linux/kernel/sched/core.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *              make semaphores SMP safe
  10 *  1998-11-19  Implemented schedule_timeout() and related stuff
  11 *              by Andrea Arcangeli
  12 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *              hybrid priority-list and round-robin design with
  14 *              an array-switch method of distributing timeslices
  15 *              and per-CPU runqueues.  Cleanups and useful suggestions
  16 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03  Interactivity tuning by Con Kolivas.
  18 *  2004-04-02  Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <asm/mmu_context.h>
  36#include <linux/interrupt.h>
  37#include <linux/capability.h>
  38#include <linux/completion.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/debug_locks.h>
  41#include <linux/perf_event.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/profile.h>
  45#include <linux/freezer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/blkdev.h>
  48#include <linux/delay.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/smp.h>
  51#include <linux/threads.h>
  52#include <linux/timer.h>
  53#include <linux/rcupdate.h>
  54#include <linux/cpu.h>
  55#include <linux/cpuset.h>
  56#include <linux/percpu.h>
  57#include <linux/proc_fs.h>
  58#include <linux/seq_file.h>
  59#include <linux/sysctl.h>
  60#include <linux/syscalls.h>
  61#include <linux/times.h>
  62#include <linux/tsacct_kern.h>
  63#include <linux/kprobes.h>
  64#include <linux/delayacct.h>
  65#include <linux/unistd.h>
  66#include <linux/pagemap.h>
  67#include <linux/hrtimer.h>
  68#include <linux/tick.h>
  69#include <linux/debugfs.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/binfmts.h>
  75#include <linux/context_tracking.h>
  76
  77#include <asm/switch_to.h>
  78#include <asm/tlb.h>
  79#include <asm/irq_regs.h>
  80#include <asm/mutex.h>
  81#ifdef CONFIG_PARAVIRT
  82#include <asm/paravirt.h>
  83#endif
  84
  85#include "sched.h"
  86#include "../workqueue_internal.h"
  87#include "../smpboot.h"
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/sched.h>
  91
  92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  93{
  94        unsigned long delta;
  95        ktime_t soft, hard, now;
  96
  97        for (;;) {
  98                if (hrtimer_active(period_timer))
  99                        break;
 100
 101                now = hrtimer_cb_get_time(period_timer);
 102                hrtimer_forward(period_timer, now, period);
 103
 104                soft = hrtimer_get_softexpires(period_timer);
 105                hard = hrtimer_get_expires(period_timer);
 106                delta = ktime_to_ns(ktime_sub(hard, soft));
 107                __hrtimer_start_range_ns(period_timer, soft, delta,
 108                                         HRTIMER_MODE_ABS_PINNED, 0);
 109        }
 110}
 111
 112DEFINE_MUTEX(sched_domains_mutex);
 113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 114
 115static void update_rq_clock_task(struct rq *rq, s64 delta);
 116
 117void update_rq_clock(struct rq *rq)
 118{
 119        s64 delta;
 120
 121        if (rq->skip_clock_update > 0)
 122                return;
 123
 124        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 125        rq->clock += delta;
 126        update_rq_clock_task(rq, delta);
 127}
 128
 129/*
 130 * Debugging: various feature bits
 131 */
 132
 133#define SCHED_FEAT(name, enabled)       \
 134        (1UL << __SCHED_FEAT_##name) * enabled |
 135
 136const_debug unsigned int sysctl_sched_features =
 137#include "features.h"
 138        0;
 139
 140#undef SCHED_FEAT
 141
 142#ifdef CONFIG_SCHED_DEBUG
 143#define SCHED_FEAT(name, enabled)       \
 144        #name ,
 145
 146static const char * const sched_feat_names[] = {
 147#include "features.h"
 148};
 149
 150#undef SCHED_FEAT
 151
 152static int sched_feat_show(struct seq_file *m, void *v)
 153{
 154        int i;
 155
 156        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 157                if (!(sysctl_sched_features & (1UL << i)))
 158                        seq_puts(m, "NO_");
 159                seq_printf(m, "%s ", sched_feat_names[i]);
 160        }
 161        seq_puts(m, "\n");
 162
 163        return 0;
 164}
 165
 166#ifdef HAVE_JUMP_LABEL
 167
 168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 169#define jump_label_key__false STATIC_KEY_INIT_FALSE
 170
 171#define SCHED_FEAT(name, enabled)       \
 172        jump_label_key__##enabled ,
 173
 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 175#include "features.h"
 176};
 177
 178#undef SCHED_FEAT
 179
 180static void sched_feat_disable(int i)
 181{
 182        if (static_key_enabled(&sched_feat_keys[i]))
 183                static_key_slow_dec(&sched_feat_keys[i]);
 184}
 185
 186static void sched_feat_enable(int i)
 187{
 188        if (!static_key_enabled(&sched_feat_keys[i]))
 189                static_key_slow_inc(&sched_feat_keys[i]);
 190}
 191#else
 192static void sched_feat_disable(int i) { };
 193static void sched_feat_enable(int i) { };
 194#endif /* HAVE_JUMP_LABEL */
 195
 196static int sched_feat_set(char *cmp)
 197{
 198        int i;
 199        int neg = 0;
 200
 201        if (strncmp(cmp, "NO_", 3) == 0) {
 202                neg = 1;
 203                cmp += 3;
 204        }
 205
 206        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 207                if (strcmp(cmp, sched_feat_names[i]) == 0) {
 208                        if (neg) {
 209                                sysctl_sched_features &= ~(1UL << i);
 210                                sched_feat_disable(i);
 211                        } else {
 212                                sysctl_sched_features |= (1UL << i);
 213                                sched_feat_enable(i);
 214                        }
 215                        break;
 216                }
 217        }
 218
 219        return i;
 220}
 221
 222static ssize_t
 223sched_feat_write(struct file *filp, const char __user *ubuf,
 224                size_t cnt, loff_t *ppos)
 225{
 226        char buf[64];
 227        char *cmp;
 228        int i;
 229
 230        if (cnt > 63)
 231                cnt = 63;
 232
 233        if (copy_from_user(&buf, ubuf, cnt))
 234                return -EFAULT;
 235
 236        buf[cnt] = 0;
 237        cmp = strstrip(buf);
 238
 239        i = sched_feat_set(cmp);
 240        if (i == __SCHED_FEAT_NR)
 241                return -EINVAL;
 242
 243        *ppos += cnt;
 244
 245        return cnt;
 246}
 247
 248static int sched_feat_open(struct inode *inode, struct file *filp)
 249{
 250        return single_open(filp, sched_feat_show, NULL);
 251}
 252
 253static const struct file_operations sched_feat_fops = {
 254        .open           = sched_feat_open,
 255        .write          = sched_feat_write,
 256        .read           = seq_read,
 257        .llseek         = seq_lseek,
 258        .release        = single_release,
 259};
 260
 261static __init int sched_init_debug(void)
 262{
 263        debugfs_create_file("sched_features", 0644, NULL, NULL,
 264                        &sched_feat_fops);
 265
 266        return 0;
 267}
 268late_initcall(sched_init_debug);
 269#endif /* CONFIG_SCHED_DEBUG */
 270
 271/*
 272 * Number of tasks to iterate in a single balance run.
 273 * Limited because this is done with IRQs disabled.
 274 */
 275const_debug unsigned int sysctl_sched_nr_migrate = 32;
 276
 277/*
 278 * period over which we average the RT time consumption, measured
 279 * in ms.
 280 *
 281 * default: 1s
 282 */
 283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 284
 285/*
 286 * period over which we measure -rt task cpu usage in us.
 287 * default: 1s
 288 */
 289unsigned int sysctl_sched_rt_period = 1000000;
 290
 291__read_mostly int scheduler_running;
 292
 293/*
 294 * part of the period that we allow rt tasks to run in us.
 295 * default: 0.95s
 296 */
 297int sysctl_sched_rt_runtime = 950000;
 298
 299/*
 300 * __task_rq_lock - lock the rq @p resides on.
 301 */
 302static inline struct rq *__task_rq_lock(struct task_struct *p)
 303        __acquires(rq->lock)
 304{
 305        struct rq *rq;
 306
 307        lockdep_assert_held(&p->pi_lock);
 308
 309        for (;;) {
 310                rq = task_rq(p);
 311                raw_spin_lock(&rq->lock);
 312                if (likely(rq == task_rq(p)))
 313                        return rq;
 314                raw_spin_unlock(&rq->lock);
 315        }
 316}
 317
 318/*
 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 320 */
 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 322        __acquires(p->pi_lock)
 323        __acquires(rq->lock)
 324{
 325        struct rq *rq;
 326
 327        for (;;) {
 328                raw_spin_lock_irqsave(&p->pi_lock, *flags);
 329                rq = task_rq(p);
 330                raw_spin_lock(&rq->lock);
 331                if (likely(rq == task_rq(p)))
 332                        return rq;
 333                raw_spin_unlock(&rq->lock);
 334                raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 335        }
 336}
 337
 338static void __task_rq_unlock(struct rq *rq)
 339        __releases(rq->lock)
 340{
 341        raw_spin_unlock(&rq->lock);
 342}
 343
 344static inline void
 345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 346        __releases(rq->lock)
 347        __releases(p->pi_lock)
 348{
 349        raw_spin_unlock(&rq->lock);
 350        raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 351}
 352
 353/*
 354 * this_rq_lock - lock this runqueue and disable interrupts.
 355 */
 356static struct rq *this_rq_lock(void)
 357        __acquires(rq->lock)
 358{
 359        struct rq *rq;
 360
 361        local_irq_disable();
 362        rq = this_rq();
 363        raw_spin_lock(&rq->lock);
 364
 365        return rq;
 366}
 367
 368#ifdef CONFIG_SCHED_HRTICK
 369/*
 370 * Use HR-timers to deliver accurate preemption points.
 371 */
 372
 373static void hrtick_clear(struct rq *rq)
 374{
 375        if (hrtimer_active(&rq->hrtick_timer))
 376                hrtimer_cancel(&rq->hrtick_timer);
 377}
 378
 379/*
 380 * High-resolution timer tick.
 381 * Runs from hardirq context with interrupts disabled.
 382 */
 383static enum hrtimer_restart hrtick(struct hrtimer *timer)
 384{
 385        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 386
 387        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 388
 389        raw_spin_lock(&rq->lock);
 390        update_rq_clock(rq);
 391        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 392        raw_spin_unlock(&rq->lock);
 393
 394        return HRTIMER_NORESTART;
 395}
 396
 397#ifdef CONFIG_SMP
 398
 399static int __hrtick_restart(struct rq *rq)
 400{
 401        struct hrtimer *timer = &rq->hrtick_timer;
 402        ktime_t time = hrtimer_get_softexpires(timer);
 403
 404        return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
 405}
 406
 407/*
 408 * called from hardirq (IPI) context
 409 */
 410static void __hrtick_start(void *arg)
 411{
 412        struct rq *rq = arg;
 413
 414        raw_spin_lock(&rq->lock);
 415        __hrtick_restart(rq);
 416        rq->hrtick_csd_pending = 0;
 417        raw_spin_unlock(&rq->lock);
 418}
 419
 420/*
 421 * Called to set the hrtick timer state.
 422 *
 423 * called with rq->lock held and irqs disabled
 424 */
 425void hrtick_start(struct rq *rq, u64 delay)
 426{
 427        struct hrtimer *timer = &rq->hrtick_timer;
 428        ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 429
 430        hrtimer_set_expires(timer, time);
 431
 432        if (rq == this_rq()) {
 433                __hrtick_restart(rq);
 434        } else if (!rq->hrtick_csd_pending) {
 435                __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 436                rq->hrtick_csd_pending = 1;
 437        }
 438}
 439
 440static int
 441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 442{
 443        int cpu = (int)(long)hcpu;
 444
 445        switch (action) {
 446        case CPU_UP_CANCELED:
 447        case CPU_UP_CANCELED_FROZEN:
 448        case CPU_DOWN_PREPARE:
 449        case CPU_DOWN_PREPARE_FROZEN:
 450        case CPU_DEAD:
 451        case CPU_DEAD_FROZEN:
 452                hrtick_clear(cpu_rq(cpu));
 453                return NOTIFY_OK;
 454        }
 455
 456        return NOTIFY_DONE;
 457}
 458
 459static __init void init_hrtick(void)
 460{
 461        hotcpu_notifier(hotplug_hrtick, 0);
 462}
 463#else
 464/*
 465 * Called to set the hrtick timer state.
 466 *
 467 * called with rq->lock held and irqs disabled
 468 */
 469void hrtick_start(struct rq *rq, u64 delay)
 470{
 471        __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 472                        HRTIMER_MODE_REL_PINNED, 0);
 473}
 474
 475static inline void init_hrtick(void)
 476{
 477}
 478#endif /* CONFIG_SMP */
 479
 480static void init_rq_hrtick(struct rq *rq)
 481{
 482#ifdef CONFIG_SMP
 483        rq->hrtick_csd_pending = 0;
 484
 485        rq->hrtick_csd.flags = 0;
 486        rq->hrtick_csd.func = __hrtick_start;
 487        rq->hrtick_csd.info = rq;
 488#endif
 489
 490        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 491        rq->hrtick_timer.function = hrtick;
 492}
 493#else   /* CONFIG_SCHED_HRTICK */
 494static inline void hrtick_clear(struct rq *rq)
 495{
 496}
 497
 498static inline void init_rq_hrtick(struct rq *rq)
 499{
 500}
 501
 502static inline void init_hrtick(void)
 503{
 504}
 505#endif  /* CONFIG_SCHED_HRTICK */
 506
 507/*
 508 * resched_task - mark a task 'to be rescheduled now'.
 509 *
 510 * On UP this means the setting of the need_resched flag, on SMP it
 511 * might also involve a cross-CPU call to trigger the scheduler on
 512 * the target CPU.
 513 */
 514void resched_task(struct task_struct *p)
 515{
 516        int cpu;
 517
 518        lockdep_assert_held(&task_rq(p)->lock);
 519
 520        if (test_tsk_need_resched(p))
 521                return;
 522
 523        set_tsk_need_resched(p);
 524
 525        cpu = task_cpu(p);
 526        if (cpu == smp_processor_id()) {
 527                set_preempt_need_resched();
 528                return;
 529        }
 530
 531        /* NEED_RESCHED must be visible before we test polling */
 532        smp_mb();
 533        if (!tsk_is_polling(p))
 534                smp_send_reschedule(cpu);
 535}
 536
 537void resched_cpu(int cpu)
 538{
 539        struct rq *rq = cpu_rq(cpu);
 540        unsigned long flags;
 541
 542        if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 543                return;
 544        resched_task(cpu_curr(cpu));
 545        raw_spin_unlock_irqrestore(&rq->lock, flags);
 546}
 547
 548#ifdef CONFIG_SMP
 549#ifdef CONFIG_NO_HZ_COMMON
 550/*
 551 * In the semi idle case, use the nearest busy cpu for migrating timers
 552 * from an idle cpu.  This is good for power-savings.
 553 *
 554 * We don't do similar optimization for completely idle system, as
 555 * selecting an idle cpu will add more delays to the timers than intended
 556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 557 */
 558int get_nohz_timer_target(void)
 559{
 560        int cpu = smp_processor_id();
 561        int i;
 562        struct sched_domain *sd;
 563
 564        rcu_read_lock();
 565        for_each_domain(cpu, sd) {
 566                for_each_cpu(i, sched_domain_span(sd)) {
 567                        if (!idle_cpu(i)) {
 568                                cpu = i;
 569                                goto unlock;
 570                        }
 571                }
 572        }
 573unlock:
 574        rcu_read_unlock();
 575        return cpu;
 576}
 577/*
 578 * When add_timer_on() enqueues a timer into the timer wheel of an
 579 * idle CPU then this timer might expire before the next timer event
 580 * which is scheduled to wake up that CPU. In case of a completely
 581 * idle system the next event might even be infinite time into the
 582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 583 * leaves the inner idle loop so the newly added timer is taken into
 584 * account when the CPU goes back to idle and evaluates the timer
 585 * wheel for the next timer event.
 586 */
 587static void wake_up_idle_cpu(int cpu)
 588{
 589        struct rq *rq = cpu_rq(cpu);
 590
 591        if (cpu == smp_processor_id())
 592                return;
 593
 594        /*
 595         * This is safe, as this function is called with the timer
 596         * wheel base lock of (cpu) held. When the CPU is on the way
 597         * to idle and has not yet set rq->curr to idle then it will
 598         * be serialized on the timer wheel base lock and take the new
 599         * timer into account automatically.
 600         */
 601        if (rq->curr != rq->idle)
 602                return;
 603
 604        /*
 605         * We can set TIF_RESCHED on the idle task of the other CPU
 606         * lockless. The worst case is that the other CPU runs the
 607         * idle task through an additional NOOP schedule()
 608         */
 609        set_tsk_need_resched(rq->idle);
 610
 611        /* NEED_RESCHED must be visible before we test polling */
 612        smp_mb();
 613        if (!tsk_is_polling(rq->idle))
 614                smp_send_reschedule(cpu);
 615}
 616
 617static bool wake_up_full_nohz_cpu(int cpu)
 618{
 619        if (tick_nohz_full_cpu(cpu)) {
 620                if (cpu != smp_processor_id() ||
 621                    tick_nohz_tick_stopped())
 622                        smp_send_reschedule(cpu);
 623                return true;
 624        }
 625
 626        return false;
 627}
 628
 629void wake_up_nohz_cpu(int cpu)
 630{
 631        if (!wake_up_full_nohz_cpu(cpu))
 632                wake_up_idle_cpu(cpu);
 633}
 634
 635static inline bool got_nohz_idle_kick(void)
 636{
 637        int cpu = smp_processor_id();
 638
 639        if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 640                return false;
 641
 642        if (idle_cpu(cpu) && !need_resched())
 643                return true;
 644
 645        /*
 646         * We can't run Idle Load Balance on this CPU for this time so we
 647         * cancel it and clear NOHZ_BALANCE_KICK
 648         */
 649        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 650        return false;
 651}
 652
 653#else /* CONFIG_NO_HZ_COMMON */
 654
 655static inline bool got_nohz_idle_kick(void)
 656{
 657        return false;
 658}
 659
 660#endif /* CONFIG_NO_HZ_COMMON */
 661
 662#ifdef CONFIG_NO_HZ_FULL
 663bool sched_can_stop_tick(void)
 664{
 665       struct rq *rq;
 666
 667       rq = this_rq();
 668
 669       /* Make sure rq->nr_running update is visible after the IPI */
 670       smp_rmb();
 671
 672       /* More than one running task need preemption */
 673       if (rq->nr_running > 1)
 674               return false;
 675
 676       return true;
 677}
 678#endif /* CONFIG_NO_HZ_FULL */
 679
 680void sched_avg_update(struct rq *rq)
 681{
 682        s64 period = sched_avg_period();
 683
 684        while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 685                /*
 686                 * Inline assembly required to prevent the compiler
 687                 * optimising this loop into a divmod call.
 688                 * See __iter_div_u64_rem() for another example of this.
 689                 */
 690                asm("" : "+rm" (rq->age_stamp));
 691                rq->age_stamp += period;
 692                rq->rt_avg /= 2;
 693        }
 694}
 695
 696#endif /* CONFIG_SMP */
 697
 698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 699                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 700/*
 701 * Iterate task_group tree rooted at *from, calling @down when first entering a
 702 * node and @up when leaving it for the final time.
 703 *
 704 * Caller must hold rcu_lock or sufficient equivalent.
 705 */
 706int walk_tg_tree_from(struct task_group *from,
 707                             tg_visitor down, tg_visitor up, void *data)
 708{
 709        struct task_group *parent, *child;
 710        int ret;
 711
 712        parent = from;
 713
 714down:
 715        ret = (*down)(parent, data);
 716        if (ret)
 717                goto out;
 718        list_for_each_entry_rcu(child, &parent->children, siblings) {
 719                parent = child;
 720                goto down;
 721
 722up:
 723                continue;
 724        }
 725        ret = (*up)(parent, data);
 726        if (ret || parent == from)
 727                goto out;
 728
 729        child = parent;
 730        parent = parent->parent;
 731        if (parent)
 732                goto up;
 733out:
 734        return ret;
 735}
 736
 737int tg_nop(struct task_group *tg, void *data)
 738{
 739        return 0;
 740}
 741#endif
 742
 743static void set_load_weight(struct task_struct *p)
 744{
 745        int prio = p->static_prio - MAX_RT_PRIO;
 746        struct load_weight *load = &p->se.load;
 747
 748        /*
 749         * SCHED_IDLE tasks get minimal weight:
 750         */
 751        if (p->policy == SCHED_IDLE) {
 752                load->weight = scale_load(WEIGHT_IDLEPRIO);
 753                load->inv_weight = WMULT_IDLEPRIO;
 754                return;
 755        }
 756
 757        load->weight = scale_load(prio_to_weight[prio]);
 758        load->inv_weight = prio_to_wmult[prio];
 759}
 760
 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 762{
 763        update_rq_clock(rq);
 764        sched_info_queued(rq, p);
 765        p->sched_class->enqueue_task(rq, p, flags);
 766}
 767
 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 769{
 770        update_rq_clock(rq);
 771        sched_info_dequeued(rq, p);
 772        p->sched_class->dequeue_task(rq, p, flags);
 773}
 774
 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
 776{
 777        if (task_contributes_to_load(p))
 778                rq->nr_uninterruptible--;
 779
 780        enqueue_task(rq, p, flags);
 781}
 782
 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 784{
 785        if (task_contributes_to_load(p))
 786                rq->nr_uninterruptible++;
 787
 788        dequeue_task(rq, p, flags);
 789}
 790
 791static void update_rq_clock_task(struct rq *rq, s64 delta)
 792{
 793/*
 794 * In theory, the compile should just see 0 here, and optimize out the call
 795 * to sched_rt_avg_update. But I don't trust it...
 796 */
 797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 798        s64 steal = 0, irq_delta = 0;
 799#endif
 800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 801        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 802
 803        /*
 804         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 805         * this case when a previous update_rq_clock() happened inside a
 806         * {soft,}irq region.
 807         *
 808         * When this happens, we stop ->clock_task and only update the
 809         * prev_irq_time stamp to account for the part that fit, so that a next
 810         * update will consume the rest. This ensures ->clock_task is
 811         * monotonic.
 812         *
 813         * It does however cause some slight miss-attribution of {soft,}irq
 814         * time, a more accurate solution would be to update the irq_time using
 815         * the current rq->clock timestamp, except that would require using
 816         * atomic ops.
 817         */
 818        if (irq_delta > delta)
 819                irq_delta = delta;
 820
 821        rq->prev_irq_time += irq_delta;
 822        delta -= irq_delta;
 823#endif
 824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 825        if (static_key_false((&paravirt_steal_rq_enabled))) {
 826                u64 st;
 827
 828                steal = paravirt_steal_clock(cpu_of(rq));
 829                steal -= rq->prev_steal_time_rq;
 830
 831                if (unlikely(steal > delta))
 832                        steal = delta;
 833
 834                st = steal_ticks(steal);
 835                steal = st * TICK_NSEC;
 836
 837                rq->prev_steal_time_rq += steal;
 838
 839                delta -= steal;
 840        }
 841#endif
 842
 843        rq->clock_task += delta;
 844
 845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 846        if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 847                sched_rt_avg_update(rq, irq_delta + steal);
 848#endif
 849}
 850
 851void sched_set_stop_task(int cpu, struct task_struct *stop)
 852{
 853        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 854        struct task_struct *old_stop = cpu_rq(cpu)->stop;
 855
 856        if (stop) {
 857                /*
 858                 * Make it appear like a SCHED_FIFO task, its something
 859                 * userspace knows about and won't get confused about.
 860                 *
 861                 * Also, it will make PI more or less work without too
 862                 * much confusion -- but then, stop work should not
 863                 * rely on PI working anyway.
 864                 */
 865                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 866
 867                stop->sched_class = &stop_sched_class;
 868        }
 869
 870        cpu_rq(cpu)->stop = stop;
 871
 872        if (old_stop) {
 873                /*
 874                 * Reset it back to a normal scheduling class so that
 875                 * it can die in pieces.
 876                 */
 877                old_stop->sched_class = &rt_sched_class;
 878        }
 879}
 880
 881/*
 882 * __normal_prio - return the priority that is based on the static prio
 883 */
 884static inline int __normal_prio(struct task_struct *p)
 885{
 886        return p->static_prio;
 887}
 888
 889/*
 890 * Calculate the expected normal priority: i.e. priority
 891 * without taking RT-inheritance into account. Might be
 892 * boosted by interactivity modifiers. Changes upon fork,
 893 * setprio syscalls, and whenever the interactivity
 894 * estimator recalculates.
 895 */
 896static inline int normal_prio(struct task_struct *p)
 897{
 898        int prio;
 899
 900        if (task_has_dl_policy(p))
 901                prio = MAX_DL_PRIO-1;
 902        else if (task_has_rt_policy(p))
 903                prio = MAX_RT_PRIO-1 - p->rt_priority;
 904        else
 905                prio = __normal_prio(p);
 906        return prio;
 907}
 908
 909/*
 910 * Calculate the current priority, i.e. the priority
 911 * taken into account by the scheduler. This value might
 912 * be boosted by RT tasks, or might be boosted by
 913 * interactivity modifiers. Will be RT if the task got
 914 * RT-boosted. If not then it returns p->normal_prio.
 915 */
 916static int effective_prio(struct task_struct *p)
 917{
 918        p->normal_prio = normal_prio(p);
 919        /*
 920         * If we are RT tasks or we were boosted to RT priority,
 921         * keep the priority unchanged. Otherwise, update priority
 922         * to the normal priority:
 923         */
 924        if (!rt_prio(p->prio))
 925                return p->normal_prio;
 926        return p->prio;
 927}
 928
 929/**
 930 * task_curr - is this task currently executing on a CPU?
 931 * @p: the task in question.
 932 *
 933 * Return: 1 if the task is currently executing. 0 otherwise.
 934 */
 935inline int task_curr(const struct task_struct *p)
 936{
 937        return cpu_curr(task_cpu(p)) == p;
 938}
 939
 940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 941                                       const struct sched_class *prev_class,
 942                                       int oldprio)
 943{
 944        if (prev_class != p->sched_class) {
 945                if (prev_class->switched_from)
 946                        prev_class->switched_from(rq, p);
 947                p->sched_class->switched_to(rq, p);
 948        } else if (oldprio != p->prio || dl_task(p))
 949                p->sched_class->prio_changed(rq, p, oldprio);
 950}
 951
 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 953{
 954        const struct sched_class *class;
 955
 956        if (p->sched_class == rq->curr->sched_class) {
 957                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 958        } else {
 959                for_each_class(class) {
 960                        if (class == rq->curr->sched_class)
 961                                break;
 962                        if (class == p->sched_class) {
 963                                resched_task(rq->curr);
 964                                break;
 965                        }
 966                }
 967        }
 968
 969        /*
 970         * A queue event has occurred, and we're going to schedule.  In
 971         * this case, we can save a useless back to back clock update.
 972         */
 973        if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
 974                rq->skip_clock_update = 1;
 975}
 976
 977#ifdef CONFIG_SMP
 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 979{
 980#ifdef CONFIG_SCHED_DEBUG
 981        /*
 982         * We should never call set_task_cpu() on a blocked task,
 983         * ttwu() will sort out the placement.
 984         */
 985        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
 986                        !(task_preempt_count(p) & PREEMPT_ACTIVE));
 987
 988#ifdef CONFIG_LOCKDEP
 989        /*
 990         * The caller should hold either p->pi_lock or rq->lock, when changing
 991         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 992         *
 993         * sched_move_task() holds both and thus holding either pins the cgroup,
 994         * see task_group().
 995         *
 996         * Furthermore, all task_rq users should acquire both locks, see
 997         * task_rq_lock().
