linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * This program is free software; you can redistribute it and/or modify
  18 * it under the terms of the GNU General Public License as published by
  19 * the Free Software Foundation; either version 2 of the License, or
  20 * (at your option) any later version.
  21 *
  22 * This program is distributed in the hope that it will be useful,
  23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  25 * GNU General Public License for more details.
  26 */
  27
  28#include <linux/res_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/mm.h>
  32#include <linux/hugetlb.h>
  33#include <linux/pagemap.h>
  34#include <linux/smp.h>
  35#include <linux/page-flags.h>
  36#include <linux/backing-dev.h>
  37#include <linux/bit_spinlock.h>
  38#include <linux/rcupdate.h>
  39#include <linux/limits.h>
  40#include <linux/export.h>
  41#include <linux/mutex.h>
  42#include <linux/rbtree.h>
  43#include <linux/slab.h>
  44#include <linux/swap.h>
  45#include <linux/swapops.h>
  46#include <linux/spinlock.h>
  47#include <linux/eventfd.h>
  48#include <linux/poll.h>
  49#include <linux/sort.h>
  50#include <linux/fs.h>
  51#include <linux/seq_file.h>
  52#include <linux/vmpressure.h>
  53#include <linux/mm_inline.h>
  54#include <linux/page_cgroup.h>
  55#include <linux/cpu.h>
  56#include <linux/oom.h>
  57#include <linux/lockdep.h>
  58#include <linux/file.h>
  59#include "internal.h"
  60#include <net/sock.h>
  61#include <net/ip.h>
  62#include <net/tcp_memcontrol.h>
  63#include "slab.h"
  64
  65#include <asm/uaccess.h>
  66
  67#include <trace/events/vmscan.h>
  68
  69struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  70EXPORT_SYMBOL(mem_cgroup_subsys);
  71
  72#define MEM_CGROUP_RECLAIM_RETRIES      5
  73static struct mem_cgroup *root_mem_cgroup __read_mostly;
  74
  75#ifdef CONFIG_MEMCG_SWAP
  76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  77int do_swap_account __read_mostly;
  78
  79/* for remember boot option*/
  80#ifdef CONFIG_MEMCG_SWAP_ENABLED
  81static int really_do_swap_account __initdata = 1;
  82#else
  83static int really_do_swap_account __initdata = 0;
  84#endif
  85
  86#else
  87#define do_swap_account         0
  88#endif
  89
  90
  91static const char * const mem_cgroup_stat_names[] = {
  92        "cache",
  93        "rss",
  94        "rss_huge",
  95        "mapped_file",
  96        "writeback",
  97        "swap",
  98};
  99
 100enum mem_cgroup_events_index {
 101        MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
 102        MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
 103        MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
 104        MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
 105        MEM_CGROUP_EVENTS_NSTATS,
 106};
 107
 108static const char * const mem_cgroup_events_names[] = {
 109        "pgpgin",
 110        "pgpgout",
 111        "pgfault",
 112        "pgmajfault",
 113};
 114
 115static const char * const mem_cgroup_lru_names[] = {
 116        "inactive_anon",
 117        "active_anon",
 118        "inactive_file",
 119        "active_file",
 120        "unevictable",
 121};
 122
 123/*
 124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 125 * it will be incremated by the number of pages. This counter is used for
 126 * for trigger some periodic events. This is straightforward and better
 127 * than using jiffies etc. to handle periodic memcg event.
 128 */
 129enum mem_cgroup_events_target {
 130        MEM_CGROUP_TARGET_THRESH,
 131        MEM_CGROUP_TARGET_SOFTLIMIT,
 132        MEM_CGROUP_TARGET_NUMAINFO,
 133        MEM_CGROUP_NTARGETS,
 134};
 135#define THRESHOLDS_EVENTS_TARGET 128
 136#define SOFTLIMIT_EVENTS_TARGET 1024
 137#define NUMAINFO_EVENTS_TARGET  1024
 138
 139struct mem_cgroup_stat_cpu {
 140        long count[MEM_CGROUP_STAT_NSTATS];
 141        unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
 142        unsigned long nr_page_events;
 143        unsigned long targets[MEM_CGROUP_NTARGETS];
 144};
 145
 146struct mem_cgroup_reclaim_iter {
 147        /*
 148         * last scanned hierarchy member. Valid only if last_dead_count
 149         * matches memcg->dead_count of the hierarchy root group.
 150         */
 151        struct mem_cgroup *last_visited;
 152        int last_dead_count;
 153
 154        /* scan generation, increased every round-trip */
 155        unsigned int generation;
 156};
 157
 158/*
 159 * per-zone information in memory controller.
 160 */
 161struct mem_cgroup_per_zone {
 162        struct lruvec           lruvec;
 163        unsigned long           lru_size[NR_LRU_LISTS];
 164
 165        struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
 166
 167        struct rb_node          tree_node;      /* RB tree node */
 168        unsigned long long      usage_in_excess;/* Set to the value by which */
 169                                                /* the soft limit is exceeded*/
 170        bool                    on_tree;
 171        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 172                                                /* use container_of        */
 173};
 174
 175struct mem_cgroup_per_node {
 176        struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 177};
 178
 179/*
 180 * Cgroups above their limits are maintained in a RB-Tree, independent of
 181 * their hierarchy representation
 182 */
 183
 184struct mem_cgroup_tree_per_zone {
 185        struct rb_root rb_root;
 186        spinlock_t lock;
 187};
 188
 189struct mem_cgroup_tree_per_node {
 190        struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 191};
 192
 193struct mem_cgroup_tree {
 194        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 195};
 196
 197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 198
 199struct mem_cgroup_threshold {
 200        struct eventfd_ctx *eventfd;
 201        u64 threshold;
 202};
 203
 204/* For threshold */
 205struct mem_cgroup_threshold_ary {
 206        /* An array index points to threshold just below or equal to usage. */
 207        int current_threshold;
 208        /* Size of entries[] */
 209        unsigned int size;
 210        /* Array of thresholds */
 211        struct mem_cgroup_threshold entries[0];
 212};
 213
 214struct mem_cgroup_thresholds {
 215        /* Primary thresholds array */
 216        struct mem_cgroup_threshold_ary *primary;
 217        /*
 218         * Spare threshold array.
 219         * This is needed to make mem_cgroup_unregister_event() "never fail".
 220         * It must be able to store at least primary->size - 1 entries.
 221         */
 222        struct mem_cgroup_threshold_ary *spare;
 223};
 224
 225/* for OOM */
 226struct mem_cgroup_eventfd_list {
 227        struct list_head list;
 228        struct eventfd_ctx *eventfd;
 229};
 230
 231/*
 232 * cgroup_event represents events which userspace want to receive.
 233 */
 234struct mem_cgroup_event {
 235        /*
 236         * memcg which the event belongs to.
 237         */
 238        struct mem_cgroup *memcg;
 239        /*
 240         * eventfd to signal userspace about the event.
 241         */
 242        struct eventfd_ctx *eventfd;
 243        /*
 244         * Each of these stored in a list by the cgroup.
 245         */
 246        struct list_head list;
 247        /*
 248         * register_event() callback will be used to add new userspace
 249         * waiter for changes related to this event.  Use eventfd_signal()
 250         * on eventfd to send notification to userspace.
 251         */
 252        int (*register_event)(struct mem_cgroup *memcg,
 253                              struct eventfd_ctx *eventfd, const char *args);
 254        /*
 255         * unregister_event() callback will be called when userspace closes
 256         * the eventfd or on cgroup removing.  This callback must be set,
 257         * if you want provide notification functionality.
 258         */
 259        void (*unregister_event)(struct mem_cgroup *memcg,
 260                                 struct eventfd_ctx *eventfd);
 261        /*
 262         * All fields below needed to unregister event when
 263         * userspace closes eventfd.
 264         */
 265        poll_table pt;
 266        wait_queue_head_t *wqh;
 267        wait_queue_t wait;
 268        struct work_struct remove;
 269};
 270
 271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 273
 274/*
 275 * The memory controller data structure. The memory controller controls both
 276 * page cache and RSS per cgroup. We would eventually like to provide
 277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 278 * to help the administrator determine what knobs to tune.
 279 *
 280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 281 * we hit the water mark. May be even add a low water mark, such that
 282 * no reclaim occurs from a cgroup at it's low water mark, this is
 283 * a feature that will be implemented much later in the future.
 284 */
 285struct mem_cgroup {
 286        struct cgroup_subsys_state css;
 287        /*
 288         * the counter to account for memory usage
 289         */
 290        struct res_counter res;
 291
 292        /* vmpressure notifications */
 293        struct vmpressure vmpressure;
 294
 295        /*
 296         * the counter to account for mem+swap usage.
 297         */
 298        struct res_counter memsw;
 299
 300        /*
 301         * the counter to account for kernel memory usage.
 302         */
 303        struct res_counter kmem;
 304        /*
 305         * Should the accounting and control be hierarchical, per subtree?
 306         */
 307        bool use_hierarchy;
 308        unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
 309
 310        bool            oom_lock;
 311        atomic_t        under_oom;
 312        atomic_t        oom_wakeups;
 313
 314        int     swappiness;
 315        /* OOM-Killer disable */
 316        int             oom_kill_disable;
 317
 318        /* set when res.limit == memsw.limit */
 319        bool            memsw_is_minimum;
 320
 321        /* protect arrays of thresholds */
 322        struct mutex thresholds_lock;
 323
 324        /* thresholds for memory usage. RCU-protected */
 325        struct mem_cgroup_thresholds thresholds;
 326
 327        /* thresholds for mem+swap usage. RCU-protected */
 328        struct mem_cgroup_thresholds memsw_thresholds;
 329
 330        /* For oom notifier event fd */
 331        struct list_head oom_notify;
 332
 333        /*
 334         * Should we move charges of a task when a task is moved into this
 335         * mem_cgroup ? And what type of charges should we move ?
 336         */
 337        unsigned long move_charge_at_immigrate;
 338        /*
 339         * set > 0 if pages under this cgroup are moving to other cgroup.
 340         */
 341        atomic_t        moving_account;
 342        /* taken only while moving_account > 0 */
 343        spinlock_t      move_lock;
 344        /*
 345         * percpu counter.
 346         */
 347        struct mem_cgroup_stat_cpu __percpu *stat;
 348        /*
 349         * used when a cpu is offlined or other synchronizations
 350         * See mem_cgroup_read_stat().
 351         */
 352        struct mem_cgroup_stat_cpu nocpu_base;
 353        spinlock_t pcp_counter_lock;
 354
 355        atomic_t        dead_count;
 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
 357        struct cg_proto tcp_mem;
 358#endif
 359#if defined(CONFIG_MEMCG_KMEM)
 360        /* analogous to slab_common's slab_caches list. per-memcg */
 361        struct list_head memcg_slab_caches;
 362        /* Not a spinlock, we can take a lot of time walking the list */
 363        struct mutex slab_caches_mutex;
 364        /* Index in the kmem_cache->memcg_params->memcg_caches array */
 365        int kmemcg_id;
 366#endif
 367
 368        int last_scanned_node;
 369#if MAX_NUMNODES > 1
 370        nodemask_t      scan_nodes;
 371        atomic_t        numainfo_events;
 372        atomic_t        numainfo_updating;
 373#endif
 374
 375        /* List of events which userspace want to receive */
 376        struct list_head event_list;
 377        spinlock_t event_list_lock;
 378
 379        struct mem_cgroup_per_node *nodeinfo[0];
 380        /* WARNING: nodeinfo must be the last member here */
 381};
 382
 383/* internal only representation about the status of kmem accounting. */
 384enum {
 385        KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
 386        KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
 387};
 388
 389#ifdef CONFIG_MEMCG_KMEM
 390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
 391{
 392        set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
 393}
 394
 395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
 396{
 397        return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
 398}
 399
 400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
 401{
 402        /*
 403         * Our caller must use css_get() first, because memcg_uncharge_kmem()
 404         * will call css_put() if it sees the memcg is dead.
 405         */
 406        smp_wmb();
 407        if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
 408                set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
 409}
 410
 411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
 412{
 413        return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
 414                                  &memcg->kmem_account_flags);
 415}
 416#endif
 417
 418/* Stuffs for move charges at task migration. */
 419/*
 420 * Types of charges to be moved. "move_charge_at_immitgrate" and
 421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
 422 */
 423enum move_type {
 424        MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
 425        MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
 426        NR_MOVE_TYPE,
 427};
 428
 429/* "mc" and its members are protected by cgroup_mutex */
 430static struct move_charge_struct {
 431        spinlock_t        lock; /* for from, to */
 432        struct mem_cgroup *from;
 433        struct mem_cgroup *to;
 434        unsigned long immigrate_flags;
 435        unsigned long precharge;
 436        unsigned long moved_charge;
 437        unsigned long moved_swap;
 438        struct task_struct *moving_task;        /* a task moving charges */
 439        wait_queue_head_t waitq;                /* a waitq for other context */
 440} mc = {
 441        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 442        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 443};
 444
 445static bool move_anon(void)
 446{
 447        return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
 448}
 449
 450static bool move_file(void)
 451{
 452        return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
 453}
 454
 455/*
 456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 457 * limit reclaim to prevent infinite loops, if they ever occur.
 458 */
 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 461
 462enum charge_type {
 463        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 464        MEM_CGROUP_CHARGE_TYPE_ANON,
 465        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 466        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 467        NR_CHARGE_TYPE,
 468};
 469
 470/* for encoding cft->private value on file */
 471enum res_type {
 472        _MEM,
 473        _MEMSWAP,
 474        _OOM_TYPE,
 475        _KMEM,
 476};
 477
 478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
 479#define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
 480#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 481/* Used for OOM nofiier */
 482#define OOM_CONTROL             (0)
 483
 484/*
 485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 486 */
 487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
 488#define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 489#define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
 490#define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 491
 492/*
 493 * The memcg_create_mutex will be held whenever a new cgroup is created.
 494 * As a consequence, any change that needs to protect against new child cgroups
 495 * appearing has to hold it as well.
 496 */
 497static DEFINE_MUTEX(memcg_create_mutex);
 498
 499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
 500{
 501        return s ? container_of(s, struct mem_cgroup, css) : NULL;
 502}
 503
 504/* Some nice accessors for the vmpressure. */
 505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 506{
 507        if (!memcg)
 508                memcg = root_mem_cgroup;
 509        return &memcg->vmpressure;
 510}
 511
 512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 513{
 514        return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 515}
 516
 517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 518{
 519        return (memcg == root_mem_cgroup);
 520}
 521
 522/*
 523 * We restrict the id in the range of [1, 65535], so it can fit into
 524 * an unsigned short.
 525 */
 526#define MEM_CGROUP_ID_MAX       USHRT_MAX
 527
 528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 529{
 530        /*
 531         * The ID of the root cgroup is 0, but memcg treat 0 as an
 532         * invalid ID, so we return (cgroup_id + 1).
 533         */
 534        return memcg->css.cgroup->id + 1;
 535}
 536
 537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 538{
 539        struct cgroup_subsys_state *css;
 540
 541        css = css_from_id(id - 1, &mem_cgroup_subsys);
 542        return mem_cgroup_from_css(css);
 543}
 544
 545/* Writing them here to avoid exposing memcg's inner layout */
 546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
 547
 548void sock_update_memcg(struct sock *sk)
 549{
 550        if (mem_cgroup_sockets_enabled) {
 551                struct mem_cgroup *memcg;
 552                struct cg_proto *cg_proto;
 553
 554                BUG_ON(!sk->sk_prot->proto_cgroup);
 555
 556                /* Socket cloning can throw us here with sk_cgrp already
 557                 * filled. It won't however, necessarily happen from
 558                 * process context. So the test for root memcg given
 559                 * the current task's memcg won't help us in this case.
 560                 *
 561                 * Respecting the original socket's memcg is a better
 562                 * decision in this case.
 563                 */
 564                if (sk->sk_cgrp) {
 565                        BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
 566                        css_get(&sk->sk_cgrp->memcg->css);
 567                        return;
 568                }
 569
 570                rcu_read_lock();
 571                memcg = mem_cgroup_from_task(current);
 572                cg_proto = sk->sk_prot->proto_cgroup(memcg);
 573                if (!mem_cgroup_is_root(memcg) &&
 574                    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
 575                        sk->sk_cgrp = cg_proto;
 576                }
 577                rcu_read_unlock();
 578        }
 579}
 580EXPORT_SYMBOL(sock_update_memcg);
 581
 582void sock_release_memcg(struct sock *sk)
 583{
 584        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
 585                struct mem_cgroup *memcg;
 586                WARN_ON(!sk->sk_cgrp->memcg);
 587                memcg = sk->sk_cgrp->memcg;
 588                css_put(&sk->sk_cgrp->memcg->css);
 589        }
 590}
 591
 592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
 593{
 594        if (!memcg || mem_cgroup_is_root(memcg))
 595                return NULL;
 596
 597        return &memcg->tcp_mem;
 598}
 599EXPORT_SYMBOL(tcp_proto_cgroup);
 600
 601static void disarm_sock_keys(struct mem_cgroup *memcg)
 602{
 603        if (!memcg_proto_activated(&memcg->tcp_mem))
 604                return;
 605        static_key_slow_dec(&memcg_socket_limit_enabled);
 606}
 607#else
 608static void disarm_sock_keys(struct mem_cgroup *memcg)
 609{
 610}
 611#endif
 612
 613#ifdef CONFIG_MEMCG_KMEM
 614/*
 615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 616 * The main reason for not using cgroup id for this:
 617 *  this works better in sparse environments, where we have a lot of memcgs,
 618 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 619 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 620 *  200 entry array for that.
 621 *
 622 * The current size of the caches array is stored in
 623 * memcg_limited_groups_array_size.  It will double each time we have to
 624 * increase it.
 625 */
 626static DEFINE_IDA(kmem_limited_groups);
 627int memcg_limited_groups_array_size;
 628
 629/*
 630 * MIN_SIZE is different than 1, because we would like to avoid going through
 631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 632 * cgroups is a reasonable guess. In the future, it could be a parameter or
 633 * tunable, but that is strictly not necessary.
 634 *
 635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 636 * this constant directly from cgroup, but it is understandable that this is
 637 * better kept as an internal representation in cgroup.c. In any case, the
 638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 639 * increase ours as well if it increases.
 640 */
 641#define MEMCG_CACHES_MIN_SIZE 4
 642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 643
 644/*
 645 * A lot of the calls to the cache allocation functions are expected to be
 646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 647 * conditional to this static branch, we'll have to allow modules that does
 648 * kmem_cache_alloc and the such to see this symbol as well
 649 */
 650struct static_key memcg_kmem_enabled_key;
 651EXPORT_SYMBOL(memcg_kmem_enabled_key);
 652
 653static void disarm_kmem_keys(struct mem_cgroup *memcg)
 654{
 655        if (memcg_kmem_is_active(memcg)) {
 656                static_key_slow_dec(&memcg_kmem_enabled_key);
 657                ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
 658        }
 659        /*
 660         * This check can't live in kmem destruction function,
 661         * since the charges will outlive the cgroup
 662         */
 663        WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
 664}
 665#else
 666static void disarm_kmem_keys(struct mem_cgroup *memcg)
 667{
 668}
 669#endif /* CONFIG_MEMCG_KMEM */
 670
 671static void disarm_static_keys(struct mem_cgroup *memcg)
 672{
 673        disarm_sock_keys(memcg);
 674        disarm_kmem_keys(memcg);
 675}
 676
 677static void drain_all_stock_async(struct mem_cgroup *memcg);
 678
 679static struct mem_cgroup_per_zone *
 680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
 681{
 682        VM_BUG_ON((unsigned)nid >= nr_node_ids);
 683        return &memcg->nodeinfo[nid]->zoneinfo[zid];
 684}
 685
 686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
 687{
 688        return &memcg->css;
 689}
 690
 691static struct mem_cgroup_per_zone *
 692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 693{
 694        int nid = page_to_nid(page);
 695        int zid = page_zonenum(page);
 696
 697        return mem_cgroup_zoneinfo(memcg, nid, zid);
 698}
 699
 700static struct mem_cgroup_tree_per_zone *
 701soft_limit_tree_node_zone(int nid, int zid)
 702{
 703        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 704}
 705
 706static struct mem_cgroup_tree_per_zone *
 707soft_limit_tree_from_page(struct page *page)
 708{
 709        int nid = page_to_nid(page);
 710        int zid = page_zonenum(page);
 711
 712        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 713}
 714
 715static void
 716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
 717                                struct mem_cgroup_per_zone *mz,
 718                                struct mem_cgroup_tree_per_zone *mctz,
 719                                unsigned long long new_usage_in_excess)
 720{
 721        struct rb_node **p = &mctz->rb_root.rb_node;
 722        struct rb_node *parent = NULL;
 723        struct mem_cgroup_per_zone *mz_node;
 724
 725        if (mz->on_tree)
 726                return;
 727
 728        mz->usage_in_excess = new_usage_in_excess;
 729        if (!mz->usage_in_excess)
 730                return;
 731        while (*p) {
 732                parent = *p;
 733                mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 734                                        tree_node);
 735                if (mz->usage_in_excess < mz_node->usage_in_excess)
 736                        p = &(*p)->rb_left;
 737                /*
 738                 * We can't avoid mem cgroups that are over their soft
 739                 * limit by the same amount
 740                 */
 741                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 742                        p = &(*p)->rb_right;
 743        }
 744        rb_link_node(&mz->tree_node, parent, p);
 745        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 746        mz->on_tree = true;
 747}
 748
 749static void
 750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 751                                struct mem_cgroup_per_zone *mz,
 752                                struct mem_cgroup_tree_per_zone *mctz)
 753{
 754        if (!mz->on_tree)
 755                return;
 756        rb_erase(&mz->tree_node, &mctz->rb_root);
 757        mz->on_tree = false;
 758}
 759
 760static void
 761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 762                                struct mem_cgroup_per_zone *mz,
 763                                struct mem_cgroup_tree_per_zone *mctz)
 764{
 765        spin_lock(&mctz->lock);
 766        __mem_cgroup_remove_exceeded(memcg, mz, mctz);
 767        spin_unlock(&mctz->lock);
 768}
 769
 770
 771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 772{
 773        unsigned long long excess;
 774        struct mem_cgroup_per_zone *mz;
 775        struct mem_cgroup_tree_per_zone *mctz;
 776        int nid = page_to_nid(page);
 777        int zid = page_zonenum(page);
 778        mctz = soft_limit_tree_from_page(page);
 779
 780        /*
 781         * Necessary to update all ancestors when hierarchy is used.
 782         * because their event counter is not touched.
 783         */
 784        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 785                mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 786                excess = res_counter_soft_limit_excess(&memcg->res);
 787                /*
 788                 * We have to update the tree if mz is on RB-tree or
 789                 * mem is over its softlimit.
 790                 */
 791                if (excess || mz->on_tree) {
 792                        spin_lock(&mctz->lock);
 793                        /* if on-tree, remove it */
 794                        if (mz->on_tree)
 795                                __mem_cgroup_remove_exceeded(memcg, mz, mctz);
 796                        /*
 797                         * Insert again. mz->usage_in_excess will be updated.
 798                         * If excess is 0, no tree ops.
 799                         */
 800                        __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
 801                        spin_unlock(&mctz->lock);
 802                }
 803        }
 804}
 805
 806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 807{
 808        int node, zone;
 809        struct mem_cgroup_per_zone *mz;
 810        struct mem_cgroup_tree_per_zone *mctz;
 811
 812        for_each_node(node) {
 813                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 814                        mz = mem_cgroup_zoneinfo(memcg, node, zone);
 815                        mctz = soft_limit_tree_node_zone(node, zone);
 816                        mem_cgroup_remove_exceeded(memcg, mz, mctz);
 817                }
 818        }
 819}
 820
 821static struct mem_cgroup_per_zone *
 822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 823{
 824        struct rb_node *rightmost = NULL;
 825        struct mem_cgroup_per_zone *mz;
 826
 827retry:
 828        mz = NULL;
 829        rightmost = rb_last(&mctz->rb_root);
 830        if (!rightmost)
 831                goto done;              /* Nothing to reclaim from */
 832
 833        mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 834        /*
 835         * Remove the node now but someone else can add it back,
 836         * we will to add it back at the end of reclaim to its correct
 837         * position in the tree.
 838         */
 839        __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
 840        if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
 841                !css_tryget(&mz->memcg->css))
 842                goto retry;
 843done:
 844        return mz;
 845}
 846
 847static struct mem_cgroup_per_zone *
 848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 849{
 850        struct mem_cgroup_per_zone *mz;
 851
 852        spin_lock(&mctz->lock);
 853        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 854        spin_unlock(&mctz->lock);
 855        return mz;
 856}
 857
 858/*
 859 * Implementation Note: reading percpu statistics for memcg.
 860 *
 861 * Both of vmstat[] and percpu_counter has threshold and do periodic
 862 * synchronization to implement "quick" read. There are trade-off between
 863 * reading cost and precision of value. Then, we may have a chance to implement
 864 * a periodic synchronizion of counter in memcg's counter.
 865 *
 866 * But this _read() function is used for user interface now. The user accounts
 867 * memory usage by memory cgroup and he _always_ requires exact value because
 868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 869 * have to visit all online cpus and make sum. So, for now, unnecessary
 870 * synchronization is not implemented. (just implemented for cpu hotplug)
 871 *
 872 * If there are kernel internal actions which can make use of some not-exact
 873 * value, and reading all cpu value can be performance bottleneck in some
 874 * common workload, threashold and synchonization as vmstat[] should be
 875 * implemented.
 876 */
 877static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
 878                                 enum mem_cgroup_stat_index idx)
 879{
 880        long val = 0;
 881        int cpu;
 882
 883        get_online_cpus();
 884        for_each_online_cpu(cpu)
 885                val += per_cpu(memcg->stat->count[idx], cpu);
 886#ifdef CONFIG_HOTPLUG_CPU
 887        spin_lock(&memcg->pcp_counter_lock);
 888        val += memcg->nocpu_base.count[idx];
 889        spin_unlock(&memcg->pcp_counter_lock);
 890#endif
 891        put_online_cpus();
 892        return val;
 893}
 894
 895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
 896                                         bool charge)
 897{
 898        int val = (charge) ? 1 : -1;
 899        this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
 900}
 901
 902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 903                                            enum mem_cgroup_events_index idx)
 904{
 905        unsigned long val = 0;
 906        int cpu;
 907
 908        get_online_cpus();
 909        for_each_online_cpu(cpu)
 910                val += per_cpu(memcg->stat->events[idx], cpu);
 911#ifdef CONFIG_HOTPLUG_CPU
 912        spin_lock(&memcg->pcp_counter_lock);
 913        val += memcg->nocpu_base.events[idx];
 914        spin_unlock(&memcg->pcp_counter_lock);
 915#endif
 916        put_online_cpus();
 917        return val;
 918}
 919
 920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 921                                         struct page *page,
 922                                         bool anon, int nr_pages)
 923{
 924        preempt_disable();
 925
 926        /*
 927         * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 928         * counted as CACHE even if it's on ANON LRU.
