linux/kernel/sched/sched.h
<<
>>
Prefs
   1
   2#include <linux/sched.h>
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/sched/deadline.h>
   6#include <linux/mutex.h>
   7#include <linux/spinlock.h>
   8#include <linux/stop_machine.h>
   9#include <linux/tick.h>
  10#include <linux/slab.h>
  11
  12#include "cpupri.h"
  13#include "cpudeadline.h"
  14#include "cpuacct.h"
  15
  16struct rq;
  17
  18extern __read_mostly int scheduler_running;
  19
  20extern unsigned long calc_load_update;
  21extern atomic_long_t calc_load_tasks;
  22
  23extern long calc_load_fold_active(struct rq *this_rq);
  24extern void update_cpu_load_active(struct rq *this_rq);
  25
  26/*
  27 * Convert user-nice values [ -20 ... 0 ... 19 ]
  28 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  29 * and back.
  30 */
  31#define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
  32#define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
  33#define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
  34
  35/*
  36 * 'User priority' is the nice value converted to something we
  37 * can work with better when scaling various scheduler parameters,
  38 * it's a [ 0 ... 39 ] range.
  39 */
  40#define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
  41#define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
  42#define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
  43
  44/*
  45 * Helpers for converting nanosecond timing to jiffy resolution
  46 */
  47#define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  48
  49/*
  50 * Increase resolution of nice-level calculations for 64-bit architectures.
  51 * The extra resolution improves shares distribution and load balancing of
  52 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  53 * hierarchies, especially on larger systems. This is not a user-visible change
  54 * and does not change the user-interface for setting shares/weights.
  55 *
  56 * We increase resolution only if we have enough bits to allow this increased
  57 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  58 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  59 * increased costs.
  60 */
  61#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
  62# define SCHED_LOAD_RESOLUTION  10
  63# define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
  64# define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
  65#else
  66# define SCHED_LOAD_RESOLUTION  0
  67# define scale_load(w)          (w)
  68# define scale_load_down(w)     (w)
  69#endif
  70
  71#define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
  72#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
  73
  74#define NICE_0_LOAD             SCHED_LOAD_SCALE
  75#define NICE_0_SHIFT            SCHED_LOAD_SHIFT
  76
  77/*
  78 * Single value that decides SCHED_DEADLINE internal math precision.
  79 * 10 -> just above 1us
  80 * 9  -> just above 0.5us
  81 */
  82#define DL_SCALE (10)
  83
  84/*
  85 * These are the 'tuning knobs' of the scheduler:
  86 */
  87
  88/*
  89 * single value that denotes runtime == period, ie unlimited time.
  90 */
  91#define RUNTIME_INF     ((u64)~0ULL)
  92
  93static inline int fair_policy(int policy)
  94{
  95        return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  96}
  97
  98static inline int rt_policy(int policy)
  99{
 100        return policy == SCHED_FIFO || policy == SCHED_RR;
 101}
 102
 103static inline int dl_policy(int policy)
 104{
 105        return policy == SCHED_DEADLINE;
 106}
 107
 108static inline int task_has_rt_policy(struct task_struct *p)
 109{
 110        return rt_policy(p->policy);
 111}
 112
 113static inline int task_has_dl_policy(struct task_struct *p)
 114{
 115        return dl_policy(p->policy);
 116}
 117
 118static inline bool dl_time_before(u64 a, u64 b)
 119{
 120        return (s64)(a - b) < 0;
 121}
 122
 123/*
 124 * Tells if entity @a should preempt entity @b.
 125 */
 126static inline bool
 127dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 128{
 129        return dl_time_before(a->deadline, b->deadline);
 130}
 131
 132/*
 133 * This is the priority-queue data structure of the RT scheduling class:
 134 */
 135struct rt_prio_array {
 136        DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 137        struct list_head queue[MAX_RT_PRIO];
 138};
 139
 140struct rt_bandwidth {
 141        /* nests inside the rq lock: */
 142        raw_spinlock_t          rt_runtime_lock;
 143        ktime_t                 rt_period;
 144        u64                     rt_runtime;
 145        struct hrtimer          rt_period_timer;
 146};
 147/*
 148 * To keep the bandwidth of -deadline tasks and groups under control
 149 * we need some place where:
 150 *  - store the maximum -deadline bandwidth of the system (the group);
 151 *  - cache the fraction of that bandwidth that is currently allocated.
 152 *
 153 * This is all done in the data structure below. It is similar to the
 154 * one used for RT-throttling (rt_bandwidth), with the main difference
 155 * that, since here we are only interested in admission control, we
 156 * do not decrease any runtime while the group "executes", neither we
 157 * need a timer to replenish it.
 158 *
 159 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 160 * meaning that:
 161 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 162 *  - dl_total_bw array contains, in the i-eth element, the currently
 163 *    allocated bandwidth on the i-eth CPU.
 164 * Moreover, groups consume bandwidth on each CPU, while tasks only
 165 * consume bandwidth on the CPU they're running on.
 166 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 167 * that will be shown the next time the proc or cgroup controls will
 168 * be red. It on its turn can be changed by writing on its own
 169 * control.
