linux/mm/migrate.c
<<
>>
Prefs
   1/*
   2 * Memory Migration functionality - linux/mm/migration.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/memcontrol.h>
  34#include <linux/syscalls.h>
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
  40
  41#include <asm/tlbflush.h>
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/migrate.h>
  45
  46#include "internal.h"
  47
  48/*
  49 * migrate_prep() needs to be called before we start compiling a list of pages
  50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  51 * undesirable, use migrate_prep_local()
  52 */
  53int migrate_prep(void)
  54{
  55        /*
  56         * Clear the LRU lists so pages can be isolated.
  57         * Note that pages may be moved off the LRU after we have
  58         * drained them. Those pages will fail to migrate like other
  59         * pages that may be busy.
  60         */
  61        lru_add_drain_all();
  62
  63        return 0;
  64}
  65
  66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  67int migrate_prep_local(void)
  68{
  69        lru_add_drain();
  70
  71        return 0;
  72}
  73
  74/*
  75 * Put previously isolated pages back onto the appropriate lists
  76 * from where they were once taken off for compaction/migration.
  77 *
  78 * This function shall be used whenever the isolated pageset has been
  79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  80 * and isolate_huge_page().
  81 */
  82void putback_movable_pages(struct list_head *l)
  83{
  84        struct page *page;
  85        struct page *page2;
  86
  87        list_for_each_entry_safe(page, page2, l, lru) {
  88                if (unlikely(PageHuge(page))) {
  89                        putback_active_hugepage(page);
  90                        continue;
  91                }
  92                list_del(&page->lru);
  93                dec_zone_page_state(page, NR_ISOLATED_ANON +
  94                                page_is_file_cache(page));
  95                if (unlikely(isolated_balloon_page(page)))
  96                        balloon_page_putback(page);
  97                else
  98                        putback_lru_page(page);
  99        }
 100}
 101
 102/*
 103 * Restore a potential migration pte to a working pte entry
 104 */
 105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 106                                 unsigned long addr, void *old)
 107{
 108        struct mm_struct *mm = vma->vm_mm;
 109        swp_entry_t entry;
 110        pmd_t *pmd;
 111        pte_t *ptep, pte;
 112        spinlock_t *ptl;
 113
 114        if (unlikely(PageHuge(new))) {
 115                ptep = huge_pte_offset(mm, addr);
 116                if (!ptep)
 117                        goto out;
 118                ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 119        } else {
 120                pmd = mm_find_pmd(mm, addr);
 121                if (!pmd)
 122                        goto out;
 123                if (pmd_trans_huge(*pmd))
 124                        goto out;
 125
 126                ptep = pte_offset_map(pmd, addr);
 127
 128                /*
 129                 * Peek to check is_swap_pte() before taking ptlock?  No, we
 130                 * can race mremap's move_ptes(), which skips anon_vma lock.
 131                 */
 132
 133                ptl = pte_lockptr(mm, pmd);
 134        }
 135
 136        spin_lock(ptl);
 137        pte = *ptep;
 138        if (!is_swap_pte(pte))
 139                goto unlock;
 140
 141        entry = pte_to_swp_entry(pte);
 142
 143        if (!is_migration_entry(entry) ||
 144            migration_entry_to_page(entry) != old)
 145                goto unlock;
 146
 147        get_page(new);
 148        pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 149        if (pte_swp_soft_dirty(*ptep))
 150                pte = pte_mksoft_dirty(pte);
 151        if (is_write_migration_entry(entry))
 152                pte = pte_mkwrite(pte);
 153#ifdef CONFIG_HUGETLB_PAGE
 154        if (PageHuge(new)) {
 155                pte = pte_mkhuge(pte);
 156                pte = arch_make_huge_pte(pte, vma, new, 0);
 157        }
 158#endif
 159        flush_dcache_page(new);
 160        set_pte_at(mm, addr, ptep, pte);
 161
 162        if (PageHuge(new)) {
 163                if (PageAnon(new))
 164                        hugepage_add_anon_rmap(new, vma, addr);
 165                else
 166                        page_dup_rmap(new);
 167        } else if (PageAnon(new))
 168                page_add_anon_rmap(new, vma, addr);
 169        else
 170                page_add_file_rmap(new);
 171
 172        /* No need to invalidate - it was non-present before */
 173        update_mmu_cache(vma, addr, ptep);
 174unlock:
 175        pte_unmap_unlock(ptep, ptl);
 176out:
 177        return SWAP_AGAIN;
 178}
 179
 180/*
 181 * Congratulations to trinity for discovering this bug.
 182 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 183 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 184 * replace the specified range by file ptes throughout (maybe populated after).
 185 * If page migration finds a page within that range, while it's still located
 186 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 187 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 188 * But if the migrating page is in a part of the vma outside the range to be
 189 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 190 * deal with it.  Fortunately, this part of the vma is of course still linear,
 191 * so we just need to use linear location on the nonlinear list.
 192 */
 193static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
 194                struct address_space *mapping, void *arg)
 195{
 196        struct vm_area_struct *vma;
 197        /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
 198        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 199        unsigned long addr;
 200
 201        list_for_each_entry(vma,
 202                &mapping->i_mmap_nonlinear, shared.nonlinear) {
 203
 204                addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 205                if (addr >= vma->vm_start && addr < vma->vm_end)
 206                        remove_migration_pte(page, vma, addr, arg);
 207        }
 208        return SWAP_AGAIN;
 209}
 210
 211/*
 212 * Get rid of all migration entries and replace them by
 213 * references to the indicated page.
 214 */
 215static void remove_migration_ptes(struct page *old, struct page *new)
 216{
 217        struct rmap_walk_control rwc = {
 218                .rmap_one = remove_migration_pte,
 219                .arg = old,
 220                .file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
 221        };
 222
 223        rmap_walk(new, &rwc);
 224}
 225
 226/*
 227 * Something used the pte of a page under migration. We need to
 228 * get to the page and wait until migration is finished.
 229 * When we return from this function the fault will be retried.