 929         */
 930        if (anon)
 931                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 932                                nr_pages);
 933        else
 934                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 935                                nr_pages);
 936
 937        if (PageTransHuge(page))
 938                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 939                                nr_pages);
 940
 941        /* pagein of a big page is an event. So, ignore page size */
 942        if (nr_pages > 0)
 943                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 944        else {
 945                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 946                nr_pages = -nr_pages; /* for event */
 947        }
 948
 949        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 950
 951        preempt_enable();
 952}
 953
 954unsigned long
 955mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 956{
 957        struct mem_cgroup_per_zone *mz;
 958
 959        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 960        return mz->lru_size[lru];
 961}
 962
 963static unsigned long
 964mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
 965                        unsigned int lru_mask)
 966{
 967        struct mem_cgroup_per_zone *mz;
 968        enum lru_list lru;
 969        unsigned long ret = 0;
 970
 971        mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 972
 973        for_each_lru(lru) {
 974                if (BIT(lru) & lru_mask)
 975                        ret += mz->lru_size[lru];
 976        }
 977        return ret;
 978}
 979
 980static unsigned long
 981mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 982                        int nid, unsigned int lru_mask)
 983{
 984        u64 total = 0;
 985        int zid;
 986
 987        for (zid = 0; zid < MAX_NR_ZONES; zid++)
 988                total += mem_cgroup_zone_nr_lru_pages(memcg,
 989                                                nid, zid, lru_mask);
 990
 991        return total;
 992}
 993
 994static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 995                        unsigned int lru_mask)
 996{
 997        int nid;
 998        u64 total = 0;
 999
1000        for_each_node_state(nid, N_MEMORY)
1001                total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1002        return total;
1003}
1004
1005static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1006                                       enum mem_cgroup_events_target target)
1007{
1008        unsigned long val, next;
1009
1010        val = __this_cpu_read(memcg->stat->nr_page_events);
1011        next = __this_cpu_read(memcg->stat->targets[target]);
1012        /* from time_after() in jiffies.h */
1013        if ((long)next - (long)val < 0) {
1014                switch (target) {
1015                case MEM_CGROUP_TARGET_THRESH:
1016                        next = val + THRESHOLDS_EVENTS_TARGET;
1017                        break;
1018                case MEM_CGROUP_TARGET_SOFTLIMIT:
1019                        next = val + SOFTLIMIT_EVENTS_TARGET;
1020                        break;
1021                case MEM_CGROUP_TARGET_NUMAINFO:
1022                        next = val + NUMAINFO_EVENTS_TARGET;
1023                        break;
1024                default:
1025                        break;
1026                }
1027                __this_cpu_write(memcg->stat->targets[target], next);
1028                return true;
1029        }
1030        return false;
1031}
1032
1033/*
1034 * Check events in order.
1035 *
1036 */
1037static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1038{
1039        preempt_disable();
1040        /* threshold event is triggered in finer grain than soft limit */
1041        if (unlikely(mem_cgroup_event_ratelimit(memcg,
1042                                                MEM_CGROUP_TARGET_THRESH))) {
1043                bool do_softlimit;
1044                bool do_numainfo __maybe_unused;
1045
1046                do_softlimit = mem_cgroup_event_ratelimit(memcg,
1047                                                MEM_CGROUP_TARGET_SOFTLIMIT);
1048#if MAX_NUMNODES > 1
1049                do_numainfo = mem_cgroup_event_ratelimit(memcg,
1050                                                MEM_CGROUP_TARGET_NUMAINFO);
1051#endif
1052                preempt_enable();
1053
1054                mem_cgroup_threshold(memcg);
1055                if (unlikely(do_softlimit))
1056                        mem_cgroup_update_tree(memcg, page);
1057#if MAX_NUMNODES > 1
1058                if (unlikely(do_numainfo))
1059                        atomic_inc(&memcg->numainfo_events);
1060#endif
1061        } else
1062                preempt_enable();
1063}
1064
1065struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1066{
1067        /*
1068         * mm_update_next_owner() may clear mm->owner to NULL
1069         * if it races with swapoff, page migration, etc.
1070         * So this can be called with p == NULL.
1071         */
1072        if (unlikely(!p))
1073                return NULL;
1074
1075        return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1076}
1077
1078struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1079{
1080        struct mem_cgroup *memcg = NULL;
1081
1082        if (!mm)
1083                return NULL;
1084        /*
1085         * Because we have no locks, mm->owner's may be being moved to other
1086         * cgroup. We use css_tryget() here even if this looks
1087         * pessimistic (rather than adding locks here).
1088         */
1089        rcu_read_lock();
1090        do {
1091                memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092                if (unlikely(!memcg))
1093                        break;
1094        } while (!css_tryget(&memcg->css));
1095        rcu_read_unlock();
1096        return memcg;
1097}
1098
1099/*
1100 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101 * ref. count) or NULL if the whole root's subtree has been visited.
1102 *
1103 * helper function to be used by mem_cgroup_iter
1104 */
1105static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106                struct mem_cgroup *last_visited)
1107{
1108        struct cgroup_subsys_state *prev_css, *next_css;
1109
1110        prev_css = last_visited ? &last_visited->css : NULL;
1111skip_node:
1112        next_css = css_next_descendant_pre(prev_css, &root->css);
1113
1114        /*
1115         * Even if we found a group we have to make sure it is
1116         * alive. css && !memcg means that the groups should be
1117         * skipped and we should continue the tree walk.
1118         * last_visited css is safe to use because it is
1119         * protected by css_get and the tree walk is rcu safe.
1120         *
1121         * We do not take a reference on the root of the tree walk
1122         * because we might race with the root removal when it would
1123         * be the only node in the iterated hierarchy and mem_cgroup_iter
1124         * would end up in an endless loop because it expects that at
1125         * least one valid node will be returned. Root cannot disappear
1126         * because caller of the iterator should hold it already so
1127         * skipping css reference should be safe.
1128         */
1129        if (next_css) {
1130                if ((next_css == &root->css) ||
1131                    ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1132                        return mem_cgroup_from_css(next_css);
1133
1134                prev_css = next_css;
1135                goto skip_node;
1136        }
1137
1138        return NULL;
1139}
1140
1141static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1142{
1143        /*
1144         * When a group in the hierarchy below root is destroyed, the
1145         * hierarchy iterator can no longer be trusted since it might
1146         * have pointed to the destroyed group.  Invalidate it.
1147         */
1148        atomic_inc(&root->dead_count);
1149}
1150
1151static struct mem_cgroup *
1152mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1153                     struct mem_cgroup *root,
1154                     int *sequence)
1155{
1156        struct mem_cgroup *position = NULL;
1157        /*
1158         * A cgroup destruction happens in two stages: offlining and
1159         * release.  They are separated by a RCU grace period.
1160         *
1161         * If the iterator is valid, we may still race with an
1162         * offlining.  The RCU lock ensures the object won't be
1163         * released, tryget will fail if we lost the race.
1164         */
1165        *sequence = atomic_read(&root->dead_count);
1166        if (iter->last_dead_count == *sequence) {
1167                smp_rmb();
1168                position = iter->last_visited;
1169
1170                /*
1171                 * We cannot take a reference to root because we might race
1172                 * with root removal and returning NULL would end up in
1173                 * an endless loop on the iterator user level when root
1174                 * would be returned all the time.
1175                 */
1176                if (position && position != root &&
1177                                !css_tryget(&position->css))
1178                        position = NULL;
1179        }
1180        return position;
1181}
1182
1183static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1184                                   struct mem_cgroup *last_visited,
1185                                   struct mem_cgroup *new_position,
1186                                   struct mem_cgroup *root,
1187                                   int sequence)
1188{
1189        /* root reference counting symmetric to mem_cgroup_iter_load */
1190        if (last_visited && last_visited != root)
1191                css_put(&last_visited->css);
1192        /*
1193         * We store the sequence count from the time @last_visited was
1194         * loaded successfully instead of rereading it here so that we
1195         * don't lose destruction events in between.  We could have
1196         * raced with the destruction of @new_position after all.
1197         */
1198        iter->last_visited = new_position;
1199        smp_wmb();
1200        iter->last_dead_count = sequence;
1201}
1202
1203/**
1204 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1205 * @root: hierarchy root
1206 * @prev: previously returned memcg, NULL on first invocation
1207 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1208 *
1209 * Returns references to children of the hierarchy below @root, or
1210 * @root itself, or %NULL after a full round-trip.
1211 *
1212 * Caller must pass the return value in @prev on subsequent
1213 * invocations for reference counting, or use mem_cgroup_iter_break()
1214 * to cancel a hierarchy walk before the round-trip is complete.
1215 *
1216 * Reclaimers can specify a zone and a priority level in @reclaim to
1217 * divide up the memcgs in the hierarchy among all concurrent
1218 * reclaimers operating on the same zone and priority.
1219 */
1220struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1221                                   struct mem_cgroup *prev,
1222                                   struct mem_cgroup_reclaim_cookie *reclaim)
1223{
1224        struct mem_cgroup *memcg = NULL;
1225        struct mem_cgroup *last_visited = NULL;
1226
1227        if (mem_cgroup_disabled())
1228                return NULL;
1229
1230        if (!root)
1231                root = root_mem_cgroup;
1232
1233        if (prev && !reclaim)
1234                last_visited = prev;
1235
1236        if (!root->use_hierarchy && root != root_mem_cgroup) {
1237                if (prev)
1238                        goto out_css_put;
1239                return root;
1240        }
1241
1242        rcu_read_lock();
1243        while (!memcg) {
1244                struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1245                int uninitialized_var(seq);
1246
1247                if (reclaim) {
1248                        int nid = zone_to_nid(reclaim->zone);
1249                        int zid = zone_idx(reclaim->zone);
1250                        struct mem_cgroup_per_zone *mz;
1251
1252                        mz = mem_cgroup_zoneinfo(root, nid, zid);
1253                        iter = &mz->reclaim_iter[reclaim->priority];
1254                        if (prev && reclaim->generation != iter->generation) {
1255                                iter->last_visited = NULL;
1256                                goto out_unlock;
1257                        }
1258
1259                        last_visited = mem_cgroup_iter_load(iter, root, &seq);
1260                }
1261
1262                memcg = __mem_cgroup_iter_next(root, last_visited);
1263
1264                if (reclaim) {
1265                        mem_cgroup_iter_update(iter, last_visited, memcg, root,
1266                                        seq);
1267
1268                        if (!memcg)
1269                                iter->generation++;
1270                        else if (!prev && memcg)
1271                                reclaim->generation = iter->generation;
1272                }
1273
1274                if (prev && !memcg)
1275                        goto out_unlock;
1276        }
1277out_unlock:
1278        rcu_read_unlock();
1279out_css_put:
1280        if (prev && prev != root)
1281                css_put(&prev->css);
1282
1283        return memcg;
1284}
1285
1286/**
1287 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1288 * @root: hierarchy root
1289 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1290 */
1291void mem_cgroup_iter_break(struct mem_cgroup *root,
1292                           struct mem_cgroup *prev)
1293{
1294        if (!root)
1295                root = root_mem_cgroup;
1296        if (prev && prev != root)
1297                css_put(&prev->css);
1298}
1299
1300/*
1301 * Iteration constructs for visiting all cgroups (under a tree).  If
1302 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1303 * be used for reference counting.
1304 */
1305#define for_each_mem_cgroup_tree(iter, root)            \
1306        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
1307             iter != NULL;                              \
1308             iter = mem_cgroup_iter(root, iter, NULL))
1309
1310#define for_each_mem_cgroup(iter)                       \
1311        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
1312             iter != NULL;                              \
1313             iter = mem_cgroup_iter(NULL, iter, NULL))
1314
1315void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1316{
1317        struct mem_cgroup *memcg;
1318
1319        rcu_read_lock();
1320        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1321        if (unlikely(!memcg))
1322                goto out;
1323
1324        switch (idx) {
1325        case PGFAULT:
1326                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1327                break;
1328        case PGMAJFAULT:
1329                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1330                break;
1331        default:
1332                BUG();
1333        }
1334out:
1335        rcu_read_unlock();
1336}
1337EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1338
1339/**
1340 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1341 * @zone: zone of the wanted lruvec
1342 * @memcg: memcg of the wanted lruvec
1343 *
1344 * Returns the lru list vector holding pages for the given @zone and
1345 * @mem.  This can be the global zone lruvec, if the memory controller
1346 * is disabled.
1347 */
1348struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1349                                      struct mem_cgroup *memcg)
1350{
1351        struct mem_cgroup_per_zone *mz;
1352        struct lruvec *lruvec;
1353
1354        if (mem_cgroup_disabled()) {
1355                lruvec = &zone->lruvec;
1356                goto out;
1357        }
1358
1359        mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1360        lruvec = &mz->lruvec;
1361out:
1362        /*
1363         * Since a node can be onlined after the mem_cgroup was created,
1364         * we have to be prepared to initialize lruvec->zone here;
1365         * and if offlined then reonlined, we need to reinitialize it.
1366         */
1367        if (unlikely(lruvec->zone != zone))
1368                lruvec->zone = zone;
1369        return lruvec;
1370}
1371
1372/*
1373 * Following LRU functions are allowed to be used without PCG_LOCK.
1374 * Operations are called by routine of global LRU independently from memcg.
1375 * What we have to take care of here is validness of pc->mem_cgroup.
1376 *
1377 * Changes to pc->mem_cgroup happens when
1378 * 1. charge
1379 * 2. moving account
1380 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1381 * It is added to LRU before charge.
1382 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1383 * When moving account, the page is not on LRU. It's isolated.
1384 */
1385
1386/**
1387 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1388 * @page: the page
1389 * @zone: zone of the page
1390 */
1391struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1392{
1393        struct mem_cgroup_per_zone *mz;
1394        struct mem_cgroup *memcg;
1395        struct page_cgroup *pc;
1396        struct lruvec *lruvec;
1397
1398        if (mem_cgroup_disabled()) {
1399                lruvec = &zone->lruvec;
1400                goto out;
1401        }
1402
1403        pc = lookup_page_cgroup(page);
1404        memcg = pc->mem_cgroup;
1405
1406        /*
1407         * Surreptitiously switch any uncharged offlist page to root:
1408         * an uncharged page off lru does nothing to secure
1409         * its former mem_cgroup from sudden removal.
1410         *
1411         * Our caller holds lru_lock, and PageCgroupUsed is updated
1412         * under page_cgroup lock: between them, they make all uses
1413         * of pc->mem_cgroup safe.
1414         */
1415        if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1416                pc->mem_cgroup = memcg = root_mem_cgroup;
1417
1418        mz = page_cgroup_zoneinfo(memcg, page);
1419        lruvec = &mz->lruvec;
1420out:
1421        /*
1422         * Since a node can be onlined after the mem_cgroup was created,
1423         * we have to be prepared to initialize lruvec->zone here;
1424         * and if offlined then reonlined, we need to reinitialize it.
1425         */
1426        if (unlikely(lruvec->zone != zone))
1427                lruvec->zone = zone;
1428        return lruvec;
1429}
1430
1431/**
1432 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1433 * @lruvec: mem_cgroup per zone lru vector
1434 * @lru: index of lru list the page is sitting on
1435 * @nr_pages: positive when adding or negative when removing
1436 *
1437 * This function must be called when a page is added to or removed from an
1438 * lru list.
1439 */
1440void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1441                                int nr_pages)
1442{
1443        struct mem_cgroup_per_zone *mz;
1444        unsigned long *lru_size;
1445
1446        if (mem_cgroup_disabled())
1447                return;
1448
1449        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1450        lru_size = mz->lru_size + lru;
1451        *lru_size += nr_pages;
1452        VM_BUG_ON((long)(*lru_size) < 0);
1453}
1454
1455/*
1456 * Checks whether given mem is same or in the root_mem_cgroup's
1457 * hierarchy subtree
1458 */
1459bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1460                                  struct mem_cgroup *memcg)
1461{
1462        if (root_memcg == memcg)
1463                return true;
1464        if (!root_memcg->use_hierarchy || !memcg)
1465                return false;
1466        return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1467}
1468
1469static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1470                                       struct mem_cgroup *memcg)
1471{
1472        bool ret;
1473
1474        rcu_read_lock();
1475        ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1476        rcu_read_unlock();
1477        return ret;
1478}
1479
1480bool task_in_mem_cgroup(struct task_struct *task,
1481                        const struct mem_cgroup *memcg)
1482{
1483        struct mem_cgroup *curr = NULL;
1484        struct task_struct *p;
1485        bool ret;
1486
1487        p = find_lock_task_mm(task);
1488        if (p) {
1489                curr = try_get_mem_cgroup_from_mm(p->mm);
1490                task_unlock(p);
1491        } else {
1492                /*
1493                 * All threads may have already detached their mm's, but the oom
1494                 * killer still needs to detect if they have already been oom
1495                 * killed to prevent needlessly killing additional tasks.
1496                 */
1497                rcu_read_lock();
1498                curr = mem_cgroup_from_task(task);
1499                if (curr)
1500                        css_get(&curr->css);
1501                rcu_read_unlock();
1502        }
1503        if (!curr)
1504                return false;
1505        /*
1506         * We should check use_hierarchy of "memcg" not "curr". Because checking
1507         * use_hierarchy of "curr" here make this function true if hierarchy is
1508         * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1509         * hierarchy(even if use_hierarchy is disabled in "memcg").
1510         */
1511        ret = mem_cgroup_same_or_subtree(memcg, curr);
1512        css_put(&curr->css);
1513        return ret;
1514}
1515
1516int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1517{
1518        unsigned long inactive_ratio;
1519        unsigned long inactive;
1520        unsigned long active;
1521        unsigned long gb;
1522
1523        inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1524        active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1525
1526        gb = (inactive + active) >> (30 - PAGE_SHIFT);
1527        if (gb)
1528                inactive_ratio = int_sqrt(10 * gb);
1529        else
1530                inactive_ratio = 1;
1531
1532        return inactive * inactive_ratio < active;
1533}
1534
1535#define mem_cgroup_from_res_counter(counter, member)    \
1536        container_of(counter, struct mem_cgroup, member)
1537
1538/**
1539 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1540 * @memcg: the memory cgroup
1541 *
1542 * Returns the maximum amount of memory @mem can be charged with, in
1543 * pages.
1544 */
1545static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1546{
1547        unsigned long long margin;
1548
1549        margin = res_counter_margin(&memcg->res);
1550        if (do_swap_account)
1551                margin = min(margin, res_counter_margin(&memcg->memsw));
1552        return margin >> PAGE_SHIFT;
1553}
1554
1555int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1556{
1557        /* root ? */
1558        if (!css_parent(&memcg->css))
1559                return vm_swappiness;
1560
1561        return memcg->swappiness;
1562}
1563
1564/*
1565 * memcg->moving_account is used for checking possibility that some thread is
1566 * calling move_account(). When a thread on CPU-A starts moving pages under
1567 * a memcg, other threads should check memcg->moving_account under
1568 * rcu_read_lock(), like this:
1569 *
1570 *         CPU-A                                    CPU-B
1571 *                                              rcu_read_lock()
1572 *         memcg->moving_account+1              if (memcg->mocing_account)
1573 *                                                   take heavy locks.
1574 *         synchronize_rcu()                    update something.
1575 *                                              rcu_read_unlock()
1576 *         start move here.
1577 */
1578
1579/* for quick checking without looking up memcg */
1580atomic_t memcg_moving __read_mostly;
1581
1582static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1583{
1584        atomic_inc(&memcg_moving);
1585        atomic_inc(&memcg->moving_account);
1586        synchronize_rcu();
1587}
1588
1589static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1590{
1591        /*
1592         * Now, mem_cgroup_clear_mc() may call this function with NULL.
1593         * We check NULL in callee rather than caller.
1594         */
1595        if (memcg) {
1596                atomic_dec(&memcg_moving);
1597                atomic_dec(&memcg->moving_account);
1598        }
1599}
1600
1601/*
1602 * 2 routines for checking "mem" is under move_account() or not.
1603 *
1604 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1605 *                        is used for avoiding races in accounting.  If true,
1606 *                        pc->mem_cgroup may be overwritten.
1607 *
1608 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1609 *                        under hierarchy of moving cgroups. This is for
1610 *                        waiting at hith-memory prressure caused by "move".
1611 */
1612
1613static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1614{
1615        VM_BUG_ON(!rcu_read_lock_held());
1616        return atomic_read(&memcg->moving_account) > 0;
1617}
1618
1619static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1620{
1621        struct mem_cgroup *from;
1622        struct mem_cgroup *to;
1623        bool ret = false;
1624        /*
1625         * Unlike task_move routines, we access mc.to, mc.from not under
1626         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1627         */
1628        spin_lock(&mc.lock);
1629        from = mc.from;
1630        to = mc.to;
1631        if (!from)
1632                goto unlock;
1633
1634        ret = mem_cgroup_same_or_subtree(memcg, from)
1635                || mem_cgroup_same_or_subtree(memcg, to);
1636unlock:
1637        spin_unlock(&mc.lock);
1638        return ret;
1639}
1640
1641static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1642{
1643        if (mc.moving_task && current != mc.moving_task) {
1644                if (mem_cgroup_under_move(memcg)) {
1645                        DEFINE_WAIT(wait);
1646                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1647                        /* moving charge context might have finished. */
1648                        if (mc.moving_task)
1649                                schedule();
1650                        finish_wait(&mc.waitq, &wait);
1651                        return true;
1652                }
1653        }
1654        return false;
1655}
1656
1657/*
1658 * Take this lock when
1659 * - a code tries to modify page's memcg while it's USED.
1660 * - a code tries to modify page state accounting in a memcg.
1661 * see mem_cgroup_stolen(), too.
1662 */
1663static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1664                                  unsigned long *flags)
1665{
1666        spin_lock_irqsave(&memcg->move_lock, *flags);
1667}
1668
1669static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1670                                unsigned long *flags)
1671{
1672        spin_unlock_irqrestore(&memcg->move_lock, *flags);
1673}
1674
1675#define K(x) ((x) << (PAGE_SHIFT-10))
1676/**
1677 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1678 * @memcg: The memory cgroup that went over limit
1679 * @p: Task that is going to be killed
1680 *
1681 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1682 * enabled
1683 */
1684void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1685{
1686        /*
1687         * protects memcg_name and makes sure that parallel ooms do not
1688         * interleave
1689         */
1690        static DEFINE_MUTEX(oom_info_lock);
1691        struct cgroup *task_cgrp;
1692        struct cgroup *mem_cgrp;
1693        static char memcg_name[PATH_MAX];
1694        int ret;
1695        struct mem_cgroup *iter;
1696        unsigned int i;
1697
1698        if (!p)
1699                return;
1700
1701        mutex_lock(&oom_info_lock);
1702        rcu_read_lock();
1703
1704        mem_cgrp = memcg->css.cgroup;
1705        task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1706
1707        ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1708        if (ret < 0) {
1709                /*
1710                 * Unfortunately, we are unable to convert to a useful name
1711                 * But we'll still print out the usage information
1712                 */
1713                rcu_read_unlock();
1714                goto done;
1715        }
1716        rcu_read_unlock();
1717
1718        pr_info("Task in %s killed", memcg_name);
1719
1720        rcu_read_lock();
1721        ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1722        if (ret < 0) {
1723                rcu_read_unlock();
1724                goto done;
1725        }
1726        rcu_read_unlock();
1727
1728        /*
1729         * Continues from above, so we don't need an KERN_ level
1730         */
1731        pr_cont(" as a result of limit of %s\n", memcg_name);
1732done:
1733
1734        pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1735                res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1736                res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1737                res_counter_read_u64(&memcg->res, RES_FAILCNT));
1738        pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1739                res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1740                res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1741                res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1742        pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1743                res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1744                res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1745                res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1746
1747        for_each_mem_cgroup_tree(iter, memcg) {
1748                pr_info("Memory cgroup stats");
1749
1750                rcu_read_lock();
1751                ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1752                if (!ret)
1753                        pr_cont(" for %s", memcg_name);
1754                rcu_read_unlock();
1755                pr_cont(":");
1756
1757                for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1758                        if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1759                                continue;
1760                        pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1761                                K(mem_cgroup_read_stat(iter, i)));
1762                }
1763
1764                for (i = 0; i < NR_LRU_LISTS; i++)
1765                        pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1766                                K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1767
1768                pr_cont("\n");
1769        }
1770        mutex_unlock(&oom_info_lock);
1771}
1772
1773/*
1774 * This function returns the number of memcg under hierarchy tree. Returns
1775 * 1(self count) if no children.
1776 */
1777static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1778{
1779        int num = 0;
1780        struct mem_cgroup *iter;
1781
1782        for_each_mem_cgroup_tree(iter, memcg)
1783                num++;
1784        return num;
1785}
1786
1787/*
1788 * Return the memory (and swap, if configured) limit for a memcg.
1789 */
1790static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1791{
1792        u64 limit;
1793
1794        limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1795
1796        /*
1797         * Do not consider swap space if we cannot swap due to swappiness
1798         */
1799        if (mem_cgroup_swappiness(memcg)) {
1800                u64 memsw;
1801
1802                limit += total_swap_pages << PAGE_SHIFT;
1803                memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1804
1805                /*
1806                 * If memsw is finite and limits the amount of swap space
1807                 * available to this memcg, return that limit.
1808                 */
1809                limit = min(limit, memsw);
1810        }
1811
1812        return limit;
1813}
1814
1815static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1816                                     int order)
1817{
1818        struct mem_cgroup *iter;
1819        unsigned long chosen_points = 0;
1820        unsigned long totalpages;
1821        unsigned int points = 0;
1822        struct task_struct *chosen = NULL;
1823
1824        /*
1825         * If current has a pending SIGKILL or is exiting, then automatically
1826         * select it.  The goal is to allow it to allocate so that it may
1827         * quickly exit and free its memory.
1828         */
1829        if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1830                set_thread_flag(TIF_MEMDIE);
1831                return;
1832        }
1833
1834        check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1835        totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1836        for_each_mem_cgroup_tree(iter, memcg) {
1837                struct css_task_iter it;
1838                struct task_struct *task;
1839
1840                css_task_iter_start(&iter->css, &it);
1841                while ((task = css_task_iter_next(&it))) {
1842                        switch (oom_scan_process_thread(task, totalpages, NULL,
1843                                                        false)) {
1844                        case OOM_SCAN_SELECT:
1845                                if (chosen)
1846                                        put_task_struct(chosen);
1847                                chosen = task;
1848                                chosen_points = ULONG_MAX;
1849                                get_task_struct(chosen);
1850                                /* fall through */
1851                        case OOM_SCAN_CONTINUE:
1852                                continue;
1853                        case OOM_SCAN_ABORT:
1854                                css_task_iter_end(&it);
1855                                mem_cgroup_iter_break(memcg, iter);
1856                                if (chosen)
1857                                        put_task_struct(chosen);
1858                                return;
1859                        case OOM_SCAN_OK:
1860                                break;
1861                        };
1862                        points = oom_badness(task, memcg, NULL, totalpages);
1863                        if (!points || points < chosen_points)
1864                                continue;
1865                        /* Prefer thread group leaders for display purposes */
1866                        if (points == chosen_points &&
1867                            thread_group_leader(chosen))
1868                                continue;
1869
1870                        if (chosen)
1871                                put_task_struct(chosen);
1872                        chosen = task;
1873                        chosen_points = points;
1874                        get_task_struct(chosen);
1875                }
1876                css_task_iter_end(&it);
1877        }
1878
1879        if (!chosen)
1880                return;
1881        points = chosen_points * 1000 / totalpages;
1882        oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1883                         NULL, "Memory cgroup out of memory");
1884}
1885
1886static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1887                                        gfp_t gfp_mask,
1888                                        unsigned long flags)
1889{
1890        unsigned long total = 0;
1891        bool noswap = false;
1892        int loop;
1893
1894        if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1895                noswap = true;
1896        if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1897                noswap = true;
1898
1899        for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1900                if (loop)
1901                        drain_all_stock_async(memcg);
1902                total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1903                /*
1904                 * Allow limit shrinkers, which are triggered directly
1905                 * by userspace, to catch signals and stop reclaim
1906                 * after minimal progress, regardless of the margin.
1907                 */
1908                if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1909                        break;
1910                if (mem_cgroup_margin(memcg))
1911                        break;
1912                /*
1913                 * If nothing was reclaimed after two attempts, there
1914                 * may be no reclaimable pages in this hierarchy.
1915                 */
1916                if (loop && !total)
1917                        break;
1918        }
1919        return total;
1920}
1921
1922/**
1923 * test_mem_cgroup_node_reclaimable
1924 * @memcg: the target memcg
1925 * @nid: the node ID to be checked.