 170 */
 171struct dl_bandwidth {
 172        raw_spinlock_t dl_runtime_lock;
 173        u64 dl_runtime;
 174        u64 dl_period;
 175};
 176
 177static inline int dl_bandwidth_enabled(void)
 178{
 179        return sysctl_sched_rt_runtime >= 0;
 180}
 181
 182extern struct dl_bw *dl_bw_of(int i);
 183
 184struct dl_bw {
 185        raw_spinlock_t lock;
 186        u64 bw, total_bw;
 187};
 188
 189extern struct mutex sched_domains_mutex;
 190
 191#ifdef CONFIG_CGROUP_SCHED
 192
 193#include <linux/cgroup.h>
 194
 195struct cfs_rq;
 196struct rt_rq;
 197
 198extern struct list_head task_groups;
 199
 200struct cfs_bandwidth {
 201#ifdef CONFIG_CFS_BANDWIDTH
 202        raw_spinlock_t lock;
 203        ktime_t period;
 204        u64 quota, runtime;
 205        s64 hierarchal_quota;
 206        u64 runtime_expires;
 207
 208        int idle, timer_active;
 209        struct hrtimer period_timer, slack_timer;
 210        struct list_head throttled_cfs_rq;
 211
 212        /* statistics */
 213        int nr_periods, nr_throttled;
 214        u64 throttled_time;
 215#endif
 216};
 217
 218/* task group related information */
 219struct task_group {
 220        struct cgroup_subsys_state css;
 221
 222#ifdef CONFIG_FAIR_GROUP_SCHED
 223        /* schedulable entities of this group on each cpu */
 224        struct sched_entity **se;
 225        /* runqueue "owned" by this group on each cpu */
 226        struct cfs_rq **cfs_rq;
 227        unsigned long shares;
 228
 229#ifdef  CONFIG_SMP
 230        atomic_long_t load_avg;
 231        atomic_t runnable_avg;
 232#endif
 233#endif
 234
 235#ifdef CONFIG_RT_GROUP_SCHED
 236        struct sched_rt_entity **rt_se;
 237        struct rt_rq **rt_rq;
 238
 239        struct rt_bandwidth rt_bandwidth;
 240#endif
 241
 242        struct rcu_head rcu;
 243        struct list_head list;
 244
 245        struct task_group *parent;
 246        struct list_head siblings;
 247        struct list_head children;
 248
 249#ifdef CONFIG_SCHED_AUTOGROUP
 250        struct autogroup *autogroup;
 251#endif
 252
 253        struct cfs_bandwidth cfs_bandwidth;
 254};
 255
 256#ifdef CONFIG_FAIR_GROUP_SCHED
 257#define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
 258
 259/*
 260 * A weight of 0 or 1 can cause arithmetics problems.
 261 * A weight of a cfs_rq is the sum of weights of which entities
 262 * are queued on this cfs_rq, so a weight of a entity should not be
 263 * too large, so as the shares value of a task group.
 264 * (The default weight is 1024 - so there's no practical
 265 *  limitation from this.)
 266 */
 267#define MIN_SHARES      (1UL <<  1)
 268#define MAX_SHARES      (1UL << 18)
 269#endif
 270
 271typedef int (*tg_visitor)(struct task_group *, void *);
 272
 273extern int walk_tg_tree_from(struct task_group *from,
 274                             tg_visitor down, tg_visitor up, void *data);
 275
 276/*
 277 * Iterate the full tree, calling @down when first entering a node and @up when
 278 * leaving it for the final time.
 279 *
 280 * Caller must hold rcu_lock or sufficient equivalent.
 281 */
 282static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 283{
 284        return walk_tg_tree_from(&root_task_group, down, up, data);
 285}
 286
 287extern int tg_nop(struct task_group *tg, void *data);
 288
 289extern void free_fair_sched_group(struct task_group *tg);
 290extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 291extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
 292extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 293                        struct sched_entity *se, int cpu,
 294                        struct sched_entity *parent);
 295extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 296extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 297
 298extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 299extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 300extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 301
 302extern void free_rt_sched_group(struct task_group *tg);
 303extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 304extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 305                struct sched_rt_entity *rt_se, int cpu,
 306                struct sched_rt_entity *parent);
 307
 308extern struct task_group *sched_create_group(struct task_group *parent);
 309extern void sched_online_group(struct task_group *tg,
 310                               struct task_group *parent);
 311extern void sched_destroy_group(struct task_group *tg);
 312extern void sched_offline_group(struct task_group *tg);
 313
 314extern void sched_move_task(struct task_struct *tsk);
 315
 316#ifdef CONFIG_FAIR_GROUP_SCHED
 317extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 318#endif
 319
 320#else /* CONFIG_CGROUP_SCHED */
 321
 322struct cfs_bandwidth { };
 323
 324#endif  /* CONFIG_CGROUP_SCHED */
 325
 326/* CFS-related fields in a runqueue */
 327struct cfs_rq {
 328        struct load_weight load;
 329        unsigned int nr_running, h_nr_running;
 330
 331        u64 exec_clock;
 332        u64 min_vruntime;
 333#ifndef CONFIG_64BIT
 334        u64 min_vruntime_copy;
 335#endif
 336
 337        struct rb_root tasks_timeline;
 338        struct rb_node *rb_leftmost;
 339
 340        /*
 341         * 'curr' points to currently running entity on this cfs_rq.
 342         * It is set to NULL otherwise (i.e when none are currently running).
 343         */
 344        struct sched_entity *curr, *next, *last, *skip;
 345
 346#ifdef  CONFIG_SCHED_DEBUG
 347        unsigned int nr_spread_over;
 348#endif
 349
 350#ifdef CONFIG_SMP
 351        /*
 352         * CFS Load tracking
 353         * Under CFS, load is tracked on a per-entity basis and aggregated up.
 354         * This allows for the description of both thread and group usage (in
 355         * the FAIR_GROUP_SCHED case).
 356         */
 357        unsigned long runnable_load_avg, blocked_load_avg;
 358        atomic64_t decay_counter;
 359        u64 last_decay;
 360        atomic_long_t removed_load;
 361
 362#ifdef CONFIG_FAIR_GROUP_SCHED
 363        /* Required to track per-cpu representation of a task_group */
 364        u32 tg_runnable_contrib;
 365        unsigned long tg_load_contrib;
 366
 367        /*
 368         *   h_load = weight * f(tg)
 369         *
 370         * Where f(tg) is the recursive weight fraction assigned to
 371         * this group.
