head != head);
 457                        rcu_batch_dequeue(&sp->batch_done);
 458                        done = true;
 459                }
 460                /* give the processing owner to work_struct */
 461                srcu_reschedule(sp);
 462        } else {
 463                rcu_batch_queue(&sp->batch_queue, head);
 464                spin_unlock_irq(&sp->queue_lock);
 465        }
 466
 467        if (!done)
 468                wait_for_completion(&rcu.completion);
 469}
 470
 471/**
 472 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
 473 * @sp: srcu_struct with which to synchronize.
 474 *
 475 * Wait for the count to drain to zero of both indexes. To avoid the
 476 * possible starvation of synchronize_srcu(), it waits for the count of
 477 * the index=((->completed & 1) ^ 1) to drain to zero at first,
 478 * and then flip the completed and wait for the count of the other index.
 479 *
 480 * Can block; must be called from process context.
 481 *
 482 * Note that it is illegal to call synchronize_srcu() from the corresponding
 483 * SRCU read-side critical section; doing so will result in deadlock.
 484 * However, it is perfectly legal to call synchronize_srcu() on one
 485 * srcu_struct from some other srcu_struct's read-side critical section,
 486 * as long as the resulting graph of srcu_structs is acyclic.
 487 *
 488 * There are memory-ordering constraints implied by synchronize_srcu().
 489 * On systems with more than one CPU, when synchronize_srcu() returns,
 490 * each CPU is guaranteed to have executed a full memory barrier since
 491 * the end of its last corresponding SRCU-sched read-side critical section
 492 * whose beginning preceded the call to synchronize_srcu().  In addition,
 493 * each CPU having an SRCU read-side critical section that extends beyond
 494 * the return from synchronize_srcu() is guaranteed to have executed a
 495 * full memory barrier after the beginning of synchronize_srcu() and before
 496 * the beginning of that SRCU read-side critical section.  Note that these
 497 * guarantees include CPUs that are offline, idle, or executing in user mode,
 498 * as well as CPUs that are executing in the kernel.
 499 *
 500 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
 501 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 502 * to have executed a full memory barrier during the execution of
 503 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
 504 * are the same CPU, but again only if the system has more than one CPU.
 505 *
 506 * Of course, these memory-ordering guarantees apply only when
 507 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
 508 * passed the same srcu_struct structure.
 509 */
 510void synchronize_srcu(struct srcu_struct *sp)
 511{
 512        __synchronize_srcu(sp, rcu_expedited
 513                           ? SYNCHRONIZE_SRCU_EXP_TRYCOUNT
 514                           : SYNCHRONIZE_SRCU_TRYCOUNT);
 515}
 516EXPORT_SYMBOL_GPL(synchronize_srcu);
 517
 518/**
 519 * synchronize_srcu_expedited - Brute-force SRCU grace period
 520 * @sp: srcu_struct with which to synchronize.
 521 *
 522 * Wait for an SRCU grace period to elapse, but be more aggressive about
 523 * spinning rather than blocking when waiting.
 524 *
 525 * Note that synchronize_srcu_expedited() has the same deadlock and
 526 * memory-ordering properties as does synchronize_srcu().
 527 */
 528void synchronize_srcu_expedited(struct srcu_struct *sp)
 529{
 530        __synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT);
 531}
 532EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
 533
 534/**
 535 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
 536 * @sp: srcu_struct on which to wait for in-flight callbacks.
 537 */
 538void srcu_barrier(struct srcu_struct *sp)
 539{
 540        synchronize_srcu(sp);
 541}
 542EXPORT_SYMBOL_GPL(srcu_barrier);
 543
 544/**
 545 * srcu_batches_completed - return batches completed.
 546 * @sp: srcu_struct on which to report batch completion.
 547 *
 548 * Report the number of batches, correlated with, but not necessarily
 549 * precisely the same as, the number of grace periods that have elapsed.
 550 */
 551long srcu_batches_completed(struct srcu_struct *sp)
 552{
 553        return sp->completed;
 554}
 555EXPORT_SYMBOL_GPL(srcu_batches_completed);
 556
 557#define SRCU_CALLBACK_BATCH     10
 558#define SRCU_INTERVAL           1
 559
 560/*
 561 * Move any new SRCU callbacks to the first stage of the SRCU grace
 562 * period pipeline.
 563 */
 564static void srcu_collect_new(struct srcu_struct *sp)
 565{
 566        if (!rcu_batch_empty(&sp->batch_queue)) {
 567                spin_lock_irq(&sp->queue_lock);
 568                rcu_batch_move(&sp->batch_check0, &sp->batch_queue);
 569                spin_unlock_irq(&sp->queue_lock);
 570        }
 571}
 572
 573/*
 574 * Core SRCU state machine.  Advance callbacks from ->batch_check0 to
 575 * ->batch_check1 and then to ->batch_done as readers drain.