1926 * @noswap : specify true here if the user wants flle only information.
1927 *
1928 * This function returns whether the specified memcg contains any
1929 * reclaimable pages on a node. Returns true if there are any reclaimable
1930 * pages in the node.
1931 */
1932static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1933                int nid, bool noswap)
1934{
1935        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1936                return true;
1937        if (noswap || !total_swap_pages)
1938                return false;
1939        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1940                return true;
1941        return false;
1942
1943}
1944#if MAX_NUMNODES > 1
1945
1946/*
1947 * Always updating the nodemask is not very good - even if we have an empty
1948 * list or the wrong list here, we can start from some node and traverse all
1949 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1950 *
1951 */
1952static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1953{
1954        int nid;
1955        /*
1956         * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1957         * pagein/pageout changes since the last update.
1958         */
1959        if (!atomic_read(&memcg->numainfo_events))
1960                return;
1961        if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1962                return;
1963
1964        /* make a nodemask where this memcg uses memory from */
1965        memcg->scan_nodes = node_states[N_MEMORY];
1966
1967        for_each_node_mask(nid, node_states[N_MEMORY]) {
1968
1969                if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1970                        node_clear(nid, memcg->scan_nodes);
1971        }
1972
1973        atomic_set(&memcg->numainfo_events, 0);
1974        atomic_set(&memcg->numainfo_updating, 0);
1975}
1976
1977/*
1978 * Selecting a node where we start reclaim from. Because what we need is just
1979 * reducing usage counter, start from anywhere is O,K. Considering
1980 * memory reclaim from current node, there are pros. and cons.
1981 *
1982 * Freeing memory from current node means freeing memory from a node which
1983 * we'll use or we've used. So, it may make LRU bad. And if several threads
1984 * hit limits, it will see a contention on a node. But freeing from remote
1985 * node means more costs for memory reclaim because of memory latency.
1986 *
1987 * Now, we use round-robin. Better algorithm is welcomed.
1988 */
1989int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1990{
1991        int node;
1992
1993        mem_cgroup_may_update_nodemask(memcg);
1994        node = memcg->last_scanned_node;
1995
1996        node = next_node(node, memcg->scan_nodes);
1997        if (node == MAX_NUMNODES)
1998                node = first_node(memcg->scan_nodes);
1999        /*
2000         * We call this when we hit limit, not when pages are added to LRU.
2001         * No LRU may hold pages because all pages are UNEVICTABLE or
2002         * memcg is too small and all pages are not on LRU. In that case,
2003         * we use curret node.
2004         */
2005        if (unlikely(node == MAX_NUMNODES))
2006                node = numa_node_id();
2007
2008        memcg->last_scanned_node = node;
2009        return node;
2010}
2011
2012/*
2013 * Check all nodes whether it contains reclaimable pages or not.
2014 * For quick scan, we make use of scan_nodes. This will allow us to skip
2015 * unused nodes. But scan_nodes is lazily updated and may not cotain
2016 * enough new information. We need to do double check.
2017 */
2018static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2019{
2020        int nid;
2021
2022        /*
2023         * quick check...making use of scan_node.
2024         * We can skip unused nodes.
2025         */
2026        if (!nodes_empty(memcg->scan_nodes)) {
2027                for (nid = first_node(memcg->scan_nodes);
2028                     nid < MAX_NUMNODES;
2029                     nid = next_node(nid, memcg->scan_nodes)) {
2030
2031                        if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2032                                return true;
2033                }
2034        }
2035        /*
2036         * Check rest of nodes.
2037         */
2038        for_each_node_state(nid, N_MEMORY) {
2039                if (node_isset(nid, memcg->scan_nodes))
2040                        continue;
2041                if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2042                        return true;
2043        }
2044        return false;
2045}
2046
2047#else
2048int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2049{
2050        return 0;
2051}
2052
2053static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2054{
2055        return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2056}
2057#endif
2058
2059static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2060                                   struct zone *zone,
2061                                   gfp_t gfp_mask,
2062                                   unsigned long *total_scanned)
2063{
2064        struct mem_cgroup *victim = NULL;
2065        int total = 0;
2066        int loop = 0;
2067        unsigned long excess;
2068        unsigned long nr_scanned;
2069        struct mem_cgroup_reclaim_cookie reclaim = {
2070                .zone = zone,
2071                .priority = 0,
2072        };
2073
2074        excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2075
2076        while (1) {
2077                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2078                if (!victim) {
2079                        loop++;
2080                        if (loop >= 2) {
2081                                /*
2082                                 * If we have not been able to reclaim
2083                                 * anything, it might because there are
2084                                 * no reclaimable pages under this hierarchy
2085                                 */
2086                                if (!total)
2087                                        break;
2088                                /*
2089                                 * We want to do more targeted reclaim.
2090                                 * excess >> 2 is not to excessive so as to
2091                                 * reclaim too much, nor too less that we keep
2092                                 * coming back to reclaim from this cgroup
2093                                 */
2094                                if (total >= (excess >> 2) ||
2095                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2096                                        break;
2097                        }
2098                        continue;
2099                }
2100                if (!mem_cgroup_reclaimable(victim, false))
2101                        continue;
2102                total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2103                                                     zone, &nr_scanned);
2104                *total_scanned += nr_scanned;
2105                if (!res_counter_soft_limit_excess(&root_memcg->res))
2106                        break;
2107        }
2108        mem_cgroup_iter_break(root_memcg, victim);
2109        return total;
2110}
2111
2112#ifdef CONFIG_LOCKDEP
2113static struct lockdep_map memcg_oom_lock_dep_map = {
2114        .name = "memcg_oom_lock",
2115};
2116#endif
2117
2118static DEFINE_SPINLOCK(memcg_oom_lock);
2119
2120/*
2121 * Check OOM-Killer is already running under our hierarchy.
2122 * If someone is running, return false.
2123 */
2124static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2125{
2126        struct mem_cgroup *iter, *failed = NULL;
2127
2128        spin_lock(&memcg_oom_lock);
2129
2130        for_each_mem_cgroup_tree(iter, memcg) {
2131                if (iter->oom_lock) {
2132                        /*
2133                         * this subtree of our hierarchy is already locked
2134                         * so we cannot give a lock.
2135                         */
2136                        failed = iter;
2137                        mem_cgroup_iter_break(memcg, iter);
2138                        break;
2139                } else
2140                        iter->oom_lock = true;
2141        }
2142
2143        if (failed) {
2144                /*
2145                 * OK, we failed to lock the whole subtree so we have
2146                 * to clean up what we set up to the failing subtree
2147                 */
2148                for_each_mem_cgroup_tree(iter, memcg) {
2149                        if (iter == failed) {
2150                                mem_cgroup_iter_break(memcg, iter);
2151                                break;
2152                        }
2153                        iter->oom_lock = false;
2154                }
2155        } else
2156                mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2157
2158        spin_unlock(&memcg_oom_lock);
2159
2160        return !failed;
2161}
2162
2163static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2164{
2165        struct mem_cgroup *iter;
2166
2167        spin_lock(&memcg_oom_lock);
2168        mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2169        for_each_mem_cgroup_tree(iter, memcg)
2170                iter->oom_lock = false;
2171        spin_unlock(&memcg_oom_lock);
2172}
2173
2174static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2175{
2176        struct mem_cgroup *iter;
2177
2178        for_each_mem_cgroup_tree(iter, memcg)
2179                atomic_inc(&iter->under_oom);
2180}
2181
2182static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2183{
2184        struct mem_cgroup *iter;
2185
2186        /*
2187         * When a new child is created while the hierarchy is under oom,
2188         * mem_cgroup_oom_lock() may not be called. We have to use
2189         * atomic_add_unless() here.
2190         */
2191        for_each_mem_cgroup_tree(iter, memcg)
2192                atomic_add_unless(&iter->under_oom, -1, 0);
2193}
2194
2195static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2196
2197struct oom_wait_info {
2198        struct mem_cgroup *memcg;
2199        wait_queue_t    wait;
2200};
2201
2202static int memcg_oom_wake_function(wait_queue_t *wait,
2203        unsigned mode, int sync, void *arg)
2204{
2205        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2206        struct mem_cgroup *oom_wait_memcg;
2207        struct oom_wait_info *oom_wait_info;
2208
2209        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2210        oom_wait_memcg = oom_wait_info->memcg;
2211
2212        /*
2213         * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2214         * Then we can use css_is_ancestor without taking care of RCU.
2215         */
2216        if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2217                && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2218                return 0;
2219        return autoremove_wake_function(wait, mode, sync, arg);
2220}
2221
2222static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2223{
2224        atomic_inc(&memcg->oom_wakeups);
2225        /* for filtering, pass "memcg" as argument. */
2226        __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2227}
2228
2229static void memcg_oom_recover(struct mem_cgroup *memcg)
2230{
2231        if (memcg && atomic_read(&memcg->under_oom))
2232                memcg_wakeup_oom(memcg);
2233}
2234
2235static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2236{
2237        if (!current->memcg_oom.may_oom)
2238                return;
2239        /*
2240         * We are in the middle of the charge context here, so we
2241         * don't want to block when potentially sitting on a callstack
2242         * that holds all kinds of filesystem and mm locks.
2243         *
2244         * Also, the caller may handle a failed allocation gracefully
2245         * (like optional page cache readahead) and so an OOM killer
2246         * invocation might not even be necessary.
2247         *
2248         * That's why we don't do anything here except remember the
2249         * OOM context and then deal with it at the end of the page
2250         * fault when the stack is unwound, the locks are released,
2251         * and when we know whether the fault was overall successful.
2252         */
2253        css_get(&memcg->css);
2254        current->memcg_oom.memcg = memcg;
2255        current->memcg_oom.gfp_mask = mask;
2256        current->memcg_oom.order = order;
2257}
2258
2259/**
2260 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2261 * @handle: actually kill/wait or just clean up the OOM state
2262 *
2263 * This has to be called at the end of a page fault if the memcg OOM
2264 * handler was enabled.
2265 *
2266 * Memcg supports userspace OOM handling where failed allocations must
2267 * sleep on a waitqueue until the userspace task resolves the
2268 * situation.  Sleeping directly in the charge context with all kinds
2269 * of locks held is not a good idea, instead we remember an OOM state
2270 * in the task and mem_cgroup_oom_synchronize() has to be called at
2271 * the end of the page fault to complete the OOM handling.
2272 *
2273 * Returns %true if an ongoing memcg OOM situation was detected and
2274 * completed, %false otherwise.
2275 */
2276bool mem_cgroup_oom_synchronize(bool handle)
2277{
2278        struct mem_cgroup *memcg = current->memcg_oom.memcg;
2279        struct oom_wait_info owait;
2280        bool locked;
2281
2282        /* OOM is global, do not handle */
2283        if (!memcg)
2284                return false;
2285
2286        if (!handle)
2287                goto cleanup;
2288
2289        owait.memcg = memcg;
2290        owait.wait.flags = 0;
2291        owait.wait.func = memcg_oom_wake_function;
2292        owait.wait.private = current;
2293        INIT_LIST_HEAD(&owait.wait.task_list);
2294
2295        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2296        mem_cgroup_mark_under_oom(memcg);
2297
2298        locked = mem_cgroup_oom_trylock(memcg);
2299
2300        if (locked)
2301                mem_cgroup_oom_notify(memcg);
2302
2303        if (locked && !memcg->oom_kill_disable) {
2304                mem_cgroup_unmark_under_oom(memcg);
2305                finish_wait(&memcg_oom_waitq, &owait.wait);
2306                mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2307                                         current->memcg_oom.order);
2308        } else {
2309                schedule();
2310                mem_cgroup_unmark_under_oom(memcg);
2311                finish_wait(&memcg_oom_waitq, &owait.wait);
2312        }
2313
2314        if (locked) {
2315                mem_cgroup_oom_unlock(memcg);
2316                /*
2317                 * There is no guarantee that an OOM-lock contender
2318                 * sees the wakeups triggered by the OOM kill
2319                 * uncharges.  Wake any sleepers explicitely.
2320                 */
2321                memcg_oom_recover(memcg);
2322        }
2323cleanup:
2324        current->memcg_oom.memcg = NULL;
2325        css_put(&memcg->css);
2326        return true;
2327}
2328
2329/*
2330 * Currently used to update mapped file statistics, but the routine can be
2331 * generalized to update other statistics as well.
2332 *
2333 * Notes: Race condition
2334 *
2335 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2336 * it tends to be costly. But considering some conditions, we doesn't need
2337 * to do so _always_.
2338 *
2339 * Considering "charge", lock_page_cgroup() is not required because all
2340 * file-stat operations happen after a page is attached to radix-tree. There
2341 * are no race with "charge".
2342 *
2343 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2344 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2345 * if there are race with "uncharge". Statistics itself is properly handled
2346 * by flags.
2347 *
2348 * Considering "move", this is an only case we see a race. To make the race
2349 * small, we check mm->moving_account and detect there are possibility of race
2350 * If there is, we take a lock.
2351 */
2352
2353void __mem_cgroup_begin_update_page_stat(struct page *page,
2354                                bool *locked, unsigned long *flags)
2355{
2356        struct mem_cgroup *memcg;
2357        struct page_cgroup *pc;
2358
2359        pc = lookup_page_cgroup(page);
2360again:
2361        memcg = pc->mem_cgroup;
2362        if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363                return;
2364        /*
2365         * If this memory cgroup is not under account moving, we don't
2366         * need to take move_lock_mem_cgroup(). Because we already hold
2367         * rcu_read_lock(), any calls to move_account will be delayed until
2368         * rcu_read_unlock() if mem_cgroup_stolen() == true.
2369         */
2370        if (!mem_cgroup_stolen(memcg))
2371                return;
2372
2373        move_lock_mem_cgroup(memcg, flags);
2374        if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2375                move_unlock_mem_cgroup(memcg, flags);
2376                goto again;
2377        }
2378        *locked = true;
2379}
2380
2381void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2382{
2383        struct page_cgroup *pc = lookup_page_cgroup(page);
2384
2385        /*
2386         * It's guaranteed that pc->mem_cgroup never changes while
2387         * lock is held because a routine modifies pc->mem_cgroup
2388         * should take move_lock_mem_cgroup().
2389         */
2390        move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2391}
2392
2393void mem_cgroup_update_page_stat(struct page *page,
2394                                 enum mem_cgroup_stat_index idx, int val)
2395{
2396        struct mem_cgroup *memcg;
2397        struct page_cgroup *pc = lookup_page_cgroup(page);
2398        unsigned long uninitialized_var(flags);
2399
2400        if (mem_cgroup_disabled())
2401                return;
2402
2403        VM_BUG_ON(!rcu_read_lock_held());
2404        memcg = pc->mem_cgroup;
2405        if (unlikely(!memcg || !PageCgroupUsed(pc)))
2406                return;
2407
2408        this_cpu_add(memcg->stat->count[idx], val);
2409}
2410
2411/*
2412 * size of first charge trial. "32" comes from vmscan.c's magic value.
2413 * TODO: maybe necessary to use big numbers in big irons.
2414 */
2415#define CHARGE_BATCH    32U
2416struct memcg_stock_pcp {
2417        struct mem_cgroup *cached; /* this never be root cgroup */
2418        unsigned int nr_pages;
2419        struct work_struct work;
2420        unsigned long flags;
2421#define FLUSHING_CACHED_CHARGE  0
2422};
2423static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2424static DEFINE_MUTEX(percpu_charge_mutex);
2425
2426/**
2427 * consume_stock: Try to consume stocked charge on this cpu.
2428 * @memcg: memcg to consume from.
2429 * @nr_pages: how many pages to charge.
2430 *
2431 * The charges will only happen if @memcg matches the current cpu's memcg
2432 * stock, and at least @nr_pages are available in that stock.  Failure to
2433 * service an allocation will refill the stock.
2434 *
2435 * returns true if successful, false otherwise.
2436 */
2437static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2438{
2439        struct memcg_stock_pcp *stock;
2440        bool ret = true;
2441
2442        if (nr_pages > CHARGE_BATCH)
2443                return false;
2444
2445        stock = &get_cpu_var(memcg_stock);
2446        if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2447                stock->nr_pages -= nr_pages;
2448        else /* need to call res_counter_charge */
2449                ret = false;
2450        put_cpu_var(memcg_stock);
2451        return ret;
2452}
2453
2454/*
2455 * Returns stocks cached in percpu to res_counter and reset cached information.
2456 */
2457static void drain_stock(struct memcg_stock_pcp *stock)
2458{
2459        struct mem_cgroup *old = stock->cached;
2460
2461        if (stock->nr_pages) {
2462                unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2463
2464                res_counter_uncharge(&old->res, bytes);
2465                if (do_swap_account)
2466                        res_counter_uncharge(&old->memsw, bytes);
2467                stock->nr_pages = 0;
2468        }
2469        stock->cached = NULL;
2470}
2471
2472/*
2473 * This must be called under preempt disabled or must be called by
2474 * a thread which is pinned to local cpu.
2475 */
2476static void drain_local_stock(struct work_struct *dummy)
2477{
2478        struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2479        drain_stock(stock);
2480        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2481}
2482
2483static void __init memcg_stock_init(void)
2484{
2485        int cpu;
2486
2487        for_each_possible_cpu(cpu) {
2488                struct memcg_stock_pcp *stock =
2489                                        &per_cpu(memcg_stock, cpu);
2490                INIT_WORK(&stock->work, drain_local_stock);
2491        }
2492}
2493
2494/*
2495 * Cache charges(val) which is from res_counter, to local per_cpu area.
2496 * This will be consumed by consume_stock() function, later.
2497 */
2498static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2499{
2500        struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2501
2502        if (stock->cached != memcg) { /* reset if necessary */
2503                drain_stock(stock);
2504                stock->cached = memcg;
2505        }
2506        stock->nr_pages += nr_pages;
2507        put_cpu_var(memcg_stock);
2508}
2509
2510/*
2511 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2512 * of the hierarchy under it. sync flag says whether we should block
2513 * until the work is done.
2514 */
2515static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2516{
2517        int cpu, curcpu;
2518
2519        /* Notify other cpus that system-wide "drain" is running */
2520        get_online_cpus();
2521        curcpu = get_cpu();
2522        for_each_online_cpu(cpu) {
2523                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2524                struct mem_cgroup *memcg;
2525
2526                memcg = stock->cached;
2527                if (!memcg || !stock->nr_pages)
2528                        continue;
2529                if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2530                        continue;
2531                if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2532                        if (cpu == curcpu)
2533                                drain_local_stock(&stock->work);
2534                        else
2535                                schedule_work_on(cpu, &stock->work);
2536                }
2537        }
2538        put_cpu();
2539
2540        if (!sync)
2541                goto out;
2542
2543        for_each_online_cpu(cpu) {
2544                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2545                if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2546                        flush_work(&stock->work);
2547        }
2548out:
2549        put_online_cpus();
2550}
2551
2552/*
2553 * Tries to drain stocked charges in other cpus. This function is asynchronous
2554 * and just put a work per cpu for draining localy on each cpu. Caller can
2555 * expects some charges will be back to res_counter later but cannot wait for
2556 * it.
2557 */
2558static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2559{
2560        /*
2561         * If someone calls draining, avoid adding more kworker runs.
2562         */
2563        if (!mutex_trylock(&percpu_charge_mutex))
2564                return;
2565        drain_all_stock(root_memcg, false);
2566        mutex_unlock(&percpu_charge_mutex);
2567}
2568
2569/* This is a synchronous drain interface. */
2570static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2571{
2572        /* called when force_empty is called */
2573        mutex_lock(&percpu_charge_mutex);
2574        drain_all_stock(root_memcg, true);
2575        mutex_unlock(&percpu_charge_mutex);
2576}
2577
2578/*
2579 * This function drains percpu counter value from DEAD cpu and
2580 * move it to local cpu. Note that this function can be preempted.
2581 */
2582static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2583{
2584        int i;
2585
2586        spin_lock(&memcg->pcp_counter_lock);
2587        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2588                long x = per_cpu(memcg->stat->count[i], cpu);
2589
2590                per_cpu(memcg->stat->count[i], cpu) = 0;
2591                memcg->nocpu_base.count[i] += x;
2592        }
2593        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2594                unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2595
2596                per_cpu(memcg->stat->events[i], cpu) = 0;
2597                memcg->nocpu_base.events[i] += x;
2598        }
2599        spin_unlock(&memcg->pcp_counter_lock);
2600}
2601
2602static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2603                                        unsigned long action,
2604                                        void *hcpu)
2605{
2606        int cpu = (unsigned long)hcpu;
2607        struct memcg_stock_pcp *stock;
2608        struct mem_cgroup *iter;
2609
2610        if (action == CPU_ONLINE)
2611                return NOTIFY_OK;
2612
2613        if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2614                return NOTIFY_OK;
2615
2616        for_each_mem_cgroup(iter)
2617                mem_cgroup_drain_pcp_counter(iter, cpu);
2618
2619        stock = &per_cpu(memcg_stock, cpu);
2620        drain_stock(stock);
2621        return NOTIFY_OK;
2622}
2623
2624
2625/* See __mem_cgroup_try_charge() for details */
2626enum {
2627        CHARGE_OK,              /* success */
2628        CHARGE_RETRY,           /* need to retry but retry is not bad */
2629        CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2630        CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2631};
2632
2633static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2634                                unsigned int nr_pages, unsigned int min_pages,
2635                                bool invoke_oom)
2636{
2637        unsigned long csize = nr_pages * PAGE_SIZE;
2638        struct mem_cgroup *mem_over_limit;
2639        struct res_counter *fail_res;
2640        unsigned long flags = 0;
2641        int ret;
2642
2643        ret = res_counter_charge(&memcg->res, csize, &fail_res);
2644
2645        if (likely(!ret)) {
2646                if (!do_swap_account)
2647                        return CHARGE_OK;
2648                ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2649                if (likely(!ret))
2650                        return CHARGE_OK;
2651
2652                res_counter_uncharge(&memcg->res, csize);
2653                mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2654                flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2655        } else
2656                mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2657        /*
2658         * Never reclaim on behalf of optional batching, retry with a
2659         * single page instead.
2660         */
2661        if (nr_pages > min_pages)
2662                return CHARGE_RETRY;
2663
2664        if (!(gfp_mask & __GFP_WAIT))
2665                return CHARGE_WOULDBLOCK;
2666
2667        if (gfp_mask & __GFP_NORETRY)
2668                return CHARGE_NOMEM;
2669
2670        ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2671        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2672                return CHARGE_RETRY;
2673        /*
2674         * Even though the limit is exceeded at this point, reclaim
2675         * may have been able to free some pages.  Retry the charge
2676         * before killing the task.
2677         *
2678         * Only for regular pages, though: huge pages are rather
2679         * unlikely to succeed so close to the limit, and we fall back
2680         * to regular pages anyway in case of failure.
2681         */
2682        if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2683                return CHARGE_RETRY;
2684
2685        /*
2686         * At task move, charge accounts can be doubly counted. So, it's
2687         * better to wait until the end of task_move if something is going on.
2688         */
2689        if (mem_cgroup_wait_acct_move(mem_over_limit))
2690                return CHARGE_RETRY;
2691
2692        if (invoke_oom)
2693                mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2694
2695        return CHARGE_NOMEM;
2696}
2697
2698/*
2699 * __mem_cgroup_try_charge() does
2700 * 1. detect memcg to be charged against from passed *mm and *ptr,
2701 * 2. update res_counter
2702 * 3. call memory reclaim if necessary.
2703 *
2704 * In some special case, if the task is fatal, fatal_signal_pending() or
2705 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2706 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2707 * as possible without any hazards. 2: all pages should have a valid
2708 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2709 * pointer, that is treated as a charge to root_mem_cgroup.
2710 *
2711 * So __mem_cgroup_try_charge() will return
2712 *  0       ...  on success, filling *ptr with a valid memcg pointer.
2713 *  -ENOMEM ...  charge failure because of resource limits.
2714 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2715 *
2716 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2717 * the oom-killer can be invoked.
2718 */
2719static int __mem_cgroup_try_charge(struct mm_struct *mm,
2720                                   gfp_t gfp_mask,
2721                                   unsigned int nr_pages,
2722                                   struct mem_cgroup **ptr,
2723                                   bool oom)
2724{
2725        unsigned int batch = max(CHARGE_BATCH, nr_pages);
2726        int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2727        struct mem_cgroup *memcg = NULL;
2728        int ret;
2729
2730        /*
2731         * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2732         * in system level. So, allow to go ahead dying process in addition to
2733         * MEMDIE process.
2734         */
2735        if (unlikely(test_thread_flag(TIF_MEMDIE)
2736                     || fatal_signal_pending(current)))
2737                goto bypass;
2738
2739        if (unlikely(task_in_memcg_oom(current)))
2740                goto nomem;
2741
2742        if (gfp_mask & __GFP_NOFAIL)
2743                oom = false;
2744
2745        /*
2746         * We always charge the cgroup the mm_struct belongs to.
2747         * The mm_struct's mem_cgroup changes on task migration if the
2748         * thread group leader migrates. It's possible that mm is not
2749         * set, if so charge the root memcg (happens for pagecache usage).
2750         */
2751        if (!*ptr && !mm)
2752                *ptr = root_mem_cgroup;
2753again:
2754        if (*ptr) { /* css should be a valid one */
2755                memcg = *ptr;
2756                if (mem_cgroup_is_root(memcg))
2757                        goto done;
2758                if (consume_stock(memcg, nr_pages))
2759                        goto done;
2760                css_get(&memcg->css);
2761        } else {
2762                struct task_struct *p;
2763
2764                rcu_read_lock();
2765                p = rcu_dereference(mm->owner);
2766                /*
2767                 * Because we don't have task_lock(), "p" can exit.
2768                 * In that case, "memcg" can point to root or p can be NULL with
2769                 * race with swapoff. Then, we have small risk of mis-accouning.
2770                 * But such kind of mis-account by race always happens because
2771                 * we don't have cgroup_mutex(). It's overkill and we allo that
2772                 * small race, here.
2773                 * (*) swapoff at el will charge against mm-struct not against
2774                 * task-struct. So, mm->owner can be NULL.
2775                 */
2776                memcg = mem_cgroup_from_task(p);
2777                if (!memcg)
2778                        memcg = root_mem_cgroup;
2779                if (mem_cgroup_is_root(memcg)) {
2780                        rcu_read_unlock();
2781                        goto done;
2782                }
2783                if (consume_stock(memcg, nr_pages)) {
2784                        /*
2785                         * It seems dagerous to access memcg without css_get().
2786                         * But considering how consume_stok works, it's not
2787                         * necessary. If consume_stock success, some charges
2788                         * from this memcg are cached on this cpu. So, we
2789                         * don't need to call css_get()/css_tryget() before
2790                         * calling consume_stock().
2791                         */
2792                        rcu_read_unlock();
2793                        goto done;
2794                }
2795                /* after here, we may be blocked. we need to get refcnt */
2796                if (!css_tryget(&memcg->css)) {
2797                        rcu_read_unlock();
2798                        goto again;
2799                }
2800                rcu_read_unlock();
2801        }
2802
2803        do {
2804                bool invoke_oom = oom && !nr_oom_retries;
2805
2806                /* If killed, bypass charge */
2807                if (fatal_signal_pending(current)) {
2808                        css_put(&memcg->css);
2809                        goto bypass;
2810                }
2811
2812                ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2813                                           nr_pages, invoke_oom);
2814                switch (ret) {
2815                case CHARGE_OK:
2816                        break;
2817                case CHARGE_RETRY: /* not in OOM situation but retry */
2818                        batch = nr_pages;
2819                        css_put(&memcg->css);
2820                        memcg = NULL;
2821                        goto again;
2822                case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2823                        css_put(&memcg->css);
2824                        goto nomem;
2825                case CHARGE_NOMEM: /* OOM routine works */
2826                        if (!oom || invoke_oom) {
2827                                css_put(&memcg->css);
2828                                goto nomem;
2829                        }
2830                        nr_oom_retries--;
2831                        break;
2832                }
2833        } while (ret != CHARGE_OK);
2834
2835        if (batch > nr_pages)
2836                refill_stock(memcg, batch - nr_pages);
2837        css_put(&memcg->css);
2838done:
2839        *ptr = memcg;
2840        return 0;
2841nomem:
2842        if (!(gfp_mask & __GFP_NOFAIL)) {
2843                *ptr = NULL;
2844                return -ENOMEM;
2845        }
2846bypass:
2847        *ptr = root_mem_cgroup;
2848        return -EINTR;
2849}
2850
2851/*
2852 * Somemtimes we have to undo a charge we got by try_charge().