 372         */
 373        unsigned long h_load;
 374        u64 last_h_load_update;
 375        struct sched_entity *h_load_next;
 376#endif /* CONFIG_FAIR_GROUP_SCHED */
 377#endif /* CONFIG_SMP */
 378
 379#ifdef CONFIG_FAIR_GROUP_SCHED
 380        struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
 381
 382        /*
 383         * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 384         * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 385         * (like users, containers etc.)
 386         *
 387         * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 388         * list is used during load balance.
 389         */
 390        int on_list;
 391        struct list_head leaf_cfs_rq_list;
 392        struct task_group *tg;  /* group that "owns" this runqueue */
 393
 394#ifdef CONFIG_CFS_BANDWIDTH
 395        int runtime_enabled;
 396        u64 runtime_expires;
 397        s64 runtime_remaining;
 398
 399        u64 throttled_clock, throttled_clock_task;
 400        u64 throttled_clock_task_time;
 401        int throttled, throttle_count;
 402        struct list_head throttled_list;
 403#endif /* CONFIG_CFS_BANDWIDTH */
 404#endif /* CONFIG_FAIR_GROUP_SCHED */
 405};
 406
 407static inline int rt_bandwidth_enabled(void)
 408{
 409        return sysctl_sched_rt_runtime >= 0;
 410}
 411
 412/* Real-Time classes' related field in a runqueue: */
 413struct rt_rq {
 414        struct rt_prio_array active;
 415        unsigned int rt_nr_running;
 416#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 417        struct {
 418                int curr; /* highest queued rt task prio */
 419#ifdef CONFIG_SMP
 420                int next; /* next highest */
 421#endif
 422        } highest_prio;
 423#endif
 424#ifdef CONFIG_SMP
 425        unsigned long rt_nr_migratory;
 426        unsigned long rt_nr_total;
 427        int overloaded;
 428        struct plist_head pushable_tasks;
 429#endif
 430        int rt_throttled;
 431        u64 rt_time;
 432        u64 rt_runtime;
 433        /* Nests inside the rq lock: */
 434        raw_spinlock_t rt_runtime_lock;
 435
 436#ifdef CONFIG_RT_GROUP_SCHED
 437        unsigned long rt_nr_boosted;
 438
 439        struct rq *rq;
 440        struct task_group *tg;
 441#endif
 442};
 443
 444/* Deadline class' related fields in a runqueue */
 445struct dl_rq {
 446        /* runqueue is an rbtree, ordered by deadline */
 447        struct rb_root rb_root;
 448        struct rb_node *rb_leftmost;
 449
 450        unsigned long dl_nr_running;
 451
 452#ifdef CONFIG_SMP
 453        /*
 454         * Deadline values of the currently executing and the
 455         * earliest ready task on this rq. Caching these facilitates
 456         * the decision wether or not a ready but not running task
 457         * should migrate somewhere else.
 458         */
 459        struct {
 460                u64 curr;
 461                u64 next;
 462        } earliest_dl;
 463
 464        unsigned long dl_nr_migratory;
 465        int overloaded;
 466
 467        /*
 468         * Tasks on this rq that can be pushed away. They are kept in
 469         * an rb-tree, ordered by tasks' deadlines, with caching
 470         * of the leftmost (earliest deadline) element.
 471         */
 472        struct rb_root pushable_dl_tasks_root;
 473        struct rb_node *pushable_dl_tasks_leftmost;
 474#else
 475        struct dl_bw dl_bw;
 476#endif
 477};
 478
 479#ifdef CONFIG_SMP
 480
 481/*
 482 * We add the notion of a root-domain which will be used to define per-domain
 483 * variables. Each exclusive cpuset essentially defines an island domain by
 484 * fully partitioning the member cpus from any other cpuset. Whenever a new
 485 * exclusive cpuset is created, we also create and attach a new root-domain
 486 * object.
 487 *
 488 */
 489struct root_domain {
 490        atomic_t refcount;
 491        atomic_t rto_count;
 492        struct rcu_head rcu;
 493        cpumask_var_t span;
 494        cpumask_var_t online;
 495
 496        /*
 497         * The bit corresponding to a CPU gets set here if such CPU has more
 498         * than one runnable -deadline task (as it is below for RT tasks).
 499         */
 500        cpumask_var_t dlo_mask;
 501        atomic_t dlo_count;
 502        struct dl_bw dl_bw;
 503        struct cpudl cpudl;
 504
 505        /*
 506         * The "RT overload" flag: it gets set if a CPU has more than
 507         * one runnable RT task.
 508         */
 509        cpumask_var_t rto_mask;
 510        struct cpupri cpupri;
 511};
 512
 513extern struct root_domain def_root_domain;
 514
 515#endif /* CONFIG_SMP */
 516
 517/*
 518 * This is the main, per-CPU runqueue data structure.
 519 *
 520 * Locking rule: those places that want to lock multiple runqueues
 521 * (such as the load balancing or the thread migration code), lock
 522 * acquire operations must be ordered by ascending &runqueue.
 523 */
 524struct rq {
 525        /* runqueue lock: */
 526        raw_spinlock_t lock;
 527
 528        /*
 529         * nr_running and cpu_load should be in the same cacheline because
 530         * remote CPUs use both these fields when doing load calculation.