 998         */
 999        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000                                      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004        trace_sched_migrate_task(p, new_cpu);
1005
1006        if (task_cpu(p) != new_cpu) {
1007                if (p->sched_class->migrate_task_rq)
1008                        p->sched_class->migrate_task_rq(p, new_cpu);
1009                p->se.nr_migrations++;
1010                perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011        }
1012
1013        __set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018        if (p->on_rq) {
1019                struct rq *src_rq, *dst_rq;
1020
1021                src_rq = task_rq(p);
1022                dst_rq = cpu_rq(cpu);
1023
1024                deactivate_task(src_rq, p, 0);
1025                set_task_cpu(p, cpu);
1026                activate_task(dst_rq, p, 0);
1027                check_preempt_curr(dst_rq, p, 0);
1028        } else {
1029                /*
1030                 * Task isn't running anymore; make it appear like we migrated
1031                 * it before it went to sleep. This means on wakeup we make the
1032                 * previous cpu our targer instead of where it really is.
1033                 */
1034                p->wake_cpu = cpu;
1035        }
1036}
1037
1038struct migration_swap_arg {
1039        struct task_struct *src_task, *dst_task;
1040        int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045        struct migration_swap_arg *arg = data;
1046        struct rq *src_rq, *dst_rq;
1047        int ret = -EAGAIN;
1048
1049        src_rq = cpu_rq(arg->src_cpu);
1050        dst_rq = cpu_rq(arg->dst_cpu);
1051
1052        double_raw_lock(&arg->src_task->pi_lock,
1053                        &arg->dst_task->pi_lock);
1054        double_rq_lock(src_rq, dst_rq);
1055        if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056                goto unlock;
1057
1058        if (task_cpu(arg->src_task) != arg->src_cpu)
1059                goto unlock;
1060
1061        if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062                goto unlock;
1063
1064        if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065                goto unlock;
1066
1067        __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068        __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070        ret = 0;
1071
1072unlock:
1073        double_rq_unlock(src_rq, dst_rq);
1074        raw_spin_unlock(&arg->dst_task->pi_lock);
1075        raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077        return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085        struct migration_swap_arg arg;
1086        int ret = -EINVAL;
1087
1088        arg = (struct migration_swap_arg){
1089                .src_task = cur,
1090                .src_cpu = task_cpu(cur),
1091                .dst_task = p,
1092                .dst_cpu = task_cpu(p),
1093        };
1094
1095        if (arg.src_cpu == arg.dst_cpu)
1096                goto out;
1097
1098        /*
1099         * These three tests are all lockless; this is OK since all of them
1100         * will be re-checked with proper locks held further down the line.
1101         */
1102        if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103                goto out;
1104
1105        if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106                goto out;
1107
1108        if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109                goto out;
1110
1111        trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112        ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
1115        return ret;
1116}
1117
1118struct migration_arg {
1119        struct task_struct *task;
1120        int dest_cpu;
1121};
1122
1123static int migration_cpu_stop(void *data);
1124
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change.  If it changes, i.e. @p might have woken up,
1130 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count).  If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142{
1143        unsigned long flags;
1144        int running, on_rq;
1145        unsigned long ncsw;
1146        struct rq *rq;
1147
1148        for (;;) {
1149                /*
1150                 * We do the initial early heuristics without holding
1151                 * any task-queue locks at all. We'll only try to get
1152                 * the runqueue lock when things look like they will
1153                 * work out!
1154                 */
1155                rq = task_rq(p);
1156
1157                /*
1158                 * If the task is actively running on another CPU
1159                 * still, just relax and busy-wait without holding
1160                 * any locks.
1161                 *
1162                 * NOTE! Since we don't hold any locks, it's not
1163                 * even sure that "rq" stays as the right runqueue!
1164                 * But we don't care, since "task_running()" will
1165                 * return false if the runqueue has changed and p
1166                 * is actually now running somewhere else!
1167                 */
1168                while (task_running(rq, p)) {
1169                        if (match_state && unlikely(p->state != match_state))
1170                                return 0;
1171                        cpu_relax();
1172                }
1173
1174                /*
1175                 * Ok, time to look more closely! We need the rq
1176                 * lock now, to be *sure*. If we're wrong, we'll
1177                 * just go back and repeat.
1178                 */
1179                rq = task_rq_lock(p, &flags);
1180                trace_sched_wait_task(p);
1181                running = task_running(rq, p);
1182                on_rq = p->on_rq;
1183                ncsw = 0;
1184                if (!match_state || p->state == match_state)
1185                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186                task_rq_unlock(rq, p, &flags);
1187
1188                /*
1189                 * If it changed from the expected state, bail out now.
1190                 */
1191                if (unlikely(!ncsw))
1192                        break;
1193
1194                /*
1195                 * Was it really running after all now that we
1196                 * checked with the proper locks actually held?
1197                 *
1198                 * Oops. Go back and try again..
1199                 */
1200                if (unlikely(running)) {
1201                        cpu_relax();
1202                        continue;
1203                }
1204
1205                /*
1206                 * It's not enough that it's not actively running,
1207                 * it must be off the runqueue _entirely_, and not
1208                 * preempted!
1209                 *
1210                 * So if it was still runnable (but just not actively
1211                 * running right now), it's preempted, and we should
1212                 * yield - it could be a while.
1213                 */
1214                if (unlikely(on_rq)) {
1215                        ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217                        set_current_state(TASK_UNINTERRUPTIBLE);
1218                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219                        continue;
1220                }
1221
1222                /*
1223                 * Ahh, all good. It wasn't running, and it wasn't
1224                 * runnable, which means that it will never become
1225                 * running in the future either. We're all done!
1226                 */
1227                break;
1228        }
1229
1230        return ncsw;
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246void kick_process(struct task_struct *p)
1247{
1248        int cpu;
1249
1250        preempt_disable();
1251        cpu = task_cpu(p);
1252        if ((cpu != smp_processor_id()) && task_curr(p))
1253                smp_send_reschedule(cpu);
1254        preempt_enable();
1255}
1256EXPORT_SYMBOL_GPL(kick_process);
1257#endif /* CONFIG_SMP */
1258
1259#ifdef CONFIG_SMP
1260/*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
1265        int nid = cpu_to_node(cpu);
1266        const struct cpumask *nodemask = NULL;
1267        enum { cpuset, possible, fail } state = cpuset;
1268        int dest_cpu;
1269
1270        /*
1271         * If the node that the cpu is on has been offlined, cpu_to_node()
1272         * will return -1. There is no cpu on the node, and we should
1273         * select the cpu on the other node.
1274         */
1275        if (nid != -1) {
1276                nodemask = cpumask_of_node(nid);
1277
1278                /* Look for allowed, online CPU in same node. */
1279                for_each_cpu(dest_cpu, nodemask) {
1280                        if (!cpu_online(dest_cpu))
1281                                continue;
1282                        if (!cpu_active(dest_cpu))
1283                                continue;
1284                        if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285                                return dest_cpu;
1286                }
1287        }
1288
1289        for (;;) {
1290                /* Any allowed, online CPU? */
1291                for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292                        if (!cpu_online(dest_cpu))
1293                                continue;
1294                        if (!cpu_active(dest_cpu))
1295                                continue;
1296                        goto out;
1297                }
1298
1299                switch (state) {
1300                case cpuset:
1301                        /* No more Mr. Nice Guy. */
1302                        cpuset_cpus_allowed_fallback(p);
1303                        state = possible;
1304                        break;
1305
1306                case possible:
1307                        do_set_cpus_allowed(p, cpu_possible_mask);
1308                        state = fail;
1309                        break;
1310
1311                case fail:
1312                        BUG();
1313                        break;
1314                }
1315        }
1316
1317out:
1318        if (state != cpuset) {
1319                /*
1320                 * Don't tell them about moving exiting tasks or
1321                 * kernel threads (both mm NULL), since they never
1322                 * leave kernel.
1323                 */
1324                if (p->mm && printk_ratelimit()) {
1325                        printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326                                        task_pid_nr(p), p->comm, cpu);
1327                }
1328        }
1329
1330        return dest_cpu;
1331}
1332
1333/*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336static inline
1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338{
1339        cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341        /*
1342         * In order not to call set_task_cpu() on a blocking task we need
1343         * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344         * cpu.
1345         *
1346         * Since this is common to all placement strategies, this lives here.
1347         *
1348         * [ this allows ->select_task() to simply return task_cpu(p) and
1349         *   not worry about this generic constraint ]
1350         */
1351        if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352                     !cpu_online(cpu)))
1353                cpu = select_fallback_rq(task_cpu(p), p);
1354
1355        return cpu;
1356}
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360        s64 diff = sample - *avg;
1361        *avg += diff >> 3;
1362}
1363#endif
1364
1365static void
1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367{
1368#ifdef CONFIG_SCHEDSTATS
1369        struct rq *rq = this_rq();
1370
1371#ifdef CONFIG_SMP
1372        int this_cpu = smp_processor_id();
1373
1374        if (cpu == this_cpu) {
1375                schedstat_inc(rq, ttwu_local);
1376                schedstat_inc(p, se.statistics.nr_wakeups_local);
1377        } else {
1378                struct sched_domain *sd;
1379
1380                schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381                rcu_read_lock();
1382                for_each_domain(this_cpu, sd) {
1383                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384                                schedstat_inc(sd, ttwu_wake_remote);
1385                                break;
1386                        }
1387                }
1388                rcu_read_unlock();
1389        }
1390
1391        if (wake_flags & WF_MIGRATED)
1392                schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394#endif /* CONFIG_SMP */
1395
1396        schedstat_inc(rq, ttwu_count);
1397        schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399        if (wake_flags & WF_SYNC)
1400                schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
1407        activate_task(rq, p, en_flags);
1408        p->on_rq = 1;
1409
1410        /* if a worker is waking up, notify workqueue */
1411        if (p->flags & PF_WQ_WORKER)
1412                wq_worker_waking_up(p, cpu_of(rq));
1413}
1414
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418static void
1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420{
1421        check_preempt_curr(rq, p, wake_flags);
1422        trace_sched_wakeup(p, true);
1423
1424        p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426        if (p->sched_class->task_woken)
1427                p->sched_class->task_woken(rq, p);
1428
1429        if (rq->idle_stamp) {
1430                u64 delta = rq_clock(rq) - rq->idle_stamp;
1431                u64 max = 2*rq->max_idle_balance_cost;
1432
1433                update_avg(&rq->avg_idle, delta);
1434
1435                if (rq->avg_idle > max)
1436                        rq->avg_idle = max;
1437
1438                rq->idle_stamp = 0;
1439        }
1440#endif
1441}
1442
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447        if (p->sched_contributes_to_load)
1448                rq->nr_uninterruptible--;
1449#endif
1450
1451        ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452        ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463        struct rq *rq;
1464        int ret = 0;
1465
1466        rq = __task_rq_lock(p);
1467        if (p->on_rq) {
1468                /* check_preempt_curr() may use rq clock */
1469                update_rq_clock(rq);
1470                ttwu_do_wakeup(rq, p, wake_flags);
1471                ret = 1;
1472        }
1473        __task_rq_unlock(rq);
1474
1475        return ret;
1476}
1477
1478#ifdef CONFIG_SMP
1479static void sched_ttwu_pending(void)
1480{
1481        struct rq *rq = this_rq();
1482        struct llist_node *llist = llist_del_all(&rq->wake_list);
1483        struct task_struct *p;
1484
1485        raw_spin_lock(&rq->lock);
1486
1487        while (llist) {
1488                p = llist_entry(llist, struct task_struct, wake_entry);
1489                llist = llist_next(llist);
1490                ttwu_do_activate(rq, p, 0);
1491        }
1492
1493        raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
1498        /*
1499         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500         * TIF_NEED_RESCHED remotely (for the first time) will also send
1501         * this IPI.
1502         */
1503        preempt_fold_need_resched();
1504
1505        if (llist_empty(&this_rq()->wake_list)
1506                        && !tick_nohz_full_cpu(smp_processor_id())
1507                        && !got_nohz_idle_kick())
1508                return;
1509
1510        /*
1511         * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512         * traditionally all their work was done from the interrupt return
1513         * path. Now that we actually do some work, we need to make sure
1514         * we do call them.
1515         *
1516         * Some archs already do call them, luckily irq_enter/exit nest
1517         * properly.
1518         *
1519         * Arguably we should visit all archs and update all handlers,
1520         * however a fair share of IPIs are still resched only so this would
1521         * somewhat pessimize the simple resched case.
1522         */
1523        irq_enter();
1524        tick_nohz_full_check();
1525        sched_ttwu_pending();
1526
1527        /*
1528         * Check if someone kicked us for doing the nohz idle load balance.
1529         */
1530        if (unlikely(got_nohz_idle_kick())) {
1531                this_rq()->idle_balance = 1;
1532                raise_softirq_irqoff(SCHED_SOFTIRQ);
1533        }
1534        irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539        if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540                smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551        struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554        if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555                sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556                ttwu_queue_remote(p, cpu);
1557                return;
1558        }
1559#endif
1560
1561        raw_spin_lock(&rq->lock);
1562        ttwu_do_activate(rq, p, 0);
1563        raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584        unsigned long flags;
1585        int cpu, success = 0;
1586
1587        /*
1588         * If we are going to wake up a thread waiting for CONDITION we
1589         * need to ensure that CONDITION=1 done by the caller can not be
1590         * reordered with p->state check below. This pairs with mb() in
1591         * set_current_state() the waiting thread does.
1592         */
1593        smp_mb__before_spinlock();
1594        raw_spin_lock_irqsave(&p->pi_lock, flags);
1595        if (!(p->state & state))
1596                goto out;
1597
1598        success = 1; /* we're going to change ->state */
1599        cpu = task_cpu(p);
1600
1601        if (p->on_rq && ttwu_remote(p, wake_flags))
1602                goto stat;
1603
1604#ifdef CONFIG_SMP
1605        /*
1606         * If the owning (remote) cpu is still in the middle of schedule() with
1607         * this task as prev, wait until its done referencing the task.
1608         */
1609        while (p->on_cpu)
1610                cpu_relax();
1611        /*
1612         * Pairs with the smp_wmb() in finish_lock_switch().
1613         */
1614        smp_rmb();
1615
1616        p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617        p->state = TASK_WAKING;
1618
1619        if (p->sched_class->task_waking)
1620                p->sched_class->task_waking(p);
1621
1622        cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623        if (task_cpu(p) != cpu) {
1624                wake_flags |= WF_MIGRATED;
1625                set_task_cpu(p, cpu);
1626        }
1627#endif /* CONFIG_SMP */
1628
1629        ttwu_queue(p, cpu);
1630stat:
1631        ttwu_stat(p, cpu, wake_flags);
1632out:
1633        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635        return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648        struct rq *rq = task_rq(p);
1649
1650        if (WARN_ON_ONCE(rq != this_rq()) ||
1651            WARN_ON_ONCE(p == current))
1652                return;
1653
1654        lockdep_assert_held(&rq->lock);
1655
1656        if (!raw_spin_trylock(&p->pi_lock)) {
1657                raw_spin_unlock(&rq->lock);
1658                raw_spin_lock(&p->pi_lock);
1659                raw_spin_lock(&rq->lock);
1660        }
1661
1662        if (!(p->state & TASK_NORMAL))
1663                goto out;
1664
1665        if (!p->on_rq)
1666                ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668        ttwu_do_wakeup(rq, p, 0);
1669        ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671        raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688        WARN_ON(task_is_stopped_or_traced(p));
1689        return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695        return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706        p->on_rq                        = 0;
1707
1708        p->se.on_rq                     = 0;
1709        p->se.exec_start                = 0;
1710        p->se.sum_exec_runtime          = 0;
1711        p->se.prev_sum_exec_runtime     = 0;
1712        p->se.nr_migrations             = 0;
1713        p->se.vruntime                  = 0;
1714        INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720        RB_CLEAR_NODE(&p->dl.rb_node);
1721        hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722        p->dl.dl_runtime = p->dl.runtime = 0;
1723        p->dl.dl_deadline = p->dl.deadline = 0;
1724        p->dl.dl_period = 0;
1725        p->dl.flags = 0;
1726
1727        INIT_LIST_HEAD(&p->rt.run_list);
1728
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730        INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734        if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735                p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736                p->mm->numa_scan_seq = 0;
1737        }
1738
1739        if (clone_flags & CLONE_VM)
1740                p->numa_preferred_nid = current->numa_preferred_nid;
1741        else
1742                p->numa_preferred_nid = -1;
1743
1744        p->node_stamp = 0ULL;
1745        p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746        p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747        p->numa_work.next = &p->numa_work;
1748        p->numa_faults = NULL;
1749        p->numa_faults_buffer = NULL;
1750
1751        INIT_LIST_HEAD(&p->numa_entry);
1752        p->numa_group = NULL;
1753#endif /* CONFIG_NUMA_BALANCING */
1754}
1755
1756#ifdef CONFIG_NUMA_BALANCING
1757#ifdef CONFIG_SCHED_DEBUG
1758void set_numabalancing_state(bool enabled)
1759{
1760        if (enabled)
1761                sched_feat_set("NUMA");
1762        else
1763                sched_feat_set("NO_NUMA");
1764}
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770        numabalancing_enabled = enabled;
1771}
1772#endif /* CONFIG_SCHED_DEBUG */
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776                         void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778        struct ctl_table t;
1779        int err;
1780        int state = numabalancing_enabled;
1781
1782        if (write && !capable(CAP_SYS_ADMIN))
1783                return -EPERM;
1784
1785        t = *table;
1786        t.data = &state;
1787        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788        if (err < 0)
1789                return err;
1790        if (write)
1791                set_numabalancing_state(state);
1792        return err;
1793}
1794#endif
1795#endif
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801{
1802        unsigned long flags;
1803        int cpu = get_cpu();
1804
1805        __sched_fork(clone_flags, p);
1806        /*
1807         * We mark the process as running here. This guarantees that
1808         * nobody will actually run it, and a signal or other external
1809         * event cannot wake it up and insert it on the runqueue either.
1810         */
1811        p->state = TASK_RUNNING;
1812
1813        /*
1814         * Make sure we do not leak PI boosting priority to the child.
1815         */
1816        p->prio = current->normal_prio;
1817
1818        /*
1819         * Revert to default priority/policy on fork if requested.
1820         */
1821        if (unlikely(p->sched_reset_on_fork)) {
1822                if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823                        p->policy = SCHED_NORMAL;
1824                        p->static_prio = NICE_TO_PRIO(0);
1825                        p->rt_priority = 0;
1826                } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827                        p->static_prio = NICE_TO_PRIO(0);
1828
1829                p->prio = p->normal_prio = __normal_prio(p);
1830                set_load_weight(p);
1831
1832                /*
1833                 * We don't need the reset flag anymore after the fork. It has
1834                 * fulfilled its duty:
1835                 */
1836                p->sched_reset_on_fork = 0;
1837        }
1838
1839        if (dl_prio(p->prio)) {
1840                put_cpu();
1841                return -EAGAIN;
1842        } else if (rt_prio(p->prio)) {
1843                p->sched_class = &rt_sched_class;
1844        } else {
1845                p->sched_class = &fair_sched_class;
1846        }
1847
1848        if (p->sched_class->task_fork)
1849                p->sched_class->task_fork(p);
1850
1851        /*
1852         * The child is not yet in the pid-hash so no cgroup attach races,
1853         * and the cgroup is pinned to this child due to cgroup_fork()
1854         * is ran before sched_fork().
1855         *
1856         * Silence PROVE_RCU.
1857         */
1858        raw_spin_lock_irqsave(&p->pi_lock, flags);
1859        set_task_cpu(p, cpu);
1860        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863        if (likely(sched_info_on()))
1864                memset(&p->sched_info, 0, sizeof(p->sched_info));
1865#endif
1866#if defined(CONFIG_SMP)
1867        p->on_cpu = 0;
1868#endif
1869        init_task_preempt_count(p);
1870#ifdef CONFIG_SMP
1871        plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872        RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873#endif
1874
1875        put_cpu();
1876        return 0;
1877}
1878
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881        if (runtime == RUNTIME_INF)
1882                return 1ULL << 20;
1883
1884        /*
1885         * Doing this here saves a lot of checks in all
1886         * the calling paths, and returning zero seems
1887         * safe for them anyway.
1888         */
1889        if (period == 0)
1890                return 0;
1891
1892        return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898        return &cpu_rq(i)->rd->dl_bw;
1899}
1900
1901static inline int dl_bw_cpus(int i)
1902{
1903        struct root_domain *rd = cpu_rq(i)->rd;
1904        int cpus = 0;
1905
1906        for_each_cpu_and(i, rd->span, cpu_active_mask)
1907                cpus++;
1908
1909        return cpus;
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914        return &cpu_rq(i)->dl.dl_bw;
1915}
1916
1917static inline int dl_bw_cpus(int i)
1918{
1919        return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926        dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932        dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938        return dl_b->bw != -1 &&
1939               dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951                       const struct sched_attr *attr)
1952{
1953
1954        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955        u64 period = attr->sched_period ?: attr->sched_deadline;
1956        u64 runtime = attr->sched_runtime;
1957        u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958        int cpus, err = -1;
1959
1960        if (new_bw == p->dl.dl_bw)
1961                return 0;
1962
1963        /*
1964         * Either if a task, enters, leave, or stays -deadline but changes
1965         * its parameters, we may need to update accordingly the total
1966         * allocated bandwidth of the container.
1967         */
1968        raw_spin_lock(&dl_b->lock);
1969        cpus = dl_bw_cpus(task_cpu(p));
1970        if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971            !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972                __dl_add(dl_b, new_bw);
1973                err = 0;
1974        } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975                   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976                __dl_clear(dl_b, p->dl.dl_bw);
1977                __dl_add(dl_b, new_bw);
1978                err = 0;
1979        } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980                __dl_clear(dl_b, p->dl.dl_bw);
1981                err = 0;
1982        }
1983        raw_spin_unlock(&dl_b->lock);
1984
1985        return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997void wake_up_new_task(struct task_struct *p)
1998{
1999        unsigned long flags;
2000        struct rq *rq;
2001
2002        raw_spin_lock_irqsave(&p->pi_lock, flags);
2003#ifdef CONFIG_SMP
2004        /*
2005         * Fork balancing, do it here and not earlier because:
2006         *  - cpus_allowed can change in the fork path
2007         *  - any previously selected cpu might disappear through hotplug
2008         */
2009        set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010#endif
2011
2012        /* Initialize new task's runnable average */
2013        init_task_runnable_average(p);
2014        rq = __task_rq_lock(p);
2015        activate_task(rq, p, 0);
2016        p->on_rq = 1;
2017        trace_sched_wakeup_new(p, true);
2018        check_preempt_curr(rq, p, WF_FORK);
2019#ifdef CONFIG_SMP
2020        if (p->sched_class->task_woken)
2021                p->sched_class->task_woken(rq, p);
2022#endif
2023        task_rq_unlock(rq, p, &flags);
2024}
2025
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034        hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046        hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052        struct preempt_notifier *notifier;
2053
2054        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055                notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060                                 struct task_struct *next)
2061{
2062        struct preempt_notifier *notifier;
2063
2064        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065                notifier->ops->sched_out(notifier, next);
2066}
2067
2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076                                 struct task_struct *next)
2077{
2078}
2079
2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097                    struct task_struct *next)
2098{
2099        trace_sched_switch(prev, next);
2100        sched_info_switch(rq, prev, next);
2101        perf_event_task_sched_out(prev, next);
2102        fire_sched_out_preempt_notifiers(prev, next);
2103        prepare_lock_switch(rq, next);
2104        prepare_arch_switch(next);
2105}
2106
2107/**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123        __releases(rq->lock)
2124{
2125        struct mm_struct *mm = rq->prev_mm;
2126        long prev_state;
2127
2128        rq->prev_mm = NULL;
2129
2130        /*
2131         * A task struct has one reference for the use as "current".
2132         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133         * schedule one last time. The schedule call will never return, and
2134         * the scheduled task must drop that reference.
2135         * The test for TASK_DEAD must occur while the runqueue locks are
2136         * still held, otherwise prev could be scheduled on another cpu, die
2137         * there before we look at prev->state, and then the reference would
2138         * be dropped twice.
2139         *              Manfred Spraul <manfred@colorfullife.com>
2140         */
2141        prev_state = prev->state;
2142        vtime_task_switch(prev);
2143        finish_arch_switch(prev);
2144        perf_event_task_sched_in(prev, current);
2145        finish_lock_switch(rq, prev);
2146        finish_arch_post_lock_switch();
2147
2148        fire_sched_in_preempt_notifiers(current);
2149        if (mm)
2150                mmdrop(mm);
2151        if (unlikely(prev_state == TASK_DEAD)) {
2152                task_numa_free(prev);
2153
2154                if (prev->sched_class->task_dead)
2155                        prev->sched_class->task_dead(prev);
2156
2157                /*
2158                 * Remove function-return probe instances associated with this
2159                 * task and put them back on the free list.
2160                 */
2161                kprobe_flush_task(prev);
2162                put_task_struct(prev);
2163        }
2164
2165        tick_nohz_task_switch(current);
2166}
2167
2168#ifdef CONFIG_SMP
2169
2170/* assumes rq->lock is held */
2171static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2172{
2173        if (prev->sched_class->pre_schedule)
2174                prev->sched_class->pre_schedule(rq, prev);
2175}
2176
2177/* rq->lock is NOT held, but preemption is disabled */
2178static inline void post_schedule(struct rq *rq)
2179{
2180        if (rq->post_schedule) {
2181                unsigned long flags;
2182
2183                raw_spin_lock_irqsave(&rq->lock, flags);
2184                if (rq->curr->sched_class->post_schedule)
2185                        rq->curr->sched_class->post_schedule(rq);
2186                raw_spin_unlock_irqrestore(&rq->lock, flags);
2187
2188                rq->post_schedule = 0;
2189        }
2190}
2191
2192#else
2193
2194static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2195{
2196}
2197
2198static inline void post_schedule(struct rq *rq)
2199{
2200}
2201
2202#endif
2203
2204/**
2205 * schedule_tail - first thing a freshly forked thread must call.
2206 * @prev: the thread we just switched away from.
2207 */
2208asmlinkage void schedule_tail(struct task_struct *prev)
2209        __releases(rq->lock)
2210{
2211        struct rq *rq = this_rq();
2212
2213        finish_task_switch(rq, prev);
2214
2215        /*
2216         * FIXME: do we need to worry about rq being invalidated by the
2217         * task_switch?
2218         */
2219        post_schedule(rq);
2220
2221#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2222        /* In this case, finish_task_switch does not reenable preemption */
2223        preempt_enable();
2224#endif
2225        if (current->set_child_tid)
2226                put_user(task_pid_vnr(current), current->set_child_tid);
2227}
2228
2229/*
2230 * context_switch - switch to the new MM and the new
2231 * thread's register state.
2232 */
2233static inline void
2234context_switch(struct rq *rq, struct task_struct *prev,
2235               struct task_struct *next)
2236{
2237        struct mm_struct *mm, *oldmm;
2238
2239        prepare_task_switch(rq, prev, next);
2240
2241        mm = next->mm;
2242        oldmm = prev->active_mm;
2243        /*
2244         * For paravirt, this is coupled with an exit in switch_to to
2245         * combine the page table reload and the switch backend into
2246         * one hypercall.
2247         */
2248        arch_start_context_switch(prev);
2249
2250        if (!mm) {
2251                next->active_mm = oldmm;
2252                atomic_inc(&oldmm->mm_count);
2253                enter_lazy_tlb(oldmm, next);
2254        } else
2255                switch_mm(oldmm, mm, next);
2256
2257        if (!prev->mm) {
2258                prev->active_mm = NULL;
2259                rq->prev_mm = oldmm;
2260        }
2261        /*
2262         * Since the runqueue lock will be released by the next
2263         * task (which is an invalid locking op but in the case
2264         * of the scheduler it's an obvious special-case), so we
2265         * do an early lockdep release here:
2266         */
2267#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2268        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2269#endif
2270
2271        context_tracking_task_switch(prev, next);
2272        /* Here we just switch the register state and the stack. */
2273        switch_to(prev, next, prev);
2274
2275        barrier();
2276        /*
2277         * this_rq must be evaluated again because prev may have moved
2278         * CPUs since it called schedule(), thus the 'rq' on its stack
2279         * frame will be invalid.
2280         */
2281        finish_task_switch(this_rq(), prev);
2282}
2283
2284/*
2285 * nr_running and nr_context_switches:
2286 *
2287 * externally visible scheduler statistics: current number of runnable
2288 * threads, total number of context switches performed since bootup.