2853 * This function is for that and do uncharge, put css's refcnt.
2854 * gotten by try_charge().
2855 */
2856static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2857                                       unsigned int nr_pages)
2858{
2859        if (!mem_cgroup_is_root(memcg)) {
2860                unsigned long bytes = nr_pages * PAGE_SIZE;
2861
2862                res_counter_uncharge(&memcg->res, bytes);
2863                if (do_swap_account)
2864                        res_counter_uncharge(&memcg->memsw, bytes);
2865        }
2866}
2867
2868/*
2869 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2870 * This is useful when moving usage to parent cgroup.
2871 */
2872static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2873                                        unsigned int nr_pages)
2874{
2875        unsigned long bytes = nr_pages * PAGE_SIZE;
2876
2877        if (mem_cgroup_is_root(memcg))
2878                return;
2879
2880        res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2881        if (do_swap_account)
2882                res_counter_uncharge_until(&memcg->memsw,
2883                                                memcg->memsw.parent, bytes);
2884}
2885
2886/*
2887 * A helper function to get mem_cgroup from ID. must be called under
2888 * rcu_read_lock().  The caller is responsible for calling css_tryget if
2889 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2890 * called against removed memcg.)
2891 */
2892static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2893{
2894        /* ID 0 is unused ID */
2895        if (!id)
2896                return NULL;
2897        return mem_cgroup_from_id(id);
2898}
2899
2900struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2901{
2902        struct mem_cgroup *memcg = NULL;
2903        struct page_cgroup *pc;
2904        unsigned short id;
2905        swp_entry_t ent;
2906
2907        VM_BUG_ON_PAGE(!PageLocked(page), page);
2908
2909        pc = lookup_page_cgroup(page);
2910        lock_page_cgroup(pc);
2911        if (PageCgroupUsed(pc)) {
2912                memcg = pc->mem_cgroup;
2913                if (memcg && !css_tryget(&memcg->css))
2914                        memcg = NULL;
2915        } else if (PageSwapCache(page)) {
2916                ent.val = page_private(page);
2917                id = lookup_swap_cgroup_id(ent);
2918                rcu_read_lock();
2919                memcg = mem_cgroup_lookup(id);
2920                if (memcg && !css_tryget(&memcg->css))
2921                        memcg = NULL;
2922                rcu_read_unlock();
2923        }
2924        unlock_page_cgroup(pc);
2925        return memcg;
2926}
2927
2928static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2929                                       struct page *page,
2930                                       unsigned int nr_pages,
2931                                       enum charge_type ctype,
2932                                       bool lrucare)
2933{
2934        struct page_cgroup *pc = lookup_page_cgroup(page);
2935        struct zone *uninitialized_var(zone);
2936        struct lruvec *lruvec;
2937        bool was_on_lru = false;
2938        bool anon;
2939
2940        lock_page_cgroup(pc);
2941        VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2942        /*
2943         * we don't need page_cgroup_lock about tail pages, becase they are not
2944         * accessed by any other context at this point.
2945         */
2946
2947        /*
2948         * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2949         * may already be on some other mem_cgroup's LRU.  Take care of it.
2950         */
2951        if (lrucare) {
2952                zone = page_zone(page);
2953                spin_lock_irq(&zone->lru_lock);
2954                if (PageLRU(page)) {
2955                        lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2956                        ClearPageLRU(page);
2957                        del_page_from_lru_list(page, lruvec, page_lru(page));
2958                        was_on_lru = true;
2959                }
2960        }
2961
2962        pc->mem_cgroup = memcg;
2963        /*
2964         * We access a page_cgroup asynchronously without lock_page_cgroup().
2965         * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2966         * is accessed after testing USED bit. To make pc->mem_cgroup visible
2967         * before USED bit, we need memory barrier here.
2968         * See mem_cgroup_add_lru_list(), etc.
2969         */
2970        smp_wmb();
2971        SetPageCgroupUsed(pc);
2972
2973        if (lrucare) {
2974                if (was_on_lru) {
2975                        lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2976                        VM_BUG_ON_PAGE(PageLRU(page), page);
2977                        SetPageLRU(page);
2978                        add_page_to_lru_list(page, lruvec, page_lru(page));
2979                }
2980                spin_unlock_irq(&zone->lru_lock);
2981        }
2982
2983        if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2984                anon = true;
2985        else
2986                anon = false;
2987
2988        mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2989        unlock_page_cgroup(pc);
2990
2991        /*
2992         * "charge_statistics" updated event counter. Then, check it.
2993         * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2994         * if they exceeds softlimit.
2995         */
2996        memcg_check_events(memcg, page);
2997}
2998
2999static DEFINE_MUTEX(set_limit_mutex);
3000
3001#ifdef CONFIG_MEMCG_KMEM
3002static DEFINE_MUTEX(activate_kmem_mutex);
3003
3004static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
3005{
3006        return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
3007                memcg_kmem_is_active(memcg);
3008}
3009
3010/*
3011 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3012 * in the memcg_cache_params struct.
3013 */
3014static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3015{
3016        struct kmem_cache *cachep;
3017
3018        VM_BUG_ON(p->is_root_cache);
3019        cachep = p->root_cache;
3020        return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
3021}
3022
3023#ifdef CONFIG_SLABINFO
3024static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3025{
3026        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3027        struct memcg_cache_params *params;
3028
3029        if (!memcg_can_account_kmem(memcg))
3030                return -EIO;
3031
3032        print_slabinfo_header(m);
3033
3034        mutex_lock(&memcg->slab_caches_mutex);
3035        list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3036                cache_show(memcg_params_to_cache(params), m);
3037        mutex_unlock(&memcg->slab_caches_mutex);
3038
3039        return 0;
3040}
3041#endif
3042
3043static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3044{
3045        struct res_counter *fail_res;
3046        struct mem_cgroup *_memcg;
3047        int ret = 0;
3048
3049        ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3050        if (ret)
3051                return ret;
3052
3053        _memcg = memcg;
3054        ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3055                                      &_memcg, oom_gfp_allowed(gfp));
3056
3057        if (ret == -EINTR)  {
3058                /*
3059                 * __mem_cgroup_try_charge() chosed to bypass to root due to
3060                 * OOM kill or fatal signal.  Since our only options are to
3061                 * either fail the allocation or charge it to this cgroup, do
3062                 * it as a temporary condition. But we can't fail. From a
3063                 * kmem/slab perspective, the cache has already been selected,
3064                 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3065                 * our minds.
3066                 *
3067                 * This condition will only trigger if the task entered
3068                 * memcg_charge_kmem in a sane state, but was OOM-killed during
3069                 * __mem_cgroup_try_charge() above. Tasks that were already
3070                 * dying when the allocation triggers should have been already
3071                 * directed to the root cgroup in memcontrol.h
3072                 */
3073                res_counter_charge_nofail(&memcg->res, size, &fail_res);
3074                if (do_swap_account)
3075                        res_counter_charge_nofail(&memcg->memsw, size,
3076                                                  &fail_res);
3077                ret = 0;
3078        } else if (ret)
3079                res_counter_uncharge(&memcg->kmem, size);
3080
3081        return ret;
3082}
3083
3084static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3085{
3086        res_counter_uncharge(&memcg->res, size);
3087        if (do_swap_account)
3088                res_counter_uncharge(&memcg->memsw, size);
3089
3090        /* Not down to 0 */
3091        if (res_counter_uncharge(&memcg->kmem, size))
3092                return;
3093
3094        /*
3095         * Releases a reference taken in kmem_cgroup_css_offline in case
3096         * this last uncharge is racing with the offlining code or it is
3097         * outliving the memcg existence.
3098         *
3099         * The memory barrier imposed by test&clear is paired with the
3100         * explicit one in memcg_kmem_mark_dead().
3101         */
3102        if (memcg_kmem_test_and_clear_dead(memcg))
3103                css_put(&memcg->css);
3104}
3105
3106/*
3107 * helper for acessing a memcg's index. It will be used as an index in the
3108 * child cache array in kmem_cache, and also to derive its name. This function
3109 * will return -1 when this is not a kmem-limited memcg.
3110 */
3111int memcg_cache_id(struct mem_cgroup *memcg)
3112{
3113        return memcg ? memcg->kmemcg_id : -1;
3114}
3115
3116static size_t memcg_caches_array_size(int num_groups)
3117{
3118        ssize_t size;
3119        if (num_groups <= 0)
3120                return 0;
3121
3122        size = 2 * num_groups;
3123        if (size < MEMCG_CACHES_MIN_SIZE)
3124                size = MEMCG_CACHES_MIN_SIZE;
3125        else if (size > MEMCG_CACHES_MAX_SIZE)
3126                size = MEMCG_CACHES_MAX_SIZE;
3127
3128        return size;
3129}
3130
3131/*
3132 * We should update the current array size iff all caches updates succeed. This
3133 * can only be done from the slab side. The slab mutex needs to be held when
3134 * calling this.
3135 */
3136void memcg_update_array_size(int num)
3137{
3138        if (num > memcg_limited_groups_array_size)
3139                memcg_limited_groups_array_size = memcg_caches_array_size(num);
3140}
3141
3142static void kmem_cache_destroy_work_func(struct work_struct *w);
3143
3144int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3145{
3146        struct memcg_cache_params *cur_params = s->memcg_params;
3147
3148        VM_BUG_ON(!is_root_cache(s));
3149
3150        if (num_groups > memcg_limited_groups_array_size) {
3151                int i;
3152                struct memcg_cache_params *new_params;
3153                ssize_t size = memcg_caches_array_size(num_groups);
3154
3155                size *= sizeof(void *);
3156                size += offsetof(struct memcg_cache_params, memcg_caches);
3157
3158                new_params = kzalloc(size, GFP_KERNEL);
3159                if (!new_params)
3160                        return -ENOMEM;
3161
3162                new_params->is_root_cache = true;
3163
3164                /*
3165                 * There is the chance it will be bigger than
3166                 * memcg_limited_groups_array_size, if we failed an allocation
3167                 * in a cache, in which case all caches updated before it, will
3168                 * have a bigger array.
3169                 *
3170                 * But if that is the case, the data after
3171                 * memcg_limited_groups_array_size is certainly unused
3172                 */
3173                for (i = 0; i < memcg_limited_groups_array_size; i++) {
3174                        if (!cur_params->memcg_caches[i])
3175                                continue;
3176                        new_params->memcg_caches[i] =
3177                                                cur_params->memcg_caches[i];
3178                }
3179
3180                /*
3181                 * Ideally, we would wait until all caches succeed, and only
3182                 * then free the old one. But this is not worth the extra
3183                 * pointer per-cache we'd have to have for this.
3184                 *
3185                 * It is not a big deal if some caches are left with a size
3186                 * bigger than the others. And all updates will reset this
3187                 * anyway.
3188                 */
3189                rcu_assign_pointer(s->memcg_params, new_params);
3190                if (cur_params)
3191                        kfree_rcu(cur_params, rcu_head);
3192        }
3193        return 0;
3194}
3195
3196int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3197                             struct kmem_cache *root_cache)
3198{
3199        size_t size;
3200
3201        if (!memcg_kmem_enabled())
3202                return 0;
3203
3204        if (!memcg) {
3205                size = offsetof(struct memcg_cache_params, memcg_caches);
3206                size += memcg_limited_groups_array_size * sizeof(void *);
3207        } else
3208                size = sizeof(struct memcg_cache_params);
3209
3210        s->memcg_params = kzalloc(size, GFP_KERNEL);
3211        if (!s->memcg_params)
3212                return -ENOMEM;
3213
3214        if (memcg) {
3215                s->memcg_params->memcg = memcg;
3216                s->memcg_params->root_cache = root_cache;
3217                INIT_WORK(&s->memcg_params->destroy,
3218                                kmem_cache_destroy_work_func);
3219        } else
3220                s->memcg_params->is_root_cache = true;
3221
3222        return 0;
3223}
3224
3225void memcg_free_cache_params(struct kmem_cache *s)
3226{
3227        kfree(s->memcg_params);
3228}
3229
3230void memcg_register_cache(struct kmem_cache *s)
3231{
3232        struct kmem_cache *root;
3233        struct mem_cgroup *memcg;
3234        int id;
3235
3236        if (is_root_cache(s))
3237                return;
3238
3239        /*
3240         * Holding the slab_mutex assures nobody will touch the memcg_caches
3241         * array while we are modifying it.
3242         */
3243        lockdep_assert_held(&slab_mutex);
3244
3245        root = s->memcg_params->root_cache;
3246        memcg = s->memcg_params->memcg;
3247        id = memcg_cache_id(memcg);
3248
3249        css_get(&memcg->css);
3250
3251
3252        /*
3253         * Since readers won't lock (see cache_from_memcg_idx()), we need a
3254         * barrier here to ensure nobody will see the kmem_cache partially
3255         * initialized.
3256         */
3257        smp_wmb();
3258
3259        /*
3260         * Initialize the pointer to this cache in its parent's memcg_params
3261         * before adding it to the memcg_slab_caches list, otherwise we can
3262         * fail to convert memcg_params_to_cache() while traversing the list.
3263         */
3264        VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3265        root->memcg_params->memcg_caches[id] = s;
3266
3267        mutex_lock(&memcg->slab_caches_mutex);
3268        list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3269        mutex_unlock(&memcg->slab_caches_mutex);
3270}
3271
3272void memcg_unregister_cache(struct kmem_cache *s)
3273{
3274        struct kmem_cache *root;
3275        struct mem_cgroup *memcg;
3276        int id;
3277
3278        if (is_root_cache(s))
3279                return;
3280
3281        /*
3282         * Holding the slab_mutex assures nobody will touch the memcg_caches
3283         * array while we are modifying it.
3284         */
3285        lockdep_assert_held(&slab_mutex);
3286
3287        root = s->memcg_params->root_cache;
3288        memcg = s->memcg_params->memcg;
3289        id = memcg_cache_id(memcg);
3290
3291        mutex_lock(&memcg->slab_caches_mutex);
3292        list_del(&s->memcg_params->list);
3293        mutex_unlock(&memcg->slab_caches_mutex);
3294
3295        /*
3296         * Clear the pointer to this cache in its parent's memcg_params only
3297         * after removing it from the memcg_slab_caches list, otherwise we can
3298         * fail to convert memcg_params_to_cache() while traversing the list.
3299         */
3300        VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
3301        root->memcg_params->memcg_caches[id] = NULL;
3302
3303        css_put(&memcg->css);
3304}
3305
3306/*
3307 * During the creation a new cache, we need to disable our accounting mechanism
3308 * altogether. This is true even if we are not creating, but rather just
3309 * enqueing new caches to be created.
3310 *
3311 * This is because that process will trigger allocations; some visible, like
3312 * explicit kmallocs to auxiliary data structures, name strings and internal
3313 * cache structures; some well concealed, like INIT_WORK() that can allocate
3314 * objects during debug.
3315 *
3316 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3317 * to it. This may not be a bounded recursion: since the first cache creation
3318 * failed to complete (waiting on the allocation), we'll just try to create the
3319 * cache again, failing at the same point.
3320 *
3321 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3322 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3323 * inside the following two functions.
3324 */
3325static inline void memcg_stop_kmem_account(void)
3326{
3327        VM_BUG_ON(!current->mm);
3328        current->memcg_kmem_skip_account++;
3329}
3330
3331static inline void memcg_resume_kmem_account(void)
3332{
3333        VM_BUG_ON(!current->mm);
3334        current->memcg_kmem_skip_account--;
3335}
3336
3337static void kmem_cache_destroy_work_func(struct work_struct *w)
3338{
3339        struct kmem_cache *cachep;
3340        struct memcg_cache_params *p;
3341
3342        p = container_of(w, struct memcg_cache_params, destroy);
3343
3344        cachep = memcg_params_to_cache(p);
3345
3346        /*
3347         * If we get down to 0 after shrink, we could delete right away.
3348         * However, memcg_release_pages() already puts us back in the workqueue
3349         * in that case. If we proceed deleting, we'll get a dangling
3350         * reference, and removing the object from the workqueue in that case
3351         * is unnecessary complication. We are not a fast path.
3352         *
3353         * Note that this case is fundamentally different from racing with
3354         * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3355         * kmem_cache_shrink, not only we would be reinserting a dead cache
3356         * into the queue, but doing so from inside the worker racing to
3357         * destroy it.
3358         *
3359         * So if we aren't down to zero, we'll just schedule a worker and try
3360         * again
3361         */
3362        if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
3363                kmem_cache_shrink(cachep);
3364        else
3365                kmem_cache_destroy(cachep);
3366}
3367
3368void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3369{
3370        if (!cachep->memcg_params->dead)
3371                return;
3372
3373        /*
3374         * There are many ways in which we can get here.
3375         *
3376         * We can get to a memory-pressure situation while the delayed work is
3377         * still pending to run. The vmscan shrinkers can then release all
3378         * cache memory and get us to destruction. If this is the case, we'll
3379         * be executed twice, which is a bug (the second time will execute over
3380         * bogus data). In this case, cancelling the work should be fine.
3381         *
3382         * But we can also get here from the worker itself, if
3383         * kmem_cache_shrink is enough to shake all the remaining objects and
3384         * get the page count to 0. In this case, we'll deadlock if we try to
3385         * cancel the work (the worker runs with an internal lock held, which
3386         * is the same lock we would hold for cancel_work_sync().)
3387         *
3388         * Since we can't possibly know who got us here, just refrain from
3389         * running if there is already work pending
3390         */
3391        if (work_pending(&cachep->memcg_params->destroy))
3392                return;
3393        /*
3394         * We have to defer the actual destroying to a workqueue, because
3395         * we might currently be in a context that cannot sleep.
3396         */
3397        schedule_work(&cachep->memcg_params->destroy);
3398}
3399
3400static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3401                                                  struct kmem_cache *s)
3402{
3403        struct kmem_cache *new = NULL;
3404        static char *tmp_name = NULL;
3405        static DEFINE_MUTEX(mutex);     /* protects tmp_name */
3406
3407        BUG_ON(!memcg_can_account_kmem(memcg));
3408
3409        mutex_lock(&mutex);
3410        /*
3411         * kmem_cache_create_memcg duplicates the given name and
3412         * cgroup_name for this name requires RCU context.
3413         * This static temporary buffer is used to prevent from
3414         * pointless shortliving allocation.
3415         */
3416        if (!tmp_name) {
3417                tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3418                if (!tmp_name)
3419                        goto out;
3420        }
3421
3422        rcu_read_lock();
3423        snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3424                         memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3425        rcu_read_unlock();
3426
3427        new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3428                                      (s->flags & ~SLAB_PANIC), s->ctor, s);
3429        if (new)
3430                new->allocflags |= __GFP_KMEMCG;
3431        else
3432                new = s;
3433out:
3434        mutex_unlock(&mutex);
3435        return new;
3436}
3437
3438void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3439{
3440        struct kmem_cache *c;
3441        int i;
3442
3443        if (!s->memcg_params)
3444                return;
3445        if (!s->memcg_params->is_root_cache)
3446                return;
3447
3448        /*
3449         * If the cache is being destroyed, we trust that there is no one else
3450         * requesting objects from it. Even if there are, the sanity checks in
3451         * kmem_cache_destroy should caught this ill-case.
3452         *
3453         * Still, we don't want anyone else freeing memcg_caches under our
3454         * noses, which can happen if a new memcg comes to life. As usual,
3455         * we'll take the activate_kmem_mutex to protect ourselves against
3456         * this.
3457         */
3458        mutex_lock(&activate_kmem_mutex);
3459        for_each_memcg_cache_index(i) {
3460                c = cache_from_memcg_idx(s, i);
3461                if (!c)
3462                        continue;
3463
3464                /*
3465                 * We will now manually delete the caches, so to avoid races
3466                 * we need to cancel all pending destruction workers and
3467                 * proceed with destruction ourselves.
3468                 *
3469                 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3470                 * and that could spawn the workers again: it is likely that
3471                 * the cache still have active pages until this very moment.
3472                 * This would lead us back to mem_cgroup_destroy_cache.
3473                 *
3474                 * But that will not execute at all if the "dead" flag is not
3475                 * set, so flip it down to guarantee we are in control.
3476                 */
3477                c->memcg_params->dead = false;
3478                cancel_work_sync(&c->memcg_params->destroy);
3479                kmem_cache_destroy(c);
3480        }
3481        mutex_unlock(&activate_kmem_mutex);
3482}
3483
3484struct create_work {
3485        struct mem_cgroup *memcg;
3486        struct kmem_cache *cachep;
3487        struct work_struct work;
3488};
3489
3490static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3491{
3492        struct kmem_cache *cachep;
3493        struct memcg_cache_params *params;
3494
3495        if (!memcg_kmem_is_active(memcg))
3496                return;
3497
3498        mutex_lock(&memcg->slab_caches_mutex);
3499        list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3500                cachep = memcg_params_to_cache(params);
3501                cachep->memcg_params->dead = true;
3502                schedule_work(&cachep->memcg_params->destroy);
3503        }
3504        mutex_unlock(&memcg->slab_caches_mutex);
3505}
3506
3507static void memcg_create_cache_work_func(struct work_struct *w)
3508{
3509        struct create_work *cw;
3510
3511        cw = container_of(w, struct create_work, work);
3512        memcg_create_kmem_cache(cw->memcg, cw->cachep);
3513        css_put(&cw->memcg->css);
3514        kfree(cw);
3515}
3516
3517/*
3518 * Enqueue the creation of a per-memcg kmem_cache.
3519 */
3520static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3521                                         struct kmem_cache *cachep)
3522{
3523        struct create_work *cw;
3524
3525        cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3526        if (cw == NULL) {
3527                css_put(&memcg->css);
3528                return;
3529        }
3530
3531        cw->memcg = memcg;
3532        cw->cachep = cachep;
3533
3534        INIT_WORK(&cw->work, memcg_create_cache_work_func);
3535        schedule_work(&cw->work);
3536}
3537
3538static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3539                                       struct kmem_cache *cachep)
3540{
3541        /*
3542         * We need to stop accounting when we kmalloc, because if the
3543         * corresponding kmalloc cache is not yet created, the first allocation
3544         * in __memcg_create_cache_enqueue will recurse.
3545         *
3546         * However, it is better to enclose the whole function. Depending on
3547         * the debugging options enabled, INIT_WORK(), for instance, can
3548         * trigger an allocation. This too, will make us recurse. Because at
3549         * this point we can't allow ourselves back into memcg_kmem_get_cache,
3550         * the safest choice is to do it like this, wrapping the whole function.
3551         */
3552        memcg_stop_kmem_account();
3553        __memcg_create_cache_enqueue(memcg, cachep);
3554        memcg_resume_kmem_account();
3555}
3556/*
3557 * Return the kmem_cache we're supposed to use for a slab allocation.
3558 * We try to use the current memcg's version of the cache.
3559 *
3560 * If the cache does not exist yet, if we are the first user of it,
3561 * we either create it immediately, if possible, or create it asynchronously
3562 * in a workqueue.
3563 * In the latter case, we will let the current allocation go through with
3564 * the original cache.
3565 *
3566 * Can't be called in interrupt context or from kernel threads.
3567 * This function needs to be called with rcu_read_lock() held.
3568 */
3569struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3570                                          gfp_t gfp)
3571{
3572        struct mem_cgroup *memcg;
3573        struct kmem_cache *memcg_cachep;
3574
3575        VM_BUG_ON(!cachep->memcg_params);
3576        VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3577
3578        if (!current->mm || current->memcg_kmem_skip_account)
3579                return cachep;
3580
3581        rcu_read_lock();
3582        memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3583
3584        if (!memcg_can_account_kmem(memcg))
3585                goto out;
3586
3587        memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3588        if (likely(memcg_cachep)) {
3589                cachep = memcg_cachep;
3590                goto out;
3591        }
3592
3593        /* The corresponding put will be done in the workqueue. */
3594        if (!css_tryget(&memcg->css))
3595                goto out;
3596        rcu_read_unlock();
3597
3598        /*
3599         * If we are in a safe context (can wait, and not in interrupt
3600         * context), we could be be predictable and return right away.
3601         * This would guarantee that the allocation being performed
3602         * already belongs in the new cache.
3603         *
3604         * However, there are some clashes that can arrive from locking.
3605         * For instance, because we acquire the slab_mutex while doing
3606         * kmem_cache_dup, this means no further allocation could happen
3607         * with the slab_mutex held.
3608         *
3609         * Also, because cache creation issue get_online_cpus(), this
3610         * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3611         * that ends up reversed during cpu hotplug. (cpuset allocates
3612         * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3613         * better to defer everything.
3614         */
3615        memcg_create_cache_enqueue(memcg, cachep);
3616        return cachep;
3617out:
3618        rcu_read_unlock();
3619        return cachep;
3620}
3621EXPORT_SYMBOL(__memcg_kmem_get_cache);
3622
3623/*
3624 * We need to verify if the allocation against current->mm->owner's memcg is
3625 * possible for the given order. But the page is not allocated yet, so we'll
3626 * need a further commit step to do the final arrangements.
3627 *
3628 * It is possible for the task to switch cgroups in this mean time, so at
3629 * commit time, we can't rely on task conversion any longer.  We'll then use
3630 * the handle argument to return to the caller which cgroup we should commit
3631 * against. We could also return the memcg directly and avoid the pointer
3632 * passing, but a boolean return value gives better semantics considering
3633 * the compiled-out case as well.
3634 *
3635 * Returning true means the allocation is possible.
3636 */
3637bool
3638__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3639{
3640        struct mem_cgroup *memcg;
3641        int ret;
3642
3643        *_memcg = NULL;
3644
3645        /*
3646         * Disabling accounting is only relevant for some specific memcg
3647         * internal allocations. Therefore we would initially not have such
3648         * check here, since direct calls to the page allocator that are marked
3649         * with GFP_KMEMCG only happen outside memcg core. We are mostly
3650         * concerned with cache allocations, and by having this test at
3651         * memcg_kmem_get_cache, we are already able to relay the allocation to
3652         * the root cache and bypass the memcg cache altogether.
3653         *
3654         * There is one exception, though: the SLUB allocator does not create
3655         * large order caches, but rather service large kmallocs directly from
3656         * the page allocator. Therefore, the following sequence when backed by
3657         * the SLUB allocator:
3658         *
3659         *      memcg_stop_kmem_account();
3660         *      kmalloc(<large_number>)
3661         *      memcg_resume_kmem_account();
3662         *
3663         * would effectively ignore the fact that we should skip accounting,
3664         * since it will drive us directly to this function without passing
3665         * through the cache selector memcg_kmem_get_cache. Such large
3666         * allocations are extremely rare but can happen, for instance, for the
3667         * cache arrays. We bring this test here.