 531         */
 532        unsigned int nr_running;
 533#ifdef CONFIG_NUMA_BALANCING
 534        unsigned int nr_numa_running;
 535        unsigned int nr_preferred_running;
 536#endif
 537        #define CPU_LOAD_IDX_MAX 5
 538        unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 539        unsigned long last_load_update_tick;
 540#ifdef CONFIG_NO_HZ_COMMON
 541        u64 nohz_stamp;
 542        unsigned long nohz_flags;
 543#endif
 544#ifdef CONFIG_NO_HZ_FULL
 545        unsigned long last_sched_tick;
 546#endif
 547        int skip_clock_update;
 548
 549        /* capture load from *all* tasks on this cpu: */
 550        struct load_weight load;
 551        unsigned long nr_load_updates;
 552        u64 nr_switches;
 553
 554        struct cfs_rq cfs;
 555        struct rt_rq rt;
 556        struct dl_rq dl;
 557
 558#ifdef CONFIG_FAIR_GROUP_SCHED
 559        /* list of leaf cfs_rq on this cpu: */
 560        struct list_head leaf_cfs_rq_list;
 561#endif /* CONFIG_FAIR_GROUP_SCHED */
 562
 563#ifdef CONFIG_RT_GROUP_SCHED
 564        struct list_head leaf_rt_rq_list;
 565#endif
 566
 567        /*
 568         * This is part of a global counter where only the total sum
 569         * over all CPUs matters. A task can increase this counter on
 570         * one CPU and if it got migrated afterwards it may decrease
 571         * it on another CPU. Always updated under the runqueue lock:
 572         */
 573        unsigned long nr_uninterruptible;
 574
 575        struct task_struct *curr, *idle, *stop;
 576        unsigned long next_balance;
 577        struct mm_struct *prev_mm;
 578
 579        u64 clock;
 580        u64 clock_task;
 581
 582        atomic_t nr_iowait;
 583
 584#ifdef CONFIG_SMP
 585        struct root_domain *rd;
 586        struct sched_domain *sd;
 587
 588        unsigned long cpu_power;
 589
 590        unsigned char idle_balance;
 591        /* For active balancing */
 592        int post_schedule;
 593        int active_balance;
 594        int push_cpu;
 595        struct cpu_stop_work active_balance_work;
 596        /* cpu of this runqueue: */
 597        int cpu;
 598        int online;
 599
 600        struct list_head cfs_tasks;
 601
 602        u64 rt_avg;
 603        u64 age_stamp;
 604        u64 idle_stamp;
 605        u64 avg_idle;
 606
 607        /* This is used to determine avg_idle's max value */
 608        u64 max_idle_balance_cost;
 609#endif
 610
 611#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 612        u64 prev_irq_time;
 613#endif
 614#ifdef CONFIG_PARAVIRT
 615        u64 prev_steal_time;
 616#endif
 617#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 618        u64 prev_steal_time_rq;
 619#endif
 620
 621        /* calc_load related fields */
 622        unsigned long calc_load_update;
 623        long calc_load_active;
 624
 625#ifdef CONFIG_SCHED_HRTICK
 626#ifdef CONFIG_SMP
 627        int hrtick_csd_pending;
 628        struct call_single_data hrtick_csd;
 629#endif
 630        struct hrtimer hrtick_timer;
 631#endif
 632
 633#ifdef CONFIG_SCHEDSTATS
 634        /* latency stats */
 635        struct sched_info rq_sched_info;
 636        unsigned long long rq_cpu_time;
 637        /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 638
 639        /* sys_sched_yield() stats */
 640        unsigned int yld_count;
 641
 642        /* schedule() stats */
 643        unsigned int sched_count;
 644        unsigned int sched_goidle;
 645
 646        /* try_to_wake_up() stats */
 647        unsigned int ttwu_count;
 648        unsigned int ttwu_local;
 649#endif
 650
 651#ifdef CONFIG_SMP
 652        struct llist_head wake_list;
 653#endif
 654
 655        struct sched_avg avg;
 656};
 657
 658static inline int cpu_of(struct rq *rq)
 659{
 660#ifdef CONFIG_SMP
 661        return rq->cpu;
 662#else
 663        return 0;
 664#endif
 665}
 666
 667DECLARE_PER_CPU(struct rq, runqueues);
 668
 669#define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
 670#define this_rq()               (&__get_cpu_var(runqueues))
 671#define task_rq(p)              cpu_rq(task_cpu(p))
 672#define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
 673#define raw_rq()                (&__raw_get_cpu_var(runqueues))
 674
 675static inline u64 rq_clock(struct rq *rq)
 676{
 677        return rq->clock;
 678}
 679
 680static inline u64 rq_clock_task(struct rq *rq)
 681{
 682        return rq->clock_task;
 683}
 684
 685#ifdef CONFIG_NUMA_BALANCING
 686extern void sched_setnuma(struct task_struct *p, int node);
 687extern int migrate_task_to(struct task_struct *p, int cpu);
 688extern int migrate_swap(struct task_struct *, struct task_struct *);
 689#endif /* CONFIG_NUMA_BALANCING */
 690
 691#ifdef CONFIG_SMP
 692
 693#define rcu_dereference_check_sched_domain(p) \
 694        rcu_dereference_check((p), \
 695                              lockdep_is_held(&sched_domains_mutex))
 696
 697/*
 698 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 699 * See detach_destroy_domains: synchronize_sched for details.
 700 *
 701 * The domain tree of any CPU may only be accessed from within
 702 * preempt-disabled sections.
 703 */
 704#define for_each_domain(cpu, __sd) \
 705        for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 706                        __sd; __sd = __sd->parent)
 707
 708#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 709
 710/**
 711 * highest_flag_domain - Return highest sched_domain containing flag.
 712 * @cpu:        The cpu whose highest level of sched domain is to
 713 *              be returned.
 714 * @flag:       The flag to check for the highest sched_domain
 715 *              for the given cpu.
 716 *
 717 * Returns the highest sched_domain of a cpu which contains the given flag.
 718 */
 719static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 720{
 721        struct sched_domain *sd, *hsd = NULL;
 722
 723        for_each_domain(cpu, sd) {
 724                if (!(sd->flags & flag))
 725                        break;
 726                hsd = sd;
 727        }
 728
 729        return hsd;
 730}
 731
 732static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 733{
 734        struct sched_domain *sd;
 735
 736        for_each_domain(cpu, sd) {
 737                if (sd->flags & flag)
 738                        break;
 739        }
 740
 741        return sd;
 742}
 743
 744DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 745DECLARE_PER_CPU(int, sd_llc_size);
 746DECLARE_PER_CPU(int, sd_llc_id);
 747DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 748DECLARE_PER_CPU(struct sched_domain *, sd_busy);
 749DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 750
 751struct sched_group_power {
 752        atomic_t ref;
 753        /*
 754         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 755         * single CPU.