2289 */
2290unsigned long nr_running(void)
2291{
2292        unsigned long i, sum = 0;
2293
2294        for_each_online_cpu(i)
2295                sum += cpu_rq(i)->nr_running;
2296
2297        return sum;
2298}
2299
2300unsigned long long nr_context_switches(void)
2301{
2302        int i;
2303        unsigned long long sum = 0;
2304
2305        for_each_possible_cpu(i)
2306                sum += cpu_rq(i)->nr_switches;
2307
2308        return sum;
2309}
2310
2311unsigned long nr_iowait(void)
2312{
2313        unsigned long i, sum = 0;
2314
2315        for_each_possible_cpu(i)
2316                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2317
2318        return sum;
2319}
2320
2321unsigned long nr_iowait_cpu(int cpu)
2322{
2323        struct rq *this = cpu_rq(cpu);
2324        return atomic_read(&this->nr_iowait);
2325}
2326
2327#ifdef CONFIG_SMP
2328
2329/*
2330 * sched_exec - execve() is a valuable balancing opportunity, because at
2331 * this point the task has the smallest effective memory and cache footprint.
2332 */
2333void sched_exec(void)
2334{
2335        struct task_struct *p = current;
2336        unsigned long flags;
2337        int dest_cpu;
2338
2339        raw_spin_lock_irqsave(&p->pi_lock, flags);
2340        dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2341        if (dest_cpu == smp_processor_id())
2342                goto unlock;
2343
2344        if (likely(cpu_active(dest_cpu))) {
2345                struct migration_arg arg = { p, dest_cpu };
2346
2347                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2349                return;
2350        }
2351unlock:
2352        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2353}
2354
2355#endif
2356
2357DEFINE_PER_CPU(struct kernel_stat, kstat);
2358DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2359
2360EXPORT_PER_CPU_SYMBOL(kstat);
2361EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2362
2363/*
2364 * Return any ns on the sched_clock that have not yet been accounted in
2365 * @p in case that task is currently running.
2366 *
2367 * Called with task_rq_lock() held on @rq.
2368 */
2369static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2370{
2371        u64 ns = 0;
2372
2373        if (task_current(rq, p)) {
2374                update_rq_clock(rq);
2375                ns = rq_clock_task(rq) - p->se.exec_start;
2376                if ((s64)ns < 0)
2377                        ns = 0;
2378        }
2379
2380        return ns;
2381}
2382
2383unsigned long long task_delta_exec(struct task_struct *p)
2384{
2385        unsigned long flags;
2386        struct rq *rq;
2387        u64 ns = 0;
2388
2389        rq = task_rq_lock(p, &flags);
2390        ns = do_task_delta_exec(p, rq);
2391        task_rq_unlock(rq, p, &flags);
2392
2393        return ns;
2394}
2395
2396/*
2397 * Return accounted runtime for the task.
2398 * In case the task is currently running, return the runtime plus current's
2399 * pending runtime that have not been accounted yet.
2400 */
2401unsigned long long task_sched_runtime(struct task_struct *p)
2402{
2403        unsigned long flags;
2404        struct rq *rq;
2405        u64 ns = 0;
2406
2407#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2408        /*
2409         * 64-bit doesn't need locks to atomically read a 64bit value.
2410         * So we have a optimization chance when the task's delta_exec is 0.
2411         * Reading ->on_cpu is racy, but this is ok.
2412         *
2413         * If we race with it leaving cpu, we'll take a lock. So we're correct.
2414         * If we race with it entering cpu, unaccounted time is 0. This is
2415         * indistinguishable from the read occurring a few cycles earlier.
2416         */
2417        if (!p->on_cpu)
2418                return p->se.sum_exec_runtime;
2419#endif
2420
2421        rq = task_rq_lock(p, &flags);
2422        ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2423        task_rq_unlock(rq, p, &flags);
2424
2425        return ns;
2426}
2427
2428/*
2429 * This function gets called by the timer code, with HZ frequency.
2430 * We call it with interrupts disabled.
2431 */
2432void scheduler_tick(void)
2433{
2434        int cpu = smp_processor_id();
2435        struct rq *rq = cpu_rq(cpu);
2436        struct task_struct *curr = rq->curr;
2437
2438        sched_clock_tick();
2439
2440        raw_spin_lock(&rq->lock);
2441        update_rq_clock(rq);
2442        curr->sched_class->task_tick(rq, curr, 0);
2443        update_cpu_load_active(rq);
2444        raw_spin_unlock(&rq->lock);
2445
2446        perf_event_task_tick();
2447
2448#ifdef CONFIG_SMP
2449        rq->idle_balance = idle_cpu(cpu);
2450        trigger_load_balance(rq);
2451#endif
2452        rq_last_tick_reset(rq);
2453}
2454
2455#ifdef CONFIG_NO_HZ_FULL
2456/**
2457 * scheduler_tick_max_deferment
2458 *
2459 * Keep at least one tick per second when a single
2460 * active task is running because the scheduler doesn't
2461 * yet completely support full dynticks environment.
2462 *
2463 * This makes sure that uptime, CFS vruntime, load
2464 * balancing, etc... continue to move forward, even
2465 * with a very low granularity.
2466 *
2467 * Return: Maximum deferment in nanoseconds.
2468 */
2469u64 scheduler_tick_max_deferment(void)
2470{
2471        struct rq *rq = this_rq();
2472        unsigned long next, now = ACCESS_ONCE(jiffies);
2473
2474        next = rq->last_sched_tick + HZ;
2475
2476        if (time_before_eq(next, now))
2477                return 0;
2478
2479        return jiffies_to_nsecs(next - now);
2480}
2481#endif
2482
2483notrace unsigned long get_parent_ip(unsigned long addr)
2484{
2485        if (in_lock_functions(addr)) {
2486                addr = CALLER_ADDR2;
2487                if (in_lock_functions(addr))
2488                        addr = CALLER_ADDR3;
2489        }
2490        return addr;
2491}
2492
2493#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2494                                defined(CONFIG_PREEMPT_TRACER))
2495
2496void __kprobes preempt_count_add(int val)
2497{
2498#ifdef CONFIG_DEBUG_PREEMPT
2499        /*
2500         * Underflow?
2501         */
2502        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2503                return;
2504#endif
2505        __preempt_count_add(val);
2506#ifdef CONFIG_DEBUG_PREEMPT
2507        /*
2508         * Spinlock count overflowing soon?
2509         */
2510        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2511                                PREEMPT_MASK - 10);
2512#endif
2513        if (preempt_count() == val)
2514                trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2515}
2516EXPORT_SYMBOL(preempt_count_add);
2517
2518void __kprobes preempt_count_sub(int val)
2519{
2520#ifdef CONFIG_DEBUG_PREEMPT
2521        /*
2522         * Underflow?
2523         */
2524        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2525                return;
2526        /*
2527         * Is the spinlock portion underflowing?
2528         */
2529        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2530                        !(preempt_count() & PREEMPT_MASK)))
2531                return;
2532#endif
2533
2534        if (preempt_count() == val)
2535                trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2536        __preempt_count_sub(val);
2537}
2538EXPORT_SYMBOL(preempt_count_sub);
2539
2540#endif
2541
2542/*
2543 * Print scheduling while atomic bug:
2544 */
2545static noinline void __schedule_bug(struct task_struct *prev)
2546{
2547        if (oops_in_progress)
2548                return;
2549
2550        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2551                prev->comm, prev->pid, preempt_count());
2552
2553        debug_show_held_locks(prev);
2554        print_modules();
2555        if (irqs_disabled())
2556                print_irqtrace_events(prev);
2557        dump_stack();
2558        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2559}
2560
2561/*
2562 * Various schedule()-time debugging checks and statistics:
2563 */
2564static inline void schedule_debug(struct task_struct *prev)
2565{
2566        /*
2567         * Test if we are atomic. Since do_exit() needs to call into
2568         * schedule() atomically, we ignore that path. Otherwise whine
2569         * if we are scheduling when we should not.
2570         */
2571        if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2572                __schedule_bug(prev);
2573        rcu_sleep_check();
2574
2575        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2576
2577        schedstat_inc(this_rq(), sched_count);
2578}
2579
2580static void put_prev_task(struct rq *rq, struct task_struct *prev)
2581{
2582        if (prev->on_rq || rq->skip_clock_update < 0)
2583                update_rq_clock(rq);
2584        prev->sched_class->put_prev_task(rq, prev);
2585}
2586
2587/*
2588 * Pick up the highest-prio task:
2589 */
2590static inline struct task_struct *
2591pick_next_task(struct rq *rq)
2592{
2593        const struct sched_class *class;
2594        struct task_struct *p;
2595
2596        /*
2597         * Optimization: we know that if all tasks are in
2598         * the fair class we can call that function directly:
2599         */
2600        if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2601                p = fair_sched_class.pick_next_task(rq);
2602                if (likely(p))
2603                        return p;
2604        }
2605
2606        for_each_class(class) {
2607                p = class->pick_next_task(rq);
2608                if (p)
2609                        return p;
2610        }
2611
2612        BUG(); /* the idle class will always have a runnable task */
2613}
2614
2615/*
2616 * __schedule() is the main scheduler function.
2617 *
2618 * The main means of driving the scheduler and thus entering this function are:
2619 *
2620 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2621 *
2622 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2623 *      paths. For example, see arch/x86/entry_64.S.
2624 *
2625 *      To drive preemption between tasks, the scheduler sets the flag in timer
2626 *      interrupt handler scheduler_tick().
2627 *
2628 *   3. Wakeups don't really cause entry into schedule(). They add a
2629 *      task to the run-queue and that's it.
2630 *
2631 *      Now, if the new task added to the run-queue preempts the current
2632 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2633 *      called on the nearest possible occasion:
2634 *
2635 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2636 *
2637 *         - in syscall or exception context, at the next outmost
2638 *           preempt_enable(). (this might be as soon as the wake_up()'s
2639 *           spin_unlock()!)
2640 *
2641 *         - in IRQ context, return from interrupt-handler to
2642 *           preemptible context
2643 *
2644 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2645 *         then at the next:
2646 *
2647 *          - cond_resched() call
2648 *          - explicit schedule() call
2649 *          - return from syscall or exception to user-space
2650 *          - return from interrupt-handler to user-space
2651 */
2652static void __sched __schedule(void)
2653{
2654        struct task_struct *prev, *next;
2655        unsigned long *switch_count;
2656        struct rq *rq;
2657        int cpu;
2658
2659need_resched:
2660        preempt_disable();
2661        cpu = smp_processor_id();
2662        rq = cpu_rq(cpu);
2663        rcu_note_context_switch(cpu);
2664        prev = rq->curr;
2665
2666        schedule_debug(prev);
2667
2668        if (sched_feat(HRTICK))
2669                hrtick_clear(rq);
2670
2671        /*
2672         * Make sure that signal_pending_state()->signal_pending() below
2673         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2674         * done by the caller to avoid the race with signal_wake_up().
2675         */
2676        smp_mb__before_spinlock();
2677        raw_spin_lock_irq(&rq->lock);
2678
2679        switch_count = &prev->nivcsw;
2680        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2681                if (unlikely(signal_pending_state(prev->state, prev))) {
2682                        prev->state = TASK_RUNNING;
2683                } else {
2684                        deactivate_task(rq, prev, DEQUEUE_SLEEP);
2685                        prev->on_rq = 0;
2686
2687                        /*
2688                         * If a worker went to sleep, notify and ask workqueue
2689                         * whether it wants to wake up a task to maintain
2690                         * concurrency.
2691                         */
2692                        if (prev->flags & PF_WQ_WORKER) {
2693                                struct task_struct *to_wakeup;
2694
2695                                to_wakeup = wq_worker_sleeping(prev, cpu);
2696                                if (to_wakeup)
2697                                        try_to_wake_up_local(to_wakeup);
2698                        }
2699                }
2700                switch_count = &prev->nvcsw;
2701        }
2702
2703        pre_schedule(rq, prev);
2704
2705        if (unlikely(!rq->nr_running))
2706                idle_balance(cpu, rq);
2707
2708        put_prev_task(rq, prev);
2709        next = pick_next_task(rq);
2710        clear_tsk_need_resched(prev);
2711        clear_preempt_need_resched();
2712        rq->skip_clock_update = 0;
2713
2714        if (likely(prev != next)) {
2715                rq->nr_switches++;
2716                rq->curr = next;
2717                ++*switch_count;
2718
2719                context_switch(rq, prev, next); /* unlocks the rq */
2720                /*
2721                 * The context switch have flipped the stack from under us
2722                 * and restored the local variables which were saved when
2723                 * this task called schedule() in the past. prev == current
2724                 * is still correct, but it can be moved to another cpu/rq.
2725                 */
2726                cpu = smp_processor_id();
2727                rq = cpu_rq(cpu);
2728        } else
2729                raw_spin_unlock_irq(&rq->lock);
2730
2731        post_schedule(rq);
2732
2733        sched_preempt_enable_no_resched();
2734        if (need_resched())
2735                goto need_resched;
2736}
2737
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
2740        if (!tsk->state || tsk_is_pi_blocked(tsk))
2741                return;
2742        /*
2743         * If we are going to sleep and we have plugged IO queued,
2744         * make sure to submit it to avoid deadlocks.
2745         */
2746        if (blk_needs_flush_plug(tsk))
2747                blk_schedule_flush_plug(tsk);
2748}
2749
2750asmlinkage void __sched schedule(void)
2751{
2752        struct task_struct *tsk = current;
2753
2754        sched_submit_work(tsk);
2755        __schedule();
2756}
2757EXPORT_SYMBOL(schedule);
2758
2759#ifdef CONFIG_CONTEXT_TRACKING
2760asmlinkage void __sched schedule_user(void)
2761{
2762        /*
2763         * If we come here after a random call to set_need_resched(),
2764         * or we have been woken up remotely but the IPI has not yet arrived,
2765         * we haven't yet exited the RCU idle mode. Do it here manually until
2766         * we find a better solution.
2767         */
2768        user_exit();
2769        schedule();
2770        user_enter();
2771}
2772#endif
2773
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
2781        sched_preempt_enable_no_resched();
2782        schedule();
2783        preempt_disable();
2784}
2785
2786#ifdef CONFIG_PREEMPT
2787/*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792asmlinkage void __sched notrace preempt_schedule(void)
2793{
2794        /*
2795         * If there is a non-zero preempt_count or interrupts are disabled,
2796         * we do not want to preempt the current task. Just return..
2797         */
2798        if (likely(!preemptible()))
2799                return;
2800
2801        do {
2802                __preempt_count_add(PREEMPT_ACTIVE);
2803                __schedule();
2804                __preempt_count_sub(PREEMPT_ACTIVE);
2805
2806                /*
2807                 * Check again in case we missed a preemption opportunity
2808                 * between schedule and now.
2809                 */
2810                barrier();
2811        } while (need_resched());
2812}
2813EXPORT_SYMBOL(preempt_schedule);
2814#endif /* CONFIG_PREEMPT */
2815
2816/*
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage void __sched preempt_schedule_irq(void)
2823{
2824        enum ctx_state prev_state;
2825
2826        /* Catch callers which need to be fixed */
2827        BUG_ON(preempt_count() || !irqs_disabled());
2828
2829        prev_state = exception_enter();
2830
2831        do {
2832                __preempt_count_add(PREEMPT_ACTIVE);
2833                local_irq_enable();
2834                __schedule();
2835                local_irq_disable();
2836                __preempt_count_sub(PREEMPT_ACTIVE);
2837
2838                /*
2839                 * Check again in case we missed a preemption opportunity
2840                 * between schedule and now.
2841                 */
2842                barrier();
2843        } while (need_resched());
2844
2845        exception_exit(prev_state);
2846}
2847
2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849                          void *key)
2850{
2851        return try_to_wake_up(curr->private, mode, wake_flags);
2852}
2853EXPORT_SYMBOL(default_wake_function);
2854
2855static long __sched
2856sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2857{
2858        unsigned long flags;
2859        wait_queue_t wait;
2860
2861        init_waitqueue_entry(&wait, current);
2862
2863        __set_current_state(state);
2864
2865        spin_lock_irqsave(&q->lock, flags);
2866        __add_wait_queue(q, &wait);
2867        spin_unlock(&q->lock);
2868        timeout = schedule_timeout(timeout);
2869        spin_lock_irq(&q->lock);
2870        __remove_wait_queue(q, &wait);
2871        spin_unlock_irqrestore(&q->lock, flags);
2872
2873        return timeout;
2874}
2875
2876void __sched interruptible_sleep_on(wait_queue_head_t *q)
2877{
2878        sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2879}
2880EXPORT_SYMBOL(interruptible_sleep_on);
2881
2882long __sched
2883interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2884{
2885        return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2886}
2887EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2888
2889void __sched sleep_on(wait_queue_head_t *q)
2890{
2891        sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2892}
2893EXPORT_SYMBOL(sleep_on);
2894
2895long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2896{
2897        return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2898}
2899EXPORT_SYMBOL(sleep_on_timeout);
2900
2901#ifdef CONFIG_RT_MUTEXES
2902
2903/*
2904 * rt_mutex_setprio - set the current priority of a task
2905 * @p: task
2906 * @prio: prio value (kernel-internal form)
2907 *
2908 * This function changes the 'effective' priority of a task. It does
2909 * not touch ->normal_prio like __setscheduler().
2910 *
2911 * Used by the rt_mutex code to implement priority inheritance logic.
2912 */
2913void rt_mutex_setprio(struct task_struct *p, int prio)
2914{
2915        int oldprio, on_rq, running, enqueue_flag = 0;
2916        struct rq *rq;
2917        const struct sched_class *prev_class;
2918
2919        BUG_ON(prio > MAX_PRIO);
2920
2921        rq = __task_rq_lock(p);
2922
2923        /*
2924         * Idle task boosting is a nono in general. There is one
2925         * exception, when PREEMPT_RT and NOHZ is active:
2926         *
2927         * The idle task calls get_next_timer_interrupt() and holds
2928         * the timer wheel base->lock on the CPU and another CPU wants
2929         * to access the timer (probably to cancel it). We can safely
2930         * ignore the boosting request, as the idle CPU runs this code
2931         * with interrupts disabled and will complete the lock
2932         * protected section without being interrupted. So there is no
2933         * real need to boost.
2934         */
2935        if (unlikely(p == rq->idle)) {
2936                WARN_ON(p != rq->curr);
2937                WARN_ON(p->pi_blocked_on);
2938                goto out_unlock;
2939        }
2940
2941        trace_sched_pi_setprio(p, prio);
2942        p->pi_top_task = rt_mutex_get_top_task(p);
2943        oldprio = p->prio;
2944        prev_class = p->sched_class;
2945        on_rq = p->on_rq;
2946        running = task_current(rq, p);
2947        if (on_rq)
2948                dequeue_task(rq, p, 0);
2949        if (running)
2950                p->sched_class->put_prev_task(rq, p);
2951
2952        /*
2953         * Boosting condition are:
2954         * 1. -rt task is running and holds mutex A
2955         *      --> -dl task blocks on mutex A
2956         *
2957         * 2. -dl task is running and holds mutex A
2958         *      --> -dl task blocks on mutex A and could preempt the
2959         *          running task
2960         */
2961        if (dl_prio(prio)) {
2962                if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2963                        dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2964                        p->dl.dl_boosted = 1;
2965                        p->dl.dl_throttled = 0;
2966                        enqueue_flag = ENQUEUE_REPLENISH;
2967                } else
2968                        p->dl.dl_boosted = 0;
2969                p->sched_class = &dl_sched_class;
2970        } else if (rt_prio(prio)) {
2971                if (dl_prio(oldprio))
2972                        p->dl.dl_boosted = 0;
2973                if (oldprio < prio)
2974                        enqueue_flag = ENQUEUE_HEAD;
2975                p->sched_class = &rt_sched_class;
2976        } else {
2977                if (dl_prio(oldprio))
2978                        p->dl.dl_boosted = 0;
2979                p->sched_class = &fair_sched_class;
2980        }
2981
2982        p->prio = prio;
2983
2984        if (running)
2985                p->sched_class->set_curr_task(rq);
2986        if (on_rq)
2987                enqueue_task(rq, p, enqueue_flag);
2988
2989        check_class_changed(rq, p, prev_class, oldprio);
2990out_unlock:
2991        __task_rq_unlock(rq);
2992}
2993#endif
2994
2995void set_user_nice(struct task_struct *p, long nice)
2996{
2997        int old_prio, delta, on_rq;
2998        unsigned long flags;
2999        struct rq *rq;
3000
3001        if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3002                return;
3003        /*
3004         * We have to be careful, if called from sys_setpriority(),
3005         * the task might be in the middle of scheduling on another CPU.
3006         */
3007        rq = task_rq_lock(p, &flags);
3008        /*
3009         * The RT priorities are set via sched_setscheduler(), but we still
3010         * allow the 'normal' nice value to be set - but as expected
3011         * it wont have any effect on scheduling until the task is
3012         * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3013         */
3014        if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3015                p->static_prio = NICE_TO_PRIO(nice);
3016                goto out_unlock;
3017        }
3018        on_rq = p->on_rq;
3019        if (on_rq)
3020                dequeue_task(rq, p, 0);
3021
3022        p->static_prio = NICE_TO_PRIO(nice);
3023        set_load_weight(p);
3024        old_prio = p->prio;
3025        p->prio = effective_prio(p);
3026        delta = p->prio - old_prio;
3027
3028        if (on_rq) {
3029                enqueue_task(rq, p, 0);
3030                /*
3031                 * If the task increased its priority or is running and
3032                 * lowered its priority, then reschedule its CPU:
3033                 */
3034                if (delta < 0 || (delta > 0 && task_running(rq, p)))
3035                        resched_task(rq->curr);
3036        }
3037out_unlock:
3038        task_rq_unlock(rq, p, &flags);
3039}
3040EXPORT_SYMBOL(set_user_nice);
3041
3042/*
3043 * can_nice - check if a task can reduce its nice value
3044 * @p: task
3045 * @nice: nice value
3046 */
3047int can_nice(const struct task_struct *p, const int nice)
3048{
3049        /* convert nice value [19,-20] to rlimit style value [1,40] */
3050        int nice_rlim = 20 - nice;
3051
3052        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3053                capable(CAP_SYS_NICE));
3054}
3055
3056#ifdef __ARCH_WANT_SYS_NICE
3057
3058/*
3059 * sys_nice - change the priority of the current process.
3060 * @increment: priority increment
3061 *
3062 * sys_setpriority is a more generic, but much slower function that
3063 * does similar things.
3064 */
3065SYSCALL_DEFINE1(nice, int, increment)
3066{
3067        long nice, retval;
3068
3069        /*
3070         * Setpriority might change our priority at the same moment.
3071         * We don't have to worry. Conceptually one call occurs first
3072         * and we have a single winner.
3073         */
3074        if (increment < -40)
3075                increment = -40;
3076        if (increment > 40)
3077                increment = 40;
3078
3079        nice = TASK_NICE(current) + increment;
3080        if (nice < -20)
3081                nice = -20;
3082        if (nice > 19)
3083                nice = 19;
3084
3085        if (increment < 0 && !can_nice(current, nice))
3086                return -EPERM;
3087
3088        retval = security_task_setnice(current, nice);
3089        if (retval)
3090                return retval;
3091
3092        set_user_nice(current, nice);
3093        return 0;
3094}
3095
3096#endif
3097
3098/**
3099 * task_prio - return the priority value of a given task.
3100 * @p: the task in question.
3101 *
3102 * Return: The priority value as seen by users in /proc.
3103 * RT tasks are offset by -200. Normal tasks are centered
3104 * around 0, value goes from -16 to +15.
3105 */
3106int task_prio(const struct task_struct *p)
3107{
3108        return p->prio - MAX_RT_PRIO;
3109}
3110
3111/**
3112 * task_nice - return the nice value of a given task.
3113 * @p: the task in question.
3114 *
3115 * Return: The nice value [ -20 ... 0 ... 19 ].
3116 */
3117int task_nice(const struct task_struct *p)
3118{
3119        return TASK_NICE(p);
3120}
3121EXPORT_SYMBOL(task_nice);
3122
3123/**
3124 * idle_cpu - is a given cpu idle currently?
3125 * @cpu: the processor in question.
3126 *
3127 * Return: 1 if the CPU is currently idle. 0 otherwise.
3128 */
3129int idle_cpu(int cpu)
3130{
3131        struct rq *rq = cpu_rq(cpu);
3132
3133        if (rq->curr != rq->idle)
3134                return 0;
3135
3136        if (rq->nr_running)
3137                return 0;
3138
3139#ifdef CONFIG_SMP
3140        if (!llist_empty(&rq->wake_list))
3141                return 0;
3142#endif
3143
3144        return 1;
3145}
3146
3147/**
3148 * idle_task - return the idle task for a given cpu.
3149 * @cpu: the processor in question.
3150 *
3151 * Return: The idle task for the cpu @cpu.
3152 */
3153struct task_struct *idle_task(int cpu)
3154{
3155        return cpu_rq(cpu)->idle;
3156}
3157
3158/**
3159 * find_process_by_pid - find a process with a matching PID value.
3160 * @pid: the pid in question.
3161 *
3162 * The task of @pid, if found. %NULL otherwise.
3163 */
3164static struct task_struct *find_process_by_pid(pid_t pid)
3165{
3166        return pid ? find_task_by_vpid(pid) : current;
3167}
3168
3169/*
3170 * This function initializes the sched_dl_entity of a newly becoming
3171 * SCHED_DEADLINE task.
3172 *
3173 * Only the static values are considered here, the actual runtime and the
3174 * absolute deadline will be properly calculated when the task is enqueued
3175 * for the first time with its new policy.
3176 */
3177static void
3178__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3179{
3180        struct sched_dl_entity *dl_se = &p->dl;
3181
3182        init_dl_task_timer(dl_se);
3183        dl_se->dl_runtime = attr->sched_runtime;
3184        dl_se->dl_deadline = attr->sched_deadline;
3185        dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3186        dl_se->flags = attr->sched_flags;
3187        dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3188        dl_se->dl_throttled = 0;
3189        dl_se->dl_new = 1;
3190}
3191
3192/* Actually do priority change: must hold pi & rq lock. */
3193static void __setscheduler(struct rq *rq, struct task_struct *p,
3194                           const struct sched_attr *attr)
3195{
3196        int policy = attr->sched_policy;
3197
3198        if (policy == -1) /* setparam */
3199                policy = p->policy;
3200
3201        p->policy = policy;
3202
3203        if (dl_policy(policy))
3204                __setparam_dl(p, attr);
3205        else if (fair_policy(policy))
3206                p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3207
3208        /*
3209         * __sched_setscheduler() ensures attr->sched_priority == 0 when
3210         * !rt_policy. Always setting this ensures that things like
3211         * getparam()/getattr() don't report silly values for !rt tasks.
3212         */
3213        p->rt_priority = attr->sched_priority;
3214
3215        p->normal_prio = normal_prio(p);
3216        p->prio = rt_mutex_getprio(p);
3217
3218        if (dl_prio(p->prio))
3219                p->sched_class = &dl_sched_class;
3220        else if (rt_prio(p->prio))
3221                p->sched_class = &rt_sched_class;
3222        else
3223                p->sched_class = &fair_sched_class;
3224
3225        set_load_weight(p);
3226}
3227
3228static void
3229__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3230{
3231        struct sched_dl_entity *dl_se = &p->dl;
3232
3233        attr->sched_priority = p->rt_priority;
3234        attr->sched_runtime = dl_se->dl_runtime;
3235        attr->sched_deadline = dl_se->dl_deadline;
3236        attr->sched_period = dl_se->dl_period;
3237        attr->sched_flags = dl_se->flags;
3238}
3239
3240/*
3241 * This function validates the new parameters of a -deadline task.
3242 * We ask for the deadline not being zero, and greater or equal
3243 * than the runtime, as well as the period of being zero or
3244 * greater than deadline. Furthermore, we have to be sure that
3245 * user parameters are above the internal resolution (1us); we
3246 * check sched_runtime only since it is always the smaller one.