3668         */
3669        if (!current->mm || current->memcg_kmem_skip_account)
3670                return true;
3671
3672        memcg = try_get_mem_cgroup_from_mm(current->mm);
3673
3674        /*
3675         * very rare case described in mem_cgroup_from_task. Unfortunately there
3676         * isn't much we can do without complicating this too much, and it would
3677         * be gfp-dependent anyway. Just let it go
3678         */
3679        if (unlikely(!memcg))
3680                return true;
3681
3682        if (!memcg_can_account_kmem(memcg)) {
3683                css_put(&memcg->css);
3684                return true;
3685        }
3686
3687        ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3688        if (!ret)
3689                *_memcg = memcg;
3690
3691        css_put(&memcg->css);
3692        return (ret == 0);
3693}
3694
3695void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3696                              int order)
3697{
3698        struct page_cgroup *pc;
3699
3700        VM_BUG_ON(mem_cgroup_is_root(memcg));
3701
3702        /* The page allocation failed. Revert */
3703        if (!page) {
3704                memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3705                return;
3706        }
3707
3708        pc = lookup_page_cgroup(page);
3709        lock_page_cgroup(pc);
3710        pc->mem_cgroup = memcg;
3711        SetPageCgroupUsed(pc);
3712        unlock_page_cgroup(pc);
3713}
3714
3715void __memcg_kmem_uncharge_pages(struct page *page, int order)
3716{
3717        struct mem_cgroup *memcg = NULL;
3718        struct page_cgroup *pc;
3719
3720
3721        pc = lookup_page_cgroup(page);
3722        /*
3723         * Fast unlocked return. Theoretically might have changed, have to
3724         * check again after locking.
3725         */
3726        if (!PageCgroupUsed(pc))
3727                return;
3728
3729        lock_page_cgroup(pc);
3730        if (PageCgroupUsed(pc)) {
3731                memcg = pc->mem_cgroup;
3732                ClearPageCgroupUsed(pc);
3733        }
3734        unlock_page_cgroup(pc);
3735
3736        /*
3737         * We trust that only if there is a memcg associated with the page, it
3738         * is a valid allocation
3739         */
3740        if (!memcg)
3741                return;
3742
3743        VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3744        memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3745}
3746#else
3747static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3748{
3749}
3750#endif /* CONFIG_MEMCG_KMEM */
3751
3752#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3753
3754#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3755/*
3756 * Because tail pages are not marked as "used", set it. We're under
3757 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3758 * charge/uncharge will be never happen and move_account() is done under
3759 * compound_lock(), so we don't have to take care of races.
3760 */
3761void mem_cgroup_split_huge_fixup(struct page *head)
3762{
3763        struct page_cgroup *head_pc = lookup_page_cgroup(head);
3764        struct page_cgroup *pc;
3765        struct mem_cgroup *memcg;
3766        int i;
3767
3768        if (mem_cgroup_disabled())
3769                return;
3770
3771        memcg = head_pc->mem_cgroup;
3772        for (i = 1; i < HPAGE_PMD_NR; i++) {
3773                pc = head_pc + i;
3774                pc->mem_cgroup = memcg;
3775                smp_wmb();/* see __commit_charge() */
3776                pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3777        }
3778        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3779                       HPAGE_PMD_NR);
3780}
3781#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3782
3783static inline
3784void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3785                                        struct mem_cgroup *to,
3786                                        unsigned int nr_pages,
3787                                        enum mem_cgroup_stat_index idx)
3788{
3789        /* Update stat data for mem_cgroup */
3790        preempt_disable();
3791        __this_cpu_sub(from->stat->count[idx], nr_pages);
3792        __this_cpu_add(to->stat->count[idx], nr_pages);
3793        preempt_enable();
3794}
3795
3796/**
3797 * mem_cgroup_move_account - move account of the page
3798 * @page: the page
3799 * @nr_pages: number of regular pages (>1 for huge pages)
3800 * @pc: page_cgroup of the page.
3801 * @from: mem_cgroup which the page is moved from.
3802 * @to: mem_cgroup which the page is moved to. @from != @to.
3803 *
3804 * The caller must confirm following.
3805 * - page is not on LRU (isolate_page() is useful.)
3806 * - compound_lock is held when nr_pages > 1
3807 *
3808 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3809 * from old cgroup.
3810 */
3811static int mem_cgroup_move_account(struct page *page,
3812                                   unsigned int nr_pages,
3813                                   struct page_cgroup *pc,
3814                                   struct mem_cgroup *from,
3815                                   struct mem_cgroup *to)
3816{
3817        unsigned long flags;
3818        int ret;
3819        bool anon = PageAnon(page);
3820
3821        VM_BUG_ON(from == to);
3822        VM_BUG_ON_PAGE(PageLRU(page), page);
3823        /*
3824         * The page is isolated from LRU. So, collapse function
3825         * will not handle this page. But page splitting can happen.
3826         * Do this check under compound_page_lock(). The caller should
3827         * hold it.
3828         */
3829        ret = -EBUSY;
3830        if (nr_pages > 1 && !PageTransHuge(page))
3831                goto out;
3832
3833        lock_page_cgroup(pc);
3834
3835        ret = -EINVAL;
3836        if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3837                goto unlock;
3838
3839        move_lock_mem_cgroup(from, &flags);
3840
3841        if (!anon && page_mapped(page))
3842                mem_cgroup_move_account_page_stat(from, to, nr_pages,
3843                        MEM_CGROUP_STAT_FILE_MAPPED);
3844
3845        if (PageWriteback(page))
3846                mem_cgroup_move_account_page_stat(from, to, nr_pages,
3847                        MEM_CGROUP_STAT_WRITEBACK);
3848
3849        mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3850
3851        /* caller should have done css_get */
3852        pc->mem_cgroup = to;
3853        mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3854        move_unlock_mem_cgroup(from, &flags);
3855        ret = 0;
3856unlock:
3857        unlock_page_cgroup(pc);
3858        /*
3859         * check events
3860         */
3861        memcg_check_events(to, page);
3862        memcg_check_events(from, page);
3863out:
3864        return ret;
3865}
3866
3867/**
3868 * mem_cgroup_move_parent - moves page to the parent group
3869 * @page: the page to move
3870 * @pc: page_cgroup of the page
3871 * @child: page's cgroup
3872 *
3873 * move charges to its parent or the root cgroup if the group has no
3874 * parent (aka use_hierarchy==0).
3875 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3876 * mem_cgroup_move_account fails) the failure is always temporary and
3877 * it signals a race with a page removal/uncharge or migration. In the
3878 * first case the page is on the way out and it will vanish from the LRU
3879 * on the next attempt and the call should be retried later.
3880 * Isolation from the LRU fails only if page has been isolated from
3881 * the LRU since we looked at it and that usually means either global
3882 * reclaim or migration going on. The page will either get back to the
3883 * LRU or vanish.
3884 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3885 * (!PageCgroupUsed) or moved to a different group. The page will
3886 * disappear in the next attempt.
3887 */
3888static int mem_cgroup_move_parent(struct page *page,
3889                                  struct page_cgroup *pc,
3890                                  struct mem_cgroup *child)
3891{
3892        struct mem_cgroup *parent;
3893        unsigned int nr_pages;
3894        unsigned long uninitialized_var(flags);
3895        int ret;
3896
3897        VM_BUG_ON(mem_cgroup_is_root(child));
3898
3899        ret = -EBUSY;
3900        if (!get_page_unless_zero(page))
3901                goto out;
3902        if (isolate_lru_page(page))
3903                goto put;
3904
3905        nr_pages = hpage_nr_pages(page);
3906
3907        parent = parent_mem_cgroup(child);
3908        /*
3909         * If no parent, move charges to root cgroup.
3910         */
3911        if (!parent)
3912                parent = root_mem_cgroup;
3913
3914        if (nr_pages > 1) {
3915                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3916                flags = compound_lock_irqsave(page);
3917        }
3918
3919        ret = mem_cgroup_move_account(page, nr_pages,
3920                                pc, child, parent);
3921        if (!ret)
3922                __mem_cgroup_cancel_local_charge(child, nr_pages);
3923
3924        if (nr_pages > 1)
3925                compound_unlock_irqrestore(page, flags);
3926        putback_lru_page(page);
3927put:
3928        put_page(page);
3929out:
3930        return ret;
3931}
3932
3933/*
3934 * Charge the memory controller for page usage.
3935 * Return
3936 * 0 if the charge was successful
3937 * < 0 if the cgroup is over its limit
3938 */
3939static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3940                                gfp_t gfp_mask, enum charge_type ctype)
3941{
3942        struct mem_cgroup *memcg = NULL;
3943        unsigned int nr_pages = 1;
3944        bool oom = true;
3945        int ret;
3946
3947        if (PageTransHuge(page)) {
3948                nr_pages <<= compound_order(page);
3949                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3950                /*
3951                 * Never OOM-kill a process for a huge page.  The
3952                 * fault handler will fall back to regular pages.
3953                 */
3954                oom = false;
3955        }
3956
3957        ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3958        if (ret == -ENOMEM)
3959                return ret;
3960        __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3961        return 0;
3962}
3963
3964int mem_cgroup_newpage_charge(struct page *page,
3965                              struct mm_struct *mm, gfp_t gfp_mask)
3966{
3967        if (mem_cgroup_disabled())
3968                return 0;
3969        VM_BUG_ON_PAGE(page_mapped(page), page);
3970        VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3971        VM_BUG_ON(!mm);
3972        return mem_cgroup_charge_common(page, mm, gfp_mask,
3973                                        MEM_CGROUP_CHARGE_TYPE_ANON);
3974}
3975
3976/*
3977 * While swap-in, try_charge -> commit or cancel, the page is locked.
3978 * And when try_charge() successfully returns, one refcnt to memcg without
3979 * struct page_cgroup is acquired. This refcnt will be consumed by
3980 * "commit()" or removed by "cancel()"
3981 */
3982static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3983                                          struct page *page,
3984                                          gfp_t mask,
3985                                          struct mem_cgroup **memcgp)
3986{
3987        struct mem_cgroup *memcg;
3988        struct page_cgroup *pc;
3989        int ret;
3990
3991        pc = lookup_page_cgroup(page);
3992        /*
3993         * Every swap fault against a single page tries to charge the
3994         * page, bail as early as possible.  shmem_unuse() encounters
3995         * already charged pages, too.  The USED bit is protected by
3996         * the page lock, which serializes swap cache removal, which
3997         * in turn serializes uncharging.
3998         */
3999        if (PageCgroupUsed(pc))
4000                return 0;
4001        if (!do_swap_account)
4002                goto charge_cur_mm;
4003        memcg = try_get_mem_cgroup_from_page(page);
4004        if (!memcg)
4005                goto charge_cur_mm;
4006        *memcgp = memcg;
4007        ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4008        css_put(&memcg->css);
4009        if (ret == -EINTR)
4010                ret = 0;
4011        return ret;
4012charge_cur_mm:
4013        ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4014        if (ret == -EINTR)
4015                ret = 0;
4016        return ret;
4017}
4018
4019int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4020                                 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4021{
4022        *memcgp = NULL;
4023        if (mem_cgroup_disabled())
4024                return 0;
4025        /*
4026         * A racing thread's fault, or swapoff, may have already
4027         * updated the pte, and even removed page from swap cache: in
4028         * those cases unuse_pte()'s pte_same() test will fail; but
4029         * there's also a KSM case which does need to charge the page.
4030         */
4031        if (!PageSwapCache(page)) {
4032                int ret;
4033
4034                ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4035                if (ret == -EINTR)
4036                        ret = 0;
4037                return ret;
4038        }
4039        return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4040}
4041
4042void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4043{
4044        if (mem_cgroup_disabled())
4045                return;
4046        if (!memcg)
4047                return;
4048        __mem_cgroup_cancel_charge(memcg, 1);
4049}
4050
4051static void
4052__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4053                                        enum charge_type ctype)
4054{
4055        if (mem_cgroup_disabled())
4056                return;
4057        if (!memcg)
4058                return;
4059
4060        __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4061        /*
4062         * Now swap is on-memory. This means this page may be
4063         * counted both as mem and swap....double count.
4064         * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4065         * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4066         * may call delete_from_swap_cache() before reach here.
4067         */
4068        if (do_swap_account && PageSwapCache(page)) {
4069                swp_entry_t ent = {.val = page_private(page)};
4070                mem_cgroup_uncharge_swap(ent);
4071        }
4072}
4073
4074void mem_cgroup_commit_charge_swapin(struct page *page,
4075                                     struct mem_cgroup *memcg)
4076{
4077        __mem_cgroup_commit_charge_swapin(page, memcg,
4078                                          MEM_CGROUP_CHARGE_TYPE_ANON);
4079}
4080
4081int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4082                                gfp_t gfp_mask)
4083{
4084        struct mem_cgroup *memcg = NULL;
4085        enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4086        int ret;
4087
4088        if (mem_cgroup_disabled())
4089                return 0;
4090        if (PageCompound(page))
4091                return 0;
4092
4093        if (!PageSwapCache(page))
4094                ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4095        else { /* page is swapcache/shmem */
4096                ret = __mem_cgroup_try_charge_swapin(mm, page,
4097                                                     gfp_mask, &memcg);
4098                if (!ret)
4099                        __mem_cgroup_commit_charge_swapin(page, memcg, type);
4100        }
4101        return ret;
4102}
4103
4104static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4105                                   unsigned int nr_pages,
4106                                   const enum charge_type ctype)
4107{
4108        struct memcg_batch_info *batch = NULL;
4109        bool uncharge_memsw = true;
4110
4111        /* If swapout, usage of swap doesn't decrease */
4112        if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4113                uncharge_memsw = false;
4114
4115        batch = &current->memcg_batch;
4116        /*
4117         * In usual, we do css_get() when we remember memcg pointer.
4118         * But in this case, we keep res->usage until end of a series of
4119         * uncharges. Then, it's ok to ignore memcg's refcnt.
4120         */
4121        if (!batch->memcg)
4122                batch->memcg = memcg;
4123        /*
4124         * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4125         * In those cases, all pages freed continuously can be expected to be in
4126         * the same cgroup and we have chance to coalesce uncharges.
4127         * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4128         * because we want to do uncharge as soon as possible.
4129         */
4130
4131        if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4132                goto direct_uncharge;
4133
4134        if (nr_pages > 1)
4135                goto direct_uncharge;
4136
4137        /*
4138         * In typical case, batch->memcg == mem. This means we can
4139         * merge a series of uncharges to an uncharge of res_counter.
4140         * If not, we uncharge res_counter ony by one.
4141         */
4142        if (batch->memcg != memcg)
4143                goto direct_uncharge;
4144        /* remember freed charge and uncharge it later */
4145        batch->nr_pages++;
4146        if (uncharge_memsw)
4147                batch->memsw_nr_pages++;
4148        return;
4149direct_uncharge:
4150        res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4151        if (uncharge_memsw)
4152                res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4153        if (unlikely(batch->memcg != memcg))
4154                memcg_oom_recover(memcg);
4155}
4156
4157/*
4158 * uncharge if !page_mapped(page)
4159 */
4160static struct mem_cgroup *
4161__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4162                             bool end_migration)
4163{
4164        struct mem_cgroup *memcg = NULL;
4165        unsigned int nr_pages = 1;
4166        struct page_cgroup *pc;
4167        bool anon;
4168
4169        if (mem_cgroup_disabled())
4170                return NULL;
4171
4172        if (PageTransHuge(page)) {
4173                nr_pages <<= compound_order(page);
4174                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4175        }
4176        /*
4177         * Check if our page_cgroup is valid
4178         */
4179        pc = lookup_page_cgroup(page);
4180        if (unlikely(!PageCgroupUsed(pc)))
4181                return NULL;
4182
4183        lock_page_cgroup(pc);
4184
4185        memcg = pc->mem_cgroup;
4186
4187        if (!PageCgroupUsed(pc))
4188                goto unlock_out;
4189
4190        anon = PageAnon(page);
4191
4192        switch (ctype) {
4193        case MEM_CGROUP_CHARGE_TYPE_ANON:
4194                /*
4195                 * Generally PageAnon tells if it's the anon statistics to be
4196                 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4197                 * used before page reached the stage of being marked PageAnon.
4198                 */
4199                anon = true;
4200                /* fallthrough */
4201        case MEM_CGROUP_CHARGE_TYPE_DROP:
4202                /* See mem_cgroup_prepare_migration() */
4203                if (page_mapped(page))
4204                        goto unlock_out;
4205                /*
4206                 * Pages under migration may not be uncharged.  But
4207                 * end_migration() /must/ be the one uncharging the
4208                 * unused post-migration page and so it has to call
4209                 * here with the migration bit still set.  See the
4210                 * res_counter handling below.
4211                 */
4212                if (!end_migration && PageCgroupMigration(pc))
4213                        goto unlock_out;
4214                break;
4215        case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4216                if (!PageAnon(page)) {  /* Shared memory */
4217                        if (page->mapping && !page_is_file_cache(page))
4218                                goto unlock_out;
4219                } else if (page_mapped(page)) /* Anon */
4220                                goto unlock_out;
4221                break;
4222        default:
4223                break;
4224        }
4225
4226        mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4227
4228        ClearPageCgroupUsed(pc);
4229        /*
4230         * pc->mem_cgroup is not cleared here. It will be accessed when it's
4231         * freed from LRU. This is safe because uncharged page is expected not
4232         * to be reused (freed soon). Exception is SwapCache, it's handled by
4233         * special functions.
4234         */
4235
4236        unlock_page_cgroup(pc);
4237        /*
4238         * even after unlock, we have memcg->res.usage here and this memcg
4239         * will never be freed, so it's safe to call css_get().
4240         */
4241        memcg_check_events(memcg, page);
4242        if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4243                mem_cgroup_swap_statistics(memcg, true);
4244                css_get(&memcg->css);
4245        }
4246        /*
4247         * Migration does not charge the res_counter for the
4248         * replacement page, so leave it alone when phasing out the
4249         * page that is unused after the migration.
4250         */
4251        if (!end_migration && !mem_cgroup_is_root(memcg))
4252                mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4253
4254        return memcg;
4255
4256unlock_out:
4257        unlock_page_cgroup(pc);
4258        return NULL;
4259}
4260
4261void mem_cgroup_uncharge_page(struct page *page)
4262{
4263        /* early check. */
4264        if (page_mapped(page))
4265                return;
4266        VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4267        /*
4268         * If the page is in swap cache, uncharge should be deferred
4269         * to the swap path, which also properly accounts swap usage
4270         * and handles memcg lifetime.
4271         *
4272         * Note that this check is not stable and reclaim may add the
4273         * page to swap cache at any time after this.  However, if the
4274         * page is not in swap cache by the time page->mapcount hits
4275         * 0, there won't be any page table references to the swap
4276         * slot, and reclaim will free it and not actually write the
4277         * page to disk.
4278         */
4279        if (PageSwapCache(page))
4280                return;
4281        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4282}
4283
4284void mem_cgroup_uncharge_cache_page(struct page *page)
4285{
4286        VM_BUG_ON_PAGE(page_mapped(page), page);
4287        VM_BUG_ON_PAGE(page->mapping, page);
4288        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4289}
4290
4291/*
4292 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4293 * In that cases, pages are freed continuously and we can expect pages
4294 * are in the same memcg. All these calls itself limits the number of
4295 * pages freed at once, then uncharge_start/end() is called properly.
4296 * This may be called prural(2) times in a context,
4297 */
4298
4299void mem_cgroup_uncharge_start(void)
4300{
4301        current->memcg_batch.do_batch++;
4302        /* We can do nest. */
4303        if (current->memcg_batch.do_batch == 1) {
4304                current->memcg_batch.memcg = NULL;
4305                current->memcg_batch.nr_pages = 0;
4306                current->memcg_batch.memsw_nr_pages = 0;
4307        }
4308}
4309
4310void mem_cgroup_uncharge_end(void)
4311{
4312        struct memcg_batch_info *batch = &current->memcg_batch;
4313
4314        if (!batch->do_batch)
4315                return;
4316
4317        batch->do_batch--;
4318        if (batch->do_batch) /* If stacked, do nothing. */
4319                return;
4320
4321        if (!batch->memcg)
4322                return;
4323        /*
4324         * This "batch->memcg" is valid without any css_get/put etc...
4325         * bacause we hide charges behind us.
4326         */
4327        if (batch->nr_pages)
4328                res_counter_uncharge(&batch->memcg->res,
4329                                     batch->nr_pages * PAGE_SIZE);
4330        if (batch->memsw_nr_pages)
4331                res_counter_uncharge(&batch->memcg->memsw,
4332                                     batch->memsw_nr_pages * PAGE_SIZE);
4333        memcg_oom_recover(batch->memcg);
4334        /* forget this pointer (for sanity check) */
4335        batch->memcg = NULL;
4336}
4337
4338#ifdef CONFIG_SWAP
4339/*
4340 * called after __delete_from_swap_cache() and drop "page" account.
4341 * memcg information is recorded to swap_cgroup of "ent"
4342 */
4343void
4344mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4345{
4346        struct mem_cgroup *memcg;
4347        int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4348
4349        if (!swapout) /* this was a swap cache but the swap is unused ! */
4350                ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4351
4352        memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4353
4354        /*
4355         * record memcg information,  if swapout && memcg != NULL,
4356         * css_get() was called in uncharge().
4357         */
4358        if (do_swap_account && swapout && memcg)
4359                swap_cgroup_record(ent, mem_cgroup_id(memcg));
4360}
4361#endif
4362
4363#ifdef CONFIG_MEMCG_SWAP
4364/*
4365 * called from swap_entry_free(). remove record in swap_cgroup and
4366 * uncharge "memsw" account.
4367 */
4368void mem_cgroup_uncharge_swap(swp_entry_t ent)
4369{
4370        struct mem_cgroup *memcg;
4371        unsigned short id;
4372
4373        if (!do_swap_account)
4374                return;
4375
4376        id = swap_cgroup_record(ent, 0);
4377        rcu_read_lock();
4378        memcg = mem_cgroup_lookup(id);
4379        if (memcg) {
4380                /*
4381                 * We uncharge this because swap is freed.
4382                 * This memcg can be obsolete one. We avoid calling css_tryget
4383                 */
4384                if (!mem_cgroup_is_root(memcg))
4385                        res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4386                mem_cgroup_swap_statistics(memcg, false);
4387                css_put(&memcg->css);
4388        }
4389        rcu_read_unlock();
4390}
4391
4392/**
4393 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4394 * @entry: swap entry to be moved
4395 * @from:  mem_cgroup which the entry is moved from
4396 * @to:  mem_cgroup which the entry is moved to
4397 *
4398 * It succeeds only when the swap_cgroup's record for this entry is the same
4399 * as the mem_cgroup's id of @from.
4400 *
4401 * Returns 0 on success, -EINVAL on failure.
4402 *
4403 * The caller must have charged to @to, IOW, called res_counter_charge() about
4404 * both res and memsw, and called css_get().
4405 */
4406static int mem_cgroup_move_swap_account(swp_entry_t entry,
4407                                struct mem_cgroup *from, struct mem_cgroup *to)
4408{
4409        unsigned short old_id, new_id;
4410
4411        old_id = mem_cgroup_id(from);
4412        new_id = mem_cgroup_id(to);
4413
4414        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4415                mem_cgroup_swap_statistics(from, false);
4416                mem_cgroup_swap_statistics(to, true);
4417                /*
4418                 * This function is only called from task migration context now.
4419                 * It postpones res_counter and refcount handling till the end
4420                 * of task migration(mem_cgroup_clear_mc()) for performance
4421                 * improvement. But we cannot postpone css_get(to)  because if
4422                 * the process that has been moved to @to does swap-in, the
4423                 * refcount of @to might be decreased to 0.
4424                 *
4425                 * We are in attach() phase, so the cgroup is guaranteed to be
4426                 * alive, so we can just call css_get().
4427                 */
4428                css_get(&to->css);
4429                return 0;
4430        }
4431        return -EINVAL;
4432}
4433#else
4434static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4435                                struct mem_cgroup *from, struct mem_cgroup *to)
4436{
4437        return -EINVAL;
4438}
4439#endif
4440
4441/*
4442 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4443 * page belongs to.
4444 */
4445void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4446                                  struct mem_cgroup **memcgp)
4447{
4448        struct mem_cgroup *memcg = NULL;
4449        unsigned int nr_pages = 1;
4450        struct page_cgroup *pc;
4451        enum charge_type ctype;
4452
4453        *memcgp = NULL;
4454
4455        if (mem_cgroup_disabled())
4456                return;
4457
4458        if (PageTransHuge(page))
4459                nr_pages <<= compound_order(page);
4460
4461        pc = lookup_page_cgroup(page);
4462        lock_page_cgroup(pc);
4463        if (PageCgroupUsed(pc)) {
4464                memcg = pc->mem_cgroup;
4465                css_get(&memcg->css);
4466                /*
4467                 * At migrating an anonymous page, its mapcount goes down
4468                 * to 0 and uncharge() will be called. But, even if it's fully
4469                 * unmapped, migration may fail and this page has to be
4470                 * charged again. We set MIGRATION flag here and delay uncharge
4471                 * until end_migration() is called
4472                 *
4473                 * Corner Case Thinking
4474                 * A)
4475                 * When the old page was mapped as Anon and it's unmap-and-freed
4476                 * while migration was ongoing.
4477                 * If unmap finds the old page, uncharge() of it will be delayed
4478                 * until end_migration(). If unmap finds a new page, it's
4479                 * uncharged when it make mapcount to be 1->0. If unmap code
4480                 * finds swap_migration_entry, the new page will not be mapped
4481                 * and end_migration() will find it(mapcount==0).
4482                 *
4483                 * B)
4484                 * When the old page was mapped but migraion fails, the kernel
4485                 * remaps it. A charge for it is kept by MIGRATION flag even
4486                 * if mapcount goes down to 0. We can do remap successfully
4487                 * without charging it again.
4488                 *
4489                 * C)
4490                 * The "old" page is under lock_page() until the end of
4491                 * migration, so, the old page itself will not be swapped-out.
4492                 * If the new page is swapped out before end_migraton, our
4493                 * hook to usual swap-out path will catch the event.
4494                 */
4495                if (PageAnon(page))
4496                        SetPageCgroupMigration(pc);
4497        }
4498        unlock_page_cgroup(pc);
4499        /*
4500         * If the page is not charged at this point,
4501         * we return here.
4502         */
4503        if (!memcg)
4504                return;
4505
4506        *memcgp = memcg;
4507        /*
4508         * We charge new page before it's used/mapped. So, even if unlock_page()
4509         * is called before end_migration, we can catch all events on this new
4510         * page. In the case new page is migrated but not remapped, new page's
4511         * mapcount will be finally 0 and we call uncharge in end_migration().
4512         */
4513        if (PageAnon(page))
4514                ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4515        else
4516                ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4517        /*
4518         * The page is committed to the memcg, but it's not actually
4519         * charged to the res_counter since we plan on replacing the
4520         * old one and only one page is going to be left afterwards.
4521         */
4522        __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4523}
4524
4525/* remove redundant charge if migration failed*/
4526void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4527        struct page *oldpage, struct page *newpage, bool migration_ok)
4528{
4529        struct page *used, *unused;
4530        struct page_cgroup *pc;
4531        bool anon;
4532
4533        if (!memcg)
4534                return;
4535
4536        if (!migration_ok) {
4537                used = oldpage;
4538                unused = newpage;
4539        } else {
4540                used = newpage;
4541                unused = oldpage;
4542        }
4543        anon = PageAnon(used);
4544        __mem_cgroup_uncharge_common(unused,
4545                                     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4546                                     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4547                                     true);
4548        css_put(&memcg->css);
4549        /*
4550         * We disallowed uncharge of pages under migration because mapcount
4551         * of the page goes down to zero, temporarly.
4552         * Clear the flag and check the page should be charged.
4553         */
4554        pc = lookup_page_cgroup(oldpage);
4555        lock_page_cgroup(pc);
4556        ClearPageCgroupMigration(pc);
4557        unlock_page_cgroup(pc);
4558
4559        /*
4560         * If a page is a file cache, radix-tree replacement is very atomic
4561         * and we can skip this check. When it was an Anon page, its mapcount
4562         * goes down to 0. But because we added MIGRATION flage, it's not
4563         * uncharged yet. There are several case but page->mapcount check
4564         * and USED bit check in mem_cgroup_uncharge_page() will do enough
4565         * check. (see prepare_charge() also)
4566         */
4567        if (anon)
4568                mem_cgroup_uncharge_page(used);
4569}
4570
4571/*
4572 * At replace page cache, newpage is not under any memcg but it's on
4573 * LRU. So, this function doesn't touch res_counter but handles LRU
4574 * in correct way. Both pages are locked so we cannot race with uncharge.