 756         */
 757        unsigned int power, power_orig;
 758        unsigned long next_update;
 759        int imbalance; /* XXX unrelated to power but shared group state */
 760        /*
 761         * Number of busy cpus in this group.
 762         */
 763        atomic_t nr_busy_cpus;
 764
 765        unsigned long cpumask[0]; /* iteration mask */
 766};
 767
 768struct sched_group {
 769        struct sched_group *next;       /* Must be a circular list */
 770        atomic_t ref;
 771
 772        unsigned int group_weight;
 773        struct sched_group_power *sgp;
 774
 775        /*
 776         * The CPUs this group covers.
 777         *
 778         * NOTE: this field is variable length. (Allocated dynamically
 779         * by attaching extra space to the end of the structure,
 780         * depending on how many CPUs the kernel has booted up with)
 781         */
 782        unsigned long cpumask[0];
 783};
 784
 785static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 786{
 787        return to_cpumask(sg->cpumask);
 788}
 789
 790/*
 791 * cpumask masking which cpus in the group are allowed to iterate up the domain
 792 * tree.
 793 */
 794static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 795{
 796        return to_cpumask(sg->sgp->cpumask);
 797}
 798
 799/**
 800 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 801 * @group: The group whose first cpu is to be returned.
 802 */
 803static inline unsigned int group_first_cpu(struct sched_group *group)
 804{
 805        return cpumask_first(sched_group_cpus(group));
 806}
 807
 808extern int group_balance_cpu(struct sched_group *sg);
 809
 810#endif /* CONFIG_SMP */
 811
 812#include "stats.h"
 813#include "auto_group.h"
 814
 815#ifdef CONFIG_CGROUP_SCHED
 816
 817/*
 818 * Return the group to which this tasks belongs.
 819 *
 820 * We cannot use task_css() and friends because the cgroup subsystem
 821 * changes that value before the cgroup_subsys::attach() method is called,
 822 * therefore we cannot pin it and might observe the wrong value.
 823 *
 824 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 825 * core changes this before calling sched_move_task().
 826 *
 827 * Instead we use a 'copy' which is updated from sched_move_task() while
 828 * holding both task_struct::pi_lock and rq::lock.
 829 */
 830static inline struct task_group *task_group(struct task_struct *p)
 831{
 832        return p->sched_task_group;
 833}
 834
 835/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 836static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 837{
 838#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 839        struct task_group *tg = task_group(p);
 840#endif
 841
 842#ifdef CONFIG_FAIR_GROUP_SCHED
 843        p->se.cfs_rq = tg->cfs_rq[cpu];
 844        p->se.parent = tg->se[cpu];
 845#endif
 846
 847#ifdef CONFIG_RT_GROUP_SCHED
 848        p->rt.rt_rq  = tg->rt_rq[cpu];
 849        p->rt.parent = tg->rt_se[cpu];
 850#endif
 851}
 852
 853#else /* CONFIG_CGROUP_SCHED */
 854
 855static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 856static inline struct task_group *task_group(struct task_struct *p)
 857{
 858        return NULL;
 859}
 860
 861#endif /* CONFIG_CGROUP_SCHED */
 862
 863static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 864{
 865        set_task_rq(p, cpu);
 866#ifdef CONFIG_SMP
 867        /*
 868         * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 869         * successfuly executed on another CPU. We must ensure that updates of
 870         * per-task data have been completed by this moment.
 871         */
 872        smp_wmb();
 873        task_thread_info(p)->cpu = cpu;
 874        p->wake_cpu = cpu;
 875#endif
 876}
 877
 878/*
 879 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 880 */
 881#ifdef CONFIG_SCHED_DEBUG
 882# include <linux/static_key.h>
 883# define const_debug __read_mostly
 884#else
 885# define const_debug const
 886#endif
 887
 888extern const_debug unsigned int sysctl_sched_features;
 889
 890#define SCHED_FEAT(name, enabled)       \
 891        __SCHED_FEAT_##name ,
 892
 893enum {
 894#include "features.h"
 895        __SCHED_FEAT_NR,
 896};
 897
 898#undef SCHED_FEAT
 899
 900#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 901static __always_inline bool static_branch__true(struct static_key *key)
 902{
 903        return static_key_true(key); /* Not out of line branch. */
 904}
 905
 906static __always_inline bool static_branch__false(struct static_key *key)
 907{
 908        return static_key_false(key); /* Out of line branch. */
 909}
 910
 911#define SCHED_FEAT(name, enabled)                                       \
 912static __always_inline bool static_branch_##name(struct static_key *key) \
 913{                                                                       \
 914        return static_branch__##enabled(key);                           \
 915}
 916
 917#include "features.h"
 918
 919#undef SCHED_FEAT
 920
 921extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
 922#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
 923#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 924#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 925#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 926
 927#ifdef CONFIG_NUMA_BALANCING
 928#define sched_feat_numa(x) sched_feat(x)
 929#ifdef CONFIG_SCHED_DEBUG
 930#define numabalancing_enabled sched_feat_numa(NUMA)
 931#else
 932extern bool numabalancing_enabled;
 933#endif /* CONFIG_SCHED_DEBUG */
 934#else
 935#define sched_feat_numa(x) (0)
 936#define numabalancing_enabled (0)
 937#endif /* CONFIG_NUMA_BALANCING */
 938
 939static inline u64 global_rt_period(void)
 940{
 941        return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 942}
 943
 944static inline u64 global_rt_runtime(void)
 945{
 946        if (sysctl_sched_rt_runtime < 0)
 947                return RUNTIME_INF;
 948
 949        return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 950}
 951
 952static inline int task_current(struct rq *rq, struct task_struct *p)
 953{
 954        return rq->curr == p;
 955}
 956
 957static inline int task_running(struct rq *rq, struct task_struct *p)
 958{
 959#ifdef CONFIG_SMP
 960        return p->on_cpu;
 961#else
 962        return task_current(rq, p);
 963#endif
 964}
 965
 966
 967#ifndef prepare_arch_switch
 968# define prepare_arch_switch(next)      do { } while (0)
 969#endif
 970#ifndef finish_arch_switch
 971# define finish_arch_switch(prev)       do { } while (0)
 972#endif
 973#ifndef finish_arch_post_lock_switch
 974# define finish_arch_post_lock_switch() do { } while (0)
 975#endif
 976
 977#ifndef __ARCH_WANT_UNLOCKED_CTXSW
 978static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 979{
 980#ifdef CONFIG_SMP
 981        /*
 982         * We can optimise this out completely for !SMP, because the
 983         * SMP rebalancing from interrupt is the only thing that cares
 984         * here.