3247 */
3248static bool
3249__checkparam_dl(const struct sched_attr *attr)
3250{
3251        return attr && attr->sched_deadline != 0 &&
3252                (attr->sched_period == 0 ||
3253                (s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3254                (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3255                attr->sched_runtime >= (2 << (DL_SCALE - 1));
3256}
3257
3258/*
3259 * check the target process has a UID that matches the current process's
3260 */
3261static bool check_same_owner(struct task_struct *p)
3262{
3263        const struct cred *cred = current_cred(), *pcred;
3264        bool match;
3265
3266        rcu_read_lock();
3267        pcred = __task_cred(p);
3268        match = (uid_eq(cred->euid, pcred->euid) ||
3269                 uid_eq(cred->euid, pcred->uid));
3270        rcu_read_unlock();
3271        return match;
3272}
3273
3274static int __sched_setscheduler(struct task_struct *p,
3275                                const struct sched_attr *attr,
3276                                bool user)
3277{
3278        int retval, oldprio, oldpolicy = -1, on_rq, running;
3279        int policy = attr->sched_policy;
3280        unsigned long flags;
3281        const struct sched_class *prev_class;
3282        struct rq *rq;
3283        int reset_on_fork;
3284
3285        /* may grab non-irq protected spin_locks */
3286        BUG_ON(in_interrupt());
3287recheck:
3288        /* double check policy once rq lock held */
3289        if (policy < 0) {
3290                reset_on_fork = p->sched_reset_on_fork;
3291                policy = oldpolicy = p->policy;
3292        } else {
3293                reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3294
3295                if (policy != SCHED_DEADLINE &&
3296                                policy != SCHED_FIFO && policy != SCHED_RR &&
3297                                policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298                                policy != SCHED_IDLE)
3299                        return -EINVAL;
3300        }
3301
3302        if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3303                return -EINVAL;
3304
3305        /*
3306         * Valid priorities for SCHED_FIFO and SCHED_RR are
3307         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308         * SCHED_BATCH and SCHED_IDLE is 0.
3309         */
3310        if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3311            (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3312                return -EINVAL;
3313        if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3314            (rt_policy(policy) != (attr->sched_priority != 0)))
3315                return -EINVAL;
3316
3317        /*
3318         * Allow unprivileged RT tasks to decrease priority:
3319         */
3320        if (user && !capable(CAP_SYS_NICE)) {
3321                if (fair_policy(policy)) {
3322                        if (attr->sched_nice < TASK_NICE(p) &&
3323                            !can_nice(p, attr->sched_nice))
3324                                return -EPERM;
3325                }
3326
3327                if (rt_policy(policy)) {
3328                        unsigned long rlim_rtprio =
3329                                        task_rlimit(p, RLIMIT_RTPRIO);
3330
3331                        /* can't set/change the rt policy */
3332                        if (policy != p->policy && !rlim_rtprio)
3333                                return -EPERM;
3334
3335                        /* can't increase priority */
3336                        if (attr->sched_priority > p->rt_priority &&
3337                            attr->sched_priority > rlim_rtprio)
3338                                return -EPERM;
3339                }
3340
3341                 /*
3342                  * Can't set/change SCHED_DEADLINE policy at all for now
3343                  * (safest behavior); in the future we would like to allow
3344                  * unprivileged DL tasks to increase their relative deadline
3345                  * or reduce their runtime (both ways reducing utilization)
3346                  */
3347                if (dl_policy(policy))
3348                        return -EPERM;
3349
3350                /*
3351                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3352                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3353                 */
3354                if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3355                        if (!can_nice(p, TASK_NICE(p)))
3356                                return -EPERM;
3357                }
3358
3359                /* can't change other user's priorities */
3360                if (!check_same_owner(p))
3361                        return -EPERM;
3362
3363                /* Normal users shall not reset the sched_reset_on_fork flag */
3364                if (p->sched_reset_on_fork && !reset_on_fork)
3365                        return -EPERM;
3366        }
3367
3368        if (user) {
3369                retval = security_task_setscheduler(p);
3370                if (retval)
3371                        return retval;
3372        }
3373
3374        /*
3375         * make sure no PI-waiters arrive (or leave) while we are
3376         * changing the priority of the task:
3377         *
3378         * To be able to change p->policy safely, the appropriate
3379         * runqueue lock must be held.
3380         */
3381        rq = task_rq_lock(p, &flags);
3382
3383        /*
3384         * Changing the policy of the stop threads its a very bad idea
3385         */
3386        if (p == rq->stop) {
3387                task_rq_unlock(rq, p, &flags);
3388                return -EINVAL;
3389        }
3390
3391        /*
3392         * If not changing anything there's no need to proceed further:
3393         */
3394        if (unlikely(policy == p->policy)) {
3395                if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3396                        goto change;
3397                if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3398                        goto change;
3399                if (dl_policy(policy))
3400                        goto change;
3401
3402                task_rq_unlock(rq, p, &flags);
3403                return 0;
3404        }
3405change:
3406
3407        if (user) {
3408#ifdef CONFIG_RT_GROUP_SCHED
3409                /*
3410                 * Do not allow realtime tasks into groups that have no runtime
3411                 * assigned.
3412                 */
3413                if (rt_bandwidth_enabled() && rt_policy(policy) &&
3414                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3415                                !task_group_is_autogroup(task_group(p))) {
3416                        task_rq_unlock(rq, p, &flags);
3417                        return -EPERM;
3418                }
3419#endif
3420#ifdef CONFIG_SMP
3421                if (dl_bandwidth_enabled() && dl_policy(policy)) {
3422                        cpumask_t *span = rq->rd->span;
3423
3424                        /*
3425                         * Don't allow tasks with an affinity mask smaller than
3426                         * the entire root_domain to become SCHED_DEADLINE. We
3427                         * will also fail if there's no bandwidth available.
3428                         */
3429                        if (!cpumask_subset(span, &p->cpus_allowed) ||
3430                            rq->rd->dl_bw.bw == 0) {
3431                                task_rq_unlock(rq, p, &flags);
3432                                return -EPERM;
3433                        }
3434                }
3435#endif
3436        }
3437
3438        /* recheck policy now with rq lock held */
3439        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3440                policy = oldpolicy = -1;
3441                task_rq_unlock(rq, p, &flags);
3442                goto recheck;
3443        }
3444
3445        /*
3446         * If setscheduling to SCHED_DEADLINE (or changing the parameters
3447         * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3448         * is available.
3449         */
3450        if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3451                task_rq_unlock(rq, p, &flags);
3452                return -EBUSY;
3453        }
3454
3455        on_rq = p->on_rq;
3456        running = task_current(rq, p);
3457        if (on_rq)
3458                dequeue_task(rq, p, 0);
3459        if (running)
3460                p->sched_class->put_prev_task(rq, p);
3461
3462        p->sched_reset_on_fork = reset_on_fork;
3463
3464        oldprio = p->prio;
3465        prev_class = p->sched_class;
3466        __setscheduler(rq, p, attr);
3467
3468        if (running)
3469                p->sched_class->set_curr_task(rq);
3470        if (on_rq)
3471                enqueue_task(rq, p, 0);
3472
3473        check_class_changed(rq, p, prev_class, oldprio);
3474        task_rq_unlock(rq, p, &flags);
3475
3476        rt_mutex_adjust_pi(p);
3477
3478        return 0;
3479}
3480
3481static int _sched_setscheduler(struct task_struct *p, int policy,
3482                               const struct sched_param *param, bool check)
3483{
3484        struct sched_attr attr = {
3485                .sched_policy   = policy,
3486                .sched_priority = param->sched_priority,
3487                .sched_nice     = PRIO_TO_NICE(p->static_prio),
3488        };
3489
3490        /*
3491         * Fixup the legacy SCHED_RESET_ON_FORK hack
3492         */
3493        if (policy & SCHED_RESET_ON_FORK) {
3494                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3495                policy &= ~SCHED_RESET_ON_FORK;
3496                attr.sched_policy = policy;
3497        }
3498
3499        return __sched_setscheduler(p, &attr, check);
3500}
3501/**
3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
3507 * Return: 0 on success. An error code otherwise.
3508 *
3509 * NOTE that the task may be already dead.
3510 */
3511int sched_setscheduler(struct task_struct *p, int policy,
3512                       const struct sched_param *param)
3513{
3514        return _sched_setscheduler(p, policy, param, true);
3515}
3516EXPORT_SYMBOL_GPL(sched_setscheduler);
3517
3518int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3519{
3520        return __sched_setscheduler(p, attr, true);
3521}
3522EXPORT_SYMBOL_GPL(sched_setattr);
3523
3524/**
3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3526 * @p: the task in question.
3527 * @policy: new policy.
3528 * @param: structure containing the new RT priority.
3529 *
3530 * Just like sched_setscheduler, only don't bother checking if the
3531 * current context has permission.  For example, this is needed in
3532 * stop_machine(): we create temporary high priority worker threads,
3533 * but our caller might not have that capability.
3534 *
3535 * Return: 0 on success. An error code otherwise.
3536 */
3537int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3538                               const struct sched_param *param)
3539{
3540        return _sched_setscheduler(p, policy, param, false);
3541}
3542
3543static int
3544do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3545{
3546        struct sched_param lparam;
3547        struct task_struct *p;
3548        int retval;
3549
3550        if (!param || pid < 0)
3551                return -EINVAL;
3552        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3553                return -EFAULT;
3554
3555        rcu_read_lock();
3556        retval = -ESRCH;
3557        p = find_process_by_pid(pid);
3558        if (p != NULL)
3559                retval = sched_setscheduler(p, policy, &lparam);
3560        rcu_read_unlock();
3561
3562        return retval;
3563}
3564
3565/*
3566 * Mimics kernel/events/core.c perf_copy_attr().
3567 */
3568static int sched_copy_attr(struct sched_attr __user *uattr,
3569                           struct sched_attr *attr)
3570{
3571        u32 size;
3572        int ret;
3573
3574        if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3575                return -EFAULT;
3576
3577        /*
3578         * zero the full structure, so that a short copy will be nice.
3579         */
3580        memset(attr, 0, sizeof(*attr));
3581
3582        ret = get_user(size, &uattr->size);
3583        if (ret)
3584                return ret;
3585
3586        if (size > PAGE_SIZE)   /* silly large */
3587                goto err_size;
3588
3589        if (!size)              /* abi compat */
3590                size = SCHED_ATTR_SIZE_VER0;
3591
3592        if (size < SCHED_ATTR_SIZE_VER0)
3593                goto err_size;
3594
3595        /*
3596         * If we're handed a bigger struct than we know of,
3597         * ensure all the unknown bits are 0 - i.e. new
3598         * user-space does not rely on any kernel feature
3599         * extensions we dont know about yet.
3600         */
3601        if (size > sizeof(*attr)) {
3602                unsigned char __user *addr;
3603                unsigned char __user *end;
3604                unsigned char val;
3605
3606                addr = (void __user *)uattr + sizeof(*attr);
3607                end  = (void __user *)uattr + size;
3608
3609                for (; addr < end; addr++) {
3610                        ret = get_user(val, addr);
3611                        if (ret)
3612                                return ret;
3613                        if (val)
3614                                goto err_size;
3615                }
3616                size = sizeof(*attr);
3617        }
3618
3619        ret = copy_from_user(attr, uattr, size);
3620        if (ret)
3621                return -EFAULT;
3622
3623        /*
3624         * XXX: do we want to be lenient like existing syscalls; or do we want
3625         * to be strict and return an error on out-of-bounds values?
3626         */
3627        attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3628
3629out:
3630        return ret;
3631
3632err_size:
3633        put_user(sizeof(*attr), &uattr->size);
3634        ret = -E2BIG;
3635        goto out;
3636}
3637
3638/**
3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3640 * @pid: the pid in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
3643 *
3644 * Return: 0 on success. An error code otherwise.
3645 */
3646SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3647                struct sched_param __user *, param)
3648{
3649        /* negative values for policy are not valid */
3650        if (policy < 0)
3651                return -EINVAL;
3652
3653        return do_sched_setscheduler(pid, policy, param);
3654}
3655
3656/**
3657 * sys_sched_setparam - set/change the RT priority of a thread
3658 * @pid: the pid in question.
3659 * @param: structure containing the new RT priority.
3660 *
3661 * Return: 0 on success. An error code otherwise.
3662 */
3663SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3664{
3665        return do_sched_setscheduler(pid, -1, param);
3666}
3667
3668/**
3669 * sys_sched_setattr - same as above, but with extended sched_attr
3670 * @pid: the pid in question.
3671 * @uattr: structure containing the extended parameters.
3672 */
3673SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3674                               unsigned int, flags)
3675{
3676        struct sched_attr attr;
3677        struct task_struct *p;
3678        int retval;
3679
3680        if (!uattr || pid < 0 || flags)
3681                return -EINVAL;
3682
3683        if (sched_copy_attr(uattr, &attr))
3684                return -EFAULT;
3685
3686        rcu_read_lock();
3687        retval = -ESRCH;
3688        p = find_process_by_pid(pid);
3689        if (p != NULL)
3690                retval = sched_setattr(p, &attr);
3691        rcu_read_unlock();
3692
3693        return retval;
3694}
3695
3696/**
3697 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3698 * @pid: the pid in question.
3699 *
3700 * Return: On success, the policy of the thread. Otherwise, a negative error
3701 * code.
3702 */
3703SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3704{
3705        struct task_struct *p;
3706        int retval;
3707
3708        if (pid < 0)
3709                return -EINVAL;
3710
3711        retval = -ESRCH;
3712        rcu_read_lock();
3713        p = find_process_by_pid(pid);
3714        if (p) {
3715                retval = security_task_getscheduler(p);
3716                if (!retval)
3717                        retval = p->policy
3718                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3719        }
3720        rcu_read_unlock();
3721        return retval;
3722}
3723
3724/**
3725 * sys_sched_getparam - get the RT priority of a thread
3726 * @pid: the pid in question.
3727 * @param: structure containing the RT priority.
3728 *
3729 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3730 * code.
3731 */
3732SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3733{
3734        struct sched_param lp;
3735        struct task_struct *p;
3736        int retval;
3737
3738        if (!param || pid < 0)
3739                return -EINVAL;
3740
3741        rcu_read_lock();
3742        p = find_process_by_pid(pid);
3743        retval = -ESRCH;
3744        if (!p)
3745                goto out_unlock;
3746
3747        retval = security_task_getscheduler(p);
3748        if (retval)
3749                goto out_unlock;
3750
3751        if (task_has_dl_policy(p)) {
3752                retval = -EINVAL;
3753                goto out_unlock;
3754        }
3755        lp.sched_priority = p->rt_priority;
3756        rcu_read_unlock();
3757
3758        /*
3759         * This one might sleep, we cannot do it with a spinlock held ...
3760         */
3761        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3762
3763        return retval;
3764
3765out_unlock:
3766        rcu_read_unlock();
3767        return retval;
3768}
3769
3770static int sched_read_attr(struct sched_attr __user *uattr,
3771                           struct sched_attr *attr,
3772                           unsigned int usize)
3773{
3774        int ret;
3775
3776        if (!access_ok(VERIFY_WRITE, uattr, usize))
3777                return -EFAULT;
3778
3779        /*
3780         * If we're handed a smaller struct than we know of,
3781         * ensure all the unknown bits are 0 - i.e. old
3782         * user-space does not get uncomplete information.
3783         */
3784        if (usize < sizeof(*attr)) {
3785                unsigned char *addr;
3786                unsigned char *end;
3787
3788                addr = (void *)attr + usize;
3789                end  = (void *)attr + sizeof(*attr);
3790
3791                for (; addr < end; addr++) {
3792                        if (*addr)
3793                                goto err_size;
3794                }
3795
3796                attr->size = usize;
3797        }
3798
3799        ret = copy_to_user(uattr, attr, attr->size);
3800        if (ret)
3801                return -EFAULT;
3802
3803out:
3804        return ret;
3805
3806err_size:
3807        ret = -E2BIG;
3808        goto out;
3809}
3810
3811/**
3812 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3813 * @pid: the pid in question.
3814 * @uattr: structure containing the extended parameters.
3815 * @size: sizeof(attr) for fwd/bwd comp.
3816 */
3817SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3818                unsigned int, size, unsigned int, flags)
3819{
3820        struct sched_attr attr = {
3821                .size = sizeof(struct sched_attr),
3822        };
3823        struct task_struct *p;
3824        int retval;
3825
3826        if (!uattr || pid < 0 || size > PAGE_SIZE ||
3827            size < SCHED_ATTR_SIZE_VER0 || flags)
3828                return -EINVAL;
3829
3830        rcu_read_lock();
3831        p = find_process_by_pid(pid);
3832        retval = -ESRCH;
3833        if (!p)
3834                goto out_unlock;
3835
3836        retval = security_task_getscheduler(p);
3837        if (retval)
3838                goto out_unlock;
3839
3840        attr.sched_policy = p->policy;
3841        if (p->sched_reset_on_fork)
3842                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3843        if (task_has_dl_policy(p))
3844                __getparam_dl(p, &attr);
3845        else if (task_has_rt_policy(p))
3846                attr.sched_priority = p->rt_priority;
3847        else
3848                attr.sched_nice = TASK_NICE(p);
3849
3850        rcu_read_unlock();
3851
3852        retval = sched_read_attr(uattr, &attr, size);
3853        return retval;
3854
3855out_unlock:
3856        rcu_read_unlock();
3857        return retval;
3858}
3859
3860long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3861{
3862        cpumask_var_t cpus_allowed, new_mask;
3863        struct task_struct *p;
3864        int retval;
3865
3866        rcu_read_lock();
3867
3868        p = find_process_by_pid(pid);
3869        if (!p) {
3870                rcu_read_unlock();
3871                return -ESRCH;
3872        }
3873
3874        /* Prevent p going away */
3875        get_task_struct(p);
3876        rcu_read_unlock();
3877
3878        if (p->flags & PF_NO_SETAFFINITY) {
3879                retval = -EINVAL;
3880                goto out_put_task;
3881        }
3882        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3883                retval = -ENOMEM;
3884                goto out_put_task;
3885        }
3886        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3887                retval = -ENOMEM;
3888                goto out_free_cpus_allowed;
3889        }
3890        retval = -EPERM;
3891        if (!check_same_owner(p)) {
3892                rcu_read_lock();
3893                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3894                        rcu_read_unlock();
3895                        goto out_unlock;
3896                }
3897                rcu_read_unlock();
3898        }
3899
3900        retval = security_task_setscheduler(p);
3901        if (retval)
3902                goto out_unlock;
3903
3904
3905        cpuset_cpus_allowed(p, cpus_allowed);
3906        cpumask_and(new_mask, in_mask, cpus_allowed);
3907
3908        /*
3909         * Since bandwidth control happens on root_domain basis,
3910         * if admission test is enabled, we only admit -deadline
3911         * tasks allowed to run on all the CPUs in the task's
3912         * root_domain.
3913         */
3914#ifdef CONFIG_SMP
3915        if (task_has_dl_policy(p)) {
3916                const struct cpumask *span = task_rq(p)->rd->span;
3917
3918                if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3919                        retval = -EBUSY;
3920                        goto out_unlock;
3921                }
3922        }
3923#endif
3924again:
3925        retval = set_cpus_allowed_ptr(p, new_mask);
3926
3927        if (!retval) {
3928                cpuset_cpus_allowed(p, cpus_allowed);
3929                if (!cpumask_subset(new_mask, cpus_allowed)) {
3930                        /*
3931                         * We must have raced with a concurrent cpuset
3932                         * update. Just reset the cpus_allowed to the
3933                         * cpuset's cpus_allowed
3934                         */
3935                        cpumask_copy(new_mask, cpus_allowed);
3936                        goto again;
3937                }
3938        }
3939out_unlock:
3940        free_cpumask_var(new_mask);
3941out_free_cpus_allowed:
3942        free_cpumask_var(cpus_allowed);
3943out_put_task:
3944        put_task_struct(p);
3945        return retval;
3946}
3947
3948static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3949                             struct cpumask *new_mask)
3950{
3951        if (len < cpumask_size())
3952                cpumask_clear(new_mask);
3953        else if (len > cpumask_size())
3954                len = cpumask_size();
3955
3956        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3957}
3958
3959/**
3960 * sys_sched_setaffinity - set the cpu affinity of a process
3961 * @pid: pid of the process
3962 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3963 * @user_mask_ptr: user-space pointer to the new cpu mask
3964 *
3965 * Return: 0 on success. An error code otherwise.
3966 */
3967SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3968                unsigned long __user *, user_mask_ptr)
3969{
3970        cpumask_var_t new_mask;
3971        int retval;
3972
3973        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3974                return -ENOMEM;
3975
3976        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3977        if (retval == 0)
3978                retval = sched_setaffinity(pid, new_mask);
3979        free_cpumask_var(new_mask);
3980        return retval;
3981}
3982
3983long sched_getaffinity(pid_t pid, struct cpumask *mask)
3984{
3985        struct task_struct *p;
3986        unsigned long flags;
3987        int retval;
3988
3989        rcu_read_lock();
3990
3991        retval = -ESRCH;
3992        p = find_process_by_pid(pid);
3993        if (!p)
3994                goto out_unlock;
3995
3996        retval = security_task_getscheduler(p);
3997        if (retval)
3998                goto out_unlock;
3999
4000        raw_spin_lock_irqsave(&p->pi_lock, flags);
4001        cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4002        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4003
4004out_unlock:
4005        rcu_read_unlock();
4006
4007        return retval;
4008}
4009
4010/**
4011 * sys_sched_getaffinity - get the cpu affinity of a process
4012 * @pid: pid of the process
4013 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4014 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4015 *
4016 * Return: 0 on success. An error code otherwise.
4017 */
4018SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4019                unsigned long __user *, user_mask_ptr)
4020{
4021        int ret;
4022        cpumask_var_t mask;
4023
4024        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4025                return -EINVAL;
4026        if (len & (sizeof(unsigned long)-1))
4027                return -EINVAL;
4028
4029        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4030                return -ENOMEM;
4031
4032        ret = sched_getaffinity(pid, mask);
4033        if (ret == 0) {
4034                size_t retlen = min_t(size_t, len, cpumask_size());
4035
4036                if (copy_to_user(user_mask_ptr, mask, retlen))
4037                        ret = -EFAULT;
4038                else
4039                        ret = retlen;
4040        }
4041        free_cpumask_var(mask);
4042
4043        return ret;
4044}
4045
4046/**
4047 * sys_sched_yield - yield the current processor to other threads.
4048 *
4049 * This function yields the current CPU to other tasks. If there are no
4050 * other threads running on this CPU then this function will return.
4051 *
4052 * Return: 0.
4053 */
4054SYSCALL_DEFINE0(sched_yield)
4055{
4056        struct rq *rq = this_rq_lock();
4057
4058        schedstat_inc(rq, yld_count);
4059        current->sched_class->yield_task(rq);
4060
4061        /*
4062         * Since we are going to call schedule() anyway, there's
4063         * no need to preempt or enable interrupts:
4064         */
4065        __release(rq->lock);
4066        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4067        do_raw_spin_unlock(&rq->lock);
4068        sched_preempt_enable_no_resched();
4069
4070        schedule();
4071
4072        return 0;
4073}
4074
4075static void __cond_resched(void)
4076{
4077        __preempt_count_add(PREEMPT_ACTIVE);
4078        __schedule();
4079        __preempt_count_sub(PREEMPT_ACTIVE);
4080}
4081
4082int __sched _cond_resched(void)
4083{
4084        if (should_resched()) {
4085                __cond_resched();
4086                return 1;
4087        }
4088        return 0;
4089}
4090EXPORT_SYMBOL(_cond_resched);
4091
4092/*
4093 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4094 * call schedule, and on return reacquire the lock.
4095 *
4096 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4097 * operations here to prevent schedule() from being called twice (once via
4098 * spin_unlock(), once by hand).
4099 */
4100int __cond_resched_lock(spinlock_t *lock)
4101{
4102        int resched = should_resched();
4103        int ret = 0;
4104
4105        lockdep_assert_held(lock);
4106
4107        if (spin_needbreak(lock) || resched) {
4108                spin_unlock(lock);
4109                if (resched)
4110                        __cond_resched();
4111                else
4112                        cpu_relax();
4113                ret = 1;
4114                spin_lock(lock);
4115        }
4116        return ret;
4117}
4118EXPORT_SYMBOL(__cond_resched_lock);
4119
4120int __sched __cond_resched_softirq(void)
4121{
4122        BUG_ON(!in_softirq());
4123
4124        if (should_resched()) {
4125                local_bh_enable();
4126                __cond_resched();
4127                local_bh_disable();
4128                return 1;
4129        }
4130        return 0;
4131}
4132EXPORT_SYMBOL(__cond_resched_softirq);
4133
4134/**
4135 * yield - yield the current processor to other threads.
4136 *
4137 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4138 *
4139 * The scheduler is at all times free to pick the calling task as the most
4140 * eligible task to run, if removing the yield() call from your code breaks
4141 * it, its already broken.
4142 *
4143 * Typical broken usage is:
4144 *
4145 * while (!event)
4146 *      yield();
4147 *
4148 * where one assumes that yield() will let 'the other' process run that will
4149 * make event true. If the current task is a SCHED_FIFO task that will never
4150 * happen. Never use yield() as a progress guarantee!!
4151 *
4152 * If you want to use yield() to wait for something, use wait_event().
4153 * If you want to use yield() to be 'nice' for others, use cond_resched().
4154 * If you still want to use yield(), do not!
4155 */
4156void __sched yield(void)
4157{
4158        set_current_state(TASK_RUNNING);
4159        sys_sched_yield();
4160}
4161EXPORT_SYMBOL(yield);
4162
4163/**
4164 * yield_to - yield the current processor to another thread in
4165 * your thread group, or accelerate that thread toward the
4166 * processor it's on.
4167 * @p: target task
4168 * @preempt: whether task preemption is allowed or not
4169 *
4170 * It's the caller's job to ensure that the target task struct
4171 * can't go away on us before we can do any checks.
4172 *
4173 * Return:
4174 *      true (>0) if we indeed boosted the target task.
4175 *      false (0) if we failed to boost the target.
4176 *      -ESRCH if there's no task to yield to.
4177 */
4178bool __sched yield_to(struct task_struct *p, bool preempt)
4179{
4180        struct task_struct *curr = current;
4181        struct rq *rq, *p_rq;
4182        unsigned long flags;
4183        int yielded = 0;
4184
4185        local_irq_save(flags);
4186        rq = this_rq();
4187
4188again:
4189        p_rq = task_rq(p);
4190        /*
4191         * If we're the only runnable task on the rq and target rq also
4192         * has only one task, there's absolutely no point in yielding.
4193         */
4194        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4195                yielded = -ESRCH;
4196                goto out_irq;
4197        }
4198
4199        double_rq_lock(rq, p_rq);
4200        if (task_rq(p) != p_rq) {
4201                double_rq_unlock(rq, p_rq);
4202                goto again;
4203        }
4204
4205        if (!curr->sched_class->yield_to_task)
4206                goto out_unlock;
4207
4208        if (curr->sched_class != p->sched_class)
4209                goto out_unlock;
4210
4211        if (task_running(p_rq, p) || p->state)
4212                goto out_unlock;
4213
4214        yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4215        if (yielded) {
4216                schedstat_inc(rq, yld_count);
4217                /*
4218                 * Make p's CPU reschedule; pick_next_entity takes care of
4219                 * fairness.
4220                 */
4221                if (preempt && rq != p_rq)
4222                        resched_task(p_rq->curr);
4223        }
4224
4225out_unlock:
4226        double_rq_unlock(rq, p_rq);
4227out_irq:
4228        local_irq_restore(flags);
4229
4230        if (yielded > 0)
4231                schedule();
4232
4233        return yielded;
4234}
4235EXPORT_SYMBOL_GPL(yield_to);
4236
4237/*
4238 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4239 * that process accounting knows that this is a task in IO wait state.