 230 */
 231static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 232                                spinlock_t *ptl)
 233{
 234        pte_t pte;
 235        swp_entry_t entry;
 236        struct page *page;
 237
 238        spin_lock(ptl);
 239        pte = *ptep;
 240        if (!is_swap_pte(pte))
 241                goto out;
 242
 243        entry = pte_to_swp_entry(pte);
 244        if (!is_migration_entry(entry))
 245                goto out;
 246
 247        page = migration_entry_to_page(entry);
 248
 249        /*
 250         * Once radix-tree replacement of page migration started, page_count
 251         * *must* be zero. And, we don't want to call wait_on_page_locked()
 252         * against a page without get_page().
 253         * So, we use get_page_unless_zero(), here. Even failed, page fault
 254         * will occur again.
 255         */
 256        if (!get_page_unless_zero(page))
 257                goto out;
 258        pte_unmap_unlock(ptep, ptl);
 259        wait_on_page_locked(page);
 260        put_page(page);
 261        return;
 262out:
 263        pte_unmap_unlock(ptep, ptl);
 264}
 265
 266void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 267                                unsigned long address)
 268{
 269        spinlock_t *ptl = pte_lockptr(mm, pmd);
 270        pte_t *ptep = pte_offset_map(pmd, address);
 271        __migration_entry_wait(mm, ptep, ptl);
 272}
 273
 274void migration_entry_wait_huge(struct vm_area_struct *vma,
 275                struct mm_struct *mm, pte_t *pte)
 276{
 277        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 278        __migration_entry_wait(mm, pte, ptl);
 279}
 280
 281#ifdef CONFIG_BLOCK
 282/* Returns true if all buffers are successfully locked */
 283static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 284                                                        enum migrate_mode mode)
 285{
 286        struct buffer_head *bh = head;
 287
 288        /* Simple case, sync compaction */
 289        if (mode != MIGRATE_ASYNC) {
 290                do {
 291                        get_bh(bh);
 292                        lock_buffer(bh);
 293                        bh = bh->b_this_page;
 294
 295                } while (bh != head);
 296
 297                return true;
 298        }
 299
 300        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 301        do {
 302                get_bh(bh);
 303                if (!trylock_buffer(bh)) {
 304                        /*
 305                         * We failed to lock the buffer and cannot stall in
 306                         * async migration. Release the taken locks
 307                         */
 308                        struct buffer_head *failed_bh = bh;
 309                        put_bh(failed_bh);
 310                        bh = head;
 311                        while (bh != failed_bh) {
 312                                unlock_buffer(bh);
 313                                put_bh(bh);
 314                                bh = bh->b_this_page;
 315                        }
 316                        return false;
 317                }
 318
 319                bh = bh->b_this_page;
 320        } while (bh != head);
 321        return true;
 322}
 323#else
 324static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 325                                                        enum migrate_mode mode)
 326{
 327        return true;
 328}
 329#endif /* CONFIG_BLOCK */
 330
 331/*
 332 * Replace the page in the mapping.
 333 *
 334 * The number of remaining references must be:
 335 * 1 for anonymous pages without a mapping
 336 * 2 for pages with a mapping
 337 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 338 */
 339int migrate_page_move_mapping(struct address_space *mapping,
 340                struct page *newpage, struct page *page,
 341                struct buffer_head *head, enum migrate_mode mode,
 342                int extra_count)
 343{
 344        int expected_count = 1 + extra_count;
 345        void **pslot;
 346
 347        if (!mapping) {
 348                /* Anonymous page without mapping */
 349                if (page_count(page) != expected_count)
 350                        return -EAGAIN;
 351                return MIGRATEPAGE_SUCCESS;
 352        }
 353
 354        spin_lock_irq(&mapping->tree_lock);
 355
 356        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 357                                        page_index(page));
 358
 359        expected_count += 1 + page_has_private(page);
 360        if (page_count(page) != expected_count ||
 361                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 362                spin_unlock_irq(&mapping->tree_lock);
 363                return -EAGAIN;
 364        }
 365
 366        if (!page_freeze_refs(page, expected_count)) {
 367                spin_unlock_irq(&mapping->tree_lock);
 368                return -EAGAIN;
 369        }
 370
 371        /*
 372         * In the async migration case of moving a page with buffers, lock the
 373         * buffers using trylock before the mapping is moved. If the mapping
 374         * was moved, we later failed to lock the buffers and could not move
 375         * the mapping back due to an elevated page count, we would have to
 376         * block waiting on other references to be dropped.
 377         */
 378        if (mode == MIGRATE_ASYNC && head &&
 379                        !buffer_migrate_lock_buffers(head, mode)) {
 380                page_unfreeze_refs(page, expected_count);
 381                spin_unlock_irq(&mapping->tree_lock);
 382                return -EAGAIN;
 383        }
 384
 385        /*
 386         * Now we know that no one else is looking at the page.
 387         */
 388        get_page(newpage);      /* add cache reference */
 389        if (PageSwapCache(page)) {
 390                SetPageSwapCache(newpage);
 391                set_page_private(newpage, page_private(page));
 392        }
 393
 394        radix_tree_replace_slot(pslot, newpage);
 395
 396        /*
 397         * Drop cache reference from old page by unfreezing
 398         * to one less reference.
 399         * We know this isn't the last reference.
 400         */
 401        page_unfreeze_refs(page, expected_count - 1);
 402
 403        /*
 404         * If moved to a different zone then also account
 405         * the page for that zone. Other VM counters will be
 406         * taken care of when we establish references to the
 407         * new page and drop references to the old page.
 408         *
 409         * Note that anonymous pages are accounted for
 410         * via NR_FILE_PAGES and NR_ANON_PAGES if they
 411         * are mapped to swap space.