4575 */
4576void mem_cgroup_replace_page_cache(struct page *oldpage,
4577                                  struct page *newpage)
4578{
4579        struct mem_cgroup *memcg = NULL;
4580        struct page_cgroup *pc;
4581        enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4582
4583        if (mem_cgroup_disabled())
4584                return;
4585
4586        pc = lookup_page_cgroup(oldpage);
4587        /* fix accounting on old pages */
4588        lock_page_cgroup(pc);
4589        if (PageCgroupUsed(pc)) {
4590                memcg = pc->mem_cgroup;
4591                mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4592                ClearPageCgroupUsed(pc);
4593        }
4594        unlock_page_cgroup(pc);
4595
4596        /*
4597         * When called from shmem_replace_page(), in some cases the
4598         * oldpage has already been charged, and in some cases not.
4599         */
4600        if (!memcg)
4601                return;
4602        /*
4603         * Even if newpage->mapping was NULL before starting replacement,
4604         * the newpage may be on LRU(or pagevec for LRU) already. We lock
4605         * LRU while we overwrite pc->mem_cgroup.
4606         */
4607        __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4608}
4609
4610#ifdef CONFIG_DEBUG_VM
4611static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4612{
4613        struct page_cgroup *pc;
4614
4615        pc = lookup_page_cgroup(page);
4616        /*
4617         * Can be NULL while feeding pages into the page allocator for
4618         * the first time, i.e. during boot or memory hotplug;
4619         * or when mem_cgroup_disabled().
4620         */
4621        if (likely(pc) && PageCgroupUsed(pc))
4622                return pc;
4623        return NULL;
4624}
4625
4626bool mem_cgroup_bad_page_check(struct page *page)
4627{
4628        if (mem_cgroup_disabled())
4629                return false;
4630
4631        return lookup_page_cgroup_used(page) != NULL;
4632}
4633
4634void mem_cgroup_print_bad_page(struct page *page)
4635{
4636        struct page_cgroup *pc;
4637
4638        pc = lookup_page_cgroup_used(page);
4639        if (pc) {
4640                pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4641                         pc, pc->flags, pc->mem_cgroup);
4642        }
4643}
4644#endif
4645
4646static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4647                                unsigned long long val)
4648{
4649        int retry_count;
4650        u64 memswlimit, memlimit;
4651        int ret = 0;
4652        int children = mem_cgroup_count_children(memcg);
4653        u64 curusage, oldusage;
4654        int enlarge;
4655
4656        /*
4657         * For keeping hierarchical_reclaim simple, how long we should retry
4658         * is depends on callers. We set our retry-count to be function
4659         * of # of children which we should visit in this loop.
4660         */
4661        retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4662
4663        oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4664
4665        enlarge = 0;
4666        while (retry_count) {
4667                if (signal_pending(current)) {
4668                        ret = -EINTR;
4669                        break;
4670                }
4671                /*
4672                 * Rather than hide all in some function, I do this in
4673                 * open coded manner. You see what this really does.
4674                 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4675                 */
4676                mutex_lock(&set_limit_mutex);
4677                memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4678                if (memswlimit < val) {
4679                        ret = -EINVAL;
4680                        mutex_unlock(&set_limit_mutex);
4681                        break;
4682                }
4683
4684                memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4685                if (memlimit < val)
4686                        enlarge = 1;
4687
4688                ret = res_counter_set_limit(&memcg->res, val);
4689                if (!ret) {
4690                        if (memswlimit == val)
4691                                memcg->memsw_is_minimum = true;
4692                        else
4693                                memcg->memsw_is_minimum = false;
4694                }
4695                mutex_unlock(&set_limit_mutex);
4696
4697                if (!ret)
4698                        break;
4699
4700                mem_cgroup_reclaim(memcg, GFP_KERNEL,
4701                                   MEM_CGROUP_RECLAIM_SHRINK);
4702                curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4703                /* Usage is reduced ? */
4704                if (curusage >= oldusage)
4705                        retry_count--;
4706                else
4707                        oldusage = curusage;
4708        }
4709        if (!ret && enlarge)
4710                memcg_oom_recover(memcg);
4711
4712        return ret;
4713}
4714
4715static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4716                                        unsigned long long val)
4717{
4718        int retry_count;
4719        u64 memlimit, memswlimit, oldusage, curusage;
4720        int children = mem_cgroup_count_children(memcg);
4721        int ret = -EBUSY;
4722        int enlarge = 0;
4723
4724        /* see mem_cgroup_resize_res_limit */
4725        retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4726        oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4727        while (retry_count) {
4728                if (signal_pending(current)) {
4729                        ret = -EINTR;
4730                        break;
4731                }
4732                /*
4733                 * Rather than hide all in some function, I do this in
4734                 * open coded manner. You see what this really does.
4735                 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4736                 */
4737                mutex_lock(&set_limit_mutex);
4738                memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4739                if (memlimit > val) {
4740                        ret = -EINVAL;
4741                        mutex_unlock(&set_limit_mutex);
4742                        break;
4743                }
4744                memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4745                if (memswlimit < val)
4746                        enlarge = 1;
4747                ret = res_counter_set_limit(&memcg->memsw, val);
4748                if (!ret) {
4749                        if (memlimit == val)
4750                                memcg->memsw_is_minimum = true;
4751                        else
4752                                memcg->memsw_is_minimum = false;
4753                }
4754                mutex_unlock(&set_limit_mutex);
4755
4756                if (!ret)
4757                        break;
4758
4759                mem_cgroup_reclaim(memcg, GFP_KERNEL,
4760                                   MEM_CGROUP_RECLAIM_NOSWAP |
4761                                   MEM_CGROUP_RECLAIM_SHRINK);
4762                curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4763                /* Usage is reduced ? */
4764                if (curusage >= oldusage)
4765                        retry_count--;
4766                else
4767                        oldusage = curusage;
4768        }
4769        if (!ret && enlarge)
4770                memcg_oom_recover(memcg);
4771        return ret;
4772}
4773
4774unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4775                                            gfp_t gfp_mask,
4776                                            unsigned long *total_scanned)
4777{
4778        unsigned long nr_reclaimed = 0;
4779        struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4780        unsigned long reclaimed;
4781        int loop = 0;
4782        struct mem_cgroup_tree_per_zone *mctz;
4783        unsigned long long excess;
4784        unsigned long nr_scanned;
4785
4786        if (order > 0)
4787                return 0;
4788
4789        mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4790        /*
4791         * This loop can run a while, specially if mem_cgroup's continuously
4792         * keep exceeding their soft limit and putting the system under
4793         * pressure
4794         */
4795        do {
4796                if (next_mz)
4797                        mz = next_mz;
4798                else
4799                        mz = mem_cgroup_largest_soft_limit_node(mctz);
4800                if (!mz)
4801                        break;
4802
4803                nr_scanned = 0;
4804                reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4805                                                    gfp_mask, &nr_scanned);
4806                nr_reclaimed += reclaimed;
4807                *total_scanned += nr_scanned;
4808                spin_lock(&mctz->lock);
4809
4810                /*
4811                 * If we failed to reclaim anything from this memory cgroup
4812                 * it is time to move on to the next cgroup
4813                 */
4814                next_mz = NULL;
4815                if (!reclaimed) {
4816                        do {
4817                                /*
4818                                 * Loop until we find yet another one.
4819                                 *
4820                                 * By the time we get the soft_limit lock
4821                                 * again, someone might have aded the
4822                                 * group back on the RB tree. Iterate to
4823                                 * make sure we get a different mem.
4824                                 * mem_cgroup_largest_soft_limit_node returns
4825                                 * NULL if no other cgroup is present on
4826                                 * the tree
4827                                 */
4828                                next_mz =
4829                                __mem_cgroup_largest_soft_limit_node(mctz);
4830                                if (next_mz == mz)
4831                                        css_put(&next_mz->memcg->css);
4832                                else /* next_mz == NULL or other memcg */
4833                                        break;
4834                        } while (1);
4835                }
4836                __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4837                excess = res_counter_soft_limit_excess(&mz->memcg->res);
4838                /*
4839                 * One school of thought says that we should not add
4840                 * back the node to the tree if reclaim returns 0.
4841                 * But our reclaim could return 0, simply because due
4842                 * to priority we are exposing a smaller subset of
4843                 * memory to reclaim from. Consider this as a longer
4844                 * term TODO.
4845                 */
4846                /* If excess == 0, no tree ops */
4847                __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4848                spin_unlock(&mctz->lock);
4849                css_put(&mz->memcg->css);
4850                loop++;
4851                /*
4852                 * Could not reclaim anything and there are no more
4853                 * mem cgroups to try or we seem to be looping without
4854                 * reclaiming anything.
4855                 */
4856                if (!nr_reclaimed &&
4857                        (next_mz == NULL ||
4858                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4859                        break;
4860        } while (!nr_reclaimed);
4861        if (next_mz)
4862                css_put(&next_mz->memcg->css);
4863        return nr_reclaimed;
4864}
4865
4866/**
4867 * mem_cgroup_force_empty_list - clears LRU of a group
4868 * @memcg: group to clear
4869 * @node: NUMA node
4870 * @zid: zone id
4871 * @lru: lru to to clear
4872 *
4873 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4874 * reclaim the pages page themselves - pages are moved to the parent (or root)
4875 * group.
4876 */
4877static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4878                                int node, int zid, enum lru_list lru)
4879{
4880        struct lruvec *lruvec;
4881        unsigned long flags;
4882        struct list_head *list;
4883        struct page *busy;
4884        struct zone *zone;
4885
4886        zone = &NODE_DATA(node)->node_zones[zid];
4887        lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4888        list = &lruvec->lists[lru];
4889
4890        busy = NULL;
4891        do {
4892                struct page_cgroup *pc;
4893                struct page *page;
4894
4895                spin_lock_irqsave(&zone->lru_lock, flags);
4896                if (list_empty(list)) {
4897                        spin_unlock_irqrestore(&zone->lru_lock, flags);
4898                        break;
4899                }
4900                page = list_entry(list->prev, struct page, lru);
4901                if (busy == page) {
4902                        list_move(&page->lru, list);
4903                        busy = NULL;
4904                        spin_unlock_irqrestore(&zone->lru_lock, flags);
4905                        continue;
4906                }
4907                spin_unlock_irqrestore(&zone->lru_lock, flags);
4908
4909                pc = lookup_page_cgroup(page);
4910
4911                if (mem_cgroup_move_parent(page, pc, memcg)) {
4912                        /* found lock contention or "pc" is obsolete. */
4913                        busy = page;
4914                        cond_resched();
4915                } else
4916                        busy = NULL;
4917        } while (!list_empty(list));
4918}
4919
4920/*
4921 * make mem_cgroup's charge to be 0 if there is no task by moving
4922 * all the charges and pages to the parent.
4923 * This enables deleting this mem_cgroup.
4924 *
4925 * Caller is responsible for holding css reference on the memcg.
4926 */
4927static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4928{
4929        int node, zid;
4930        u64 usage;
4931
4932        do {
4933                /* This is for making all *used* pages to be on LRU. */
4934                lru_add_drain_all();
4935                drain_all_stock_sync(memcg);
4936                mem_cgroup_start_move(memcg);
4937                for_each_node_state(node, N_MEMORY) {
4938                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4939                                enum lru_list lru;
4940                                for_each_lru(lru) {
4941                                        mem_cgroup_force_empty_list(memcg,
4942                                                        node, zid, lru);
4943                                }
4944                        }
4945                }
4946                mem_cgroup_end_move(memcg);
4947                memcg_oom_recover(memcg);
4948                cond_resched();
4949
4950                /*
4951                 * Kernel memory may not necessarily be trackable to a specific
4952                 * process. So they are not migrated, and therefore we can't
4953                 * expect their value to drop to 0 here.
4954                 * Having res filled up with kmem only is enough.
4955                 *
4956                 * This is a safety check because mem_cgroup_force_empty_list
4957                 * could have raced with mem_cgroup_replace_page_cache callers
4958                 * so the lru seemed empty but the page could have been added
4959                 * right after the check. RES_USAGE should be safe as we always
4960                 * charge before adding to the LRU.
4961                 */
4962                usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4963                        res_counter_read_u64(&memcg->kmem, RES_USAGE);
4964        } while (usage > 0);
4965}
4966
4967static inline bool memcg_has_children(struct mem_cgroup *memcg)
4968{
4969        lockdep_assert_held(&memcg_create_mutex);
4970        /*
4971         * The lock does not prevent addition or deletion to the list
4972         * of children, but it prevents a new child from being
4973         * initialized based on this parent in css_online(), so it's
4974         * enough to decide whether hierarchically inherited
4975         * attributes can still be changed or not.
4976         */
4977        return memcg->use_hierarchy &&
4978                !list_empty(&memcg->css.cgroup->children);
4979}
4980
4981/*
4982 * Reclaims as many pages from the given memcg as possible and moves
4983 * the rest to the parent.
4984 *
4985 * Caller is responsible for holding css reference for memcg.
4986 */
4987static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4988{
4989        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4990        struct cgroup *cgrp = memcg->css.cgroup;
4991
4992        /* returns EBUSY if there is a task or if we come here twice. */
4993        if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4994                return -EBUSY;
4995
4996        /* we call try-to-free pages for make this cgroup empty */
4997        lru_add_drain_all();
4998        /* try to free all pages in this cgroup */
4999        while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5000                int progress;
5001
5002                if (signal_pending(current))
5003                        return -EINTR;
5004
5005                progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5006                                                false);
5007                if (!progress) {
5008                        nr_retries--;
5009                        /* maybe some writeback is necessary */
5010                        congestion_wait(BLK_RW_ASYNC, HZ/10);
5011                }
5012
5013        }
5014        lru_add_drain();
5015        mem_cgroup_reparent_charges(memcg);
5016
5017        return 0;
5018}
5019
5020static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5021                                        unsigned int event)
5022{
5023        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024
5025        if (mem_cgroup_is_root(memcg))
5026                return -EINVAL;
5027        return mem_cgroup_force_empty(memcg);
5028}
5029
5030static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5031                                     struct cftype *cft)
5032{
5033        return mem_cgroup_from_css(css)->use_hierarchy;
5034}
5035
5036static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5037                                      struct cftype *cft, u64 val)
5038{
5039        int retval = 0;
5040        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5041        struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5042
5043        mutex_lock(&memcg_create_mutex);
5044
5045        if (memcg->use_hierarchy == val)
5046                goto out;
5047
5048        /*
5049         * If parent's use_hierarchy is set, we can't make any modifications
5050         * in the child subtrees. If it is unset, then the change can
5051         * occur, provided the current cgroup has no children.
5052         *
5053         * For the root cgroup, parent_mem is NULL, we allow value to be
5054         * set if there are no children.
5055         */
5056        if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5057                                (val == 1 || val == 0)) {
5058                if (list_empty(&memcg->css.cgroup->children))
5059                        memcg->use_hierarchy = val;
5060                else
5061                        retval = -EBUSY;
5062        } else
5063                retval = -EINVAL;
5064
5065out:
5066        mutex_unlock(&memcg_create_mutex);
5067
5068        return retval;
5069}
5070
5071
5072static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5073                                               enum mem_cgroup_stat_index idx)
5074{
5075        struct mem_cgroup *iter;
5076        long val = 0;
5077
5078        /* Per-cpu values can be negative, use a signed accumulator */
5079        for_each_mem_cgroup_tree(iter, memcg)
5080                val += mem_cgroup_read_stat(iter, idx);
5081
5082        if (val < 0) /* race ? */
5083                val = 0;
5084        return val;
5085}
5086
5087static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5088{
5089        u64 val;
5090
5091        if (!mem_cgroup_is_root(memcg)) {
5092                if (!swap)
5093                        return res_counter_read_u64(&memcg->res, RES_USAGE);
5094                else
5095                        return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5096        }
5097
5098        /*
5099         * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5100         * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5101         */
5102        val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5103        val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5104
5105        if (swap)
5106                val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5107
5108        return val << PAGE_SHIFT;
5109}
5110
5111static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5112                                   struct cftype *cft)
5113{
5114        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5115        u64 val;
5116        int name;
5117        enum res_type type;
5118
5119        type = MEMFILE_TYPE(cft->private);
5120        name = MEMFILE_ATTR(cft->private);
5121
5122        switch (type) {
5123        case _MEM:
5124                if (name == RES_USAGE)
5125                        val = mem_cgroup_usage(memcg, false);
5126                else
5127                        val = res_counter_read_u64(&memcg->res, name);
5128                break;
5129        case _MEMSWAP:
5130                if (name == RES_USAGE)
5131                        val = mem_cgroup_usage(memcg, true);
5132                else
5133                        val = res_counter_read_u64(&memcg->memsw, name);
5134                break;
5135        case _KMEM:
5136                val = res_counter_read_u64(&memcg->kmem, name);
5137                break;
5138        default:
5139                BUG();
5140        }
5141
5142        return val;
5143}
5144
5145#ifdef CONFIG_MEMCG_KMEM
5146/* should be called with activate_kmem_mutex held */
5147static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5148                                 unsigned long long limit)
5149{
5150        int err = 0;
5151        int memcg_id;
5152
5153        if (memcg_kmem_is_active(memcg))
5154                return 0;
5155
5156        /*
5157         * We are going to allocate memory for data shared by all memory
5158         * cgroups so let's stop accounting here.
5159         */
5160        memcg_stop_kmem_account();
5161
5162        /*
5163         * For simplicity, we won't allow this to be disabled.  It also can't
5164         * be changed if the cgroup has children already, or if tasks had
5165         * already joined.
5166         *
5167         * If tasks join before we set the limit, a person looking at
5168         * kmem.usage_in_bytes will have no way to determine when it took
5169         * place, which makes the value quite meaningless.
5170         *
5171         * After it first became limited, changes in the value of the limit are
5172         * of course permitted.
5173         */
5174        mutex_lock(&memcg_create_mutex);
5175        if (cgroup_task_count(memcg->css.cgroup) || memcg_has_children(memcg))
5176                err = -EBUSY;
5177        mutex_unlock(&memcg_create_mutex);
5178        if (err)
5179                goto out;
5180
5181        memcg_id = ida_simple_get(&kmem_limited_groups,
5182                                  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5183        if (memcg_id < 0) {
5184                err = memcg_id;
5185                goto out;
5186        }
5187
5188        /*
5189         * Make sure we have enough space for this cgroup in each root cache's
5190         * memcg_params.
5191         */
5192        err = memcg_update_all_caches(memcg_id + 1);
5193        if (err)
5194                goto out_rmid;
5195
5196        memcg->kmemcg_id = memcg_id;
5197        INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5198        mutex_init(&memcg->slab_caches_mutex);
5199
5200        /*
5201         * We couldn't have accounted to this cgroup, because it hasn't got the
5202         * active bit set yet, so this should succeed.
5203         */
5204        err = res_counter_set_limit(&memcg->kmem, limit);
5205        VM_BUG_ON(err);
5206
5207        static_key_slow_inc(&memcg_kmem_enabled_key);
5208        /*
5209         * Setting the active bit after enabling static branching will
5210         * guarantee no one starts accounting before all call sites are
5211         * patched.
5212         */
5213        memcg_kmem_set_active(memcg);
5214out:
5215        memcg_resume_kmem_account();
5216        return err;
5217
5218out_rmid:
5219        ida_simple_remove(&kmem_limited_groups, memcg_id);
5220        goto out;
5221}
5222
5223static int memcg_activate_kmem(struct mem_cgroup *memcg,
5224                               unsigned long long limit)
5225{
5226        int ret;
5227
5228        mutex_lock(&activate_kmem_mutex);
5229        ret = __memcg_activate_kmem(memcg, limit);
5230        mutex_unlock(&activate_kmem_mutex);
5231        return ret;
5232}
5233
5234static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5235                                   unsigned long long val)
5236{
5237        int ret;
5238
5239        if (!memcg_kmem_is_active(memcg))
5240                ret = memcg_activate_kmem(memcg, val);
5241        else
5242                ret = res_counter_set_limit(&memcg->kmem, val);
5243        return ret;
5244}
5245
5246static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5247{
5248        int ret = 0;
5249        struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5250
5251        if (!parent)
5252                return 0;
5253
5254        mutex_lock(&activate_kmem_mutex);
5255        /*
5256         * If the parent cgroup is not kmem-active now, it cannot be activated
5257         * after this point, because it has at least one child already.
5258         */
5259        if (memcg_kmem_is_active(parent))
5260                ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5261        mutex_unlock(&activate_kmem_mutex);
5262        return ret;
5263}
5264#else
5265static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5266                                   unsigned long long val)
5267{
5268        return -EINVAL;
5269}
5270#endif /* CONFIG_MEMCG_KMEM */
5271
5272/*
5273 * The user of this function is...
5274 * RES_LIMIT.
5275 */
5276static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5277                            const char *buffer)
5278{
5279        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5280        enum res_type type;
5281        int name;
5282        unsigned long long val;
5283        int ret;
5284
5285        type = MEMFILE_TYPE(cft->private);
5286        name = MEMFILE_ATTR(cft->private);
5287
5288        switch (name) {
5289        case RES_LIMIT:
5290                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5291                        ret = -EINVAL;
5292                        break;
5293                }
5294                /* This function does all necessary parse...reuse it */
5295                ret = res_counter_memparse_write_strategy(buffer, &val);
5296                if (ret)
5297                        break;
5298                if (type == _MEM)
5299                        ret = mem_cgroup_resize_limit(memcg, val);
5300                else if (type == _MEMSWAP)
5301                        ret = mem_cgroup_resize_memsw_limit(memcg, val);
5302                else if (type == _KMEM)
5303                        ret = memcg_update_kmem_limit(memcg, val);
5304                else
5305                        return -EINVAL;
5306                break;
5307        case RES_SOFT_LIMIT:
5308                ret = res_counter_memparse_write_strategy(buffer, &val);
5309                if (ret)
5310                        break;
5311                /*
5312                 * For memsw, soft limits are hard to implement in terms
5313                 * of semantics, for now, we support soft limits for
5314                 * control without swap
5315                 */
5316                if (type == _MEM)
5317                        ret = res_counter_set_soft_limit(&memcg->res, val);
5318                else
5319                        ret = -EINVAL;
5320                break;
5321        default:
5322                ret = -EINVAL; /* should be BUG() ? */
5323                break;
5324        }
5325        return ret;
5326}
5327
5328static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5329                unsigned long long *mem_limit, unsigned long long *memsw_limit)
5330{
5331        unsigned long long min_limit, min_memsw_limit, tmp;
5332
5333        min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5334        min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5335        if (!memcg->use_hierarchy)
5336                goto out;
5337
5338        while (css_parent(&memcg->css)) {
5339                memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5340                if (!memcg->use_hierarchy)
5341                        break;
5342                tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5343                min_limit = min(min_limit, tmp);
5344                tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5345                min_memsw_limit = min(min_memsw_limit, tmp);
5346        }
5347out:
5348        *mem_limit = min_limit;
5349        *memsw_limit = min_memsw_limit;
5350}
5351
5352static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5353{
5354        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5355        int name;
5356        enum res_type type;
5357
5358        type = MEMFILE_TYPE(event);
5359        name = MEMFILE_ATTR(event);
5360
5361        switch (name) {
5362        case RES_MAX_USAGE:
5363                if (type == _MEM)
5364                        res_counter_reset_max(&memcg->res);
5365                else if (type == _MEMSWAP)
5366                        res_counter_reset_max(&memcg->memsw);
5367                else if (type == _KMEM)
5368                        res_counter_reset_max(&memcg->kmem);
5369                else
5370                        return -EINVAL;
5371                break;
5372        case RES_FAILCNT:
5373                if (type == _MEM)
5374                        res_counter_reset_failcnt(&memcg->res);
5375                else if (type == _MEMSWAP)
5376                        res_counter_reset_failcnt(&memcg->memsw);
5377                else if (type == _KMEM)
5378                        res_counter_reset_failcnt(&memcg->kmem);
5379                else
5380                        return -EINVAL;
5381                break;
5382        }
5383
5384        return 0;
5385}
5386
5387static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5388                                        struct cftype *cft)
5389{
5390        return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5391}
5392
5393#ifdef CONFIG_MMU
5394static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5395                                        struct cftype *cft, u64 val)
5396{
5397        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5398
5399        if (val >= (1 << NR_MOVE_TYPE))
5400                return -EINVAL;
5401
5402        /*
5403         * No kind of locking is needed in here, because ->can_attach() will
5404         * check this value once in the beginning of the process, and then carry
5405         * on with stale data. This means that changes to this value will only
5406         * affect task migrations starting after the change.
5407         */
5408        memcg->move_charge_at_immigrate = val;
5409        return 0;
5410}
5411#else
5412static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5413                                        struct cftype *cft, u64 val)
5414{
5415        return -ENOSYS;
5416}
5417#endif
5418
5419#ifdef CONFIG_NUMA
5420static int memcg_numa_stat_show(struct seq_file *m, void *v)
5421{
5422        struct numa_stat {
5423                const char *name;
5424                unsigned int lru_mask;
5425        };
5426
5427        static const struct numa_stat stats[] = {
5428                { "total", LRU_ALL },
5429                { "file", LRU_ALL_FILE },
5430                { "anon", LRU_ALL_ANON },
5431                { "unevictable", BIT(LRU_UNEVICTABLE) },
5432        };
5433        const struct numa_stat *stat;
5434        int nid;
5435        unsigned long nr;
5436        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5437
5438        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5439                nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5440                seq_printf(m, "%s=%lu", stat->name, nr);
5441                for_each_node_state(nid, N_MEMORY) {
5442                        nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5443                                                          stat->lru_mask);
5444                        seq_printf(m, " N%d=%lu", nid, nr);
5445                }
5446                seq_putc(m, '\n');
5447        }
5448
5449        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5450                struct mem_cgroup *iter;
5451
5452                nr = 0;
5453                for_each_mem_cgroup_tree(iter, memcg)
5454                        nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5455                seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5456                for_each_node_state(nid, N_MEMORY) {
5457                        nr = 0;
5458                        for_each_mem_cgroup_tree(iter, memcg)
5459                                nr += mem_cgroup_node_nr_lru_pages(
5460                                        iter, nid, stat->lru_mask);
5461                        seq_printf(m, " N%d=%lu", nid, nr);
5462                }
5463                seq_putc(m, '\n');
5464        }
5465
5466        return 0;
5467}
5468#endif /* CONFIG_NUMA */
5469
5470static inline void mem_cgroup_lru_names_not_uptodate(void)
5471{
5472        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5473}
5474
5475static int memcg_stat_show(struct seq_file *m, void *v)
5476{
5477        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5478        struct mem_cgroup *mi;
5479        unsigned int i;
5480
5481        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5482                if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5483                        continue;
5484                seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5485                           mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5486        }
5487
5488        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5489                seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5490                           mem_cgroup_read_events(memcg, i));
5491
5492        for (i = 0; i < NR_LRU_LISTS; i++)
5493                seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5494                           mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5495
5496        /* Hierarchical information */
5497        {
5498                unsigned long long limit, memsw_limit;
5499                memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5500                seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5501                if (do_swap_account)
5502                        seq_printf(m, "hierarchical_memsw_limit %llu\n",
5503                                   memsw_limit);
5504        }
5505
5506        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5507                long long val = 0;
5508
5509                if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5510                        continue;
5511                for_each_mem_cgroup_tree(mi, memcg)
5512                        val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5513                seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5514        }
5515
5516        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5517                unsigned long long val = 0;
5518
5519                for_each_mem_cgroup_tree(mi, memcg)
5520                        val += mem_cgroup_read_events(mi, i);
5521                seq_printf(m, "total_%s %llu\n",
5522                           mem_cgroup_events_names[i], val);
5523        }
5524
5525        for (i = 0; i < NR_LRU_LISTS; i++) {
5526                unsigned long long val = 0;
5527
5528                for_each_mem_cgroup_tree(mi, memcg)
5529                        val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5530                seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5531        }
5532
5533#ifdef CONFIG_DEBUG_VM
5534        {
5535                int nid, zid;
5536                struct mem_cgroup_per_zone *mz;
5537                struct zone_reclaim_stat *rstat;
5538                unsigned long recent_rotated[2] = {0, 0};
5539                unsigned long recent_scanned[2] = {0, 0};
5540
5541                for_each_online_node(nid)
5542                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5543                                mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5544                                rstat = &mz->lruvec.reclaim_stat;
5545
5546                                recent_rotated[0] += rstat->recent_rotated[0];
5547                                recent_rotated[1] += rstat->recent_rotated[1];
5548                                recent_scanned[0] += rstat->recent_scanned[0];
5549                                recent_scanned[1] += rstat->recent_scanned[1];
5550                        }
5551                seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5552                seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5553                seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5554                seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5555        }
5556#endif
5557
5558        return 0;
5559}
5560
5561static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5562                                      struct cftype *cft)
5563{
5564        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5565
5566        return mem_cgroup_swappiness(memcg);
5567}
5568
5569static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5570                                       struct cftype *cft, u64 val)
5571{
5572        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5573        struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5574
5575        if (val > 100 || !parent)
5576                return -EINVAL;
5577
5578        mutex_lock(&memcg_create_mutex);
5579
5580        /* If under hierarchy, only empty-root can set this value */
5581        if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5582                mutex_unlock(&memcg_create_mutex);
5583                return -EINVAL;
5584        }
5585
5586        memcg->swappiness = val;
5587
5588        mutex_unlock(&memcg_create_mutex);
5589
5590        return 0;
5591}
5592
5593static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5594{
5595        struct mem_cgroup_threshold_ary *t;
5596        u64 usage;
5597        int i;
5598
5599        rcu_read_lock();
5600        if (!swap)
5601                t = rcu_dereference(memcg->thresholds.primary);
5602        else
5603                t = rcu_dereference(memcg->memsw_thresholds.primary);
5604
5605        if (!t)
5606                goto unlock;
5607
5608        usage = mem_cgroup_usage(memcg, swap);
5609
5610        /*
5611         * current_threshold points to threshold just below or equal to usage.