4240 */
4241void __sched io_schedule(void)
4242{
4243        struct rq *rq = raw_rq();
4244
4245        delayacct_blkio_start();
4246        atomic_inc(&rq->nr_iowait);
4247        blk_flush_plug(current);
4248        current->in_iowait = 1;
4249        schedule();
4250        current->in_iowait = 0;
4251        atomic_dec(&rq->nr_iowait);
4252        delayacct_blkio_end();
4253}
4254EXPORT_SYMBOL(io_schedule);
4255
4256long __sched io_schedule_timeout(long timeout)
4257{
4258        struct rq *rq = raw_rq();
4259        long ret;
4260
4261        delayacct_blkio_start();
4262        atomic_inc(&rq->nr_iowait);
4263        blk_flush_plug(current);
4264        current->in_iowait = 1;
4265        ret = schedule_timeout(timeout);
4266        current->in_iowait = 0;
4267        atomic_dec(&rq->nr_iowait);
4268        delayacct_blkio_end();
4269        return ret;
4270}
4271
4272/**
4273 * sys_sched_get_priority_max - return maximum RT priority.
4274 * @policy: scheduling class.
4275 *
4276 * Return: On success, this syscall returns the maximum
4277 * rt_priority that can be used by a given scheduling class.
4278 * On failure, a negative error code is returned.
4279 */
4280SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4281{
4282        int ret = -EINVAL;
4283
4284        switch (policy) {
4285        case SCHED_FIFO:
4286        case SCHED_RR:
4287                ret = MAX_USER_RT_PRIO-1;
4288                break;
4289        case SCHED_DEADLINE:
4290        case SCHED_NORMAL:
4291        case SCHED_BATCH:
4292        case SCHED_IDLE:
4293                ret = 0;
4294                break;
4295        }
4296        return ret;
4297}
4298
4299/**
4300 * sys_sched_get_priority_min - return minimum RT priority.
4301 * @policy: scheduling class.
4302 *
4303 * Return: On success, this syscall returns the minimum
4304 * rt_priority that can be used by a given scheduling class.
4305 * On failure, a negative error code is returned.
4306 */
4307SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4308{
4309        int ret = -EINVAL;
4310
4311        switch (policy) {
4312        case SCHED_FIFO:
4313        case SCHED_RR:
4314                ret = 1;
4315                break;
4316        case SCHED_DEADLINE:
4317        case SCHED_NORMAL:
4318        case SCHED_BATCH:
4319        case SCHED_IDLE:
4320                ret = 0;
4321        }
4322        return ret;
4323}
4324
4325/**
4326 * sys_sched_rr_get_interval - return the default timeslice of a process.
4327 * @pid: pid of the process.
4328 * @interval: userspace pointer to the timeslice value.
4329 *
4330 * this syscall writes the default timeslice value of a given process
4331 * into the user-space timespec buffer. A value of '0' means infinity.
4332 *
4333 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4334 * an error code.
4335 */
4336SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4337                struct timespec __user *, interval)
4338{
4339        struct task_struct *p;
4340        unsigned int time_slice;
4341        unsigned long flags;
4342        struct rq *rq;
4343        int retval;
4344        struct timespec t;
4345
4346        if (pid < 0)
4347                return -EINVAL;
4348
4349        retval = -ESRCH;
4350        rcu_read_lock();
4351        p = find_process_by_pid(pid);
4352        if (!p)
4353                goto out_unlock;
4354
4355        retval = security_task_getscheduler(p);
4356        if (retval)
4357                goto out_unlock;
4358
4359        rq = task_rq_lock(p, &flags);
4360        time_slice = 0;
4361        if (p->sched_class->get_rr_interval)
4362                time_slice = p->sched_class->get_rr_interval(rq, p);
4363        task_rq_unlock(rq, p, &flags);
4364
4365        rcu_read_unlock();
4366        jiffies_to_timespec(time_slice, &t);
4367        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4368        return retval;
4369
4370out_unlock:
4371        rcu_read_unlock();
4372        return retval;
4373}
4374
4375static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4376
4377void sched_show_task(struct task_struct *p)
4378{
4379        unsigned long free = 0;
4380        int ppid;
4381        unsigned state;
4382
4383        state = p->state ? __ffs(p->state) + 1 : 0;
4384        printk(KERN_INFO "%-15.15s %c", p->comm,
4385                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4386#if BITS_PER_LONG == 32
4387        if (state == TASK_RUNNING)
4388                printk(KERN_CONT " running  ");
4389        else
4390                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4391#else
4392        if (state == TASK_RUNNING)
4393                printk(KERN_CONT "  running task    ");
4394        else
4395                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4396#endif
4397#ifdef CONFIG_DEBUG_STACK_USAGE
4398        free = stack_not_used(p);
4399#endif
4400        rcu_read_lock();
4401        ppid = task_pid_nr(rcu_dereference(p->real_parent));
4402        rcu_read_unlock();
4403        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4404                task_pid_nr(p), ppid,
4405                (unsigned long)task_thread_info(p)->flags);
4406
4407        print_worker_info(KERN_INFO, p);
4408        show_stack(p, NULL);
4409}
4410
4411void show_state_filter(unsigned long state_filter)
4412{
4413        struct task_struct *g, *p;
4414
4415#if BITS_PER_LONG == 32
4416        printk(KERN_INFO
4417                "  task                PC stack   pid father\n");
4418#else
4419        printk(KERN_INFO
4420                "  task                        PC stack   pid father\n");
4421#endif
4422        rcu_read_lock();
4423        do_each_thread(g, p) {
4424                /*
4425                 * reset the NMI-timeout, listing all files on a slow
4426                 * console might take a lot of time:
4427                 */
4428                touch_nmi_watchdog();
4429                if (!state_filter || (p->state & state_filter))
4430                        sched_show_task(p);
4431        } while_each_thread(g, p);
4432
4433        touch_all_softlockup_watchdogs();
4434
4435#ifdef CONFIG_SCHED_DEBUG
4436        sysrq_sched_debug_show();
4437#endif
4438        rcu_read_unlock();
4439        /*
4440         * Only show locks if all tasks are dumped:
4441         */
4442        if (!state_filter)
4443                debug_show_all_locks();
4444}
4445
4446void init_idle_bootup_task(struct task_struct *idle)
4447{
4448        idle->sched_class = &idle_sched_class;
4449}
4450
4451/**
4452 * init_idle - set up an idle thread for a given CPU
4453 * @idle: task in question
4454 * @cpu: cpu the idle task belongs to
4455 *
4456 * NOTE: this function does not set the idle thread's NEED_RESCHED
4457 * flag, to make booting more robust.
4458 */
4459void init_idle(struct task_struct *idle, int cpu)
4460{
4461        struct rq *rq = cpu_rq(cpu);
4462        unsigned long flags;
4463
4464        raw_spin_lock_irqsave(&rq->lock, flags);
4465
4466        __sched_fork(0, idle);
4467        idle->state = TASK_RUNNING;
4468        idle->se.exec_start = sched_clock();
4469
4470        do_set_cpus_allowed(idle, cpumask_of(cpu));
4471        /*
4472         * We're having a chicken and egg problem, even though we are
4473         * holding rq->lock, the cpu isn't yet set to this cpu so the
4474         * lockdep check in task_group() will fail.
4475         *
4476         * Similar case to sched_fork(). / Alternatively we could
4477         * use task_rq_lock() here and obtain the other rq->lock.
4478         *
4479         * Silence PROVE_RCU
4480         */
4481        rcu_read_lock();
4482        __set_task_cpu(idle, cpu);
4483        rcu_read_unlock();
4484
4485        rq->curr = rq->idle = idle;
4486#if defined(CONFIG_SMP)
4487        idle->on_cpu = 1;
4488#endif
4489        raw_spin_unlock_irqrestore(&rq->lock, flags);
4490
4491        /* Set the preempt count _outside_ the spinlocks! */
4492        init_idle_preempt_count(idle, cpu);
4493
4494        /*
4495         * The idle tasks have their own, simple scheduling class:
4496         */
4497        idle->sched_class = &idle_sched_class;
4498        ftrace_graph_init_idle_task(idle, cpu);
4499        vtime_init_idle(idle, cpu);
4500#if defined(CONFIG_SMP)
4501        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4502#endif
4503}
4504
4505#ifdef CONFIG_SMP
4506void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4507{
4508        if (p->sched_class && p->sched_class->set_cpus_allowed)
4509                p->sched_class->set_cpus_allowed(p, new_mask);
4510
4511        cpumask_copy(&p->cpus_allowed, new_mask);
4512        p->nr_cpus_allowed = cpumask_weight(new_mask);
4513}
4514
4515/*
4516 * This is how migration works:
4517 *
4518 * 1) we invoke migration_cpu_stop() on the target CPU using
4519 *    stop_one_cpu().
4520 * 2) stopper starts to run (implicitly forcing the migrated thread
4521 *    off the CPU)
4522 * 3) it checks whether the migrated task is still in the wrong runqueue.
4523 * 4) if it's in the wrong runqueue then the migration thread removes
4524 *    it and puts it into the right queue.
4525 * 5) stopper completes and stop_one_cpu() returns and the migration
4526 *    is done.
4527 */
4528
4529/*
4530 * Change a given task's CPU affinity. Migrate the thread to a
4531 * proper CPU and schedule it away if the CPU it's executing on
4532 * is removed from the allowed bitmask.
4533 *
4534 * NOTE: the caller must have a valid reference to the task, the
4535 * task must not exit() & deallocate itself prematurely. The
4536 * call is not atomic; no spinlocks may be held.
4537 */
4538int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4539{
4540        unsigned long flags;
4541        struct rq *rq;
4542        unsigned int dest_cpu;
4543        int ret = 0;
4544
4545        rq = task_rq_lock(p, &flags);
4546
4547        if (cpumask_equal(&p->cpus_allowed, new_mask))
4548                goto out;
4549
4550        if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4551                ret = -EINVAL;
4552                goto out;
4553        }
4554
4555        do_set_cpus_allowed(p, new_mask);
4556
4557        /* Can the task run on the task's current CPU? If so, we're done */
4558        if (cpumask_test_cpu(task_cpu(p), new_mask))
4559                goto out;
4560
4561        dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4562        if (p->on_rq) {
4563                struct migration_arg arg = { p, dest_cpu };
4564                /* Need help from migration thread: drop lock and wait. */
4565                task_rq_unlock(rq, p, &flags);
4566                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4567                tlb_migrate_finish(p->mm);
4568                return 0;
4569        }
4570out:
4571        task_rq_unlock(rq, p, &flags);
4572
4573        return ret;
4574}
4575EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4576
4577/*
4578 * Move (not current) task off this cpu, onto dest cpu. We're doing
4579 * this because either it can't run here any more (set_cpus_allowed()
4580 * away from this CPU, or CPU going down), or because we're
4581 * attempting to rebalance this task on exec (sched_exec).
4582 *
4583 * So we race with normal scheduler movements, but that's OK, as long
4584 * as the task is no longer on this CPU.
4585 *
4586 * Returns non-zero if task was successfully migrated.
4587 */
4588static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4589{
4590        struct rq *rq_dest, *rq_src;
4591        int ret = 0;
4592
4593        if (unlikely(!cpu_active(dest_cpu)))
4594                return ret;
4595
4596        rq_src = cpu_rq(src_cpu);
4597        rq_dest = cpu_rq(dest_cpu);
4598
4599        raw_spin_lock(&p->pi_lock);
4600        double_rq_lock(rq_src, rq_dest);
4601        /* Already moved. */
4602        if (task_cpu(p) != src_cpu)
4603                goto done;
4604        /* Affinity changed (again). */
4605        if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4606                goto fail;
4607
4608        /*
4609         * If we're not on a rq, the next wake-up will ensure we're
4610         * placed properly.
4611         */
4612        if (p->on_rq) {
4613                dequeue_task(rq_src, p, 0);
4614                set_task_cpu(p, dest_cpu);
4615                enqueue_task(rq_dest, p, 0);
4616                check_preempt_curr(rq_dest, p, 0);
4617        }
4618done:
4619        ret = 1;
4620fail:
4621        double_rq_unlock(rq_src, rq_dest);
4622        raw_spin_unlock(&p->pi_lock);
4623        return ret;
4624}
4625
4626#ifdef CONFIG_NUMA_BALANCING
4627/* Migrate current task p to target_cpu */
4628int migrate_task_to(struct task_struct *p, int target_cpu)
4629{
4630        struct migration_arg arg = { p, target_cpu };
4631        int curr_cpu = task_cpu(p);
4632
4633        if (curr_cpu == target_cpu)
4634                return 0;
4635
4636        if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4637                return -EINVAL;
4638
4639        /* TODO: This is not properly updating schedstats */
4640
4641        trace_sched_move_numa(p, curr_cpu, target_cpu);
4642        return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4643}
4644
4645/*
4646 * Requeue a task on a given node and accurately track the number of NUMA
4647 * tasks on the runqueues
4648 */
4649void sched_setnuma(struct task_struct *p, int nid)
4650{
4651        struct rq *rq;
4652        unsigned long flags;
4653        bool on_rq, running;
4654
4655        rq = task_rq_lock(p, &flags);
4656        on_rq = p->on_rq;
4657        running = task_current(rq, p);
4658
4659        if (on_rq)
4660                dequeue_task(rq, p, 0);
4661        if (running)
4662                p->sched_class->put_prev_task(rq, p);
4663
4664        p->numa_preferred_nid = nid;
4665
4666        if (running)
4667                p->sched_class->set_curr_task(rq);
4668        if (on_rq)
4669                enqueue_task(rq, p, 0);
4670        task_rq_unlock(rq, p, &flags);
4671}
4672#endif
4673
4674/*
4675 * migration_cpu_stop - this will be executed by a highprio stopper thread
4676 * and performs thread migration by bumping thread off CPU then
4677 * 'pushing' onto another runqueue.
4678 */
4679static int migration_cpu_stop(void *data)
4680{
4681        struct migration_arg *arg = data;
4682
4683        /*
4684         * The original target cpu might have gone down and we might
4685         * be on another cpu but it doesn't matter.
4686         */
4687        local_irq_disable();
4688        __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4689        local_irq_enable();
4690        return 0;
4691}
4692
4693#ifdef CONFIG_HOTPLUG_CPU
4694
4695/*
4696 * Ensures that the idle task is using init_mm right before its cpu goes
4697 * offline.
4698 */
4699void idle_task_exit(void)
4700{
4701        struct mm_struct *mm = current->active_mm;
4702
4703        BUG_ON(cpu_online(smp_processor_id()));
4704
4705        if (mm != &init_mm)
4706                switch_mm(mm, &init_mm, current);
4707        mmdrop(mm);
4708}
4709
4710/*
4711 * Since this CPU is going 'away' for a while, fold any nr_active delta
4712 * we might have. Assumes we're called after migrate_tasks() so that the
4713 * nr_active count is stable.
4714 *
4715 * Also see the comment "Global load-average calculations".
4716 */
4717static void calc_load_migrate(struct rq *rq)
4718{
4719        long delta = calc_load_fold_active(rq);
4720        if (delta)
4721                atomic_long_add(delta, &calc_load_tasks);
4722}
4723
4724/*
4725 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4726 * try_to_wake_up()->select_task_rq().
4727 *
4728 * Called with rq->lock held even though we'er in stop_machine() and
4729 * there's no concurrency possible, we hold the required locks anyway
4730 * because of lock validation efforts.
4731 */
4732static void migrate_tasks(unsigned int dead_cpu)
4733{
4734        struct rq *rq = cpu_rq(dead_cpu);
4735        struct task_struct *next, *stop = rq->stop;
4736        int dest_cpu;
4737
4738        /*
4739         * Fudge the rq selection such that the below task selection loop
4740         * doesn't get stuck on the currently eligible stop task.
4741         *
4742         * We're currently inside stop_machine() and the rq is either stuck
4743         * in the stop_machine_cpu_stop() loop, or we're executing this code,
4744         * either way we should never end up calling schedule() until we're
4745         * done here.
4746         */
4747        rq->stop = NULL;
4748
4749        /*
4750         * put_prev_task() and pick_next_task() sched
4751         * class method both need to have an up-to-date
4752         * value of rq->clock[_task]
4753         */
4754        update_rq_clock(rq);
4755
4756        for ( ; ; ) {
4757                /*
4758                 * There's this thread running, bail when that's the only
4759                 * remaining thread.
4760                 */
4761                if (rq->nr_running == 1)
4762                        break;
4763
4764                next = pick_next_task(rq);
4765                BUG_ON(!next);
4766                next->sched_class->put_prev_task(rq, next);
4767
4768                /* Find suitable destination for @next, with force if needed. */
4769                dest_cpu = select_fallback_rq(dead_cpu, next);
4770                raw_spin_unlock(&rq->lock);
4771
4772                __migrate_task(next, dead_cpu, dest_cpu);
4773
4774                raw_spin_lock(&rq->lock);
4775        }
4776
4777        rq->stop = stop;
4778}
4779
4780#endif /* CONFIG_HOTPLUG_CPU */
4781
4782#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4783
4784static struct ctl_table sd_ctl_dir[] = {
4785        {
4786                .procname       = "sched_domain",
4787                .mode           = 0555,
4788        },
4789        {}
4790};
4791
4792static struct ctl_table sd_ctl_root[] = {
4793        {
4794                .procname       = "kernel",
4795                .mode           = 0555,
4796                .child          = sd_ctl_dir,
4797        },
4798        {}
4799};
4800
4801static struct ctl_table *sd_alloc_ctl_entry(int n)
4802{
4803        struct ctl_table *entry =
4804                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4805
4806        return entry;
4807}
4808
4809static void sd_free_ctl_entry(struct ctl_table **tablep)
4810{
4811        struct ctl_table *entry;
4812
4813        /*
4814         * In the intermediate directories, both the child directory and
4815         * procname are dynamically allocated and could fail but the mode
4816         * will always be set. In the lowest directory the names are
4817         * static strings and all have proc handlers.
4818         */
4819        for (entry = *tablep; entry->mode; entry++) {
4820                if (entry->child)
4821                        sd_free_ctl_entry(&entry->child);
4822                if (entry->proc_handler == NULL)
4823                        kfree(entry->procname);
4824        }
4825
4826        kfree(*tablep);
4827        *tablep = NULL;
4828}
4829
4830static int min_load_idx = 0;
4831static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4832
4833static void
4834set_table_entry(struct ctl_table *entry,
4835                const char *procname, void *data, int maxlen,
4836                umode_t mode, proc_handler *proc_handler,
4837                bool load_idx)
4838{
4839        entry->procname = procname;
4840        entry->data = data;
4841        entry->maxlen = maxlen;
4842        entry->mode = mode;
4843        entry->proc_handler = proc_handler;
4844
4845        if (load_idx) {
4846                entry->extra1 = &min_load_idx;
4847                entry->extra2 = &max_load_idx;
4848        }
4849}
4850
4851static struct ctl_table *
4852sd_alloc_ctl_domain_table(struct sched_domain *sd)
4853{
4854        struct ctl_table *table = sd_alloc_ctl_entry(13);
4855
4856        if (table == NULL)
4857                return NULL;
4858
4859        set_table_entry(&table[0], "min_interval", &sd->min_interval,
4860                sizeof(long), 0644, proc_doulongvec_minmax, false);
4861        set_table_entry(&table[1], "max_interval", &sd->max_interval,
4862                sizeof(long), 0644, proc_doulongvec_minmax, false);
4863        set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4864                sizeof(int), 0644, proc_dointvec_minmax, true);
4865        set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4866                sizeof(int), 0644, proc_dointvec_minmax, true);
4867        set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4868                sizeof(int), 0644, proc_dointvec_minmax, true);
4869        set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4870                sizeof(int), 0644, proc_dointvec_minmax, true);
4871        set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4872                sizeof(int), 0644, proc_dointvec_minmax, true);
4873        set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4874                sizeof(int), 0644, proc_dointvec_minmax, false);
4875        set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4876                sizeof(int), 0644, proc_dointvec_minmax, false);
4877        set_table_entry(&table[9], "cache_nice_tries",
4878                &sd->cache_nice_tries,
4879                sizeof(int), 0644, proc_dointvec_minmax, false);
4880        set_table_entry(&table[10], "flags", &sd->flags,
4881                sizeof(int), 0644, proc_dointvec_minmax, false);
4882        set_table_entry(&table[11], "name", sd->name,
4883                CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4884        /* &table[12] is terminator */
4885
4886        return table;
4887}
4888
4889static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4890{
4891        struct ctl_table *entry, *table;
4892        struct sched_domain *sd;
4893        int domain_num = 0, i;
4894        char buf[32];
4895
4896        for_each_domain(cpu, sd)
4897                domain_num++;
4898        entry = table = sd_alloc_ctl_entry(domain_num + 1);
4899        if (table == NULL)
4900                return NULL;
4901
4902        i = 0;
4903        for_each_domain(cpu, sd) {
4904                snprintf(buf, 32, "domain%d", i);
4905                entry->procname = kstrdup(buf, GFP_KERNEL);
4906                entry->mode = 0555;
4907                entry->child = sd_alloc_ctl_domain_table(sd);
4908                entry++;
4909                i++;
4910        }
4911        return table;
4912}
4913
4914static struct ctl_table_header *sd_sysctl_header;
4915static void register_sched_domain_sysctl(void)
4916{
4917        int i, cpu_num = num_possible_cpus();
4918        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4919        char buf[32];
4920
4921        WARN_ON(sd_ctl_dir[0].child);
4922        sd_ctl_dir[0].child = entry;
4923
4924        if (entry == NULL)
4925                return;
4926
4927        for_each_possible_cpu(i) {
4928                snprintf(buf, 32, "cpu%d", i);
4929                entry->procname = kstrdup(buf, GFP_KERNEL);
4930                entry->mode = 0555;
4931                entry->child = sd_alloc_ctl_cpu_table(i);
4932                entry++;
4933        }
4934
4935        WARN_ON(sd_sysctl_header);
4936        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4937}
4938
4939/* may be called multiple times per register */
4940static void unregister_sched_domain_sysctl(void)
4941{
4942        if (sd_sysctl_header)
4943                unregister_sysctl_table(sd_sysctl_header);
4944        sd_sysctl_header = NULL;
4945        if (sd_ctl_dir[0].child)
4946                sd_free_ctl_entry(&sd_ctl_dir[0].child);
4947}
4948#else
4949static void register_sched_domain_sysctl(void)
4950{
4951}
4952static void unregister_sched_domain_sysctl(void)
4953{
4954}
4955#endif
4956
4957static void set_rq_online(struct rq *rq)
4958{
4959        if (!rq->online) {
4960                const struct sched_class *class;
4961
4962                cpumask_set_cpu(rq->cpu, rq->rd->online);
4963                rq->online = 1;
4964
4965                for_each_class(class) {
4966                        if (class->rq_online)
4967                                class->rq_online(rq);
4968                }
4969        }
4970}
4971
4972static void set_rq_offline(struct rq *rq)
4973{
4974        if (rq->online) {
4975                const struct sched_class *class;
4976
4977                for_each_class(class) {
4978                        if (class->rq_offline)
4979                                class->rq_offline(rq);
4980                }
4981
4982                cpumask_clear_cpu(rq->cpu, rq->rd->online);
4983                rq->online = 0;
4984        }
4985}
4986
4987/*
4988 * migration_call - callback that gets triggered when a CPU is added.
4989 * Here we can start up the necessary migration thread for the new CPU.
4990 */
4991static int
4992migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4993{
4994        int cpu = (long)hcpu;
4995        unsigned long flags;
4996        struct rq *rq = cpu_rq(cpu);
4997
4998        switch (action & ~CPU_TASKS_FROZEN) {
4999
5000        case CPU_UP_PREPARE:
5001                rq->calc_load_update = calc_load_update;
5002                break;
5003
5004        case CPU_ONLINE:
5005                /* Update our root-domain */
5006                raw_spin_lock_irqsave(&rq->lock, flags);
5007                if (rq->rd) {
5008                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5009
5010                        set_rq_online(rq);
5011                }
5012                raw_spin_unlock_irqrestore(&rq->lock, flags);
5013                break;
5014
5015#ifdef CONFIG_HOTPLUG_CPU
5016        case CPU_DYING:
5017                sched_ttwu_pending();
5018                /* Update our root-domain */
5019                raw_spin_lock_irqsave(&rq->lock, flags);
5020                if (rq->rd) {
5021                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5022                        set_rq_offline(rq);
5023                }
5024                migrate_tasks(cpu);
5025                BUG_ON(rq->nr_running != 1); /* the migration thread */
5026                raw_spin_unlock_irqrestore(&rq->lock, flags);
5027                break;
5028
5029        case CPU_DEAD:
5030                calc_load_migrate(rq);
5031                break;
5032#endif
5033        }
5034
5035        update_max_interval();
5036
5037        return NOTIFY_OK;
5038}
5039
5040/*
5041 * Register at high priority so that task migration (migrate_all_tasks)
5042 * happens before everything else.  This has to be lower priority than
5043 * the notifier in the perf_event subsystem, though.
5044 */
5045static struct notifier_block migration_notifier = {
5046        .notifier_call = migration_call,
5047        .priority = CPU_PRI_MIGRATION,
5048};
5049
5050static int sched_cpu_active(struct notifier_block *nfb,
5051                                      unsigned long action, void *hcpu)
5052{
5053        switch (action & ~CPU_TASKS_FROZEN) {
5054        case CPU_STARTING:
5055        case CPU_DOWN_FAILED:
5056                set_cpu_active((long)hcpu, true);
5057                return NOTIFY_OK;
5058        default:
5059                return NOTIFY_DONE;
5060        }
5061}
5062
5063static int sched_cpu_inactive(struct notifier_block *nfb,
5064                                        unsigned long action, void *hcpu)
5065{
5066        unsigned long flags;
5067        long cpu = (long)hcpu;
5068
5069        switch (action & ~CPU_TASKS_FROZEN) {
5070        case CPU_DOWN_PREPARE:
5071                set_cpu_active(cpu, false);
5072
5073                /* explicitly allow suspend */
5074                if (!(action & CPU_TASKS_FROZEN)) {
5075                        struct dl_bw *dl_b = dl_bw_of(cpu);
5076                        bool overflow;
5077                        int cpus;
5078
5079                        raw_spin_lock_irqsave(&dl_b->lock, flags);
5080                        cpus = dl_bw_cpus(cpu);
5081                        overflow = __dl_overflow(dl_b, cpus, 0, 0);
5082                        raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5083
5084                        if (overflow)
5085                                return notifier_from_errno(-EBUSY);
5086                }
5087                return NOTIFY_OK;
5088        }
5089
5090        return NOTIFY_DONE;
5091}
5092
5093static int __init migration_init(void)
5094{
5095        void *cpu = (void *)(long)smp_processor_id();
5096        int err;
5097
5098        /* Initialize migration for the boot CPU */
5099        err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5100        BUG_ON(err == NOTIFY_BAD);
5101        migration_call(&migration_notifier, CPU_ONLINE, cpu);
5102        register_cpu_notifier(&migration_notifier);
5103
5104        /* Register cpu active notifiers */
5105        cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5106        cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5107
5108        return 0;
5109}
5110early_initcall(migration_init);
5111#endif
5112
5113#ifdef CONFIG_SMP
5114
5115static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5116
5117#ifdef CONFIG_SCHED_DEBUG
5118
5119static __read_mostly int sched_debug_enabled;
5120
5121static int __init sched_debug_setup(char *str)
5122{
5123        sched_debug_enabled = 1;
5124
5125        return 0;
5126}
5127early_param("sched_debug", sched_debug_setup);
5128
5129static inline bool sched_debug(void)
5130{
5131        return sched_debug_enabled;
5132}
5133
5134static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5135                                  struct cpumask *groupmask)
5136{
5137        struct sched_group *group = sd->groups;
5138        char str[256];
5139
5140        cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5141        cpumask_clear(groupmask);
5142
5143        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5144
5145        if (!(sd->flags & SD_LOAD_BALANCE)) {
5146                printk("does not load-balance\n");
5147                if (sd->parent)
5148                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5149                                        " has parent");
5150                return -1;
5151        }
5152
5153        printk(KERN_CONT "span %s level %s\n", str, sd->name);
5154
5155        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5156                printk(KERN_ERR "ERROR: domain->span does not contain "
5157                                "CPU%d\n", cpu);
5158        }
5159        if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5160                printk(KERN_ERR "ERROR: domain->groups does not contain"
5161                                " CPU%d\n", cpu);
5162        }
5163
5164        printk(KERN_DEBUG "%*s groups:", level + 1, "");
5165        do {
5166                if (!group) {
5167                        printk("\n");
5168                        printk(KERN_ERR "ERROR: group is NULL\n");
5169                        break;
5170                }
5171
5172                /*
5173                 * Even though we initialize ->power to something semi-sane,
5174                 * we leave power_orig unset. This allows us to detect if
5175                 * domain iteration is still funny without causing /0 traps.