 412         */
 413        __dec_zone_page_state(page, NR_FILE_PAGES);
 414        __inc_zone_page_state(newpage, NR_FILE_PAGES);
 415        if (!PageSwapCache(page) && PageSwapBacked(page)) {
 416                __dec_zone_page_state(page, NR_SHMEM);
 417                __inc_zone_page_state(newpage, NR_SHMEM);
 418        }
 419        spin_unlock_irq(&mapping->tree_lock);
 420
 421        return MIGRATEPAGE_SUCCESS;
 422}
 423
 424/*
 425 * The expected number of remaining references is the same as that
 426 * of migrate_page_move_mapping().
 427 */
 428int migrate_huge_page_move_mapping(struct address_space *mapping,
 429                                   struct page *newpage, struct page *page)
 430{
 431        int expected_count;
 432        void **pslot;
 433
 434        if (!mapping) {
 435                if (page_count(page) != 1)
 436                        return -EAGAIN;
 437                return MIGRATEPAGE_SUCCESS;
 438        }
 439
 440        spin_lock_irq(&mapping->tree_lock);
 441
 442        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 443                                        page_index(page));
 444
 445        expected_count = 2 + page_has_private(page);
 446        if (page_count(page) != expected_count ||
 447                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 448                spin_unlock_irq(&mapping->tree_lock);
 449                return -EAGAIN;
 450        }
 451
 452        if (!page_freeze_refs(page, expected_count)) {
 453                spin_unlock_irq(&mapping->tree_lock);
 454                return -EAGAIN;
 455        }
 456
 457        get_page(newpage);
 458
 459        radix_tree_replace_slot(pslot, newpage);
 460
 461        page_unfreeze_refs(page, expected_count - 1);
 462
 463        spin_unlock_irq(&mapping->tree_lock);
 464        return MIGRATEPAGE_SUCCESS;
 465}
 466
 467/*
 468 * Gigantic pages are so large that we do not guarantee that page++ pointer
 469 * arithmetic will work across the entire page.  We need something more
 470 * specialized.
 471 */
 472static void __copy_gigantic_page(struct page *dst, struct page *src,
 473                                int nr_pages)
 474{
 475        int i;
 476        struct page *dst_base = dst;
 477        struct page *src_base = src;
 478
 479        for (i = 0; i < nr_pages; ) {
 480                cond_resched();
 481                copy_highpage(dst, src);
 482
 483                i++;
 484                dst = mem_map_next(dst, dst_base, i);
 485                src = mem_map_next(src, src_base, i);
 486        }
 487}
 488
 489static void copy_huge_page(struct page *dst, struct page *src)
 490{
 491        int i;
 492        int nr_pages;
 493
 494        if (PageHuge(src)) {
 495                /* hugetlbfs page */
 496                struct hstate *h = page_hstate(src);
 497                nr_pages = pages_per_huge_page(h);
 498
 499                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 500                        __copy_gigantic_page(dst, src, nr_pages);
 501                        return;
 502                }
 503        } else {
 504                /* thp page */
 505                BUG_ON(!PageTransHuge(src));
 506                nr_pages = hpage_nr_pages(src);
 507        }
 508
 509        for (i = 0; i < nr_pages; i++) {
 510                cond_resched();
 511                copy_highpage(dst + i, src + i);
 512        }
 513}
 514
 515/*
 516 * Copy the page to its new location
 517 */
 518void migrate_page_copy(struct page *newpage, struct page *page)
 519{
 520        int cpupid;
 521
 522        if (PageHuge(page) || PageTransHuge(page))
 523                copy_huge_page(newpage, page);
 524        else
 525                copy_highpage(newpage, page);
 526
 527        if (PageError(page))
 528                SetPageError(newpage);
 529        if (PageReferenced(page))
 530                SetPageReferenced(newpage);
 531        if (PageUptodate(page))
 532                SetPageUptodate(newpage);
 533        if (TestClearPageActive(page)) {
 534                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 535                SetPageActive(newpage);
 536        } else if (TestClearPageUnevictable(page))
 537                SetPageUnevictable(newpage);
 538        if (PageChecked(page))
 539                SetPageChecked(newpage);
 540        if (PageMappedToDisk(page))
 541                SetPageMappedToDisk(newpage);
 542
 543        if (PageDirty(page)) {
 544                clear_page_dirty_for_io(page);
 545                /*
 546                 * Want to mark the page and the radix tree as dirty, and
 547                 * redo the accounting that clear_page_dirty_for_io undid,
 548                 * but we can't use set_page_dirty because that function
 549                 * is actually a signal that all of the page has become dirty.
 550                 * Whereas only part of our page may be dirty.
 551                 */
 552                if (PageSwapBacked(page))
 553                        SetPageDirty(newpage);
 554                else
 555                        __set_page_dirty_nobuffers(newpage);
 556        }
 557
 558        /*
 559         * Copy NUMA information to the new page, to prevent over-eager
 560         * future migrations of this same page.
 561         */
 562        cpupid = page_cpupid_xchg_last(page, -1);
 563        page_cpupid_xchg_last(newpage, cpupid);
 564
 565        mlock_migrate_page(newpage, page);
 566        ksm_migrate_page(newpage, page);
 567        /*
 568         * Please do not reorder this without considering how mm/ksm.c's
 569         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 570         */
 571        ClearPageSwapCache(page);
 572        ClearPagePrivate(page);
 573        set_page_private(page, 0);
 574
 575        /*
 576         * If any waiters have accumulated on the new page then
 577         * wake them up.
 578         */
 579        if (PageWriteback(newpage))
 580                end_page_writeback(newpage);
 581}
 582
 583/************************************************************
 584 *                    Migration functions
 585 ***********************************************************/
 586
 587/*
 588 * Common logic to directly migrate a single page suitable for
 589 * pages that do not use PagePrivate/PagePrivate2.
 590 *
 591 * Pages are locked upon entry and exit.
 592 */
 593int migrate_page(struct address_space *mapping,
 594                struct page *newpage, struct page *page,
 595                enum migrate_mode mode)
 596{
 597        int rc;
 598
 599        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 600
 601        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 602
 603        if (rc != MIGRATEPAGE_SUCCESS)
 604                return rc;
 605
 606        migrate_page_copy(newpage, page);
 607        return MIGRATEPAGE_SUCCESS;
 608}
 609EXPORT_SYMBOL(migrate_page);
 610
 611#ifdef CONFIG_BLOCK
 612/*
 613 * Migration function for pages with buffers. This function can only be used
 614 * if the underlying filesystem guarantees that no other references to "page"
 615 * exist.