5612         * If it's not true, a threshold was crossed after last
5613         * call of __mem_cgroup_threshold().
5614         */
5615        i = t->current_threshold;
5616
5617        /*
5618         * Iterate backward over array of thresholds starting from
5619         * current_threshold and check if a threshold is crossed.
5620         * If none of thresholds below usage is crossed, we read
5621         * only one element of the array here.
5622         */
5623        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5624                eventfd_signal(t->entries[i].eventfd, 1);
5625
5626        /* i = current_threshold + 1 */
5627        i++;
5628
5629        /*
5630         * Iterate forward over array of thresholds starting from
5631         * current_threshold+1 and check if a threshold is crossed.
5632         * If none of thresholds above usage is crossed, we read
5633         * only one element of the array here.
5634         */
5635        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5636                eventfd_signal(t->entries[i].eventfd, 1);
5637
5638        /* Update current_threshold */
5639        t->current_threshold = i - 1;
5640unlock:
5641        rcu_read_unlock();
5642}
5643
5644static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5645{
5646        while (memcg) {
5647                __mem_cgroup_threshold(memcg, false);
5648                if (do_swap_account)
5649                        __mem_cgroup_threshold(memcg, true);
5650
5651                memcg = parent_mem_cgroup(memcg);
5652        }
5653}
5654
5655static int compare_thresholds(const void *a, const void *b)
5656{
5657        const struct mem_cgroup_threshold *_a = a;
5658        const struct mem_cgroup_threshold *_b = b;
5659
5660        if (_a->threshold > _b->threshold)
5661                return 1;
5662
5663        if (_a->threshold < _b->threshold)
5664                return -1;
5665
5666        return 0;
5667}
5668
5669static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5670{
5671        struct mem_cgroup_eventfd_list *ev;
5672
5673        list_for_each_entry(ev, &memcg->oom_notify, list)
5674                eventfd_signal(ev->eventfd, 1);
5675        return 0;
5676}
5677
5678static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5679{
5680        struct mem_cgroup *iter;
5681
5682        for_each_mem_cgroup_tree(iter, memcg)
5683                mem_cgroup_oom_notify_cb(iter);
5684}
5685
5686static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5687        struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5688{
5689        struct mem_cgroup_thresholds *thresholds;
5690        struct mem_cgroup_threshold_ary *new;
5691        u64 threshold, usage;
5692        int i, size, ret;
5693
5694        ret = res_counter_memparse_write_strategy(args, &threshold);
5695        if (ret)
5696                return ret;
5697
5698        mutex_lock(&memcg->thresholds_lock);
5699
5700        if (type == _MEM)
5701                thresholds = &memcg->thresholds;
5702        else if (type == _MEMSWAP)
5703                thresholds = &memcg->memsw_thresholds;
5704        else
5705                BUG();
5706
5707        usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5708
5709        /* Check if a threshold crossed before adding a new one */
5710        if (thresholds->primary)
5711                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5712
5713        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5714
5715        /* Allocate memory for new array of thresholds */
5716        new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5717                        GFP_KERNEL);
5718        if (!new) {
5719                ret = -ENOMEM;
5720                goto unlock;
5721        }
5722        new->size = size;
5723
5724        /* Copy thresholds (if any) to new array */
5725        if (thresholds->primary) {
5726                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5727                                sizeof(struct mem_cgroup_threshold));
5728        }
5729
5730        /* Add new threshold */
5731        new->entries[size - 1].eventfd = eventfd;
5732        new->entries[size - 1].threshold = threshold;
5733
5734        /* Sort thresholds. Registering of new threshold isn't time-critical */
5735        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5736                        compare_thresholds, NULL);
5737
5738        /* Find current threshold */
5739        new->current_threshold = -1;
5740        for (i = 0; i < size; i++) {
5741                if (new->entries[i].threshold <= usage) {
5742                        /*
5743                         * new->current_threshold will not be used until
5744                         * rcu_assign_pointer(), so it's safe to increment
5745                         * it here.
5746                         */
5747                        ++new->current_threshold;
5748                } else
5749                        break;
5750        }
5751
5752        /* Free old spare buffer and save old primary buffer as spare */
5753        kfree(thresholds->spare);
5754        thresholds->spare = thresholds->primary;
5755
5756        rcu_assign_pointer(thresholds->primary, new);
5757
5758        /* To be sure that nobody uses thresholds */
5759        synchronize_rcu();
5760
5761unlock:
5762        mutex_unlock(&memcg->thresholds_lock);
5763
5764        return ret;
5765}
5766
5767static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5768        struct eventfd_ctx *eventfd, const char *args)
5769{
5770        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5771}
5772
5773static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5774        struct eventfd_ctx *eventfd, const char *args)
5775{
5776        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5777}
5778
5779static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5780        struct eventfd_ctx *eventfd, enum res_type type)
5781{
5782        struct mem_cgroup_thresholds *thresholds;
5783        struct mem_cgroup_threshold_ary *new;
5784        u64 usage;
5785        int i, j, size;
5786
5787        mutex_lock(&memcg->thresholds_lock);
5788        if (type == _MEM)
5789                thresholds = &memcg->thresholds;
5790        else if (type == _MEMSWAP)
5791                thresholds = &memcg->memsw_thresholds;
5792        else
5793                BUG();
5794
5795        if (!thresholds->primary)
5796                goto unlock;
5797
5798        usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5799
5800        /* Check if a threshold crossed before removing */
5801        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5802
5803        /* Calculate new number of threshold */
5804        size = 0;
5805        for (i = 0; i < thresholds->primary->size; i++) {
5806                if (thresholds->primary->entries[i].eventfd != eventfd)
5807                        size++;
5808        }
5809
5810        new = thresholds->spare;
5811
5812        /* Set thresholds array to NULL if we don't have thresholds */
5813        if (!size) {
5814                kfree(new);
5815                new = NULL;
5816                goto swap_buffers;
5817        }
5818
5819        new->size = size;
5820
5821        /* Copy thresholds and find current threshold */
5822        new->current_threshold = -1;
5823        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5824                if (thresholds->primary->entries[i].eventfd == eventfd)
5825                        continue;
5826
5827                new->entries[j] = thresholds->primary->entries[i];
5828                if (new->entries[j].threshold <= usage) {
5829                        /*
5830                         * new->current_threshold will not be used
5831                         * until rcu_assign_pointer(), so it's safe to increment
5832                         * it here.
5833                         */
5834                        ++new->current_threshold;
5835                }
5836                j++;
5837        }
5838
5839swap_buffers:
5840        /* Swap primary and spare array */
5841        thresholds->spare = thresholds->primary;
5842        /* If all events are unregistered, free the spare array */
5843        if (!new) {
5844                kfree(thresholds->spare);
5845                thresholds->spare = NULL;
5846        }
5847
5848        rcu_assign_pointer(thresholds->primary, new);
5849
5850        /* To be sure that nobody uses thresholds */
5851        synchronize_rcu();
5852unlock:
5853        mutex_unlock(&memcg->thresholds_lock);
5854}
5855
5856static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5857        struct eventfd_ctx *eventfd)
5858{
5859        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5860}
5861
5862static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5863        struct eventfd_ctx *eventfd)
5864{
5865        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5866}
5867
5868static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5869        struct eventfd_ctx *eventfd, const char *args)
5870{
5871        struct mem_cgroup_eventfd_list *event;
5872
5873        event = kmalloc(sizeof(*event), GFP_KERNEL);
5874        if (!event)
5875                return -ENOMEM;
5876
5877        spin_lock(&memcg_oom_lock);
5878
5879        event->eventfd = eventfd;
5880        list_add(&event->list, &memcg->oom_notify);
5881
5882        /* already in OOM ? */
5883        if (atomic_read(&memcg->under_oom))
5884                eventfd_signal(eventfd, 1);
5885        spin_unlock(&memcg_oom_lock);
5886
5887        return 0;
5888}
5889
5890static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5891        struct eventfd_ctx *eventfd)
5892{
5893        struct mem_cgroup_eventfd_list *ev, *tmp;
5894
5895        spin_lock(&memcg_oom_lock);
5896
5897        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5898                if (ev->eventfd == eventfd) {
5899                        list_del(&ev->list);
5900                        kfree(ev);
5901                }
5902        }
5903
5904        spin_unlock(&memcg_oom_lock);
5905}
5906
5907static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5908{
5909        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5910
5911        seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5912        seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5913        return 0;
5914}
5915
5916static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5917        struct cftype *cft, u64 val)
5918{
5919        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5920        struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5921
5922        /* cannot set to root cgroup and only 0 and 1 are allowed */
5923        if (!parent || !((val == 0) || (val == 1)))
5924                return -EINVAL;
5925
5926        mutex_lock(&memcg_create_mutex);
5927        /* oom-kill-disable is a flag for subhierarchy. */
5928        if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5929                mutex_unlock(&memcg_create_mutex);
5930                return -EINVAL;
5931        }
5932        memcg->oom_kill_disable = val;
5933        if (!val)
5934                memcg_oom_recover(memcg);
5935        mutex_unlock(&memcg_create_mutex);
5936        return 0;
5937}
5938
5939#ifdef CONFIG_MEMCG_KMEM
5940static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5941{
5942        int ret;
5943
5944        memcg->kmemcg_id = -1;
5945        ret = memcg_propagate_kmem(memcg);
5946        if (ret)
5947                return ret;
5948
5949        return mem_cgroup_sockets_init(memcg, ss);
5950}
5951
5952static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5953{
5954        mem_cgroup_sockets_destroy(memcg);
5955}
5956
5957static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5958{
5959        if (!memcg_kmem_is_active(memcg))
5960                return;
5961
5962        /*
5963         * kmem charges can outlive the cgroup. In the case of slab
5964         * pages, for instance, a page contain objects from various
5965         * processes. As we prevent from taking a reference for every
5966         * such allocation we have to be careful when doing uncharge
5967         * (see memcg_uncharge_kmem) and here during offlining.
5968         *
5969         * The idea is that that only the _last_ uncharge which sees
5970         * the dead memcg will drop the last reference. An additional
5971         * reference is taken here before the group is marked dead
5972         * which is then paired with css_put during uncharge resp. here.
5973         *
5974         * Although this might sound strange as this path is called from
5975         * css_offline() when the referencemight have dropped down to 0
5976         * and shouldn't be incremented anymore (css_tryget would fail)
5977         * we do not have other options because of the kmem allocations
5978         * lifetime.
5979         */
5980        css_get(&memcg->css);
5981
5982        memcg_kmem_mark_dead(memcg);
5983
5984        if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5985                return;
5986
5987        if (memcg_kmem_test_and_clear_dead(memcg))
5988                css_put(&memcg->css);
5989}
5990#else
5991static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5992{
5993        return 0;
5994}
5995
5996static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5997{
5998}
5999
6000static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
6001{
6002}
6003#endif
6004
6005/*
6006 * DO NOT USE IN NEW FILES.
6007 *
6008 * "cgroup.event_control" implementation.
6009 *
6010 * This is way over-engineered.  It tries to support fully configurable
6011 * events for each user.  Such level of flexibility is completely
6012 * unnecessary especially in the light of the planned unified hierarchy.
6013 *
6014 * Please deprecate this and replace with something simpler if at all
6015 * possible.
6016 */
6017
6018/*
6019 * Unregister event and free resources.
6020 *
6021 * Gets called from workqueue.
6022 */
6023static void memcg_event_remove(struct work_struct *work)
6024{
6025        struct mem_cgroup_event *event =
6026                container_of(work, struct mem_cgroup_event, remove);
6027        struct mem_cgroup *memcg = event->memcg;
6028
6029        remove_wait_queue(event->wqh, &event->wait);
6030
6031        event->unregister_event(memcg, event->eventfd);
6032
6033        /* Notify userspace the event is going away. */
6034        eventfd_signal(event->eventfd, 1);
6035
6036        eventfd_ctx_put(event->eventfd);
6037        kfree(event);
6038        css_put(&memcg->css);
6039}
6040
6041/*
6042 * Gets called on POLLHUP on eventfd when user closes it.
6043 *
6044 * Called with wqh->lock held and interrupts disabled.
6045 */
6046static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6047                            int sync, void *key)
6048{
6049        struct mem_cgroup_event *event =
6050                container_of(wait, struct mem_cgroup_event, wait);
6051        struct mem_cgroup *memcg = event->memcg;
6052        unsigned long flags = (unsigned long)key;
6053
6054        if (flags & POLLHUP) {
6055                /*
6056                 * If the event has been detached at cgroup removal, we
6057                 * can simply return knowing the other side will cleanup
6058                 * for us.
6059                 *
6060                 * We can't race against event freeing since the other
6061                 * side will require wqh->lock via remove_wait_queue(),
6062                 * which we hold.
6063                 */
6064                spin_lock(&memcg->event_list_lock);
6065                if (!list_empty(&event->list)) {
6066                        list_del_init(&event->list);
6067                        /*
6068                         * We are in atomic context, but cgroup_event_remove()
6069                         * may sleep, so we have to call it in workqueue.
6070                         */
6071                        schedule_work(&event->remove);
6072                }
6073                spin_unlock(&memcg->event_list_lock);
6074        }
6075
6076        return 0;
6077}
6078
6079static void memcg_event_ptable_queue_proc(struct file *file,
6080                wait_queue_head_t *wqh, poll_table *pt)
6081{
6082        struct mem_cgroup_event *event =
6083                container_of(pt, struct mem_cgroup_event, pt);
6084
6085        event->wqh = wqh;
6086        add_wait_queue(wqh, &event->wait);
6087}
6088
6089/*
6090 * DO NOT USE IN NEW FILES.
6091 *
6092 * Parse input and register new cgroup event handler.
6093 *
6094 * Input must be in format '<event_fd> <control_fd> <args>'.
6095 * Interpretation of args is defined by control file implementation.
6096 */
6097static int memcg_write_event_control(struct cgroup_subsys_state *css,
6098                                     struct cftype *cft, const char *buffer)
6099{
6100        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6101        struct mem_cgroup_event *event;
6102        struct cgroup_subsys_state *cfile_css;
6103        unsigned int efd, cfd;
6104        struct fd efile;
6105        struct fd cfile;
6106        const char *name;
6107        char *endp;
6108        int ret;
6109
6110        efd = simple_strtoul(buffer, &endp, 10);
6111        if (*endp != ' ')
6112                return -EINVAL;
6113        buffer = endp + 1;
6114
6115        cfd = simple_strtoul(buffer, &endp, 10);
6116        if ((*endp != ' ') && (*endp != '\0'))
6117                return -EINVAL;
6118        buffer = endp + 1;
6119
6120        event = kzalloc(sizeof(*event), GFP_KERNEL);
6121        if (!event)
6122                return -ENOMEM;
6123
6124        event->memcg = memcg;
6125        INIT_LIST_HEAD(&event->list);
6126        init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6127        init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6128        INIT_WORK(&event->remove, memcg_event_remove);
6129
6130        efile = fdget(efd);
6131        if (!efile.file) {
6132                ret = -EBADF;
6133                goto out_kfree;
6134        }
6135
6136        event->eventfd = eventfd_ctx_fileget(efile.file);
6137        if (IS_ERR(event->eventfd)) {
6138                ret = PTR_ERR(event->eventfd);
6139                goto out_put_efile;
6140        }
6141
6142        cfile = fdget(cfd);
6143        if (!cfile.file) {
6144                ret = -EBADF;
6145                goto out_put_eventfd;
6146        }
6147
6148        /* the process need read permission on control file */
6149        /* AV: shouldn't we check that it's been opened for read instead? */
6150        ret = inode_permission(file_inode(cfile.file), MAY_READ);
6151        if (ret < 0)
6152                goto out_put_cfile;
6153
6154        /*
6155         * Determine the event callbacks and set them in @event.  This used
6156         * to be done via struct cftype but cgroup core no longer knows
6157         * about these events.  The following is crude but the whole thing
6158         * is for compatibility anyway.
6159         *
6160         * DO NOT ADD NEW FILES.
6161         */
6162        name = cfile.file->f_dentry->d_name.name;
6163
6164        if (!strcmp(name, "memory.usage_in_bytes")) {
6165                event->register_event = mem_cgroup_usage_register_event;
6166                event->unregister_event = mem_cgroup_usage_unregister_event;
6167        } else if (!strcmp(name, "memory.oom_control")) {
6168                event->register_event = mem_cgroup_oom_register_event;
6169                event->unregister_event = mem_cgroup_oom_unregister_event;
6170        } else if (!strcmp(name, "memory.pressure_level")) {
6171                event->register_event = vmpressure_register_event;
6172                event->unregister_event = vmpressure_unregister_event;
6173        } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6174                event->register_event = memsw_cgroup_usage_register_event;
6175                event->unregister_event = memsw_cgroup_usage_unregister_event;
6176        } else {
6177                ret = -EINVAL;
6178                goto out_put_cfile;
6179        }
6180
6181        /*
6182         * Verify @cfile should belong to @css.  Also, remaining events are
6183         * automatically removed on cgroup destruction but the removal is
6184         * asynchronous, so take an extra ref on @css.
6185         */
6186        rcu_read_lock();
6187
6188        ret = -EINVAL;
6189        cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6190                                 &mem_cgroup_subsys);
6191        if (cfile_css == css && css_tryget(css))
6192                ret = 0;
6193
6194        rcu_read_unlock();
6195        if (ret)
6196                goto out_put_cfile;
6197
6198        ret = event->register_event(memcg, event->eventfd, buffer);
6199        if (ret)
6200                goto out_put_css;
6201
6202        efile.file->f_op->poll(efile.file, &event->pt);
6203
6204        spin_lock(&memcg->event_list_lock);
6205        list_add(&event->list, &memcg->event_list);
6206        spin_unlock(&memcg->event_list_lock);
6207
6208        fdput(cfile);
6209        fdput(efile);
6210
6211        return 0;
6212
6213out_put_css:
6214        css_put(css);
6215out_put_cfile:
6216        fdput(cfile);
6217out_put_eventfd:
6218        eventfd_ctx_put(event->eventfd);
6219out_put_efile:
6220        fdput(efile);
6221out_kfree:
6222        kfree(event);
6223
6224        return ret;
6225}
6226
6227static struct cftype mem_cgroup_files[] = {
6228        {
6229                .name = "usage_in_bytes",
6230                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6231                .read_u64 = mem_cgroup_read_u64,
6232        },
6233        {
6234                .name = "max_usage_in_bytes",
6235                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6236                .trigger = mem_cgroup_reset,
6237                .read_u64 = mem_cgroup_read_u64,
6238        },
6239        {
6240                .name = "limit_in_bytes",
6241                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6242                .write_string = mem_cgroup_write,
6243                .read_u64 = mem_cgroup_read_u64,
6244        },
6245        {
6246                .name = "soft_limit_in_bytes",
6247                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6248                .write_string = mem_cgroup_write,
6249                .read_u64 = mem_cgroup_read_u64,
6250        },
6251        {
6252                .name = "failcnt",
6253                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6254                .trigger = mem_cgroup_reset,
6255                .read_u64 = mem_cgroup_read_u64,
6256        },
6257        {
6258                .name = "stat",
6259                .seq_show = memcg_stat_show,
6260        },
6261        {
6262                .name = "force_empty",
6263                .trigger = mem_cgroup_force_empty_write,
6264        },
6265        {
6266                .name = "use_hierarchy",
6267                .flags = CFTYPE_INSANE,
6268                .write_u64 = mem_cgroup_hierarchy_write,
6269                .read_u64 = mem_cgroup_hierarchy_read,
6270        },
6271        {
6272                .name = "cgroup.event_control",         /* XXX: for compat */
6273                .write_string = memcg_write_event_control,
6274                .flags = CFTYPE_NO_PREFIX,
6275                .mode = S_IWUGO,
6276        },
6277        {
6278                .name = "swappiness",
6279                .read_u64 = mem_cgroup_swappiness_read,
6280                .write_u64 = mem_cgroup_swappiness_write,
6281        },
6282        {
6283                .name = "move_charge_at_immigrate",
6284                .read_u64 = mem_cgroup_move_charge_read,
6285                .write_u64 = mem_cgroup_move_charge_write,
6286        },
6287        {
6288                .name = "oom_control",
6289                .seq_show = mem_cgroup_oom_control_read,
6290                .write_u64 = mem_cgroup_oom_control_write,
6291                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6292        },
6293        {
6294                .name = "pressure_level",
6295        },
6296#ifdef CONFIG_NUMA
6297        {
6298                .name = "numa_stat",
6299                .seq_show = memcg_numa_stat_show,
6300        },
6301#endif
6302#ifdef CONFIG_MEMCG_KMEM
6303        {
6304                .name = "kmem.limit_in_bytes",
6305                .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6306                .write_string = mem_cgroup_write,
6307                .read_u64 = mem_cgroup_read_u64,
6308        },
6309        {
6310                .name = "kmem.usage_in_bytes",
6311                .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6312                .read_u64 = mem_cgroup_read_u64,
6313        },
6314        {
6315                .name = "kmem.failcnt",
6316                .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6317                .trigger = mem_cgroup_reset,
6318                .read_u64 = mem_cgroup_read_u64,
6319        },
6320        {
6321                .name = "kmem.max_usage_in_bytes",
6322                .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6323                .trigger = mem_cgroup_reset,
6324                .read_u64 = mem_cgroup_read_u64,
6325        },
6326#ifdef CONFIG_SLABINFO
6327        {
6328                .name = "kmem.slabinfo",
6329                .seq_show = mem_cgroup_slabinfo_read,
6330        },
6331#endif
6332#endif
6333        { },    /* terminate */
6334};
6335
6336#ifdef CONFIG_MEMCG_SWAP
6337static struct cftype memsw_cgroup_files[] = {
6338        {
6339                .name = "memsw.usage_in_bytes",
6340                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6341                .read_u64 = mem_cgroup_read_u64,
6342        },
6343        {
6344                .name = "memsw.max_usage_in_bytes",
6345                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6346                .trigger = mem_cgroup_reset,
6347                .read_u64 = mem_cgroup_read_u64,
6348        },
6349        {
6350                .name = "memsw.limit_in_bytes",
6351                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6352                .write_string = mem_cgroup_write,
6353                .read_u64 = mem_cgroup_read_u64,
6354        },
6355        {
6356                .name = "memsw.failcnt",
6357                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6358                .trigger = mem_cgroup_reset,
6359                .read_u64 = mem_cgroup_read_u64,
6360        },
6361        { },    /* terminate */
6362};
6363#endif
6364static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6365{
6366        struct mem_cgroup_per_node *pn;
6367        struct mem_cgroup_per_zone *mz;
6368        int zone, tmp = node;
6369        /*
6370         * This routine is called against possible nodes.
6371         * But it's BUG to call kmalloc() against offline node.
6372         *
6373         * TODO: this routine can waste much memory for nodes which will
6374         *       never be onlined. It's better to use memory hotplug callback
6375         *       function.
6376         */
6377        if (!node_state(node, N_NORMAL_MEMORY))
6378                tmp = -1;
6379        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6380        if (!pn)
6381                return 1;
6382
6383        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6384                mz = &pn->zoneinfo[zone];
6385                lruvec_init(&mz->lruvec);
6386                mz->usage_in_excess = 0;
6387                mz->on_tree = false;
6388                mz->memcg = memcg;
6389        }
6390        memcg->nodeinfo[node] = pn;
6391        return 0;
6392}
6393
6394static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6395{
6396        kfree(memcg->nodeinfo[node]);
6397}
6398
6399static struct mem_cgroup *mem_cgroup_alloc(void)
6400{
6401        struct mem_cgroup *memcg;
6402        size_t size;
6403
6404        size = sizeof(struct mem_cgroup);
6405        size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6406
6407        memcg = kzalloc(size, GFP_KERNEL);
6408        if (!memcg)
6409                return NULL;
6410
6411        memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6412        if (!memcg->stat)
6413                goto out_free;
6414        spin_lock_init(&memcg->pcp_counter_lock);
6415        return memcg;
6416
6417out_free:
6418        kfree(memcg);
6419        return NULL;
6420}
6421
6422/*
6423 * At destroying mem_cgroup, references from swap_cgroup can remain.
6424 * (scanning all at force_empty is too costly...)
6425 *
6426 * Instead of clearing all references at force_empty, we remember
6427 * the number of reference from swap_cgroup and free mem_cgroup when
6428 * it goes down to 0.
6429 *
6430 * Removal of cgroup itself succeeds regardless of refs from swap.
6431 */
6432
6433static void __mem_cgroup_free(struct mem_cgroup *memcg)
6434{
6435        int node;
6436
6437        mem_cgroup_remove_from_trees(memcg);
6438
6439        for_each_node(node)
6440                free_mem_cgroup_per_zone_info(memcg, node);
6441
6442        free_percpu(memcg->stat);
6443
6444        /*
6445         * We need to make sure that (at least for now), the jump label
6446         * destruction code runs outside of the cgroup lock. This is because
6447         * get_online_cpus(), which is called from the static_branch update,
6448         * can't be called inside the cgroup_lock. cpusets are the ones
6449         * enforcing this dependency, so if they ever change, we might as well.
6450         *
6451         * schedule_work() will guarantee this happens. Be careful if you need
6452         * to move this code around, and make sure it is outside
6453         * the cgroup_lock.