 985         */
 986        next->on_cpu = 1;
 987#endif
 988}
 989
 990static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 991{
 992#ifdef CONFIG_SMP
 993        /*
 994         * After ->on_cpu is cleared, the task can be moved to a different CPU.
 995         * We must ensure this doesn't happen until the switch is completely
 996         * finished.
 997         */
 998        smp_wmb();
 999        prev->on_cpu = 0;
1000#endif
1001#ifdef CONFIG_DEBUG_SPINLOCK
1002        /* this is a valid case when another task releases the spinlock */
1003        rq->lock.owner = current;
1004#endif
1005        /*
1006         * If we are tracking spinlock dependencies then we have to
1007         * fix up the runqueue lock - which gets 'carried over' from
1008         * prev into current:
1009         */
1010        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1011
1012        raw_spin_unlock_irq(&rq->lock);
1013}
1014
1015#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1016static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1017{
1018#ifdef CONFIG_SMP
1019        /*
1020         * We can optimise this out completely for !SMP, because the
1021         * SMP rebalancing from interrupt is the only thing that cares
1022         * here.
1023         */
1024        next->on_cpu = 1;
1025#endif
1026        raw_spin_unlock(&rq->lock);
1027}
1028
1029static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1030{
1031#ifdef CONFIG_SMP
1032        /*
1033         * After ->on_cpu is cleared, the task can be moved to a different CPU.
1034         * We must ensure this doesn't happen until the switch is completely
1035         * finished.
1036         */
1037        smp_wmb();
1038        prev->on_cpu = 0;
1039#endif
1040        local_irq_enable();
1041}
1042#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1043
1044/*
1045 * wake flags
1046 */
1047#define WF_SYNC         0x01            /* waker goes to sleep after wakeup */
1048#define WF_FORK         0x02            /* child wakeup after fork */
1049#define WF_MIGRATED     0x4             /* internal use, task got migrated */
1050
1051/*
1052 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1053 * of tasks with abnormal "nice" values across CPUs the contribution that
1054 * each task makes to its run queue's load is weighted according to its
1055 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1056 * scaled version of the new time slice allocation that they receive on time
1057 * slice expiry etc.
1058 */
1059
1060#define WEIGHT_IDLEPRIO                3
1061#define WMULT_IDLEPRIO         1431655765
1062
1063/*
1064 * Nice levels are multiplicative, with a gentle 10% change for every
1065 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1066 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1067 * that remained on nice 0.
1068 *
1069 * The "10% effect" is relative and cumulative: from _any_ nice level,
1070 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1071 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1072 * If a task goes up by ~10% and another task goes down by ~10% then
1073 * the relative distance between them is ~25%.)
1074 */
1075static const int prio_to_weight[40] = {
1076 /* -20 */     88761,     71755,     56483,     46273,     36291,
1077 /* -15 */     29154,     23254,     18705,     14949,     11916,
1078 /* -10 */      9548,      7620,      6100,      4904,      3906,
1079 /*  -5 */      3121,      2501,      1991,      1586,      1277,
1080 /*   0 */      1024,       820,       655,       526,       423,
1081 /*   5 */       335,       272,       215,       172,       137,
1082 /*  10 */       110,        87,        70,        56,        45,
1083 /*  15 */        36,        29,        23,        18,        15,
1084};
1085
1086/*
1087 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1088 *
1089 * In cases where the weight does not change often, we can use the
1090 * precalculated inverse to speed up arithmetics by turning divisions
1091 * into multiplications:
1092 */
1093static const u32 prio_to_wmult[40] = {
1094 /* -20 */     48388,     59856,     76040,     92818,    118348,
1095 /* -15 */    147320,    184698,    229616,    287308,    360437,
1096 /* -10 */    449829,    563644,    704093,    875809,   1099582,
1097 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1098 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1099 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1100 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1101 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1102};
1103
1104#define ENQUEUE_WAKEUP          1
1105#define ENQUEUE_HEAD            2
1106#ifdef CONFIG_SMP
1107#define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
1108#else
1109#define ENQUEUE_WAKING          0
1110#endif
1111#define ENQUEUE_REPLENISH       8
1112
1113#define DEQUEUE_SLEEP           1
1114
1115struct sched_class {
1116        const struct sched_class *next;
1117
1118        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1119        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1120        void (*yield_task) (struct rq *rq);
1121        bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1122
1123        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1124
1125        struct task_struct * (*pick_next_task) (struct rq *rq);
1126        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1127
1128#ifdef CONFIG_SMP
1129        int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1130        void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1131
1132        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1133        void (*post_schedule) (struct rq *this_rq);
1134        void (*task_waking) (struct task_struct *task);
1135        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1136
1137        void (*set_cpus_allowed)(struct task_struct *p,
1138                                 const struct cpumask *newmask);
1139
1140        void (*rq_online)(struct rq *rq);
1141        void (*rq_offline)(struct rq *rq);
1142#endif
1143
1144        void (*set_curr_task) (struct rq *rq);
1145        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1146        void (*task_fork) (struct task_struct *p);