 616 */
 617int buffer_migrate_page(struct address_space *mapping,
 618                struct page *newpage, struct page *page, enum migrate_mode mode)
 619{
 620        struct buffer_head *bh, *head;
 621        int rc;
 622
 623        if (!page_has_buffers(page))
 624                return migrate_page(mapping, newpage, page, mode);
 625
 626        head = page_buffers(page);
 627
 628        rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 629
 630        if (rc != MIGRATEPAGE_SUCCESS)
 631                return rc;
 632
 633        /*
 634         * In the async case, migrate_page_move_mapping locked the buffers
 635         * with an IRQ-safe spinlock held. In the sync case, the buffers
 636         * need to be locked now
 637         */
 638        if (mode != MIGRATE_ASYNC)
 639                BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 640
 641        ClearPagePrivate(page);
 642        set_page_private(newpage, page_private(page));
 643        set_page_private(page, 0);
 644        put_page(page);
 645        get_page(newpage);
 646
 647        bh = head;
 648        do {
 649                set_bh_page(bh, newpage, bh_offset(bh));
 650                bh = bh->b_this_page;
 651
 652        } while (bh != head);
 653
 654        SetPagePrivate(newpage);
 655
 656        migrate_page_copy(newpage, page);
 657
 658        bh = head;
 659        do {
 660                unlock_buffer(bh);
 661                put_bh(bh);
 662                bh = bh->b_this_page;
 663
 664        } while (bh != head);
 665
 666        return MIGRATEPAGE_SUCCESS;
 667}
 668EXPORT_SYMBOL(buffer_migrate_page);
 669#endif
 670
 671/*
 672 * Writeback a page to clean the dirty state
 673 */
 674static int writeout(struct address_space *mapping, struct page *page)
 675{
 676        struct writeback_control wbc = {
 677                .sync_mode = WB_SYNC_NONE,
 678                .nr_to_write = 1,
 679                .range_start = 0,
 680                .range_end = LLONG_MAX,
 681                .for_reclaim = 1
 682        };
 683        int rc;
 684
 685        if (!mapping->a_ops->writepage)
 686                /* No write method for the address space */
 687                return -EINVAL;
 688
 689        if (!clear_page_dirty_for_io(page))
 690                /* Someone else already triggered a write */
 691                return -EAGAIN;
 692
 693        /*
 694         * A dirty page may imply that the underlying filesystem has
 695         * the page on some queue. So the page must be clean for
 696         * migration. Writeout may mean we loose the lock and the
 697         * page state is no longer what we checked for earlier.
 698         * At this point we know that the migration attempt cannot
 699         * be successful.
 700         */
 701        remove_migration_ptes(page, page);
 702
 703        rc = mapping->a_ops->writepage(page, &wbc);
 704
 705        if (rc != AOP_WRITEPAGE_ACTIVATE)
 706                /* unlocked. Relock */
 707                lock_page(page);
 708
 709        return (rc < 0) ? -EIO : -EAGAIN;
 710}
 711
 712/*
 713 * Default handling if a filesystem does not provide a migration function.
 714 */
 715static int fallback_migrate_page(struct address_space *mapping,
 716        struct page *newpage, struct page *page, enum migrate_mode mode)
 717{
 718        if (PageDirty(page)) {
 719                /* Only writeback pages in full synchronous migration */
 720                if (mode != MIGRATE_SYNC)
 721                        return -EBUSY;
 722                return writeout(mapping, page);
 723        }
 724
 725        /*
 726         * Buffers may be managed in a filesystem specific way.
 727         * We must have no buffers or drop them.
 728         */
 729        if (page_has_private(page) &&
 730            !try_to_release_page(page, GFP_KERNEL))
 731                return -EAGAIN;
 732
 733        return migrate_page(mapping, newpage, page, mode);
 734}
 735
 736/*
 737 * Move a page to a newly allocated page
 738 * The page is locked and all ptes have been successfully removed.
 739 *
 740 * The new page will have replaced the old page if this function
 741 * is successful.
 742 *
 743 * Return value:
 744 *   < 0 - error code
 745 *  MIGRATEPAGE_SUCCESS - success
 746 */
 747static int move_to_new_page(struct page *newpage, struct page *page,
 748                                int remap_swapcache, enum migrate_mode mode)
 749{
 750        struct address_space *mapping;
 751        int rc;
 752
 753        /*
 754         * Block others from accessing the page when we get around to
 755         * establishing additional references. We are the only one
 756         * holding a reference to the new page at this point.
 757         */
 758        if (!trylock_page(newpage))
 759                BUG();
 760
 761        /* Prepare mapping for the new page.*/
 762        newpage->index = page->index;
 763        newpage->mapping = page->mapping;
 764        if (PageSwapBacked(page))
 765                SetPageSwapBacked(newpage);
 766
 767        mapping = page_mapping(page);
 768        if (!mapping)
 769                rc = migrate_page(mapping, newpage, page, mode);
 770        else if (mapping->a_ops->migratepage)
 771                /*
 772                 * Most pages have a mapping and most filesystems provide a
 773                 * migratepage callback. Anonymous pages are part of swap
 774                 * space which also has its own migratepage callback. This
 775                 * is the most common path for page migration.