6454         */
6455        disarm_static_keys(memcg);
6456        kfree(memcg);
6457}
6458
6459/*
6460 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6461 */
6462struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6463{
6464        if (!memcg->res.parent)
6465                return NULL;
6466        return mem_cgroup_from_res_counter(memcg->res.parent, res);
6467}
6468EXPORT_SYMBOL(parent_mem_cgroup);
6469
6470static void __init mem_cgroup_soft_limit_tree_init(void)
6471{
6472        struct mem_cgroup_tree_per_node *rtpn;
6473        struct mem_cgroup_tree_per_zone *rtpz;
6474        int tmp, node, zone;
6475
6476        for_each_node(node) {
6477                tmp = node;
6478                if (!node_state(node, N_NORMAL_MEMORY))
6479                        tmp = -1;
6480                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6481                BUG_ON(!rtpn);
6482
6483                soft_limit_tree.rb_tree_per_node[node] = rtpn;
6484
6485                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6486                        rtpz = &rtpn->rb_tree_per_zone[zone];
6487                        rtpz->rb_root = RB_ROOT;
6488                        spin_lock_init(&rtpz->lock);
6489                }
6490        }
6491}
6492
6493static struct cgroup_subsys_state * __ref
6494mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6495{
6496        struct mem_cgroup *memcg;
6497        long error = -ENOMEM;
6498        int node;
6499
6500        memcg = mem_cgroup_alloc();
6501        if (!memcg)
6502                return ERR_PTR(error);
6503
6504        for_each_node(node)
6505                if (alloc_mem_cgroup_per_zone_info(memcg, node))
6506                        goto free_out;
6507
6508        /* root ? */
6509        if (parent_css == NULL) {
6510                root_mem_cgroup = memcg;
6511                res_counter_init(&memcg->res, NULL);
6512                res_counter_init(&memcg->memsw, NULL);
6513                res_counter_init(&memcg->kmem, NULL);
6514        }
6515
6516        memcg->last_scanned_node = MAX_NUMNODES;
6517        INIT_LIST_HEAD(&memcg->oom_notify);
6518        memcg->move_charge_at_immigrate = 0;
6519        mutex_init(&memcg->thresholds_lock);
6520        spin_lock_init(&memcg->move_lock);
6521        vmpressure_init(&memcg->vmpressure);
6522        INIT_LIST_HEAD(&memcg->event_list);
6523        spin_lock_init(&memcg->event_list_lock);
6524
6525        return &memcg->css;
6526
6527free_out:
6528        __mem_cgroup_free(memcg);
6529        return ERR_PTR(error);
6530}
6531
6532static int
6533mem_cgroup_css_online(struct cgroup_subsys_state *css)
6534{
6535        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6536        struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6537
6538        if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6539                return -ENOSPC;
6540
6541        if (!parent)
6542                return 0;
6543
6544        mutex_lock(&memcg_create_mutex);
6545
6546        memcg->use_hierarchy = parent->use_hierarchy;
6547        memcg->oom_kill_disable = parent->oom_kill_disable;
6548        memcg->swappiness = mem_cgroup_swappiness(parent);
6549
6550        if (parent->use_hierarchy) {
6551                res_counter_init(&memcg->res, &parent->res);
6552                res_counter_init(&memcg->memsw, &parent->memsw);
6553                res_counter_init(&memcg->kmem, &parent->kmem);
6554
6555                /*
6556                 * No need to take a reference to the parent because cgroup
6557                 * core guarantees its existence.
6558                 */
6559        } else {
6560                res_counter_init(&memcg->res, NULL);
6561                res_counter_init(&memcg->memsw, NULL);
6562                res_counter_init(&memcg->kmem, NULL);
6563                /*
6564                 * Deeper hierachy with use_hierarchy == false doesn't make
6565                 * much sense so let cgroup subsystem know about this
6566                 * unfortunate state in our controller.
6567                 */
6568                if (parent != root_mem_cgroup)
6569                        mem_cgroup_subsys.broken_hierarchy = true;
6570        }
6571        mutex_unlock(&memcg_create_mutex);
6572
6573        return memcg_init_kmem(memcg, &mem_cgroup_subsys);
6574}
6575
6576/*
6577 * Announce all parents that a group from their hierarchy is gone.
6578 */
6579static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6580{
6581        struct mem_cgroup *parent = memcg;
6582
6583        while ((parent = parent_mem_cgroup(parent)))
6584                mem_cgroup_iter_invalidate(parent);
6585
6586        /*
6587         * if the root memcg is not hierarchical we have to check it
6588         * explicitely.
6589         */
6590        if (!root_mem_cgroup->use_hierarchy)
6591                mem_cgroup_iter_invalidate(root_mem_cgroup);
6592}
6593
6594static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6595{
6596        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6597        struct mem_cgroup_event *event, *tmp;
6598        struct cgroup_subsys_state *iter;
6599
6600        /*
6601         * Unregister events and notify userspace.
6602         * Notify userspace about cgroup removing only after rmdir of cgroup
6603         * directory to avoid race between userspace and kernelspace.
6604         */
6605        spin_lock(&memcg->event_list_lock);
6606        list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6607                list_del_init(&event->list);
6608                schedule_work(&event->remove);
6609        }
6610        spin_unlock(&memcg->event_list_lock);
6611
6612        kmem_cgroup_css_offline(memcg);
6613
6614        mem_cgroup_invalidate_reclaim_iterators(memcg);
6615
6616        /*
6617         * This requires that offlining is serialized.  Right now that is
6618         * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6619         */
6620        css_for_each_descendant_post(iter, css)
6621                mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6622
6623        mem_cgroup_destroy_all_caches(memcg);
6624        vmpressure_cleanup(&memcg->vmpressure);
6625}
6626
6627static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6628{
6629        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6630        /*
6631         * XXX: css_offline() would be where we should reparent all
6632         * memory to prepare the cgroup for destruction.  However,
6633         * memcg does not do css_tryget() and res_counter charging
6634         * under the same RCU lock region, which means that charging
6635         * could race with offlining.  Offlining only happens to
6636         * cgroups with no tasks in them but charges can show up
6637         * without any tasks from the swapin path when the target
6638         * memcg is looked up from the swapout record and not from the
6639         * current task as it usually is.  A race like this can leak
6640         * charges and put pages with stale cgroup pointers into
6641         * circulation:
6642         *
6643         * #0                        #1
6644         *                           lookup_swap_cgroup_id()
6645         *                           rcu_read_lock()
6646         *                           mem_cgroup_lookup()
6647         *                           css_tryget()
6648         *                           rcu_read_unlock()
6649         * disable css_tryget()
6650         * call_rcu()
6651         *   offline_css()
6652         *     reparent_charges()
6653         *                           res_counter_charge()
6654         *                           css_put()
6655         *                             css_free()
6656         *                           pc->mem_cgroup = dead memcg
6657         *                           add page to lru
6658         *
6659         * The bulk of the charges are still moved in offline_css() to
6660         * avoid pinning a lot of pages in case a long-term reference
6661         * like a swapout record is deferring the css_free() to long
6662         * after offlining.  But this makes sure we catch any charges
6663         * made after offlining:
6664         */
6665        mem_cgroup_reparent_charges(memcg);
6666
6667        memcg_destroy_kmem(memcg);
6668        __mem_cgroup_free(memcg);
6669}
6670
6671#ifdef CONFIG_MMU
6672/* Handlers for move charge at task migration. */
6673#define PRECHARGE_COUNT_AT_ONCE 256
6674static int mem_cgroup_do_precharge(unsigned long count)
6675{
6676        int ret = 0;
6677        int batch_count = PRECHARGE_COUNT_AT_ONCE;
6678        struct mem_cgroup *memcg = mc.to;
6679
6680        if (mem_cgroup_is_root(memcg)) {
6681                mc.precharge += count;
6682                /* we don't need css_get for root */
6683                return ret;
6684        }
6685        /* try to charge at once */
6686        if (count > 1) {
6687                struct res_counter *dummy;
6688                /*
6689                 * "memcg" cannot be under rmdir() because we've already checked
6690                 * by cgroup_lock_live_cgroup() that it is not removed and we
6691                 * are still under the same cgroup_mutex. So we can postpone
6692                 * css_get().
6693                 */
6694                if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6695                        goto one_by_one;
6696                if (do_swap_account && res_counter_charge(&memcg->memsw,
6697                                                PAGE_SIZE * count, &dummy)) {
6698                        res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6699                        goto one_by_one;
6700                }
6701                mc.precharge += count;
6702                return ret;
6703        }
6704one_by_one:
6705        /* fall back to one by one charge */
6706        while (count--) {
6707                if (signal_pending(current)) {
6708                        ret = -EINTR;
6709                        break;
6710                }
6711                if (!batch_count--) {
6712                        batch_count = PRECHARGE_COUNT_AT_ONCE;
6713                        cond_resched();
6714                }
6715                ret = __mem_cgroup_try_charge(NULL,
6716                                        GFP_KERNEL, 1, &memcg, false);
6717                if (ret)
6718                        /* mem_cgroup_clear_mc() will do uncharge later */
6719                        return ret;
6720                mc.precharge++;
6721        }
6722        return ret;
6723}
6724
6725/**
6726 * get_mctgt_type - get target type of moving charge
6727 * @vma: the vma the pte to be checked belongs
6728 * @addr: the address corresponding to the pte to be checked
6729 * @ptent: the pte to be checked
6730 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6731 *
6732 * Returns
6733 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6734 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6735 *     move charge. if @target is not NULL, the page is stored in target->page
6736 *     with extra refcnt got(Callers should handle it).
6737 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6738 *     target for charge migration. if @target is not NULL, the entry is stored
6739 *     in target->ent.
6740 *
6741 * Called with pte lock held.
6742 */
6743union mc_target {
6744        struct page     *page;
6745        swp_entry_t     ent;
6746};
6747
6748enum mc_target_type {
6749        MC_TARGET_NONE = 0,
6750        MC_TARGET_PAGE,
6751        MC_TARGET_SWAP,
6752};
6753
6754static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6755                                                unsigned long addr, pte_t ptent)
6756{
6757        struct page *page = vm_normal_page(vma, addr, ptent);
6758
6759        if (!page || !page_mapped(page))
6760                return NULL;
6761        if (PageAnon(page)) {
6762                /* we don't move shared anon */
6763                if (!move_anon())
6764                        return NULL;
6765        } else if (!move_file())
6766                /* we ignore mapcount for file pages */
6767                return NULL;
6768        if (!get_page_unless_zero(page))
6769                return NULL;
6770
6771        return page;
6772}
6773
6774#ifdef CONFIG_SWAP
6775static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6776                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
6777{
6778        struct page *page = NULL;
6779        swp_entry_t ent = pte_to_swp_entry(ptent);
6780
6781        if (!move_anon() || non_swap_entry(ent))
6782                return NULL;
6783        /*
6784         * Because lookup_swap_cache() updates some statistics counter,
6785         * we call find_get_page() with swapper_space directly.
6786         */
6787        page = find_get_page(swap_address_space(ent), ent.val);
6788        if (do_swap_account)
6789                entry->val = ent.val;
6790
6791        return page;
6792}
6793#else
6794static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6795                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
6796{
6797        return NULL;
6798}
6799#endif
6800
6801static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6802                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
6803{
6804        struct page *page = NULL;
6805        struct address_space *mapping;
6806        pgoff_t pgoff;
6807
6808        if (!vma->vm_file) /* anonymous vma */
6809                return NULL;
6810        if (!move_file())
6811                return NULL;
6812
6813        mapping = vma->vm_file->f_mapping;
6814        if (pte_none(ptent))
6815                pgoff = linear_page_index(vma, addr);
6816        else /* pte_file(ptent) is true */
6817                pgoff = pte_to_pgoff(ptent);
6818
6819        /* page is moved even if it's not RSS of this task(page-faulted). */
6820        page = find_get_page(mapping, pgoff);
6821
6822#ifdef CONFIG_SWAP
6823        /* shmem/tmpfs may report page out on swap: account for that too. */
6824        if (radix_tree_exceptional_entry(page)) {
6825                swp_entry_t swap = radix_to_swp_entry(page);
6826                if (do_swap_account)
6827                        *entry = swap;
6828                page = find_get_page(swap_address_space(swap), swap.val);
6829        }
6830#endif
6831        return page;
6832}
6833
6834static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6835                unsigned long addr, pte_t ptent, union mc_target *target)
6836{
6837        struct page *page = NULL;
6838        struct page_cgroup *pc;
6839        enum mc_target_type ret = MC_TARGET_NONE;
6840        swp_entry_t ent = { .val = 0 };
6841
6842        if (pte_present(ptent))
6843                page = mc_handle_present_pte(vma, addr, ptent);
6844        else if (is_swap_pte(ptent))
6845                page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6846        else if (pte_none(ptent) || pte_file(ptent))
6847                page = mc_handle_file_pte(vma, addr, ptent, &ent);
6848
6849        if (!page && !ent.val)
6850                return ret;
6851        if (page) {
6852                pc = lookup_page_cgroup(page);
6853                /*
6854                 * Do only loose check w/o page_cgroup lock.
6855                 * mem_cgroup_move_account() checks the pc is valid or not under
6856                 * the lock.
6857                 */
6858                if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6859                        ret = MC_TARGET_PAGE;
6860                        if (target)
6861                                target->page = page;
6862                }
6863                if (!ret || !target)
6864                        put_page(page);
6865        }
6866        /* There is a swap entry and a page doesn't exist or isn't charged */
6867        if (ent.val && !ret &&
6868            mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6869                ret = MC_TARGET_SWAP;
6870                if (target)
6871                        target->ent = ent;
6872        }
6873        return ret;
6874}
6875
6876#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6877/*
6878 * We don't consider swapping or file mapped pages because THP does not
6879 * support them for now.
6880 * Caller should make sure that pmd_trans_huge(pmd) is true.
6881 */
6882static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6883                unsigned long addr, pmd_t pmd, union mc_target *target)
6884{
6885        struct page *page = NULL;
6886        struct page_cgroup *pc;
6887        enum mc_target_type ret = MC_TARGET_NONE;
6888
6889        page = pmd_page(pmd);
6890        VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6891        if (!move_anon())
6892                return ret;
6893        pc = lookup_page_cgroup(page);
6894        if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6895                ret = MC_TARGET_PAGE;
6896                if (target) {
6897                        get_page(page);
6898                        target->page = page;
6899                }
6900        }
6901        return ret;
6902}
6903#else
6904static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6905                unsigned long addr, pmd_t pmd, union mc_target *target)
6906{
6907        return MC_TARGET_NONE;
6908}
6909#endif
6910
6911static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6912                                        unsigned long addr, unsigned long end,
6913                                        struct mm_walk *walk)
6914{
6915        struct vm_area_struct *vma = walk->private;
6916        pte_t *pte;
6917        spinlock_t *ptl;
6918
6919        if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6920                if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6921                        mc.precharge += HPAGE_PMD_NR;
6922                spin_unlock(ptl);
6923                return 0;
6924        }
6925
6926        if (pmd_trans_unstable(pmd))
6927                return 0;
6928        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6929        for (; addr != end; pte++, addr += PAGE_SIZE)
6930                if (get_mctgt_type(vma, addr, *pte, NULL))
6931                        mc.precharge++; /* increment precharge temporarily */
6932        pte_unmap_unlock(pte - 1, ptl);
6933        cond_resched();
6934
6935        return 0;
6936}
6937
6938static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6939{
6940        unsigned long precharge;
6941        struct vm_area_struct *vma;
6942
6943        down_read(&mm->mmap_sem);
6944        for (vma = mm->mmap; vma; vma = vma->vm_next) {
6945                struct mm_walk mem_cgroup_count_precharge_walk = {
6946                        .pmd_entry = mem_cgroup_count_precharge_pte_range,
6947                        .mm = mm,
6948                        .private = vma,
6949                };
6950                if (is_vm_hugetlb_page(vma))
6951                        continue;
6952                walk_page_range(vma->vm_start, vma->vm_end,
6953                                        &mem_cgroup_count_precharge_walk);
6954        }
6955        up_read(&mm->mmap_sem);
6956
6957        precharge = mc.precharge;
6958        mc.precharge = 0;
6959
6960        return precharge;
6961}
6962
6963static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6964{
6965        unsigned long precharge = mem_cgroup_count_precharge(mm);
6966
6967        VM_BUG_ON(mc.moving_task);
6968        mc.moving_task = current;
6969        return mem_cgroup_do_precharge(precharge);
6970}
6971
6972/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6973static void __mem_cgroup_clear_mc(void)
6974{
6975        struct mem_cgroup *from = mc.from;
6976        struct mem_cgroup *to = mc.to;
6977        int i;
6978
6979        /* we must uncharge all the leftover precharges from mc.to */
6980        if (mc.precharge) {
6981                __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6982                mc.precharge = 0;
6983        }
6984        /*
6985         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6986         * we must uncharge here.
6987         */
6988        if (mc.moved_charge) {
6989                __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6990                mc.moved_charge = 0;
6991        }
6992        /* we must fixup refcnts and charges */
6993        if (mc.moved_swap) {
6994                /* uncharge swap account from the old cgroup */
6995                if (!mem_cgroup_is_root(mc.from))
6996                        res_counter_uncharge(&mc.from->memsw,
6997                                                PAGE_SIZE * mc.moved_swap);
6998
6999                for (i = 0; i < mc.moved_swap; i++)
7000                        css_put(&mc.from->css);
7001
7002                if (!mem_cgroup_is_root(mc.to)) {
7003                        /*
7004                         * we charged both to->res and to->memsw, so we should
7005                         * uncharge to->res.
7006                         */
7007                        res_counter_uncharge(&mc.to->res,
7008                                                PAGE_SIZE * mc.moved_swap);
7009                }
7010                /* we've already done css_get(mc.to) */
7011                mc.moved_swap = 0;
7012        }
7013        memcg_oom_recover(from);
7014        memcg_oom_recover(to);
7015        wake_up_all(&mc.waitq);
7016}
7017
7018static void mem_cgroup_clear_mc(void)
7019{
7020        struct mem_cgroup *from = mc.from;
7021
7022        /*
7023         * we must clear moving_task before waking up waiters at the end of
7024         * task migration.
7025         */
7026        mc.moving_task = NULL;
7027        __mem_cgroup_clear_mc();
7028        spin_lock(&mc.lock);
7029        mc.from = NULL;
7030        mc.to = NULL;
7031        spin_unlock(&mc.lock);
7032        mem_cgroup_end_move(from);
7033}
7034
7035static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7036                                 struct cgroup_taskset *tset)
7037{
7038        struct task_struct *p = cgroup_taskset_first(tset);
7039        int ret = 0;
7040        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7041        unsigned long move_charge_at_immigrate;
7042
7043        /*
7044         * We are now commited to this value whatever it is. Changes in this
7045         * tunable will only affect upcoming migrations, not the current one.
7046         * So we need to save it, and keep it going.
7047         */
7048        move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
7049        if (move_charge_at_immigrate) {
7050                struct mm_struct *mm;
7051                struct mem_cgroup *from = mem_cgroup_from_task(p);
7052
7053                VM_BUG_ON(from == memcg);
7054
7055                mm = get_task_mm(p);
7056                if (!mm)
7057                        return 0;
7058                /* We move charges only when we move a owner of the mm */
7059                if (mm->owner == p) {
7060                        VM_BUG_ON(mc.from);
7061                        VM_BUG_ON(mc.to);
7062                        VM_BUG_ON(mc.precharge);
7063                        VM_BUG_ON(mc.moved_charge);
7064                        VM_BUG_ON(mc.moved_swap);
7065                        mem_cgroup_start_move(from);
7066                        spin_lock(&mc.lock);
7067                        mc.from = from;
7068                        mc.to = memcg;
7069                        mc.immigrate_flags = move_charge_at_immigrate;
7070                        spin_unlock(&mc.lock);
7071                        /* We set mc.moving_task later */
7072
7073                        ret = mem_cgroup_precharge_mc(mm);
7074                        if (ret)
7075                                mem_cgroup_clear_mc();
7076                }
7077                mmput(mm);
7078        }
7079        return ret;
7080}
7081
7082static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7083                                     struct cgroup_taskset *tset)
7084{
7085        mem_cgroup_clear_mc();
7086}
7087
7088static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7089                                unsigned long addr, unsigned long end,
7090                                struct mm_walk *walk)
7091{
7092        int ret = 0;
7093        struct vm_area_struct *vma = walk->private;
7094        pte_t *pte;
7095        spinlock_t *ptl;
7096        enum mc_target_type target_type;
7097        union mc_target target;
7098        struct page *page;
7099        struct page_cgroup *pc;
7100
7101        /*
7102         * We don't take compound_lock() here but no race with splitting thp
7103         * happens because:
7104         *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7105         *    under splitting, which means there's no concurrent thp split,
7106         *  - if another thread runs into split_huge_page() just after we
7107         *    entered this if-block, the thread must wait for page table lock
7108         *    to be unlocked in __split_huge_page_splitting(), where the main
7109         *    part of thp split is not executed yet.
7110         */
7111        if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7112                if (mc.precharge < HPAGE_PMD_NR) {
7113                        spin_unlock(ptl);
7114                        return 0;
7115                }
7116                target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7117                if (target_type == MC_TARGET_PAGE) {
7118                        page = target.page;
7119                        if (!isolate_lru_page(page)) {
7120                                pc = lookup_page_cgroup(page);
7121                                if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7122                                                        pc, mc.from, mc.to)) {
7123                                        mc.precharge -= HPAGE_PMD_NR;
7124                                        mc.moved_charge += HPAGE_PMD_NR;
7125                                }
7126                                putback_lru_page(page);
7127                        }
7128                        put_page(page);
7129                }
7130                spin_unlock(ptl);
7131                return 0;
7132        }
7133
7134        if (pmd_trans_unstable(pmd))
7135                return 0;
7136retry:
7137        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7138        for (; addr != end; addr += PAGE_SIZE) {
7139                pte_t ptent = *(pte++);
7140                swp_entry_t ent;
7141
7142                if (!mc.precharge)
7143                        break;
7144
7145                switch (get_mctgt_type(vma, addr, ptent, &target)) {
7146                case MC_TARGET_PAGE:
7147                        page = target.page;
7148                        if (isolate_lru_page(page))
7149                                goto put;
7150                        pc = lookup_page_cgroup(page);
7151                        if (!mem_cgroup_move_account(page, 1, pc,
7152                                                     mc.from, mc.to)) {
7153                                mc.precharge--;
7154                                /* we uncharge from mc.from later. */
7155                                mc.moved_charge++;
7156                        }
7157                        putback_lru_page(page);
7158put:                    /* get_mctgt_type() gets the page */
7159                        put_page(page);
7160                        break;
7161                case MC_TARGET_SWAP:
7162                        ent = target.ent;
7163                        if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7164                                mc.precharge--;
7165                                /* we fixup refcnts and charges later. */
7166                                mc.moved_swap++;
7167                        }
7168                        break;
7169                default:
7170                        break;
7171                }
7172        }
7173        pte_unmap_unlock(pte - 1, ptl);
7174        cond_resched();
7175
7176        if (addr != end) {
7177                /*
7178                 * We have consumed all precharges we got in can_attach().
7179                 * We try charge one by one, but don't do any additional
7180                 * charges to mc.to if we have failed in charge once in attach()
7181                 * phase.
7182                 */
7183                ret = mem_cgroup_do_precharge(1);
7184                if (!ret)
7185                        goto retry;
7186        }
7187
7188        return ret;
7189}
7190
7191static void mem_cgroup_move_charge(struct mm_struct *mm)
7192{
7193        struct vm_area_struct *vma;
7194
7195        lru_add_drain_all();
7196retry:
7197        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7198                /*
7199                 * Someone who are holding the mmap_sem might be waiting in
7200                 * waitq. So we cancel all extra charges, wake up all waiters,
7201                 * and retry. Because we cancel precharges, we might not be able
7202                 * to move enough charges, but moving charge is a best-effort
7203                 * feature anyway, so it wouldn't be a big problem.
7204                 */
7205                __mem_cgroup_clear_mc();
7206                cond_resched();
7207                goto retry;
7208        }
7209        for (vma = mm->mmap; vma; vma = vma->vm_next) {
7210                int ret;
7211                struct mm_walk mem_cgroup_move_charge_walk = {
7212                        .pmd_entry = mem_cgroup_move_charge_pte_range,
7213                        .mm = mm,
7214                        .private = vma,
7215                };
7216                if (is_vm_hugetlb_page(vma))
7217                        continue;
7218                ret = walk_page_range(vma->vm_start, vma->vm_end,
7219                                                &mem_cgroup_move_charge_walk);
7220                if (ret)
7221                        /*
7222                         * means we have consumed all precharges and failed in
7223                         * doing additional charge. Just abandon here.
7224                         */
7225                        break;
7226        }
7227        up_read(&mm->mmap_sem);
7228}
7229
7230static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7231                                 struct cgroup_taskset *tset)
7232{
7233        struct task_struct *p = cgroup_taskset_first(tset);
7234        struct mm_struct *mm = get_task_mm(p);
7235
7236        if (mm) {
7237                if (mc.to)
7238                        mem_cgroup_move_charge(mm);
7239                mmput(mm);
7240        }
7241        if (mc.to)
7242                mem_cgroup_clear_mc();
7243}
7244#else   /* !CONFIG_MMU */
7245static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7246                                 struct cgroup_taskset *tset)
7247{
7248        return 0;
7249}
7250static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7251                                     struct cgroup_taskset *tset)
7252{
7253}
7254static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7255                                 struct cgroup_taskset *tset)
7256{
7257}
7258#endif
7259
7260/*
7261 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7262 * to verify sane_behavior flag on each mount attempt.
7263 */
7264static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7265{
7266        /*
7267         * use_hierarchy is forced with sane_behavior.  cgroup core
7268         * guarantees that @root doesn't have any children, so turning it
7269         * on for the root memcg is enough.
7270         */
7271        if (cgroup_sane_behavior(root_css->cgroup))
7272                mem_cgroup_from_css(root_css)->use_hierarchy = true;
7273}
7274
7275struct cgroup_subsys mem_cgroup_subsys = {
7276        .name = "memory",
7277        .subsys_id = mem_cgroup_subsys_id,
7278        .css_alloc = mem_cgroup_css_alloc,
7279        .css_online = mem_cgroup_css_online,
7280        .css_offline = mem_cgroup_css_offline,
7281        .css_free = mem_cgroup_css_free,
7282        .can_attach = mem_cgroup_can_attach,
7283        .cancel_attach = mem_cgroup_cancel_attach,
7284        .attach = mem_cgroup_move_task,
7285        .bind = mem_cgroup_bind,
7286        .base_cftypes = mem_cgroup_files,
7287        .early_init = 0,
7288};
7289
7290#ifdef CONFIG_MEMCG_SWAP
7291static int __init enable_swap_account(char *s)
7292{
7293        if (!strcmp(s, "1"))
7294                really_do_swap_account = 1;
7295        else if (!strcmp(s, "0"))
7296                really_do_swap_account = 0;
7297        return 1;
7298}
7299__setup("swapaccount=", enable_swap_account);
7300
7301static void __init memsw_file_init(void)
7302{
7303        WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7304}
7305
7306static void __init enable_swap_cgroup(void)
7307{
7308        if (!mem_cgroup_disabled() && really_do_swap_account) {
7309                do_swap_account = 1;
7310                memsw_file_init();
7311        }
7312}
7313
7314#else
7315static void __init enable_swap_cgroup(void)
7316{
7317}
7318#endif
7319
7320/*
7321 * subsys_initcall() for memory controller.
7322 *
7323 * Some parts like hotcpu_notifier() have to be initialized from this context
7324 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7325 * everything that doesn't depend on a specific mem_cgroup structure should
7326 * be initialized from here.
7327 */
7328static int __init mem_cgroup_init(void)
7329{
7330        hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7331        enable_swap_cgroup();
7332        mem_cgroup_soft_limit_tree_init();
7333        memcg_stock_init();
7334        return 0;
7335}
7336subsys_initcall(mem_cgroup_init);
7337