5176                 */
5177                if (!group->sgp->power_orig) {
5178                        printk(KERN_CONT "\n");
5179                        printk(KERN_ERR "ERROR: domain->cpu_power not "
5180                                        "set\n");
5181                        break;
5182                }
5183
5184                if (!cpumask_weight(sched_group_cpus(group))) {
5185                        printk(KERN_CONT "\n");
5186                        printk(KERN_ERR "ERROR: empty group\n");
5187                        break;
5188                }
5189
5190                if (!(sd->flags & SD_OVERLAP) &&
5191                    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5192                        printk(KERN_CONT "\n");
5193                        printk(KERN_ERR "ERROR: repeated CPUs\n");
5194                        break;
5195                }
5196
5197                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5198
5199                cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5200
5201                printk(KERN_CONT " %s", str);
5202                if (group->sgp->power != SCHED_POWER_SCALE) {
5203                        printk(KERN_CONT " (cpu_power = %d)",
5204                                group->sgp->power);
5205                }
5206
5207                group = group->next;
5208        } while (group != sd->groups);
5209        printk(KERN_CONT "\n");
5210
5211        if (!cpumask_equal(sched_domain_span(sd), groupmask))
5212                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5213
5214        if (sd->parent &&
5215            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5216                printk(KERN_ERR "ERROR: parent span is not a superset "
5217                        "of domain->span\n");
5218        return 0;
5219}
5220
5221static void sched_domain_debug(struct sched_domain *sd, int cpu)
5222{
5223        int level = 0;
5224
5225        if (!sched_debug_enabled)
5226                return;
5227
5228        if (!sd) {
5229                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5230                return;
5231        }
5232
5233        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5234
5235        for (;;) {
5236                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5237                        break;
5238                level++;
5239                sd = sd->parent;
5240                if (!sd)
5241                        break;
5242        }
5243}
5244#else /* !CONFIG_SCHED_DEBUG */
5245# define sched_domain_debug(sd, cpu) do { } while (0)
5246static inline bool sched_debug(void)
5247{
5248        return false;
5249}
5250#endif /* CONFIG_SCHED_DEBUG */
5251
5252static int sd_degenerate(struct sched_domain *sd)
5253{
5254        if (cpumask_weight(sched_domain_span(sd)) == 1)
5255                return 1;
5256
5257        /* Following flags need at least 2 groups */
5258        if (sd->flags & (SD_LOAD_BALANCE |
5259                         SD_BALANCE_NEWIDLE |
5260                         SD_BALANCE_FORK |
5261                         SD_BALANCE_EXEC |
5262                         SD_SHARE_CPUPOWER |
5263                         SD_SHARE_PKG_RESOURCES)) {
5264                if (sd->groups != sd->groups->next)
5265                        return 0;
5266        }
5267
5268        /* Following flags don't use groups */
5269        if (sd->flags & (SD_WAKE_AFFINE))
5270                return 0;
5271
5272        return 1;
5273}
5274
5275static int
5276sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5277{
5278        unsigned long cflags = sd->flags, pflags = parent->flags;
5279
5280        if (sd_degenerate(parent))
5281                return 1;
5282
5283        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5284                return 0;
5285
5286        /* Flags needing groups don't count if only 1 group in parent */
5287        if (parent->groups == parent->groups->next) {
5288                pflags &= ~(SD_LOAD_BALANCE |
5289                                SD_BALANCE_NEWIDLE |
5290                                SD_BALANCE_FORK |
5291                                SD_BALANCE_EXEC |
5292                                SD_SHARE_CPUPOWER |
5293                                SD_SHARE_PKG_RESOURCES |
5294                                SD_PREFER_SIBLING);
5295                if (nr_node_ids == 1)
5296                        pflags &= ~SD_SERIALIZE;
5297        }
5298        if (~cflags & pflags)
5299                return 0;
5300
5301        return 1;
5302}
5303
5304static void free_rootdomain(struct rcu_head *rcu)
5305{
5306        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5307
5308        cpupri_cleanup(&rd->cpupri);
5309        cpudl_cleanup(&rd->cpudl);
5310        free_cpumask_var(rd->dlo_mask);
5311        free_cpumask_var(rd->rto_mask);
5312        free_cpumask_var(rd->online);
5313        free_cpumask_var(rd->span);
5314        kfree(rd);
5315}
5316
5317static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5318{
5319        struct root_domain *old_rd = NULL;
5320        unsigned long flags;
5321
5322        raw_spin_lock_irqsave(&rq->lock, flags);
5323
5324        if (rq->rd) {
5325                old_rd = rq->rd;
5326
5327                if (cpumask_test_cpu(rq->cpu, old_rd->online))
5328                        set_rq_offline(rq);
5329
5330                cpumask_clear_cpu(rq->cpu, old_rd->span);
5331
5332                /*
5333                 * If we dont want to free the old_rd yet then
5334                 * set old_rd to NULL to skip the freeing later
5335                 * in this function:
5336                 */
5337                if (!atomic_dec_and_test(&old_rd->refcount))
5338                        old_rd = NULL;
5339        }
5340
5341        atomic_inc(&rd->refcount);
5342        rq->rd = rd;
5343
5344        cpumask_set_cpu(rq->cpu, rd->span);
5345        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5346                set_rq_online(rq);
5347
5348        raw_spin_unlock_irqrestore(&rq->lock, flags);
5349
5350        if (old_rd)
5351                call_rcu_sched(&old_rd->rcu, free_rootdomain);
5352}
5353
5354static int init_rootdomain(struct root_domain *rd)
5355{
5356        memset(rd, 0, sizeof(*rd));
5357
5358        if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5359                goto out;
5360        if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5361                goto free_span;
5362        if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5363                goto free_online;
5364        if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5365                goto free_dlo_mask;
5366
5367        init_dl_bw(&rd->dl_bw);
5368        if (cpudl_init(&rd->cpudl) != 0)
5369                goto free_dlo_mask;
5370
5371        if (cpupri_init(&rd->cpupri) != 0)
5372                goto free_rto_mask;
5373        return 0;
5374
5375free_rto_mask:
5376        free_cpumask_var(rd->rto_mask);
5377free_dlo_mask:
5378        free_cpumask_var(rd->dlo_mask);
5379free_online:
5380        free_cpumask_var(rd->online);
5381free_span:
5382        free_cpumask_var(rd->span);
5383out:
5384        return -ENOMEM;
5385}
5386
5387/*
5388 * By default the system creates a single root-domain with all cpus as
5389 * members (mimicking the global state we have today).
5390 */
5391struct root_domain def_root_domain;
5392
5393static void init_defrootdomain(void)
5394{
5395        init_rootdomain(&def_root_domain);
5396
5397        atomic_set(&def_root_domain.refcount, 1);
5398}
5399
5400static struct root_domain *alloc_rootdomain(void)
5401{
5402        struct root_domain *rd;
5403
5404        rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5405        if (!rd)
5406                return NULL;
5407
5408        if (init_rootdomain(rd) != 0) {
5409                kfree(rd);
5410                return NULL;
5411        }
5412
5413        return rd;
5414}
5415
5416static void free_sched_groups(struct sched_group *sg, int free_sgp)
5417{
5418        struct sched_group *tmp, *first;
5419
5420        if (!sg)
5421                return;
5422
5423        first = sg;
5424        do {
5425                tmp = sg->next;
5426
5427                if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5428                        kfree(sg->sgp);
5429
5430                kfree(sg);
5431                sg = tmp;
5432        } while (sg != first);
5433}
5434
5435static void free_sched_domain(struct rcu_head *rcu)
5436{
5437        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5438
5439        /*
5440         * If its an overlapping domain it has private groups, iterate and
5441         * nuke them all.
5442         */
5443        if (sd->flags & SD_OVERLAP) {
5444                free_sched_groups(sd->groups, 1);
5445        } else if (atomic_dec_and_test(&sd->groups->ref)) {
5446                kfree(sd->groups->sgp);
5447                kfree(sd->groups);
5448        }
5449        kfree(sd);
5450}
5451
5452static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5453{
5454        call_rcu(&sd->rcu, free_sched_domain);
5455}
5456
5457static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5458{
5459        for (; sd; sd = sd->parent)
5460                destroy_sched_domain(sd, cpu);
5461}
5462
5463/*
5464 * Keep a special pointer to the highest sched_domain that has
5465 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5466 * allows us to avoid some pointer chasing select_idle_sibling().
5467 *
5468 * Also keep a unique ID per domain (we use the first cpu number in
5469 * the cpumask of the domain), this allows us to quickly tell if
5470 * two cpus are in the same cache domain, see cpus_share_cache().
5471 */
5472DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5473DEFINE_PER_CPU(int, sd_llc_size);
5474DEFINE_PER_CPU(int, sd_llc_id);
5475DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5476DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5477DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5478
5479static void update_top_cache_domain(int cpu)
5480{
5481        struct sched_domain *sd;
5482        struct sched_domain *busy_sd = NULL;
5483        int id = cpu;
5484        int size = 1;
5485
5486        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5487        if (sd) {
5488                id = cpumask_first(sched_domain_span(sd));
5489                size = cpumask_weight(sched_domain_span(sd));
5490                busy_sd = sd->parent; /* sd_busy */
5491        }
5492        rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5493
5494        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5495        per_cpu(sd_llc_size, cpu) = size;
5496        per_cpu(sd_llc_id, cpu) = id;
5497
5498        sd = lowest_flag_domain(cpu, SD_NUMA);
5499        rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5500
5501        sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5502        rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5503}
5504
5505/*
5506 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5507 * hold the hotplug lock.
5508 */
5509static void
5510cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5511{
5512        struct rq *rq = cpu_rq(cpu);
5513        struct sched_domain *tmp;
5514
5515        /* Remove the sched domains which do not contribute to scheduling. */
5516        for (tmp = sd; tmp; ) {
5517                struct sched_domain *parent = tmp->parent;
5518                if (!parent)
5519                        break;
5520
5521                if (sd_parent_degenerate(tmp, parent)) {
5522                        tmp->parent = parent->parent;
5523                        if (parent->parent)
5524                                parent->parent->child = tmp;
5525                        /*
5526                         * Transfer SD_PREFER_SIBLING down in case of a
5527                         * degenerate parent; the spans match for this
5528                         * so the property transfers.
5529                         */
5530                        if (parent->flags & SD_PREFER_SIBLING)
5531                                tmp->flags |= SD_PREFER_SIBLING;
5532                        destroy_sched_domain(parent, cpu);
5533                } else
5534                        tmp = tmp->parent;
5535        }
5536
5537        if (sd && sd_degenerate(sd)) {
5538                tmp = sd;
5539                sd = sd->parent;
5540                destroy_sched_domain(tmp, cpu);
5541                if (sd)
5542                        sd->child = NULL;
5543        }
5544
5545        sched_domain_debug(sd, cpu);
5546
5547        rq_attach_root(rq, rd);
5548        tmp = rq->sd;
5549        rcu_assign_pointer(rq->sd, sd);
5550        destroy_sched_domains(tmp, cpu);
5551
5552        update_top_cache_domain(cpu);
5553}
5554
5555/* cpus with isolated domains */
5556static cpumask_var_t cpu_isolated_map;
5557
5558/* Setup the mask of cpus configured for isolated domains */
5559static int __init isolated_cpu_setup(char *str)
5560{
5561        alloc_bootmem_cpumask_var(&cpu_isolated_map);
5562        cpulist_parse(str, cpu_isolated_map);
5563        return 1;
5564}
5565
5566__setup("isolcpus=", isolated_cpu_setup);
5567
5568static const struct cpumask *cpu_cpu_mask(int cpu)
5569{
5570        return cpumask_of_node(cpu_to_node(cpu));
5571}
5572
5573struct sd_data {
5574        struct sched_domain **__percpu sd;
5575        struct sched_group **__percpu sg;
5576        struct sched_group_power **__percpu sgp;
5577};
5578
5579struct s_data {
5580        struct sched_domain ** __percpu sd;
5581        struct root_domain      *rd;
5582};
5583
5584enum s_alloc {
5585        sa_rootdomain,
5586        sa_sd,
5587        sa_sd_storage,
5588        sa_none,
5589};
5590
5591struct sched_domain_topology_level;
5592
5593typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5594typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5595
5596#define SDTL_OVERLAP    0x01
5597
5598struct sched_domain_topology_level {
5599        sched_domain_init_f init;
5600        sched_domain_mask_f mask;
5601        int                 flags;
5602        int                 numa_level;
5603        struct sd_data      data;
5604};
5605
5606/*
5607 * Build an iteration mask that can exclude certain CPUs from the upwards
5608 * domain traversal.
5609 *
5610 * Asymmetric node setups can result in situations where the domain tree is of
5611 * unequal depth, make sure to skip domains that already cover the entire
5612 * range.
5613 *
5614 * In that case build_sched_domains() will have terminated the iteration early
5615 * and our sibling sd spans will be empty. Domains should always include the
5616 * cpu they're built on, so check that.
5617 *
5618 */
5619static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5620{
5621        const struct cpumask *span = sched_domain_span(sd);
5622        struct sd_data *sdd = sd->private;
5623        struct sched_domain *sibling;
5624        int i;
5625
5626        for_each_cpu(i, span) {
5627                sibling = *per_cpu_ptr(sdd->sd, i);
5628                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5629                        continue;
5630
5631                cpumask_set_cpu(i, sched_group_mask(sg));
5632        }
5633}
5634
5635/*
5636 * Return the canonical balance cpu for this group, this is the first cpu
5637 * of this group that's also in the iteration mask.
5638 */
5639int group_balance_cpu(struct sched_group *sg)
5640{
5641        return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5642}
5643
5644static int
5645build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5646{
5647        struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5648        const struct cpumask *span = sched_domain_span(sd);
5649        struct cpumask *covered = sched_domains_tmpmask;
5650        struct sd_data *sdd = sd->private;
5651        struct sched_domain *child;
5652        int i;
5653
5654        cpumask_clear(covered);
5655
5656        for_each_cpu(i, span) {
5657                struct cpumask *sg_span;
5658
5659                if (cpumask_test_cpu(i, covered))
5660                        continue;
5661
5662                child = *per_cpu_ptr(sdd->sd, i);
5663
5664                /* See the comment near build_group_mask(). */
5665                if (!cpumask_test_cpu(i, sched_domain_span(child)))
5666                        continue;
5667
5668                sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5669                                GFP_KERNEL, cpu_to_node(cpu));
5670
5671                if (!sg)
5672                        goto fail;
5673
5674                sg_span = sched_group_cpus(sg);
5675                if (child->child) {
5676                        child = child->child;
5677                        cpumask_copy(sg_span, sched_domain_span(child));
5678                } else
5679                        cpumask_set_cpu(i, sg_span);
5680
5681                cpumask_or(covered, covered, sg_span);
5682
5683                sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5684                if (atomic_inc_return(&sg->sgp->ref) == 1)
5685                        build_group_mask(sd, sg);
5686
5687                /*
5688                 * Initialize sgp->power such that even if we mess up the
5689                 * domains and no possible iteration will get us here, we won't
5690                 * die on a /0 trap.
5691                 */
5692                sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5693                sg->sgp->power_orig = sg->sgp->power;
5694
5695                /*
5696                 * Make sure the first group of this domain contains the
5697                 * canonical balance cpu. Otherwise the sched_domain iteration
5698                 * breaks. See update_sg_lb_stats().
5699                 */
5700                if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5701                    group_balance_cpu(sg) == cpu)
5702                        groups = sg;
5703
5704                if (!first)
5705                        first = sg;
5706                if (last)
5707                        last->next = sg;
5708                last = sg;
5709                last->next = first;
5710        }
5711        sd->groups = groups;
5712
5713        return 0;
5714
5715fail:
5716        free_sched_groups(first, 0);
5717
5718        return -ENOMEM;
5719}
5720
5721static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5722{
5723        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5724        struct sched_domain *child = sd->child;
5725
5726        if (child)
5727                cpu = cpumask_first(sched_domain_span(child));
5728
5729        if (sg) {
5730                *sg = *per_cpu_ptr(sdd->sg, cpu);
5731                (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5732                atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5733        }
5734
5735        return cpu;
5736}
5737
5738/*
5739 * build_sched_groups will build a circular linked list of the groups
5740 * covered by the given span, and will set each group's ->cpumask correctly,
5741 * and ->cpu_power to 0.
5742 *
5743 * Assumes the sched_domain tree is fully constructed
5744 */
5745static int
5746build_sched_groups(struct sched_domain *sd, int cpu)
5747{
5748        struct sched_group *first = NULL, *last = NULL;
5749        struct sd_data *sdd = sd->private;
5750        const struct cpumask *span = sched_domain_span(sd);
5751        struct cpumask *covered;
5752        int i;
5753
5754        get_group(cpu, sdd, &sd->groups);
5755        atomic_inc(&sd->groups->ref);
5756
5757        if (cpu != cpumask_first(span))
5758                return 0;
5759
5760        lockdep_assert_held(&sched_domains_mutex);
5761        covered = sched_domains_tmpmask;
5762
5763        cpumask_clear(covered);
5764
5765        for_each_cpu(i, span) {
5766                struct sched_group *sg;
5767                int group, j;
5768
5769                if (cpumask_test_cpu(i, covered))
5770                        continue;
5771
5772                group = get_group(i, sdd, &sg);
5773                cpumask_clear(sched_group_cpus(sg));
5774                sg->sgp->power = 0;
5775                cpumask_setall(sched_group_mask(sg));
5776
5777                for_each_cpu(j, span) {
5778                        if (get_group(j, sdd, NULL) != group)
5779                                continue;
5780
5781                        cpumask_set_cpu(j, covered);
5782                        cpumask_set_cpu(j, sched_group_cpus(sg));
5783                }
5784
5785                if (!first)
5786                        first = sg;
5787                if (last)
5788                        last->next = sg;
5789                last = sg;
5790        }
5791        last->next = first;
5792
5793        return 0;
5794}
5795
5796/*
5797 * Initialize sched groups cpu_power.
5798 *
5799 * cpu_power indicates the capacity of sched group, which is used while
5800 * distributing the load between different sched groups in a sched domain.
5801 * Typically cpu_power for all the groups in a sched domain will be same unless
5802 * there are asymmetries in the topology. If there are asymmetries, group
5803 * having more cpu_power will pickup more load compared to the group having
5804 * less cpu_power.
5805 */
5806static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5807{
5808        struct sched_group *sg = sd->groups;
5809
5810        WARN_ON(!sg);
5811
5812        do {
5813                sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5814                sg = sg->next;
5815        } while (sg != sd->groups);
5816
5817        if (cpu != group_balance_cpu(sg))
5818                return;
5819
5820        update_group_power(sd, cpu);
5821        atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5822}
5823
5824int __weak arch_sd_sibling_asym_packing(void)
5825{
5826       return 0*SD_ASYM_PACKING;
5827}
5828
5829/*
5830 * Initializers for schedule domains
5831 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5832 */
5833
5834#ifdef CONFIG_SCHED_DEBUG
5835# define SD_INIT_NAME(sd, type)         sd->name = #type
5836#else
5837# define SD_INIT_NAME(sd, type)         do { } while (0)
5838#endif
5839
5840#define SD_INIT_FUNC(type)                                              \
5841static noinline struct sched_domain *                                   \
5842sd_init_##type(struct sched_domain_topology_level *tl, int cpu)         \
5843{                                                                       \
5844        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
5845        *sd = SD_##type##_INIT;                                         \
5846        SD_INIT_NAME(sd, type);                                         \
5847        sd->private = &tl->data;                                        \
5848        return sd;                                                      \
5849}
5850
5851SD_INIT_FUNC(CPU)
5852#ifdef CONFIG_SCHED_SMT
5853 SD_INIT_FUNC(SIBLING)
5854#endif
5855#ifdef CONFIG_SCHED_MC
5856 SD_INIT_FUNC(MC)
5857#endif
5858#ifdef CONFIG_SCHED_BOOK
5859 SD_INIT_FUNC(BOOK)
5860#endif
5861
5862static int default_relax_domain_level = -1;
5863int sched_domain_level_max;
5864
5865static int __init setup_relax_domain_level(char *str)
5866{
5867        if (kstrtoint(str, 0, &default_relax_domain_level))
5868                pr_warn("Unable to set relax_domain_level\n");
5869
5870        return 1;
5871}
5872__setup("relax_domain_level=", setup_relax_domain_level);
5873
5874static void set_domain_attribute(struct sched_domain *sd,
5875                                 struct sched_domain_attr *attr)
5876{
5877        int request;
5878
5879        if (!attr || attr->relax_domain_level < 0) {
5880                if (default_relax_domain_level < 0)
5881                        return;
5882                else
5883                        request = default_relax_domain_level;
5884        } else
5885                request = attr->relax_domain_level;
5886        if (request < sd->level) {
5887                /* turn off idle balance on this domain */
5888                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5889        } else {
5890                /* turn on idle balance on this domain */
5891                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5892        }
5893}
5894
5895static void __sdt_free(const struct cpumask *cpu_map);
5896static int __sdt_alloc(const struct cpumask *cpu_map);
5897
5898static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5899                                 const struct cpumask *cpu_map)
5900{
5901        switch (what) {
5902        case sa_rootdomain:
5903                if (!atomic_read(&d->rd->refcount))
5904                        free_rootdomain(&d->rd->rcu); /* fall through */
5905        case sa_sd:
5906                free_percpu(d->sd); /* fall through */
5907        case sa_sd_storage:
5908                __sdt_free(cpu_map); /* fall through */
5909        case sa_none:
5910                break;
5911        }
5912}
5913
5914static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5915                                                   const struct cpumask *cpu_map)
5916{
5917        memset(d, 0, sizeof(*d));
5918
5919        if (__sdt_alloc(cpu_map))
5920                return sa_sd_storage;
5921        d->sd = alloc_percpu(struct sched_domain *);
5922        if (!d->sd)
5923                return sa_sd_storage;
5924        d->rd = alloc_rootdomain();
5925        if (!d->rd)
5926                return sa_sd;
5927        return sa_rootdomain;
5928}
5929
5930/*
5931 * NULL the sd_data elements we've used to build the sched_domain and
5932 * sched_group structure so that the subsequent __free_domain_allocs()
5933 * will not free the data we're using.
5934 */
5935static void claim_allocations(int cpu, struct sched_domain *sd)
5936{
5937        struct sd_data *sdd = sd->private;
5938
5939        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5940        *per_cpu_ptr(sdd->sd, cpu) = NULL;
5941
5942        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5943                *per_cpu_ptr(sdd->sg, cpu) = NULL;
5944
5945        if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5946                *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5947}
5948
5949#ifdef CONFIG_SCHED_SMT
5950static const struct cpumask *cpu_smt_mask(int cpu)
5951{
5952        return topology_thread_cpumask(cpu);
5953}
5954#endif
5955
5956/*
5957 * Topology list, bottom-up.
5958 */
5959static struct sched_domain_topology_level default_topology[] = {
5960#ifdef CONFIG_SCHED_SMT
5961        { sd_init_SIBLING, cpu_smt_mask, },
5962#endif
5963#ifdef CONFIG_SCHED_MC
5964        { sd_init_MC, cpu_coregroup_mask, },
5965#endif
5966#ifdef CONFIG_SCHED_BOOK
5967        { sd_init_BOOK, cpu_book_mask, },
5968#endif
5969        { sd_init_CPU, cpu_cpu_mask, },
5970        { NULL, },
5971};
5972
5973static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5974
5975#define for_each_sd_topology(tl)                        \
5976        for (tl = sched_domain_topology; tl->init; tl++)
5977
5978#ifdef CONFIG_NUMA
5979
5980static int sched_domains_numa_levels;
5981static int *sched_domains_numa_distance;
5982static struct cpumask ***sched_domains_numa_masks;
5983static int sched_domains_curr_level;
5984
5985static inline int sd_local_flags(int level)
5986{
5987        if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5988                return 0;
5989
5990        return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5991}
5992
5993static struct sched_domain *
5994sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5995{
5996        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5997        int level = tl->numa_level;
5998        int sd_weight = cpumask_weight(
5999                        sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6000
6001        *sd = (struct sched_domain){
6002                .min_interval           = sd_weight,
6003                .max_interval           = 2*sd_weight,
6004                .busy_factor            = 32,
6005                .imbalance_pct          = 125,
6006                .cache_nice_tries       = 2,
6007                .busy_idx               = 3,
6008                .idle_idx               = 2,
6009                .newidle_idx            = 0,
6010                .wake_idx               = 0,
6011                .forkexec_idx           = 0,
6012
6013                .flags                  = 1*SD_LOAD_BALANCE
6014                                        | 1*SD_BALANCE_NEWIDLE
6015                                        | 0*SD_BALANCE_EXEC
6016                                        | 0*SD_BALANCE_FORK
6017                                        | 0*SD_BALANCE_WAKE
6018                                        | 0*SD_WAKE_AFFINE
6019                                        | 0*SD_SHARE_CPUPOWER
6020                                        | 0*SD_SHARE_PKG_RESOURCES
6021                                        | 1*SD_SERIALIZE
6022                                        | 0*SD_PREFER_SIBLING
6023                                        | 1*SD_NUMA
6024                                        | sd_local_flags(level)
6025                                        ,
6026                .last_balance           = jiffies,
6027                .balance_interval       = sd_weight,
6028        };
6029        SD_INIT_NAME(sd, NUMA);
6030        sd->private = &tl->data;
6031
6032        /*
6033         * Ugly hack to pass state to sd_numa_mask()...
6034         */
6035        sched_domains_curr_level = tl->numa_level;
6036
6037        return sd;
6038}
6039
6040static const struct cpumask *sd_numa_mask(int cpu)
6041{
6042        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6043}
6044
6045static void sched_numa_warn(const char *str)
6046{
6047        static int done = false;
6048        int i,j;
6049
6050        if (done)
6051                return;
6052
6053        done = true;
6054
6055        printk(KERN_WARNING "ERROR: %s\n\n", str);
6056
6057        for (i = 0; i < nr_node_ids; i++) {
6058                printk(KERN_WARNING "  ");
6059                for (j = 0; j < nr_node_ids; j++)
6060                        printk(KERN_CONT "%02d ", node_distance(i,j));
6061                printk(KERN_CONT "\n");
6062        }
6063        printk(KERN_WARNING "\n");
6064}
6065
6066static bool find_numa_distance(int distance)
6067{
6068        int i;
6069
6070        if (distance == node_distance(0, 0))
6071                return true;
6072
6073        for (i = 0; i < sched_domains_numa_levels; i++) {
6074                if (sched_domains_numa_distance[i] == distance)
6075                        return true;
6076        }
6077
6078        return false;
6079}
6080
6081static void sched_init_numa(void)
6082{
6083        int next_distance, curr_distance = node_distance(0, 0);
6084        struct sched_domain_topology_level *tl;
6085        int level = 0;
6086        int i, j, k;
6087
6088        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6089        if (!sched_domains_numa_distance)
6090                return;
6091
6092        /*
6093         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6094         * unique distances in the node_distance() table.
6095         *
6096         * Assumes node_distance(0,j) includes all distances in
6097         * node_distance(i,j) in order to avoid cubic time.
6098         */
6099        next_distance = curr_distance;
6100        for (i = 0; i < nr_node_ids; i++) {
6101                for (j = 0; j < nr_node_ids; j++) {
6102                        for (k = 0; k < nr_node_ids; k++) {
6103                                int distance = node_distance(i, k);
6104
6105                                if (distance > curr_distance &&
6106                                    (distance < next_distance ||
6107                                     next_distance == curr_distance))
6108                                        next_distance = distance;
6109
6110                                /*
6111                                 * While not a strong assumption it would be nice to know
6112                                 * about cases where if node A is connected to B, B is not
6113                                 * equally connected to A.