 776                 */
 777                rc = mapping->a_ops->migratepage(mapping,
 778                                                newpage, page, mode);
 779        else
 780                rc = fallback_migrate_page(mapping, newpage, page, mode);
 781
 782        if (rc != MIGRATEPAGE_SUCCESS) {
 783                newpage->mapping = NULL;
 784        } else {
 785                if (remap_swapcache)
 786                        remove_migration_ptes(page, newpage);
 787                page->mapping = NULL;
 788        }
 789
 790        unlock_page(newpage);
 791
 792        return rc;
 793}
 794
 795static int __unmap_and_move(struct page *page, struct page *newpage,
 796                                int force, enum migrate_mode mode)
 797{
 798        int rc = -EAGAIN;
 799        int remap_swapcache = 1;
 800        struct mem_cgroup *mem;
 801        struct anon_vma *anon_vma = NULL;
 802
 803        if (!trylock_page(page)) {
 804                if (!force || mode == MIGRATE_ASYNC)
 805                        goto out;
 806
 807                /*
 808                 * It's not safe for direct compaction to call lock_page.
 809                 * For example, during page readahead pages are added locked
 810                 * to the LRU. Later, when the IO completes the pages are
 811                 * marked uptodate and unlocked. However, the queueing
 812                 * could be merging multiple pages for one bio (e.g.
 813                 * mpage_readpages). If an allocation happens for the
 814                 * second or third page, the process can end up locking
 815                 * the same page twice and deadlocking. Rather than
 816                 * trying to be clever about what pages can be locked,
 817                 * avoid the use of lock_page for direct compaction
 818                 * altogether.
 819                 */
 820                if (current->flags & PF_MEMALLOC)
 821                        goto out;
 822
 823                lock_page(page);
 824        }
 825
 826        /* charge against new page */
 827        mem_cgroup_prepare_migration(page, newpage, &mem);
 828
 829        if (PageWriteback(page)) {
 830                /*
 831                 * Only in the case of a full synchronous migration is it
 832                 * necessary to wait for PageWriteback. In the async case,
 833                 * the retry loop is too short and in the sync-light case,
 834                 * the overhead of stalling is too much
 835                 */
 836                if (mode != MIGRATE_SYNC) {
 837                        rc = -EBUSY;
 838                        goto uncharge;
 839                }
 840                if (!force)
 841                        goto uncharge;
 842                wait_on_page_writeback(page);
 843        }
 844        /*
 845         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 846         * we cannot notice that anon_vma is freed while we migrates a page.
 847         * This get_anon_vma() delays freeing anon_vma pointer until the end
 848         * of migration. File cache pages are no problem because of page_lock()
 849         * File Caches may use write_page() or lock_page() in migration, then,
 850         * just care Anon page here.
 851         */
 852        if (PageAnon(page) && !PageKsm(page)) {
 853                /*
 854                 * Only page_lock_anon_vma_read() understands the subtleties of
 855                 * getting a hold on an anon_vma from outside one of its mms.
 856                 */
 857                anon_vma = page_get_anon_vma(page);
 858                if (anon_vma) {
 859                        /*
 860                         * Anon page
 861                         */
 862                } else if (PageSwapCache(page)) {
 863                        /*
 864                         * We cannot be sure that the anon_vma of an unmapped
 865                         * swapcache page is safe to use because we don't
 866                         * know in advance if the VMA that this page belonged
 867                         * to still exists. If the VMA and others sharing the
 868                         * data have been freed, then the anon_vma could
 869                         * already be invalid.
 870                         *
 871                         * To avoid this possibility, swapcache pages get
 872                         * migrated but are not remapped when migration
 873                         * completes
 874                         */
 875                        remap_swapcache = 0;
 876                } else {
 877                        goto uncharge;
 878                }
 879        }
 880
 881        if (unlikely(balloon_page_movable(page))) {
 882                /*
 883                 * A ballooned page does not need any special attention from
 884                 * physical to virtual reverse mapping procedures.
 885                 * Skip any attempt to unmap PTEs or to remap swap cache,
 886                 * in order to avoid burning cycles at rmap level, and perform
 887                 * the page migration right away (proteced by page lock).
 888                 */
 889                rc = balloon_page_migrate(newpage, page, mode);
 890                goto uncharge;
 891        }
 892
 893        /*
 894         * Corner case handling:
 895         * 1. When a new swap-cache page is read into, it is added to the LRU
 896         * and treated as swapcache but it has no rmap yet.
 897         * Calling try_to_unmap() against a page->mapping==NULL page will
 898         * trigger a BUG.  So handle it here.
 899         * 2. An orphaned page (see truncate_complete_page) might have
 900         * fs-private metadata. The page can be picked up due to memory
 901         * offlining.  Everywhere else except page reclaim, the page is
 902         * invisible to the vm, so the page can not be migrated.  So try to
 903         * free the metadata, so the page can be freed.
 904         */
 905        if (!page->mapping) {
 906                VM_BUG_ON_PAGE(PageAnon(page), page);
 907                if (page_has_private(page)) {
 908                        try_to_free_buffers(page);
 909                        goto uncharge;
 910                }
 911                goto skip_unmap;
 912        }
 913
 914        /* Establish migration ptes or remove ptes */
 915        try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 916
 917skip_unmap:
 918        if (!page_mapped(page))
 919                rc = move_to_new_page(newpage, page, remap_swapcache, mode);
 920
 921        if (rc && remap_swapcache)
 922                remove_migration_ptes(page, page);
 923
 924        /* Drop an anon_vma reference if we took one */
 925        if (anon_vma)
 926                put_anon_vma(anon_vma);
 927
 928uncharge:
 929        mem_cgroup_end_migration(mem, page, newpage,
 930                                 (rc == MIGRATEPAGE_SUCCESS ||
 931                                  rc == MIGRATEPAGE_BALLOON_SUCCESS));
 932        unlock_page(page);
 933out:
 934        return rc;
 935}
 936
 937/*
 938 * Obtain the lock on page, remove all ptes and migrate the page
 939 * to the newly allocated page in newpage.