1147        void (*task_dead) (struct task_struct *p);
1148
1149        void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1150        void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1151        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1152                             int oldprio);
1153
1154        unsigned int (*get_rr_interval) (struct rq *rq,
1155                                         struct task_struct *task);
1156
1157#ifdef CONFIG_FAIR_GROUP_SCHED
1158        void (*task_move_group) (struct task_struct *p, int on_rq);
1159#endif
1160};
1161
1162#define sched_class_highest (&stop_sched_class)
1163#define for_each_class(class) \
1164   for (class = sched_class_highest; class; class = class->next)
1165
1166extern const struct sched_class stop_sched_class;
1167extern const struct sched_class dl_sched_class;
1168extern const struct sched_class rt_sched_class;
1169extern const struct sched_class fair_sched_class;
1170extern const struct sched_class idle_sched_class;
1171
1172
1173#ifdef CONFIG_SMP
1174
1175extern void update_group_power(struct sched_domain *sd, int cpu);
1176
1177extern void trigger_load_balance(struct rq *rq);
1178extern void idle_balance(int this_cpu, struct rq *this_rq);
1179
1180extern void idle_enter_fair(struct rq *this_rq);
1181extern void idle_exit_fair(struct rq *this_rq);
1182
1183#else   /* CONFIG_SMP */
1184
1185static inline void idle_balance(int cpu, struct rq *rq)
1186{
1187}
1188
1189#endif
1190
1191extern void sysrq_sched_debug_show(void);
1192extern void sched_init_granularity(void);
1193extern void update_max_interval(void);
1194
1195extern void init_sched_dl_class(void);
1196extern void init_sched_rt_class(void);
1197extern void init_sched_fair_class(void);
1198extern void init_sched_dl_class(void);
1199
1200extern void resched_task(struct task_struct *p);
1201extern void resched_cpu(int cpu);
1202
1203extern struct rt_bandwidth def_rt_bandwidth;
1204extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1205
1206extern struct dl_bandwidth def_dl_bandwidth;
1207extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1208extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1209
1210unsigned long to_ratio(u64 period, u64 runtime);
1211
1212extern void update_idle_cpu_load(struct rq *this_rq);
1213
1214extern void init_task_runnable_average(struct task_struct *p);
1215
1216#ifdef CONFIG_PARAVIRT
1217static inline u64 steal_ticks(u64 steal)
1218{
1219        if (unlikely(steal > NSEC_PER_SEC))
1220                return div_u64(steal, TICK_NSEC);
1221
1222        return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1223}
1224#endif
1225
1226static inline void inc_nr_running(struct rq *rq)
1227{
1228        rq->nr_running++;
1229
1230#ifdef CONFIG_NO_HZ_FULL
1231        if (rq->nr_running == 2) {
1232                if (tick_nohz_full_cpu(rq->cpu)) {
1233                        /* Order rq->nr_running write against the IPI */
1234                        smp_wmb();
1235                        smp_send_reschedule(rq->cpu);
1236                }
1237       }
1238#endif
1239}
1240
1241static inline void dec_nr_running(struct rq *rq)
1242{
1243        rq->nr_running--;
1244}
1245
1246static inline void rq_last_tick_reset(struct rq *rq)
1247{
1248#ifdef CONFIG_NO_HZ_FULL
1249        rq->last_sched_tick = jiffies;
1250#endif
1251}
1252
1253extern void update_rq_clock(struct rq *rq);
1254
1255extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1256extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1257
1258extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1259
1260extern const_debug unsigned int sysctl_sched_time_avg;
1261extern const_debug unsigned int sysctl_sched_nr_migrate;
1262extern const_debug unsigned int sysctl_sched_migration_cost;
1263
1264static inline u64 sched_avg_period(void)
1265{
1266        return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1267}
1268
1269#ifdef CONFIG_SCHED_HRTICK
1270
1271/*
1272 * Use hrtick when:
1273 *  - enabled by features
1274 *  - hrtimer is actually high res
1275 */
1276static inline int hrtick_enabled(struct rq *rq)
1277{
1278        if (!sched_feat(HRTICK))
1279                return 0;
1280        if (!cpu_active(cpu_of(rq)))
1281                return 0;
1282        return hrtimer_is_hres_active(&rq->hrtick_timer);
1283}
1284
1285void hrtick_start(struct rq *rq, u64 delay);
1286
1287#else
1288
1289static inline int hrtick_enabled(struct rq *rq)
1290{
1291        return 0;
1292}
1293
1294#endif /* CONFIG_SCHED_HRTICK */
1295
1296#ifdef CONFIG_SMP
1297extern void sched_avg_update(struct rq *rq);
1298static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1299{
1300        rq->rt_avg += rt_delta;
1301        sched_avg_update(rq);
1302}
1303#else
1304static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1305static inline void sched_avg_update(struct rq *rq) { }
1306#endif
1307
1308extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1309
1310#ifdef CONFIG_SMP
1311#ifdef CONFIG_PREEMPT
1312
1313static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1314
1315/*
1316 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1317 * way at the expense of forcing extra atomic operations in all
1318 * invocations.  This assures that the double_lock is acquired using the
1319 * same underlying policy as the spinlock_t on this architecture, which
1320 * reduces latency compared to the unfair variant below.  However, it
1321 * also adds more overhead and therefore may reduce throughput.
1322 */
1323static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1324        __releases(this_rq->lock)
1325        __acquires(busiest->lock)
1326        __acquires(this_rq->lock)
1327{
1328        raw_spin_unlock(&this_rq->lock);
1329        double_rq_lock(this_rq, busiest);
1330
1331        return 1;
1332}
1333
1334#else
1335/*
1336 * Unfair double_lock_balance: Optimizes throughput at the expense of
1337 * latency by eliminating extra atomic operations when the locks are
1338 * already in proper order on entry.  This favors lower cpu-ids and will
1339 * grant the double lock to lower cpus over higher ids under contention,
1340 * regardless of entry order into the function.