6114                                 */
6115                                if (sched_debug() && node_distance(k, i) != distance)
6116                                        sched_numa_warn("Node-distance not symmetric");
6117
6118                                if (sched_debug() && i && !find_numa_distance(distance))
6119                                        sched_numa_warn("Node-0 not representative");
6120                        }
6121                        if (next_distance != curr_distance) {
6122                                sched_domains_numa_distance[level++] = next_distance;
6123                                sched_domains_numa_levels = level;
6124                                curr_distance = next_distance;
6125                        } else break;
6126                }
6127
6128                /*
6129                 * In case of sched_debug() we verify the above assumption.
6130                 */
6131                if (!sched_debug())
6132                        break;
6133        }
6134        /*
6135         * 'level' contains the number of unique distances, excluding the
6136         * identity distance node_distance(i,i).
6137         *
6138         * The sched_domains_numa_distance[] array includes the actual distance
6139         * numbers.
6140         */
6141
6142        /*
6143         * Here, we should temporarily reset sched_domains_numa_levels to 0.
6144         * If it fails to allocate memory for array sched_domains_numa_masks[][],
6145         * the array will contain less then 'level' members. This could be
6146         * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6147         * in other functions.
6148         *
6149         * We reset it to 'level' at the end of this function.
6150         */
6151        sched_domains_numa_levels = 0;
6152
6153        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6154        if (!sched_domains_numa_masks)
6155                return;
6156
6157        /*
6158         * Now for each level, construct a mask per node which contains all
6159         * cpus of nodes that are that many hops away from us.
6160         */
6161        for (i = 0; i < level; i++) {
6162                sched_domains_numa_masks[i] =
6163                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6164                if (!sched_domains_numa_masks[i])
6165                        return;
6166
6167                for (j = 0; j < nr_node_ids; j++) {
6168                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6169                        if (!mask)
6170                                return;
6171
6172                        sched_domains_numa_masks[i][j] = mask;
6173
6174                        for (k = 0; k < nr_node_ids; k++) {
6175                                if (node_distance(j, k) > sched_domains_numa_distance[i])
6176                                        continue;
6177
6178                                cpumask_or(mask, mask, cpumask_of_node(k));
6179                        }
6180                }
6181        }
6182
6183        tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6184                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6185        if (!tl)
6186                return;
6187
6188        /*
6189         * Copy the default topology bits..
6190         */
6191        for (i = 0; default_topology[i].init; i++)
6192                tl[i] = default_topology[i];
6193
6194        /*
6195         * .. and append 'j' levels of NUMA goodness.
6196         */
6197        for (j = 0; j < level; i++, j++) {
6198                tl[i] = (struct sched_domain_topology_level){
6199                        .init = sd_numa_init,
6200                        .mask = sd_numa_mask,
6201                        .flags = SDTL_OVERLAP,
6202                        .numa_level = j,
6203                };
6204        }
6205
6206        sched_domain_topology = tl;
6207
6208        sched_domains_numa_levels = level;
6209}
6210
6211static void sched_domains_numa_masks_set(int cpu)
6212{
6213        int i, j;
6214        int node = cpu_to_node(cpu);
6215
6216        for (i = 0; i < sched_domains_numa_levels; i++) {
6217                for (j = 0; j < nr_node_ids; j++) {
6218                        if (node_distance(j, node) <= sched_domains_numa_distance[i])
6219                                cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6220                }
6221        }
6222}
6223
6224static void sched_domains_numa_masks_clear(int cpu)
6225{
6226        int i, j;
6227        for (i = 0; i < sched_domains_numa_levels; i++) {
6228                for (j = 0; j < nr_node_ids; j++)
6229                        cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6230        }
6231}
6232
6233/*
6234 * Update sched_domains_numa_masks[level][node] array when new cpus
6235 * are onlined.
6236 */
6237static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6238                                           unsigned long action,
6239                                           void *hcpu)
6240{
6241        int cpu = (long)hcpu;
6242
6243        switch (action & ~CPU_TASKS_FROZEN) {
6244        case CPU_ONLINE:
6245                sched_domains_numa_masks_set(cpu);
6246                break;
6247
6248        case CPU_DEAD:
6249                sched_domains_numa_masks_clear(cpu);
6250                break;
6251
6252        default:
6253                return NOTIFY_DONE;
6254        }
6255
6256        return NOTIFY_OK;
6257}
6258#else
6259static inline void sched_init_numa(void)
6260{
6261}
6262
6263static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6264                                           unsigned long action,
6265                                           void *hcpu)
6266{
6267        return 0;
6268}
6269#endif /* CONFIG_NUMA */
6270
6271static int __sdt_alloc(const struct cpumask *cpu_map)
6272{
6273        struct sched_domain_topology_level *tl;
6274        int j;
6275
6276        for_each_sd_topology(tl) {
6277                struct sd_data *sdd = &tl->data;
6278
6279                sdd->sd = alloc_percpu(struct sched_domain *);
6280                if (!sdd->sd)
6281                        return -ENOMEM;
6282
6283                sdd->sg = alloc_percpu(struct sched_group *);
6284                if (!sdd->sg)
6285                        return -ENOMEM;
6286
6287                sdd->sgp = alloc_percpu(struct sched_group_power *);
6288                if (!sdd->sgp)
6289                        return -ENOMEM;
6290
6291                for_each_cpu(j, cpu_map) {
6292                        struct sched_domain *sd;
6293                        struct sched_group *sg;
6294                        struct sched_group_power *sgp;
6295
6296                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6297                                        GFP_KERNEL, cpu_to_node(j));
6298                        if (!sd)
6299                                return -ENOMEM;
6300
6301                        *per_cpu_ptr(sdd->sd, j) = sd;
6302
6303                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6304                                        GFP_KERNEL, cpu_to_node(j));
6305                        if (!sg)
6306                                return -ENOMEM;
6307
6308                        sg->next = sg;
6309
6310                        *per_cpu_ptr(sdd->sg, j) = sg;
6311
6312                        sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6313                                        GFP_KERNEL, cpu_to_node(j));
6314                        if (!sgp)
6315                                return -ENOMEM;
6316
6317                        *per_cpu_ptr(sdd->sgp, j) = sgp;
6318                }
6319        }
6320
6321        return 0;
6322}
6323
6324static void __sdt_free(const struct cpumask *cpu_map)
6325{
6326        struct sched_domain_topology_level *tl;
6327        int j;
6328
6329        for_each_sd_topology(tl) {
6330                struct sd_data *sdd = &tl->data;
6331
6332                for_each_cpu(j, cpu_map) {
6333                        struct sched_domain *sd;
6334
6335                        if (sdd->sd) {
6336                                sd = *per_cpu_ptr(sdd->sd, j);
6337                                if (sd && (sd->flags & SD_OVERLAP))
6338                                        free_sched_groups(sd->groups, 0);
6339                                kfree(*per_cpu_ptr(sdd->sd, j));
6340                        }
6341
6342                        if (sdd->sg)
6343                                kfree(*per_cpu_ptr(sdd->sg, j));
6344                        if (sdd->sgp)
6345                                kfree(*per_cpu_ptr(sdd->sgp, j));
6346                }
6347                free_percpu(sdd->sd);
6348                sdd->sd = NULL;
6349                free_percpu(sdd->sg);
6350                sdd->sg = NULL;
6351                free_percpu(sdd->sgp);
6352                sdd->sgp = NULL;
6353        }
6354}
6355
6356struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6357                const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6358                struct sched_domain *child, int cpu)
6359{
6360        struct sched_domain *sd = tl->init(tl, cpu);
6361        if (!sd)
6362                return child;
6363
6364        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6365        if (child) {
6366                sd->level = child->level + 1;
6367                sched_domain_level_max = max(sched_domain_level_max, sd->level);
6368                child->parent = sd;
6369                sd->child = child;
6370        }
6371        set_domain_attribute(sd, attr);
6372
6373        return sd;
6374}
6375
6376/*
6377 * Build sched domains for a given set of cpus and attach the sched domains
6378 * to the individual cpus
6379 */
6380static int build_sched_domains(const struct cpumask *cpu_map,
6381                               struct sched_domain_attr *attr)
6382{
6383        enum s_alloc alloc_state;
6384        struct sched_domain *sd;
6385        struct s_data d;
6386        int i, ret = -ENOMEM;
6387
6388        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6389        if (alloc_state != sa_rootdomain)
6390                goto error;
6391
6392        /* Set up domains for cpus specified by the cpu_map. */
6393        for_each_cpu(i, cpu_map) {
6394                struct sched_domain_topology_level *tl;
6395
6396                sd = NULL;
6397                for_each_sd_topology(tl) {
6398                        sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6399                        if (tl == sched_domain_topology)
6400                                *per_cpu_ptr(d.sd, i) = sd;
6401                        if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6402                                sd->flags |= SD_OVERLAP;
6403                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6404                                break;
6405                }
6406        }
6407
6408        /* Build the groups for the domains */
6409        for_each_cpu(i, cpu_map) {
6410                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6411                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
6412                        if (sd->flags & SD_OVERLAP) {
6413                                if (build_overlap_sched_groups(sd, i))
6414                                        goto error;
6415                        } else {
6416                                if (build_sched_groups(sd, i))
6417                                        goto error;
6418                        }
6419                }
6420        }
6421
6422        /* Calculate CPU power for physical packages and nodes */
6423        for (i = nr_cpumask_bits-1; i >= 0; i--) {
6424                if (!cpumask_test_cpu(i, cpu_map))
6425                        continue;
6426
6427                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6428                        claim_allocations(i, sd);
6429                        init_sched_groups_power(i, sd);
6430                }
6431        }
6432
6433        /* Attach the domains */
6434        rcu_read_lock();
6435        for_each_cpu(i, cpu_map) {
6436                sd = *per_cpu_ptr(d.sd, i);
6437                cpu_attach_domain(sd, d.rd, i);
6438        }
6439        rcu_read_unlock();
6440
6441        ret = 0;
6442error:
6443        __free_domain_allocs(&d, alloc_state, cpu_map);
6444        return ret;
6445}
6446
6447static cpumask_var_t *doms_cur; /* current sched domains */
6448static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6449static struct sched_domain_attr *dattr_cur;
6450                                /* attribues of custom domains in 'doms_cur' */
6451
6452/*
6453 * Special case: If a kmalloc of a doms_cur partition (array of
6454 * cpumask) fails, then fallback to a single sched domain,
6455 * as determined by the single cpumask fallback_doms.
6456 */
6457static cpumask_var_t fallback_doms;
6458
6459/*
6460 * arch_update_cpu_topology lets virtualized architectures update the
6461 * cpu core maps. It is supposed to return 1 if the topology changed
6462 * or 0 if it stayed the same.
6463 */
6464int __attribute__((weak)) arch_update_cpu_topology(void)
6465{
6466        return 0;
6467}
6468
6469cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6470{
6471        int i;
6472        cpumask_var_t *doms;
6473
6474        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6475        if (!doms)
6476                return NULL;
6477        for (i = 0; i < ndoms; i++) {
6478                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6479                        free_sched_domains(doms, i);
6480                        return NULL;
6481                }
6482        }
6483        return doms;
6484}
6485
6486void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6487{
6488        unsigned int i;
6489        for (i = 0; i < ndoms; i++)
6490                free_cpumask_var(doms[i]);
6491        kfree(doms);
6492}
6493
6494/*
6495 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6496 * For now this just excludes isolated cpus, but could be used to
6497 * exclude other special cases in the future.
6498 */
6499static int init_sched_domains(const struct cpumask *cpu_map)
6500{
6501        int err;
6502
6503        arch_update_cpu_topology();
6504        ndoms_cur = 1;
6505        doms_cur = alloc_sched_domains(ndoms_cur);
6506        if (!doms_cur)
6507                doms_cur = &fallback_doms;
6508        cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6509        err = build_sched_domains(doms_cur[0], NULL);
6510        register_sched_domain_sysctl();
6511
6512        return err;
6513}
6514
6515/*
6516 * Detach sched domains from a group of cpus specified in cpu_map
6517 * These cpus will now be attached to the NULL domain
6518 */
6519static void detach_destroy_domains(const struct cpumask *cpu_map)
6520{
6521        int i;
6522
6523        rcu_read_lock();
6524        for_each_cpu(i, cpu_map)
6525                cpu_attach_domain(NULL, &def_root_domain, i);
6526        rcu_read_unlock();
6527}
6528
6529/* handle null as "default" */
6530static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6531                        struct sched_domain_attr *new, int idx_new)
6532{
6533        struct sched_domain_attr tmp;
6534
6535        /* fast path */
6536        if (!new && !cur)
6537                return 1;
6538
6539        tmp = SD_ATTR_INIT;
6540        return !memcmp(cur ? (cur + idx_cur) : &tmp,
6541                        new ? (new + idx_new) : &tmp,
6542                        sizeof(struct sched_domain_attr));
6543}
6544
6545/*
6546 * Partition sched domains as specified by the 'ndoms_new'
6547 * cpumasks in the array doms_new[] of cpumasks. This compares
6548 * doms_new[] to the current sched domain partitioning, doms_cur[].
6549 * It destroys each deleted domain and builds each new domain.
6550 *
6551 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6552 * The masks don't intersect (don't overlap.) We should setup one
6553 * sched domain for each mask. CPUs not in any of the cpumasks will
6554 * not be load balanced. If the same cpumask appears both in the
6555 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6556 * it as it is.
6557 *
6558 * The passed in 'doms_new' should be allocated using
6559 * alloc_sched_domains.  This routine takes ownership of it and will
6560 * free_sched_domains it when done with it. If the caller failed the
6561 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6562 * and partition_sched_domains() will fallback to the single partition
6563 * 'fallback_doms', it also forces the domains to be rebuilt.
6564 *
6565 * If doms_new == NULL it will be replaced with cpu_online_mask.
6566 * ndoms_new == 0 is a special case for destroying existing domains,
6567 * and it will not create the default domain.
6568 *
6569 * Call with hotplug lock held
6570 */
6571void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6572                             struct sched_domain_attr *dattr_new)
6573{
6574        int i, j, n;
6575        int new_topology;
6576
6577        mutex_lock(&sched_domains_mutex);
6578
6579        /* always unregister in case we don't destroy any domains */
6580        unregister_sched_domain_sysctl();
6581
6582        /* Let architecture update cpu core mappings. */
6583        new_topology = arch_update_cpu_topology();
6584
6585        n = doms_new ? ndoms_new : 0;
6586
6587        /* Destroy deleted domains */
6588        for (i = 0; i < ndoms_cur; i++) {
6589                for (j = 0; j < n && !new_topology; j++) {
6590                        if (cpumask_equal(doms_cur[i], doms_new[j])
6591                            && dattrs_equal(dattr_cur, i, dattr_new, j))
6592                                goto match1;
6593                }
6594                /* no match - a current sched domain not in new doms_new[] */
6595                detach_destroy_domains(doms_cur[i]);
6596match1:
6597                ;
6598        }
6599
6600        n = ndoms_cur;
6601        if (doms_new == NULL) {
6602                n = 0;
6603                doms_new = &fallback_doms;
6604                cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6605                WARN_ON_ONCE(dattr_new);
6606        }
6607
6608        /* Build new domains */
6609        for (i = 0; i < ndoms_new; i++) {
6610                for (j = 0; j < n && !new_topology; j++) {
6611                        if (cpumask_equal(doms_new[i], doms_cur[j])
6612                            && dattrs_equal(dattr_new, i, dattr_cur, j))
6613                                goto match2;
6614                }
6615                /* no match - add a new doms_new */
6616                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6617match2:
6618                ;
6619        }
6620
6621        /* Remember the new sched domains */
6622        if (doms_cur != &fallback_doms)
6623                free_sched_domains(doms_cur, ndoms_cur);
6624        kfree(dattr_cur);       /* kfree(NULL) is safe */
6625        doms_cur = doms_new;
6626        dattr_cur = dattr_new;
6627        ndoms_cur = ndoms_new;
6628
6629        register_sched_domain_sysctl();
6630
6631        mutex_unlock(&sched_domains_mutex);
6632}
6633
6634static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
6635
6636/*
6637 * Update cpusets according to cpu_active mask.  If cpusets are
6638 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6639 * around partition_sched_domains().
6640 *
6641 * If we come here as part of a suspend/resume, don't touch cpusets because we
6642 * want to restore it back to its original state upon resume anyway.
6643 */
6644static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6645                             void *hcpu)
6646{
6647        switch (action) {
6648        case CPU_ONLINE_FROZEN:
6649        case CPU_DOWN_FAILED_FROZEN:
6650
6651                /*
6652                 * num_cpus_frozen tracks how many CPUs are involved in suspend
6653                 * resume sequence. As long as this is not the last online
6654                 * operation in the resume sequence, just build a single sched
6655                 * domain, ignoring cpusets.
6656                 */
6657                num_cpus_frozen--;
6658                if (likely(num_cpus_frozen)) {
6659                        partition_sched_domains(1, NULL, NULL);
6660                        break;
6661                }
6662
6663                /*
6664                 * This is the last CPU online operation. So fall through and
6665                 * restore the original sched domains by considering the
6666                 * cpuset configurations.
6667                 */
6668
6669        case CPU_ONLINE:
6670        case CPU_DOWN_FAILED:
6671                cpuset_update_active_cpus(true);
6672                break;
6673        default:
6674                return NOTIFY_DONE;
6675        }
6676        return NOTIFY_OK;
6677}
6678
6679static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6680                               void *hcpu)
6681{
6682        switch (action) {
6683        case CPU_DOWN_PREPARE:
6684                cpuset_update_active_cpus(false);
6685                break;
6686        case CPU_DOWN_PREPARE_FROZEN:
6687                num_cpus_frozen++;
6688                partition_sched_domains(1, NULL, NULL);
6689                break;
6690        default:
6691                return NOTIFY_DONE;
6692        }
6693        return NOTIFY_OK;
6694}
6695
6696void __init sched_init_smp(void)
6697{
6698        cpumask_var_t non_isolated_cpus;
6699
6700        alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6701        alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6702
6703        sched_init_numa();
6704
6705        /*
6706         * There's no userspace yet to cause hotplug operations; hence all the
6707         * cpu masks are stable and all blatant races in the below code cannot
6708         * happen.
6709         */
6710        mutex_lock(&sched_domains_mutex);
6711        init_sched_domains(cpu_active_mask);
6712        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6713        if (cpumask_empty(non_isolated_cpus))
6714                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6715        mutex_unlock(&sched_domains_mutex);
6716
6717        hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6718        hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6719        hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6720
6721        init_hrtick();
6722
6723        /* Move init over to a non-isolated CPU */
6724        if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6725                BUG();
6726        sched_init_granularity();
6727        free_cpumask_var(non_isolated_cpus);
6728
6729        init_sched_rt_class();
6730        init_sched_dl_class();
6731}
6732#else
6733void __init sched_init_smp(void)
6734{
6735        sched_init_granularity();
6736}
6737#endif /* CONFIG_SMP */
6738
6739const_debug unsigned int sysctl_timer_migration = 1;
6740
6741int in_sched_functions(unsigned long addr)
6742{
6743        return in_lock_functions(addr) ||
6744                (addr >= (unsigned long)__sched_text_start
6745                && addr < (unsigned long)__sched_text_end);
6746}
6747
6748#ifdef CONFIG_CGROUP_SCHED
6749/*
6750 * Default task group.
6751 * Every task in system belongs to this group at bootup.
6752 */
6753struct task_group root_task_group;
6754LIST_HEAD(task_groups);
6755#endif
6756
6757DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6758
6759void __init sched_init(void)
6760{
6761        int i, j;
6762        unsigned long alloc_size = 0, ptr;
6763
6764#ifdef CONFIG_FAIR_GROUP_SCHED
6765        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6766#endif
6767#ifdef CONFIG_RT_GROUP_SCHED
6768        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6769#endif
6770#ifdef CONFIG_CPUMASK_OFFSTACK
6771        alloc_size += num_possible_cpus() * cpumask_size();
6772#endif
6773        if (alloc_size) {
6774                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6775
6776#ifdef CONFIG_FAIR_GROUP_SCHED
6777                root_task_group.se = (struct sched_entity **)ptr;
6778                ptr += nr_cpu_ids * sizeof(void **);
6779
6780                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6781                ptr += nr_cpu_ids * sizeof(void **);
6782
6783#endif /* CONFIG_FAIR_GROUP_SCHED */
6784#ifdef CONFIG_RT_GROUP_SCHED
6785                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6786                ptr += nr_cpu_ids * sizeof(void **);
6787
6788                root_task_group.rt_rq = (struct rt_rq **)ptr;
6789                ptr += nr_cpu_ids * sizeof(void **);
6790
6791#endif /* CONFIG_RT_GROUP_SCHED */
6792#ifdef CONFIG_CPUMASK_OFFSTACK
6793                for_each_possible_cpu(i) {
6794                        per_cpu(load_balance_mask, i) = (void *)ptr;
6795                        ptr += cpumask_size();
6796                }
6797#endif /* CONFIG_CPUMASK_OFFSTACK */
6798        }
6799
6800        init_rt_bandwidth(&def_rt_bandwidth,
6801                        global_rt_period(), global_rt_runtime());
6802        init_dl_bandwidth(&def_dl_bandwidth,
6803                        global_rt_period(), global_rt_runtime());
6804
6805#ifdef CONFIG_SMP
6806        init_defrootdomain();
6807#endif
6808
6809#ifdef CONFIG_RT_GROUP_SCHED
6810        init_rt_bandwidth(&root_task_group.rt_bandwidth,
6811                        global_rt_period(), global_rt_runtime());
6812#endif /* CONFIG_RT_GROUP_SCHED */
6813
6814#ifdef CONFIG_CGROUP_SCHED
6815        list_add(&root_task_group.list, &task_groups);
6816        INIT_LIST_HEAD(&root_task_group.children);
6817        INIT_LIST_HEAD(&root_task_group.siblings);
6818        autogroup_init(&init_task);
6819
6820#endif /* CONFIG_CGROUP_SCHED */
6821
6822        for_each_possible_cpu(i) {
6823                struct rq *rq;
6824
6825                rq = cpu_rq(i);
6826                raw_spin_lock_init(&rq->lock);
6827                rq->nr_running = 0;
6828                rq->calc_load_active = 0;
6829                rq->calc_load_update = jiffies + LOAD_FREQ;
6830                init_cfs_rq(&rq->cfs);
6831                init_rt_rq(&rq->rt, rq);
6832                init_dl_rq(&rq->dl, rq);
6833#ifdef CONFIG_FAIR_GROUP_SCHED
6834                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6835                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6836                /*
6837                 * How much cpu bandwidth does root_task_group get?
6838                 *
6839                 * In case of task-groups formed thr' the cgroup filesystem, it
6840                 * gets 100% of the cpu resources in the system. This overall
6841                 * system cpu resource is divided among the tasks of
6842                 * root_task_group and its child task-groups in a fair manner,
6843                 * based on each entity's (task or task-group's) weight
6844                 * (se->load.weight).
6845                 *
6846                 * In other words, if root_task_group has 10 tasks of weight
6847                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6848                 * then A0's share of the cpu resource is:
6849                 *
6850                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6851                 *
6852                 * We achieve this by letting root_task_group's tasks sit
6853                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6854                 */
6855                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6856                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6857#endif /* CONFIG_FAIR_GROUP_SCHED */
6858
6859                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6860#ifdef CONFIG_RT_GROUP_SCHED
6861                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6862                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6863#endif
6864
6865                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6866                        rq->cpu_load[j] = 0;
6867
6868                rq->last_load_update_tick = jiffies;
6869
6870#ifdef CONFIG_SMP
6871                rq->sd = NULL;
6872                rq->rd = NULL;
6873                rq->cpu_power = SCHED_POWER_SCALE;
6874                rq->post_schedule = 0;
6875                rq->active_balance = 0;
6876                rq->next_balance = jiffies;
6877                rq->push_cpu = 0;
6878                rq->cpu = i;
6879                rq->online = 0;
6880                rq->idle_stamp = 0;
6881                rq->avg_idle = 2*sysctl_sched_migration_cost;
6882                rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6883
6884                INIT_LIST_HEAD(&rq->cfs_tasks);
6885
6886                rq_attach_root(rq, &def_root_domain);
6887#ifdef CONFIG_NO_HZ_COMMON
6888                rq->nohz_flags = 0;
6889#endif
6890#ifdef CONFIG_NO_HZ_FULL
6891                rq->last_sched_tick = 0;
6892#endif
6893#endif
6894                init_rq_hrtick(rq);
6895                atomic_set(&rq->nr_iowait, 0);
6896        }
6897
6898        set_load_weight(&init_task);
6899
6900#ifdef CONFIG_PREEMPT_NOTIFIERS
6901        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6902#endif
6903
6904        /*
6905         * The boot idle thread does lazy MMU switching as well:
6906         */
6907        atomic_inc(&init_mm.mm_count);
6908        enter_lazy_tlb(&init_mm, current);
6909
6910        /*
6911         * Make us the idle thread. Technically, schedule() should not be
6912         * called from this thread, however somewhere below it might be,
6913         * but because we are the idle thread, we just pick up running again
6914         * when this runqueue becomes "idle".
6915         */
6916        init_idle(current, smp_processor_id());
6917
6918        calc_load_update = jiffies + LOAD_FREQ;
6919
6920        /*
6921         * During early bootup we pretend to be a normal task:
6922         */
6923        current->sched_class = &fair_sched_class;
6924
6925#ifdef CONFIG_SMP
6926        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6927        /* May be allocated at isolcpus cmdline parse time */
6928        if (cpu_isolated_map == NULL)
6929                zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6930        idle_thread_set_boot_cpu();
6931#endif
6932        init_sched_fair_class();
6933
6934        scheduler_running = 1;
6935}
6936
6937#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6938static inline int preempt_count_equals(int preempt_offset)
6939{
6940        int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6941
6942        return (nested == preempt_offset);
6943}
6944
6945void __might_sleep(const char *file, int line, int preempt_offset)
6946{
6947        static unsigned long prev_jiffy;        /* ratelimiting */
6948
6949        rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6950        if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6951            system_state != SYSTEM_RUNNING || oops_in_progress)
6952                return;
6953        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6954                return;
6955        prev_jiffy = jiffies;
6956
6957        printk(KERN_ERR
6958                "BUG: sleeping function called from invalid context at %s:%d\n",
6959                        file, line);
6960        printk(KERN_ERR
6961                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6962                        in_atomic(), irqs_disabled(),
6963                        current->pid, current->comm);
6964
6965        debug_show_held_locks(current);
6966        if (irqs_disabled())
6967                print_irqtrace_events(current);
6968        dump_stack();
6969}
6970EXPORT_SYMBOL(__might_sleep);
6971#endif
6972
6973#ifdef CONFIG_MAGIC_SYSRQ
6974static void normalize_task(struct rq *rq, struct task_struct *p)
6975{
6976        const struct sched_class *prev_class = p->sched_class;
6977        struct sched_attr attr = {
6978                .sched_policy = SCHED_NORMAL,
6979        };
6980        int old_prio = p->prio;
6981        int on_rq;
6982
6983        on_rq = p->on_rq;
6984        if (on_rq)
6985                dequeue_task(rq, p, 0);
6986        __setscheduler(rq, p, &attr);
6987        if (on_rq) {
6988                enqueue_task(rq, p, 0);
6989                resched_task(rq->curr);
6990        }
6991
6992        check_class_changed(rq, p, prev_class, old_prio);
6993}
6994
6995void normalize_rt_tasks(void)
6996{
6997        struct task_struct *g, *p;
6998        unsigned long flags;
6999        struct rq *rq;
7000
7001        read_lock_irqsave(&tasklist_lock, flags);
7002        do_each_thread(g, p) {
7003                /*
7004                 * Only normalize user tasks:
7005                 */
7006                if (!p->mm)
7007                        continue;
7008
7009                p->se.exec_start                = 0;
7010#ifdef CONFIG_SCHEDSTATS
7011                p->se.statistics.wait_start     = 0;
7012                p->se.statistics.sleep_start    = 0;
7013                p->se.statistics.block_start    = 0;
7014#endif
7015
7016                if (!dl_task(p) && !rt_task(p)) {
7017                        /*
7018                         * Renice negative nice level userspace
7019                         * tasks back to 0:
7020                         */
7021                        if (TASK_NICE(p) < 0 && p->mm)
7022                                set_user_nice(p, 0);
7023                        continue;
7024                }
7025
7026                raw_spin_lock(&p->pi_lock);
7027                rq = __task_rq_lock(p);
7028
7029                normalize_task(rq, p);
7030
7031                __task_rq_unlock(rq);
7032                raw_spin_unlock(&p->pi_lock);
7033        } while_each_thread(g, p);
7034
7035        read_unlock_irqrestore(&tasklist_lock, flags);
7036}
7037
7038#endif /* CONFIG_MAGIC_SYSRQ */
7039
7040#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7041/*
7042 * These functions are only useful for the IA64 MCA handling, or kdb.