 940 */
 941static int unmap_and_move(new_page_t get_new_page, unsigned long private,
 942                        struct page *page, int force, enum migrate_mode mode)
 943{
 944        int rc = 0;
 945        int *result = NULL;
 946        struct page *newpage = get_new_page(page, private, &result);
 947
 948        if (!newpage)
 949                return -ENOMEM;
 950
 951        if (page_count(page) == 1) {
 952                /* page was freed from under us. So we are done. */
 953                goto out;
 954        }
 955
 956        if (unlikely(PageTransHuge(page)))
 957                if (unlikely(split_huge_page(page)))
 958                        goto out;
 959
 960        rc = __unmap_and_move(page, newpage, force, mode);
 961
 962        if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
 963                /*
 964                 * A ballooned page has been migrated already.
 965                 * Now, it's the time to wrap-up counters,
 966                 * handle the page back to Buddy and return.
 967                 */
 968                dec_zone_page_state(page, NR_ISOLATED_ANON +
 969                                    page_is_file_cache(page));
 970                balloon_page_free(page);
 971                return MIGRATEPAGE_SUCCESS;
 972        }
 973out:
 974        if (rc != -EAGAIN) {
 975                /*
 976                 * A page that has been migrated has all references
 977                 * removed and will be freed. A page that has not been
 978                 * migrated will have kepts its references and be
 979                 * restored.
 980                 */
 981                list_del(&page->lru);
 982                dec_zone_page_state(page, NR_ISOLATED_ANON +
 983                                page_is_file_cache(page));
 984                putback_lru_page(page);
 985        }
 986        /*
 987         * Move the new page to the LRU. If migration was not successful
 988         * then this will free the page.
 989         */
 990        putback_lru_page(newpage);
 991        if (result) {
 992                if (rc)
 993                        *result = rc;
 994                else
 995                        *result = page_to_nid(newpage);
 996        }
 997        return rc;
 998}
 999
1000/*
1001 * Counterpart of unmap_and_move_page() for hugepage migration.
1002 *
1003 * This function doesn't wait the completion of hugepage I/O
1004 * because there is no race between I/O and migration for hugepage.
1005 * Note that currently hugepage I/O occurs only in direct I/O
1006 * where no lock is held and PG_writeback is irrelevant,
1007 * and writeback status of all subpages are counted in the reference
1008 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009 * under direct I/O, the reference of the head page is 512 and a bit more.)
1010 * This means that when we try to migrate hugepage whose subpages are
1011 * doing direct I/O, some references remain after try_to_unmap() and
1012 * hugepage migration fails without data corruption.
1013 *
1014 * There is also no race when direct I/O is issued on the page under migration,
1015 * because then pte is replaced with migration swap entry and direct I/O code
1016 * will wait in the page fault for migration to complete.
1017 */
1018static int unmap_and_move_huge_page(new_page_t get_new_page,
1019                                unsigned long private, struct page *hpage,
1020                                int force, enum migrate_mode mode)
1021{
1022        int rc = 0;
1023        int *result = NULL;
1024        struct page *new_hpage;
1025        struct anon_vma *anon_vma = NULL;
1026
1027        /*
1028         * Movability of hugepages depends on architectures and hugepage size.
1029         * This check is necessary because some callers of hugepage migration
1030         * like soft offline and memory hotremove don't walk through page
1031         * tables or check whether the hugepage is pmd-based or not before
1032         * kicking migration.
1033         */
1034        if (!hugepage_migration_support(page_hstate(hpage))) {
1035                putback_active_hugepage(hpage);
1036                return -ENOSYS;
1037        }
1038
1039        new_hpage = get_new_page(hpage, private, &result);
1040        if (!new_hpage)
1041                return -ENOMEM;
1042
1043        rc = -EAGAIN;
1044
1045        if (!trylock_page(hpage)) {
1046                if (!force || mode != MIGRATE_SYNC)
1047                        goto out;
1048                lock_page(hpage);
1049        }
1050
1051        if (PageAnon(hpage))
1052                anon_vma = page_get_anon_vma(hpage);
1053
1054        try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1055
1056        if (!page_mapped(hpage))
1057                rc = move_to_new_page(new_hpage, hpage, 1, mode);
1058
1059        if (rc)
1060                remove_migration_ptes(hpage, hpage);
1061
1062        if (anon_vma)
1063                put_anon_vma(anon_vma);
1064
1065        if (!rc)
1066                hugetlb_cgroup_migrate(hpage, new_hpage);
1067
1068        unlock_page(hpage);
1069out:
1070        if (rc != -EAGAIN)
1071                putback_active_hugepage(hpage);
1072        put_page(new_hpage);
1073        if (result) {
1074                if (rc)
1075                        *result = rc;
1076                else
1077                        *result = page_to_nid(new_hpage);
1078        }
1079        return rc;
1080}
1081
1082/*
1083 * migrate_pages - migrate the pages specified in a list, to the free pages
1084 *                 supplied as the target for the page migration
1085 *
1086 * @from:               The list of pages to be migrated.
1087 * @get_new_page:       The function used to allocate free pages to be used
1088 *                      as the target of the page migration.
1089 * @private:            Private data to be passed on to get_new_page()
1090 * @mode:               The migration mode that specifies the constraints for
1091 *                      page migration, if any.
1092 * @reason:             The reason for page migration.
1093 *
1094 * The function returns after 10 attempts or if no pages are movable any more
1095 * because the list has become empty or no retryable pages exist any more.
1096 * The caller should call putback_lru_pages() to return pages to the LRU
1097 * or free list only if ret != 0.
1098 *
1099 * Returns the number of pages that were not migrated, or an error code.
1100 */
1101int migrate_pages(struct list_head *from, new_page_t get_new_page,
1102                unsigned long private, enum migrate_mode mode, int reason)
1103{
1104        int retry = 1;
1105        int nr_failed = 0;
1106        int nr_succeeded = 0;
1107        int pass = 0;
1108        struct page *page;
1109        struct page *page2;
1110        int swapwrite = current->flags & PF_SWAPWRITE;
1111        int rc;
1112
1113        if (!swapwrite)
1114                current->flags |= PF_SWAPWRITE;
1115
1116        for(pass = 0; pass < 10 && retry; pass++) {
1117                retry = 0;
1118
1119                list_for_each_entry_safe(page, page2, from, lru) {
1120                        cond_resched();
1121
1122                        if (PageHuge(page))
1123                                rc = unmap_and_move_huge_page(get_new_page,
1124                                                private, page, pass > 2, mode);
1125                        else
1126                                rc = unmap_and_move(get_new_page, private,
1127                                                page, pass > 2, mode);
1128
1129                        switch(rc) {
1130                        case -ENOMEM:
1131                                goto out;
1132                        case -EAGAIN:
1133                                retry++;
1134                                break;
1135                        case MIGRATEPAGE_SUCCESS:
1136                                nr_succeeded++;
1137                                break;
1138                        default:
1139                                /*
1140                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1141                                 * unlike -EAGAIN case, the failed page is
1142                                 * removed from migration page list and not
1143                                 * retried in the next outer loop.