1341 */
1342static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1343        __releases(this_rq->lock)
1344        __acquires(busiest->lock)
1345        __acquires(this_rq->lock)
1346{
1347        int ret = 0;
1348
1349        if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1350                if (busiest < this_rq) {
1351                        raw_spin_unlock(&this_rq->lock);
1352                        raw_spin_lock(&busiest->lock);
1353                        raw_spin_lock_nested(&this_rq->lock,
1354                                              SINGLE_DEPTH_NESTING);
1355                        ret = 1;
1356                } else
1357                        raw_spin_lock_nested(&busiest->lock,
1358                                              SINGLE_DEPTH_NESTING);
1359        }
1360        return ret;
1361}
1362
1363#endif /* CONFIG_PREEMPT */
1364
1365/*
1366 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1367 */
1368static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1369{
1370        if (unlikely(!irqs_disabled())) {
1371                /* printk() doesn't work good under rq->lock */
1372                raw_spin_unlock(&this_rq->lock);
1373                BUG_ON(1);
1374        }
1375
1376        return _double_lock_balance(this_rq, busiest);
1377}
1378
1379static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1380        __releases(busiest->lock)
1381{
1382        raw_spin_unlock(&busiest->lock);
1383        lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1384}
1385
1386static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1387{
1388        if (l1 > l2)
1389                swap(l1, l2);
1390
1391        spin_lock(l1);
1392        spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1393}
1394
1395static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1396{
1397        if (l1 > l2)
1398                swap(l1, l2);
1399
1400        raw_spin_lock(l1);
1401        raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1402}
1403
1404/*
1405 * double_rq_lock - safely lock two runqueues
1406 *
1407 * Note this does not disable interrupts like task_rq_lock,
1408 * you need to do so manually before calling.
1409 */
1410static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1411        __acquires(rq1->lock)
1412        __acquires(rq2->lock)
1413{
1414        BUG_ON(!irqs_disabled());
1415        if (rq1 == rq2) {
1416                raw_spin_lock(&rq1->lock);
1417                __acquire(rq2->lock);   /* Fake it out ;) */
1418        } else {
1419                if (rq1 < rq2) {
1420                        raw_spin_lock(&rq1->lock);
1421                        raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1422                } else {
1423                        raw_spin_lock(&rq2->lock);
1424                        raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1425                }
1426        }
1427}
1428
1429/*
1430 * double_rq_unlock - safely unlock two runqueues
1431 *
1432 * Note this does not restore interrupts like task_rq_unlock,
1433 * you need to do so manually after calling.
1434 */
1435static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1436        __releases(rq1->lock)
1437        __releases(rq2->lock)
1438{
1439        raw_spin_unlock(&rq1->lock);
1440        if (rq1 != rq2)
1441                raw_spin_unlock(&rq2->lock);
1442        else
1443                __release(rq2->lock);
1444}
1445
1446#else /* CONFIG_SMP */
1447
1448/*
1449 * double_rq_lock - safely lock two runqueues
1450 *
1451 * Note this does not disable interrupts like task_rq_lock,
1452 * you need to do so manually before calling.
1453 */
1454static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1455        __acquires(rq1->lock)
1456        __acquires(rq2->lock)
1457{
1458        BUG_ON(!irqs_disabled());
1459        BUG_ON(rq1 != rq2);
1460        raw_spin_lock(&rq1->lock);
1461        __acquire(rq2->lock);   /* Fake it out ;) */
1462}
1463
1464/*
1465 * double_rq_unlock - safely unlock two runqueues
1466 *
1467 * Note this does not restore interrupts like task_rq_unlock,
1468 * you need to do so manually after calling.
1469 */
1470static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1471        __releases(rq1->lock)
1472        __releases(rq2->lock)
1473{
1474        BUG_ON(rq1 != rq2);
1475        raw_spin_unlock(&rq1->lock);
1476        __release(rq2->lock);
1477}
1478
1479#endif
1480
1481extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1482extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1483extern void print_cfs_stats(struct seq_file *m, int cpu);
1484extern void print_rt_stats(struct seq_file *m, int cpu);
1485
1486extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1487extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1488extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1489
1490extern void cfs_bandwidth_usage_inc(void);
1491extern void cfs_bandwidth_usage_dec(void);
1492
1493#ifdef CONFIG_NO_HZ_COMMON
1494enum rq_nohz_flag_bits {
1495        NOHZ_TICK_STOPPED,
1496        NOHZ_BALANCE_KICK,
1497};
1498
1499#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1500#endif
1501
1502#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1503
1504DECLARE_PER_CPU(u64, cpu_hardirq_time);
1505DECLARE_PER_CPU(u64, cpu_softirq_time);
1506
1507#ifndef CONFIG_64BIT
1508DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1509
1510static inline void irq_time_write_begin(void)
1511{
1512        __this_cpu_inc(irq_time_seq.sequence);
1513        smp_wmb();
1514}
1515
1516static inline void irq_time_write_end(void)
1517{
1518        smp_wmb();
1519        __this_cpu_inc(irq_time_seq.sequence);
1520}
1521
1522static inline u64 irq_time_read(int cpu)
1523{
1524        u64 irq_time;
1525        unsigned seq;
1526
1527        do {
1528                seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1529                irq_time = per_cpu(cpu_softirq_time, cpu) +
1530                           per_cpu(cpu_hardirq_time, cpu);
1531        } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1532
1533        return irq_time;
1534}
1535#else /* CONFIG_64BIT */
1536static inline void irq_time_write_begin(void)
1537{
1538}
1539
1540static inline void irq_time_write_end(void)
1541{
1542}
1543
1544static inline u64 irq_time_read(int cpu)
1545{
1546        return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1547}
1548#endif /* CONFIG_64BIT */
1549#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1550