 576 */
 577static void srcu_advance_batches(struct srcu_struct *sp, int trycount)
 578{
 579        int idx = 1 ^ (sp->completed & 1);
 580
 581        /*
 582         * Because readers might be delayed for an extended period after
 583         * fetching ->completed for their index, at any point in time there
 584         * might well be readers using both idx=0 and idx=1.  We therefore
 585         * need to wait for readers to clear from both index values before
 586         * invoking a callback.
 587         */
 588
 589        if (rcu_batch_empty(&sp->batch_check0) &&
 590            rcu_batch_empty(&sp->batch_check1))
 591                return; /* no callbacks need to be advanced */
 592
 593        if (!try_check_zero(sp, idx, trycount))
 594                return; /* failed to advance, will try after SRCU_INTERVAL */
 595
 596        /*
 597         * The callbacks in ->batch_check1 have already done with their
 598         * first zero check and flip back when they were enqueued on
 599         * ->batch_check0 in a previous invocation of srcu_advance_batches().
 600         * (Presumably try_check_zero() returned false during that
 601         * invocation, leaving the callbacks stranded on ->batch_check1.)
 602         * They are therefore ready to invoke, so move them to ->batch_done.
 603         */
 604        rcu_batch_move(&sp->batch_done, &sp->batch_check1);
 605
 606        if (rcu_batch_empty(&sp->batch_check0))
 607                return; /* no callbacks need to be advanced */
 608        srcu_flip(sp);
 609
 610        /*
 611         * The callbacks in ->batch_check0 just finished their
 612         * first check zero and flip, so move them to ->batch_check1
 613         * for future checking on the other idx.
 614         */
 615        rcu_batch_move(&sp->batch_check1, &sp->batch_check0);
 616
 617        /*
 618         * SRCU read-side critical sections are normally short, so check
 619         * at least twice in quick succession after a flip.
 620         */
 621        trycount = trycount < 2 ? 2 : trycount;
 622        if (!try_check_zero(sp, idx^1, trycount))
 623                return; /* failed to advance, will try after SRCU_INTERVAL */
 624
 625        /*
 626         * The callbacks in ->batch_check1 have now waited for all
 627         * pre-existing readers using both idx values.  They are therefore
 628         * ready to invoke, so move them to ->batch_done.
 629         */
 630        rcu_batch_move(&sp->batch_done, &sp->batch_check1);
 631}
 632
 633/*
 634 * Invoke a limited number of SRCU callbacks that have passed through
 635 * their grace period.  If there are more to do, SRCU will reschedule
 636 * the workqueue.
 637 */
 638static void srcu_invoke_callbacks(struct srcu_struct *sp)
 639{
 640        int i;
 641        struct rcu_head *head;
 642
 643        for (i = 0; i < SRCU_CALLBACK_BATCH; i++) {
 644                head = rcu_batch_dequeue(&sp->batch_done);
 645                if (!head)
 646                        break;
 647                local_bh_disable();
 648                head->func(head);
 649                local_bh_enable();
 650        }
 651}
 652
 653/*
 654 * Finished one round of SRCU grace period.  Start another if there are
 655 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
 656 */
 657static void srcu_reschedule(struct srcu_struct *sp)
 658{
 659        bool pending = true;
 660
 661        if (rcu_batch_empty(&sp->batch_done) &&
 662            rcu_batch_empty(&sp->batch_check1) &&
 663            rcu_batch_empty(&sp->batch_check0) &&
 664            rcu_batch_empty(&sp->batch_queue)) {
 665                spin_lock_irq(&sp->queue_lock);
 666                if (rcu_batch_empty(&sp->batch_done) &&
 667                    rcu_batch_empty(&sp->batch_check1) &&
 668                    rcu_batch_empty(&sp->batch_check0) &&
 669                    rcu_batch_empty(&sp->batch_queue)) {
 670                        sp->running = false;
 671                        pending = false;
 672                }
 673                spin_unlock_irq(&sp->queue_lock);
 674        }
 675
 676        if (pending)
 677                schedule_delayed_work(&sp->work, SRCU_INTERVAL);
 678}
 679
 680/*
 681 * This is the work-queue function that handles SRCU grace periods.
 682 */
 683void process_srcu(struct work_struct *work)
 684{
 685        struct srcu_struct *sp;
 686
 687        sp = container_of(work, struct srcu_struct, work.work);
 688
 689        srcu_collect_new(sp);
 690        srcu_advance_batches(sp, 1);
 691        srcu_invoke_callbacks(sp);
 692        srcu_reschedule(sp);
 693}
 694EXPORT_SYMBOL_GPL(process_srcu);
 695