1144                                 */
1145                                nr_failed++;
1146                                break;
1147                        }
1148                }
1149        }
1150        rc = nr_failed + retry;
1151out:
1152        if (nr_succeeded)
1153                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1154        if (nr_failed)
1155                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1156        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1157
1158        if (!swapwrite)
1159                current->flags &= ~PF_SWAPWRITE;
1160
1161        return rc;
1162}
1163
1164#ifdef CONFIG_NUMA
1165/*
1166 * Move a list of individual pages
1167 */
1168struct page_to_node {
1169        unsigned long addr;
1170        struct page *page;
1171        int node;
1172        int status;
1173};
1174
1175static struct page *new_page_node(struct page *p, unsigned long private,
1176                int **result)
1177{
1178        struct page_to_node *pm = (struct page_to_node *)private;
1179
1180        while (pm->node != MAX_NUMNODES && pm->page != p)
1181                pm++;
1182
1183        if (pm->node == MAX_NUMNODES)
1184                return NULL;
1185
1186        *result = &pm->status;
1187
1188        if (PageHuge(p))
1189                return alloc_huge_page_node(page_hstate(compound_head(p)),
1190                                        pm->node);
1191        else
1192                return alloc_pages_exact_node(pm->node,
1193                                GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1194}
1195
1196/*
1197 * Move a set of pages as indicated in the pm array. The addr
1198 * field must be set to the virtual address of the page to be moved
1199 * and the node number must contain a valid target node.
1200 * The pm array ends with node = MAX_NUMNODES.
1201 */
1202static int do_move_page_to_node_array(struct mm_struct *mm,
1203                                      struct page_to_node *pm,
1204                                      int migrate_all)
1205{
1206        int err;
1207        struct page_to_node *pp;
1208        LIST_HEAD(pagelist);
1209
1210        down_read(&mm->mmap_sem);
1211
1212        /*
1213         * Build a list of pages to migrate
1214         */
1215        for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1216                struct vm_area_struct *vma;
1217                struct page *page;
1218
1219                err = -EFAULT;
1220                vma = find_vma(mm, pp->addr);
1221                if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1222                        goto set_status;
1223
1224                page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1225
1226                err = PTR_ERR(page);
1227                if (IS_ERR(page))
1228                        goto set_status;
1229
1230                err = -ENOENT;
1231                if (!page)
1232                        goto set_status;
1233
1234                /* Use PageReserved to check for zero page */
1235                if (PageReserved(page))
1236                        goto put_and_set;
1237
1238                pp->page = page;
1239                err = page_to_nid(page);
1240
1241                if (err == pp->node)
1242                        /*
1243                         * Node already in the right place
1244                         */
1245                        goto put_and_set;
1246
1247                err = -EACCES;
1248                if (page_mapcount(page) > 1 &&
1249                                !migrate_all)
1250                        goto put_and_set;
1251
1252                if (PageHuge(page)) {
1253                        isolate_huge_page(page, &pagelist);
1254                        goto put_and_set;
1255                }
1256
1257                err = isolate_lru_page(page);
1258                if (!err) {
1259                        list_add_tail(&page->lru, &pagelist);
1260                        inc_zone_page_state(page, NR_ISOLATED_ANON +
1261                                            page_is_file_cache(page));
1262                }
1263put_and_set:
1264                /*
1265                 * Either remove the duplicate refcount from
1266                 * isolate_lru_page() or drop the page ref if it was
1267                 * not isolated.
1268                 */
1269                put_page(page);
1270set_status:
1271                pp->status = err;
1272        }
1273
1274        err = 0;
1275        if (!list_empty(&pagelist)) {
1276                err = migrate_pages(&pagelist, new_page_node,
1277                                (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1278                if (err)
1279                        putback_movable_pages(&pagelist);
1280        }
1281
1282        up_read(&mm->mmap_sem);
1283        return err;
1284}
1285
1286/*
1287 * Migrate an array of page address onto an array of nodes and fill
1288 * the corresponding array of status.