7043 *
7044 * They can only be called when the whole system has been
7045 * stopped - every CPU needs to be quiescent, and no scheduling
7046 * activity can take place. Using them for anything else would
7047 * be a serious bug, and as a result, they aren't even visible
7048 * under any other configuration.
7049 */
7050
7051/**
7052 * curr_task - return the current task for a given cpu.
7053 * @cpu: the processor in question.
7054 *
7055 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7056 *
7057 * Return: The current task for @cpu.
7058 */
7059struct task_struct *curr_task(int cpu)
7060{
7061        return cpu_curr(cpu);
7062}
7063
7064#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7065
7066#ifdef CONFIG_IA64
7067/**
7068 * set_curr_task - set the current task for a given cpu.
7069 * @cpu: the processor in question.
7070 * @p: the task pointer to set.
7071 *
7072 * Description: This function must only be used when non-maskable interrupts
7073 * are serviced on a separate stack. It allows the architecture to switch the
7074 * notion of the current task on a cpu in a non-blocking manner. This function
7075 * must be called with all CPU's synchronized, and interrupts disabled, the
7076 * and caller must save the original value of the current task (see
7077 * curr_task() above) and restore that value before reenabling interrupts and
7078 * re-starting the system.
7079 *
7080 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7081 */
7082void set_curr_task(int cpu, struct task_struct *p)
7083{
7084        cpu_curr(cpu) = p;
7085}
7086
7087#endif
7088
7089#ifdef CONFIG_CGROUP_SCHED
7090/* task_group_lock serializes the addition/removal of task groups */
7091static DEFINE_SPINLOCK(task_group_lock);
7092
7093static void free_sched_group(struct task_group *tg)
7094{
7095        free_fair_sched_group(tg);
7096        free_rt_sched_group(tg);
7097        autogroup_free(tg);
7098        kfree(tg);
7099}
7100
7101/* allocate runqueue etc for a new task group */
7102struct task_group *sched_create_group(struct task_group *parent)
7103{
7104        struct task_group *tg;
7105
7106        tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7107        if (!tg)
7108                return ERR_PTR(-ENOMEM);
7109
7110        if (!alloc_fair_sched_group(tg, parent))
7111                goto err;
7112
7113        if (!alloc_rt_sched_group(tg, parent))
7114                goto err;
7115
7116        return tg;
7117
7118err:
7119        free_sched_group(tg);
7120        return ERR_PTR(-ENOMEM);
7121}
7122
7123void sched_online_group(struct task_group *tg, struct task_group *parent)
7124{
7125        unsigned long flags;
7126
7127        spin_lock_irqsave(&task_group_lock, flags);
7128        list_add_rcu(&tg->list, &task_groups);
7129
7130        WARN_ON(!parent); /* root should already exist */
7131
7132        tg->parent = parent;
7133        INIT_LIST_HEAD(&tg->children);
7134        list_add_rcu(&tg->siblings, &parent->children);
7135        spin_unlock_irqrestore(&task_group_lock, flags);
7136}
7137
7138/* rcu callback to free various structures associated with a task group */
7139static void free_sched_group_rcu(struct rcu_head *rhp)
7140{
7141        /* now it should be safe to free those cfs_rqs */
7142        free_sched_group(container_of(rhp, struct task_group, rcu));
7143}
7144
7145/* Destroy runqueue etc associated with a task group */
7146void sched_destroy_group(struct task_group *tg)
7147{
7148        /* wait for possible concurrent references to cfs_rqs complete */
7149        call_rcu(&tg->rcu, free_sched_group_rcu);
7150}
7151
7152void sched_offline_group(struct task_group *tg)
7153{
7154        unsigned long flags;
7155        int i;
7156
7157        /* end participation in shares distribution */
7158        for_each_possible_cpu(i)
7159                unregister_fair_sched_group(tg, i);
7160
7161        spin_lock_irqsave(&task_group_lock, flags);
7162        list_del_rcu(&tg->list);
7163        list_del_rcu(&tg->siblings);
7164        spin_unlock_irqrestore(&task_group_lock, flags);
7165}
7166
7167/* change task's runqueue when it moves between groups.
7168 *      The caller of this function should have put the task in its new group
7169 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7170 *      reflect its new group.
7171 */
7172void sched_move_task(struct task_struct *tsk)
7173{
7174        struct task_group *tg;
7175        int on_rq, running;
7176        unsigned long flags;
7177        struct rq *rq;
7178
7179        rq = task_rq_lock(tsk, &flags);
7180
7181        running = task_current(rq, tsk);
7182        on_rq = tsk->on_rq;
7183
7184        if (on_rq)
7185                dequeue_task(rq, tsk, 0);
7186        if (unlikely(running))
7187                tsk->sched_class->put_prev_task(rq, tsk);
7188
7189        tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7190                                lockdep_is_held(&tsk->sighand->siglock)),
7191                          struct task_group, css);
7192        tg = autogroup_task_group(tsk, tg);
7193        tsk->sched_task_group = tg;
7194
7195#ifdef CONFIG_FAIR_GROUP_SCHED
7196        if (tsk->sched_class->task_move_group)
7197                tsk->sched_class->task_move_group(tsk, on_rq);
7198        else
7199#endif
7200                set_task_rq(tsk, task_cpu(tsk));
7201
7202        if (unlikely(running))
7203                tsk->sched_class->set_curr_task(rq);
7204        if (on_rq)
7205                enqueue_task(rq, tsk, 0);
7206
7207        task_rq_unlock(rq, tsk, &flags);
7208}
7209#endif /* CONFIG_CGROUP_SCHED */
7210
7211#ifdef CONFIG_RT_GROUP_SCHED
7212/*
7213 * Ensure that the real time constraints are schedulable.
7214 */
7215static DEFINE_MUTEX(rt_constraints_mutex);
7216
7217/* Must be called with tasklist_lock held */
7218static inline int tg_has_rt_tasks(struct task_group *tg)
7219{
7220        struct task_struct *g, *p;
7221
7222        do_each_thread(g, p) {
7223                if (rt_task(p) && task_rq(p)->rt.tg == tg)
7224                        return 1;
7225        } while_each_thread(g, p);
7226
7227        return 0;
7228}
7229
7230struct rt_schedulable_data {
7231        struct task_group *tg;
7232        u64 rt_period;
7233        u64 rt_runtime;
7234};
7235
7236static int tg_rt_schedulable(struct task_group *tg, void *data)
7237{
7238        struct rt_schedulable_data *d = data;
7239        struct task_group *child;
7240        unsigned long total, sum = 0;
7241        u64 period, runtime;
7242
7243        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7244        runtime = tg->rt_bandwidth.rt_runtime;
7245
7246        if (tg == d->tg) {
7247                period = d->rt_period;
7248                runtime = d->rt_runtime;
7249        }
7250
7251        /*
7252         * Cannot have more runtime than the period.
7253         */
7254        if (runtime > period && runtime != RUNTIME_INF)
7255                return -EINVAL;
7256
7257        /*
7258         * Ensure we don't starve existing RT tasks.
7259         */
7260        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7261                return -EBUSY;
7262
7263        total = to_ratio(period, runtime);
7264
7265        /*
7266         * Nobody can have more than the global setting allows.
7267         */
7268        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7269                return -EINVAL;
7270
7271        /*
7272         * The sum of our children's runtime should not exceed our own.
7273         */
7274        list_for_each_entry_rcu(child, &tg->children, siblings) {
7275                period = ktime_to_ns(child->rt_bandwidth.rt_period);
7276                runtime = child->rt_bandwidth.rt_runtime;
7277
7278                if (child == d->tg) {
7279                        period = d->rt_period;
7280                        runtime = d->rt_runtime;
7281                }
7282
7283                sum += to_ratio(period, runtime);
7284        }
7285
7286        if (sum > total)
7287                return -EINVAL;
7288
7289        return 0;
7290}
7291
7292static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7293{
7294        int ret;
7295
7296        struct rt_schedulable_data data = {
7297                .tg = tg,
7298                .rt_period = period,
7299                .rt_runtime = runtime,
7300        };
7301
7302        rcu_read_lock();
7303        ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7304        rcu_read_unlock();
7305
7306        return ret;
7307}
7308
7309static int tg_set_rt_bandwidth(struct task_group *tg,
7310                u64 rt_period, u64 rt_runtime)
7311{
7312        int i, err = 0;
7313
7314        mutex_lock(&rt_constraints_mutex);
7315        read_lock(&tasklist_lock);
7316        err = __rt_schedulable(tg, rt_period, rt_runtime);
7317        if (err)
7318                goto unlock;
7319
7320        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7321        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7322        tg->rt_bandwidth.rt_runtime = rt_runtime;
7323
7324        for_each_possible_cpu(i) {
7325                struct rt_rq *rt_rq = tg->rt_rq[i];
7326
7327                raw_spin_lock(&rt_rq->rt_runtime_lock);
7328                rt_rq->rt_runtime = rt_runtime;
7329                raw_spin_unlock(&rt_rq->rt_runtime_lock);
7330        }
7331        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7332unlock:
7333        read_unlock(&tasklist_lock);
7334        mutex_unlock(&rt_constraints_mutex);
7335
7336        return err;
7337}
7338
7339static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7340{
7341        u64 rt_runtime, rt_period;
7342
7343        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7344        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7345        if (rt_runtime_us < 0)
7346                rt_runtime = RUNTIME_INF;
7347
7348        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7349}
7350
7351static long sched_group_rt_runtime(struct task_group *tg)
7352{
7353        u64 rt_runtime_us;
7354
7355        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7356                return -1;
7357
7358        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7359        do_div(rt_runtime_us, NSEC_PER_USEC);
7360        return rt_runtime_us;
7361}
7362
7363static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7364{
7365        u64 rt_runtime, rt_period;
7366
7367        rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7368        rt_runtime = tg->rt_bandwidth.rt_runtime;
7369
7370        if (rt_period == 0)
7371                return -EINVAL;
7372
7373        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7374}
7375
7376static long sched_group_rt_period(struct task_group *tg)
7377{
7378        u64 rt_period_us;
7379
7380        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7381        do_div(rt_period_us, NSEC_PER_USEC);
7382        return rt_period_us;
7383}
7384#endif /* CONFIG_RT_GROUP_SCHED */
7385
7386#ifdef CONFIG_RT_GROUP_SCHED
7387static int sched_rt_global_constraints(void)
7388{
7389        int ret = 0;
7390
7391        mutex_lock(&rt_constraints_mutex);
7392        read_lock(&tasklist_lock);
7393        ret = __rt_schedulable(NULL, 0, 0);
7394        read_unlock(&tasklist_lock);
7395        mutex_unlock(&rt_constraints_mutex);
7396
7397        return ret;
7398}
7399
7400static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7401{
7402        /* Don't accept realtime tasks when there is no way for them to run */
7403        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7404                return 0;
7405
7406        return 1;
7407}
7408
7409#else /* !CONFIG_RT_GROUP_SCHED */
7410static int sched_rt_global_constraints(void)
7411{
7412        unsigned long flags;
7413        int i, ret = 0;
7414
7415        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7416        for_each_possible_cpu(i) {
7417                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7418
7419                raw_spin_lock(&rt_rq->rt_runtime_lock);
7420                rt_rq->rt_runtime = global_rt_runtime();
7421                raw_spin_unlock(&rt_rq->rt_runtime_lock);
7422        }
7423        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7424
7425        return ret;
7426}
7427#endif /* CONFIG_RT_GROUP_SCHED */
7428
7429static int sched_dl_global_constraints(void)
7430{
7431        u64 runtime = global_rt_runtime();
7432        u64 period = global_rt_period();
7433        u64 new_bw = to_ratio(period, runtime);
7434        int cpu, ret = 0;
7435        unsigned long flags;
7436
7437        /*
7438         * Here we want to check the bandwidth not being set to some
7439         * value smaller than the currently allocated bandwidth in
7440         * any of the root_domains.
7441         *
7442         * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7443         * cycling on root_domains... Discussion on different/better
7444         * solutions is welcome!
7445         */
7446        for_each_possible_cpu(cpu) {
7447                struct dl_bw *dl_b = dl_bw_of(cpu);
7448
7449                raw_spin_lock_irqsave(&dl_b->lock, flags);
7450                if (new_bw < dl_b->total_bw)
7451                        ret = -EBUSY;
7452                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7453
7454                if (ret)
7455                        break;
7456        }
7457
7458        return ret;
7459}
7460
7461static void sched_dl_do_global(void)
7462{
7463        u64 new_bw = -1;
7464        int cpu;
7465        unsigned long flags;
7466
7467        def_dl_bandwidth.dl_period = global_rt_period();
7468        def_dl_bandwidth.dl_runtime = global_rt_runtime();
7469
7470        if (global_rt_runtime() != RUNTIME_INF)
7471                new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7472
7473        /*
7474         * FIXME: As above...
7475         */
7476        for_each_possible_cpu(cpu) {
7477                struct dl_bw *dl_b = dl_bw_of(cpu);
7478
7479                raw_spin_lock_irqsave(&dl_b->lock, flags);
7480                dl_b->bw = new_bw;
7481                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7482        }
7483}
7484
7485static int sched_rt_global_validate(void)
7486{
7487        if (sysctl_sched_rt_period <= 0)
7488                return -EINVAL;
7489
7490        if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7491                (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7492                return -EINVAL;
7493
7494        return 0;
7495}
7496
7497static void sched_rt_do_global(void)
7498{
7499        def_rt_bandwidth.rt_runtime = global_rt_runtime();
7500        def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7501}
7502
7503int sched_rt_handler(struct ctl_table *table, int write,
7504                void __user *buffer, size_t *lenp,
7505                loff_t *ppos)
7506{
7507        int old_period, old_runtime;
7508        static DEFINE_MUTEX(mutex);
7509        int ret;
7510
7511        mutex_lock(&mutex);
7512        old_period = sysctl_sched_rt_period;
7513        old_runtime = sysctl_sched_rt_runtime;
7514
7515        ret = proc_dointvec(table, write, buffer, lenp, ppos);
7516
7517        if (!ret && write) {
7518                ret = sched_rt_global_validate();
7519                if (ret)
7520                        goto undo;
7521
7522                ret = sched_rt_global_constraints();
7523                if (ret)
7524                        goto undo;
7525
7526                ret = sched_dl_global_constraints();
7527                if (ret)
7528                        goto undo;
7529
7530                sched_rt_do_global();
7531                sched_dl_do_global();
7532        }
7533        if (0) {
7534undo:
7535                sysctl_sched_rt_period = old_period;
7536                sysctl_sched_rt_runtime = old_runtime;
7537        }
7538        mutex_unlock(&mutex);
7539
7540        return ret;
7541}
7542
7543int sched_rr_handler(struct ctl_table *table, int write,
7544                void __user *buffer, size_t *lenp,
7545                loff_t *ppos)
7546{
7547        int ret;
7548        static DEFINE_MUTEX(mutex);
7549
7550        mutex_lock(&mutex);
7551        ret = proc_dointvec(table, write, buffer, lenp, ppos);
7552        /* make sure that internally we keep jiffies */
7553        /* also, writing zero resets timeslice to default */
7554        if (!ret && write) {
7555                sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7556                        RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7557        }
7558        mutex_unlock(&mutex);
7559        return ret;
7560}
7561
7562#ifdef CONFIG_CGROUP_SCHED
7563
7564static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7565{
7566        return css ? container_of(css, struct task_group, css) : NULL;
7567}
7568
7569static struct cgroup_subsys_state *
7570cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7571{
7572        struct task_group *parent = css_tg(parent_css);
7573        struct task_group *tg;
7574
7575        if (!parent) {
7576                /* This is early initialization for the top cgroup */
7577                return &root_task_group.css;
7578        }
7579
7580        tg = sched_create_group(parent);
7581        if (IS_ERR(tg))
7582                return ERR_PTR(-ENOMEM);
7583
7584        return &tg->css;
7585}
7586
7587static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7588{
7589        struct task_group *tg = css_tg(css);
7590        struct task_group *parent = css_tg(css_parent(css));
7591
7592        if (parent)
7593                sched_online_group(tg, parent);
7594        return 0;
7595}
7596
7597static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7598{
7599        struct task_group *tg = css_tg(css);
7600
7601        sched_destroy_group(tg);
7602}
7603
7604static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7605{
7606        struct task_group *tg = css_tg(css);
7607
7608        sched_offline_group(tg);
7609}
7610
7611static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7612                                 struct cgroup_taskset *tset)
7613{
7614        struct task_struct *task;
7615
7616        cgroup_taskset_for_each(task, css, tset) {
7617#ifdef CONFIG_RT_GROUP_SCHED
7618                if (!sched_rt_can_attach(css_tg(css), task))
7619                        return -EINVAL;
7620#else
7621                /* We don't support RT-tasks being in separate groups */
7622                if (task->sched_class != &fair_sched_class)
7623                        return -EINVAL;
7624#endif
7625        }
7626        return 0;
7627}
7628
7629static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7630                              struct cgroup_taskset *tset)
7631{
7632        struct task_struct *task;
7633
7634        cgroup_taskset_for_each(task, css, tset)
7635                sched_move_task(task);
7636}
7637
7638static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7639                            struct cgroup_subsys_state *old_css,
7640                            struct task_struct *task)
7641{
7642        /*
7643         * cgroup_exit() is called in the copy_process() failure path.
7644         * Ignore this case since the task hasn't ran yet, this avoids
7645         * trying to poke a half freed task state from generic code.
7646         */
7647        if (!(task->flags & PF_EXITING))
7648                return;
7649
7650        sched_move_task(task);
7651}
7652
7653#ifdef CONFIG_FAIR_GROUP_SCHED
7654static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7655                                struct cftype *cftype, u64 shareval)
7656{
7657        return sched_group_set_shares(css_tg(css), scale_load(shareval));
7658}
7659
7660static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7661                               struct cftype *cft)
7662{
7663        struct task_group *tg = css_tg(css);
7664
7665        return (u64) scale_load_down(tg->shares);
7666}
7667
7668#ifdef CONFIG_CFS_BANDWIDTH
7669static DEFINE_MUTEX(cfs_constraints_mutex);
7670
7671const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7672const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7673
7674static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7675
7676static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7677{
7678        int i, ret = 0, runtime_enabled, runtime_was_enabled;
7679        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7680
7681        if (tg == &root_task_group)
7682                return -EINVAL;
7683
7684        /*
7685         * Ensure we have at some amount of bandwidth every period.  This is
7686         * to prevent reaching a state of large arrears when throttled via
7687         * entity_tick() resulting in prolonged exit starvation.
7688         */
7689        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7690                return -EINVAL;
7691
7692        /*
7693         * Likewise, bound things on the otherside by preventing insane quota
7694         * periods.  This also allows us to normalize in computing quota
7695         * feasibility.
7696         */
7697        if (period > max_cfs_quota_period)
7698                return -EINVAL;
7699
7700        mutex_lock(&cfs_constraints_mutex);
7701        ret = __cfs_schedulable(tg, period, quota);
7702        if (ret)
7703                goto out_unlock;
7704
7705        runtime_enabled = quota != RUNTIME_INF;
7706        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7707        /*
7708         * If we need to toggle cfs_bandwidth_used, off->on must occur
7709         * before making related changes, and on->off must occur afterwards
7710         */
7711        if (runtime_enabled && !runtime_was_enabled)
7712                cfs_bandwidth_usage_inc();
7713        raw_spin_lock_irq(&cfs_b->lock);
7714        cfs_b->period = ns_to_ktime(period);
7715        cfs_b->quota = quota;
7716
7717        __refill_cfs_bandwidth_runtime(cfs_b);
7718        /* restart the period timer (if active) to handle new period expiry */
7719        if (runtime_enabled && cfs_b->timer_active) {
7720                /* force a reprogram */
7721                cfs_b->timer_active = 0;
7722                __start_cfs_bandwidth(cfs_b);
7723        }
7724        raw_spin_unlock_irq(&cfs_b->lock);
7725
7726        for_each_possible_cpu(i) {
7727                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7728                struct rq *rq = cfs_rq->rq;
7729
7730                raw_spin_lock_irq(&rq->lock);
7731                cfs_rq->runtime_enabled = runtime_enabled;
7732                cfs_rq->runtime_remaining = 0;
7733
7734                if (cfs_rq->throttled)
7735                        unthrottle_cfs_rq(cfs_rq);
7736                raw_spin_unlock_irq(&rq->lock);
7737        }
7738        if (runtime_was_enabled && !runtime_enabled)
7739                cfs_bandwidth_usage_dec();
7740out_unlock:
7741        mutex_unlock(&cfs_constraints_mutex);
7742
7743        return ret;
7744}
7745
7746int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7747{
7748        u64 quota, period;
7749
7750        period = ktime_to_ns(tg->cfs_bandwidth.period);
7751        if (cfs_quota_us < 0)
7752                quota = RUNTIME_INF;
7753        else
7754                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7755
7756        return tg_set_cfs_bandwidth(tg, period, quota);
7757}
7758
7759long tg_get_cfs_quota(struct task_group *tg)
7760{
7761        u64 quota_us;
7762
7763        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7764                return -1;
7765
7766        quota_us = tg->cfs_bandwidth.quota;
7767        do_div(quota_us, NSEC_PER_USEC);
7768
7769        return quota_us;
7770}
7771
7772int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7773{
7774        u64 quota, period;
7775
7776        period = (u64)cfs_period_us * NSEC_PER_USEC;
7777        quota = tg->cfs_bandwidth.quota;
7778
7779        return tg_set_cfs_bandwidth(tg, period, quota);
7780}
7781
7782long tg_get_cfs_period(struct task_group *tg)
7783{
7784        u64 cfs_period_us;
7785
7786        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7787        do_div(cfs_period_us, NSEC_PER_USEC);
7788
7789        return cfs_period_us;
7790}
7791
7792static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7793                                  struct cftype *cft)
7794{
7795        return tg_get_cfs_quota(css_tg(css));
7796}
7797
7798static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7799                                   struct cftype *cftype, s64 cfs_quota_us)
7800{
7801        return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7802}
7803
7804static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7805                                   struct cftype *cft)
7806{
7807        return tg_get_cfs_period(css_tg(css));
7808}
7809
7810static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7811                                    struct cftype *cftype, u64 cfs_period_us)
7812{
7813        return tg_set_cfs_period(css_tg(css), cfs_period_us);
7814}
7815
7816struct cfs_schedulable_data {
7817        struct task_group *tg;
7818        u64 period, quota;
7819};
7820
7821/*
7822 * normalize group quota/period to be quota/max_period
7823 * note: units are usecs
7824 */
7825static u64 normalize_cfs_quota(struct task_group *tg,
7826                               struct cfs_schedulable_data *d)
7827{
7828        u64 quota, period;
7829
7830        if (tg == d->tg) {
7831                period = d->period;
7832                quota = d->quota;
7833        } else {
7834                period = tg_get_cfs_period(tg);
7835                quota = tg_get_cfs_quota(tg);
7836        }
7837
7838        /* note: these should typically be equivalent */
7839        if (quota == RUNTIME_INF || quota == -1)
7840                return RUNTIME_INF;
7841
7842        return to_ratio(period, quota);
7843}
7844
7845static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7846{
7847        struct cfs_schedulable_data *d = data;
7848        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7849        s64 quota = 0, parent_quota = -1;
7850
7851        if (!tg->parent) {
7852                quota = RUNTIME_INF;
7853        } else {
7854                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7855
7856                quota = normalize_cfs_quota(tg, d);
7857                parent_quota = parent_b->hierarchal_quota;
7858
7859                /*
7860                 * ensure max(child_quota) <= parent_quota, inherit when no
7861                 * limit is set
7862                 */
7863                if (quota == RUNTIME_INF)
7864                        quota = parent_quota;
7865                else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7866                        return -EINVAL;
7867        }
7868        cfs_b->hierarchal_quota = quota;
7869
7870        return 0;
7871}
7872
7873static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7874{
7875        int ret;
7876        struct cfs_schedulable_data data = {
7877                .tg = tg,
7878                .period = period,
7879                .quota = quota,
7880        };
7881
7882        if (quota != RUNTIME_INF) {
7883                do_div(data.period, NSEC_PER_USEC);
7884                do_div(data.quota, NSEC_PER_USEC);
7885        }
7886
7887        rcu_read_lock();
7888        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7889        rcu_read_unlock();
7890
7891        return ret;
7892}
7893
7894static int cpu_stats_show(struct seq_file *sf, void *v)
7895{
7896        struct task_group *tg = css_tg(seq_css(sf));
7897        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7898
7899        seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7900        seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7901        seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7902
7903        return 0;
7904}
7905#endif /* CONFIG_CFS_BANDWIDTH */
7906#endif /* CONFIG_FAIR_GROUP_SCHED */
7907
7908#ifdef CONFIG_RT_GROUP_SCHED
7909static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7910                                struct cftype *cft, s64 val)
7911{
7912        return sched_group_set_rt_runtime(css_tg(css), val);
7913}
7914
7915static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7916                               struct cftype *cft)
7917{
7918        return sched_group_rt_runtime(css_tg(css));
7919}
7920
7921static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7922                                    struct cftype *cftype, u64 rt_period_us)
7923{
7924        return sched_group_set_rt_period(css_tg(css), rt_period_us);
7925}
7926
7927static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7928                                   struct cftype *cft)
7929{
7930        return sched_group_rt_period(css_tg(css));
7931}
7932#endif /* CONFIG_RT_GROUP_SCHED */
7933
7934static struct cftype cpu_files[] = {
7935#ifdef CONFIG_FAIR_GROUP_SCHED
7936        {
7937                .name = "shares",
7938                .read_u64 = cpu_shares_read_u64,
7939                .write_u64 = cpu_shares_write_u64,
7940        },
7941#endif
7942#ifdef CONFIG_CFS_BANDWIDTH
7943        {
7944                .name = "cfs_quota_us",
7945                .read_s64 = cpu_cfs_quota_read_s64,
7946                .write_s64 = cpu_cfs_quota_write_s64,
7947        },
7948        {
7949                .name = "cfs_period_us",
7950                .read_u64 = cpu_cfs_period_read_u64,
7951                .write_u64 = cpu_cfs_period_write_u64,
7952        },
7953        {
7954                .name = "stat",
7955                .seq_show = cpu_stats_show,
7956        },
7957#endif
7958#ifdef CONFIG_RT_GROUP_SCHED
7959        {
7960                .name = "rt_runtime_us",
7961                .read_s64 = cpu_rt_runtime_read,
7962                .write_s64 = cpu_rt_runtime_write,
7963        },
7964        {
7965                .name = "rt_period_us",
7966                .read_u64 = cpu_rt_period_read_uint,
7967                .write_u64 = cpu_rt_period_write_uint,
7968        },
7969#endif
7970        { }     /* terminate */
7971};
7972
7973struct cgroup_subsys cpu_cgroup_subsys = {
7974        .name           = "cpu",
7975        .css_alloc      = cpu_cgroup_css_alloc,
7976        .css_free       = cpu_cgroup_css_free,
7977        .css_online     = cpu_cgroup_css_online,
7978        .css_offline    = cpu_cgroup_css_offline,
7979        .can_attach     = cpu_cgroup_can_attach,
7980        .attach         = cpu_cgroup_attach,
7981        .exit           = cpu_cgroup_exit,
7982        .subsys_id      = cpu_cgroup_subsys_id,
7983        .base_cftypes   = cpu_files,
7984        .early_init     = 1,
7985};
7986
7987#endif  /* CONFIG_CGROUP_SCHED */
7988
7989void dump_cpu_task(int cpu)
7990{
7991        pr_info("Task dump for CPU %d:\n", cpu);
7992        sched_show_task(cpu_curr(cpu));
7993}
7994