1289 */
1290static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1291                         unsigned long nr_pages,
1292                         const void __user * __user *pages,
1293                         const int __user *nodes,
1294                         int __user *status, int flags)
1295{
1296        struct page_to_node *pm;
1297        unsigned long chunk_nr_pages;
1298        unsigned long chunk_start;
1299        int err;
1300
1301        err = -ENOMEM;
1302        pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1303        if (!pm)
1304                goto out;
1305
1306        migrate_prep();
1307
1308        /*
1309         * Store a chunk of page_to_node array in a page,
1310         * but keep the last one as a marker
1311         */
1312        chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1313
1314        for (chunk_start = 0;
1315             chunk_start < nr_pages;
1316             chunk_start += chunk_nr_pages) {
1317                int j;
1318
1319                if (chunk_start + chunk_nr_pages > nr_pages)
1320                        chunk_nr_pages = nr_pages - chunk_start;
1321
1322                /* fill the chunk pm with addrs and nodes from user-space */
1323                for (j = 0; j < chunk_nr_pages; j++) {
1324                        const void __user *p;
1325                        int node;
1326
1327                        err = -EFAULT;
1328                        if (get_user(p, pages + j + chunk_start))
1329                                goto out_pm;
1330                        pm[j].addr = (unsigned long) p;
1331
1332                        if (get_user(node, nodes + j + chunk_start))
1333                                goto out_pm;
1334
1335                        err = -ENODEV;
1336                        if (node < 0 || node >= MAX_NUMNODES)
1337                                goto out_pm;
1338
1339                        if (!node_state(node, N_MEMORY))
1340                                goto out_pm;
1341
1342                        err = -EACCES;
1343                        if (!node_isset(node, task_nodes))
1344                                goto out_pm;
1345
1346                        pm[j].node = node;
1347                }
1348
1349                /* End marker for this chunk */
1350                pm[chunk_nr_pages].node = MAX_NUMNODES;
1351
1352                /* Migrate this chunk */
1353                err = do_move_page_to_node_array(mm, pm,
1354                                                 flags & MPOL_MF_MOVE_ALL);
1355                if (err < 0)
1356                        goto out_pm;
1357
1358                /* Return status information */
1359                for (j = 0; j < chunk_nr_pages; j++)
1360                        if (put_user(pm[j].status, status + j + chunk_start)) {
1361                                err = -EFAULT;
1362                                goto out_pm;
1363                        }
1364        }
1365        err = 0;
1366
1367out_pm:
1368        free_page((unsigned long)pm);
1369out:
1370        return err;
1371}
1372
1373/*
1374 * Determine the nodes of an array of pages and store it in an array of status.
1375 */
1376static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1377                                const void __user **pages, int *status)
1378{
1379        unsigned long i;
1380
1381        down_read(&mm->mmap_sem);
1382
1383        for (i = 0; i < nr_pages; i++) {
1384                unsigned long addr = (unsigned long)(*pages);
1385                struct vm_area_struct *vma;
1386                struct page *page;
1387                int err = -EFAULT;
1388
1389                vma = find_vma(mm, addr);
1390                if (!vma || addr < vma->vm_start)
1391                        goto set_status;
1392
1393                page = follow_page(vma, addr, 0);
1394
1395                err = PTR_ERR(page);
1396                if (IS_ERR(page))
1397                        goto set_status;
1398
1399                err = -ENOENT;
1400                /* Use PageReserved to check for zero page */
1401                if (!page || PageReserved(page))
1402                        goto set_status;
1403
1404                err = page_to_nid(page);
1405set_status:
1406                *status = err;
1407
1408                pages++;
1409                status++;
1410        }
1411
1412        up_read(&mm->mmap_sem);
1413}
1414
1415/*
1416 * Determine the nodes of a user array of pages and store it in
1417 * a user array of status.
1418 */
1419static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1420                         const void __user * __user *pages,
1421                         int __user *status)
1422{
1423#define DO_PAGES_STAT_CHUNK_NR 16
1424        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1425        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1426
1427        while (nr_pages) {
1428                unsigned long chunk_nr;
1429
1430                chunk_nr = nr_pages;
1431                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1432                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1433
1434                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1435                        break;
1436
1437                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1438
1439                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1440                        break;
1441
1442                pages += chunk_nr;
1443                status += chunk_nr;
1444                nr_pages -= chunk_nr;
1445        }
1446        return nr_pages ? -EFAULT : 0;
1447}
1448
1449/*
1450 * Move a list of pages in the address space of the currently executing
1451 * process.
1452 */
1453SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1454                const void __user * __user *, pages,
1455                const int __user *, nodes,
1456                int __user *, status, int, flags)
1457{
1458        const struct cred *cred = current_cred(), *tcred;
1459        struct task_struct *task;
1460        struct mm_struct *mm;
1461        int err;
1462        nodemask_t task_nodes;
1463
1464        /* Check flags */
1465        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1466                return -EINVAL;
1467
1468        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1469                return -EPERM;
1470
1471        /* Find the mm_struct */
1472        rcu_read_lock();
1473        task = pid ? find_task_by_vpid(pid) : current;
1474        if (!task) {
1475                rcu_read_unlock();
1476                return -ESRCH;
1477        }
1478        get_task_struct(task);
1479
1480        /*
1481         * Check if this process has the right to modify the specified
1482         * process. The right exists if the process has administrative
1483         * capabilities, superuser privileges or the same
1484         * userid as the target process.
1485         */
1486        tcred = __task_cred(task);
1487        if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1488            !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1489            !capable(CAP_SYS_NICE)) {
1490                rcu_read_unlock();
1491                err = -EPERM;
1492                goto out;
1493        }
1494        rcu_read_unlock();
1495
1496        err = security_task_movememory(task);
1497        if (err)
1498                goto out;
1499
1500        task_nodes = cpuset_mems_allowed(task);
1501        mm = get_task_mm(task);
1502        put_task_struct(task);
1503
1504        if (!mm)
1505                return -EINVAL;
1506
1507        if (nodes)
1508                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1509                                    nodes, status, flags);
1510        else
1511                err = do_pages_stat(mm, nr_pages, pages, status);
1512
1513        mmput(mm);
1514        return err;
1515
1516out:
1517        put_task_struct(task);
1518        return err;
1519}
1520
1521/*
1522 * Call migration functions in the vma_ops that may prepare
1523 * memory in a vm for migration. migration functions may perform
1524 * the migration for vmas that do not have an underlying page struct.
1525 */
1526int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1527        const nodemask_t *from, unsigned long flags)
1528{
1529        struct vm_area_struct *vma;
1530        int err = 0;
1531
1532        for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1533                if (vma->vm_ops && vma->vm_ops->migrate) {
1534                        err = vma->vm_ops->migrate(vma, to, from, flags);
1535                        if (err)
1536                                break;
1537                }
1538        }
1539        return err;
1540}
1541
1542#ifdef CONFIG_NUMA_BALANCING
1543/*
1544 * Returns true if this is a safe migration target node for misplaced NUMA
1545 * pages. Currently it only checks the watermarks which crude
1546 */
1547static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1548                                   unsigned long nr_migrate_pages)
1549{
1550        int z;
1551        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1552                struct zone *zone = pgdat->node_zones + z;
1553
1554                if (!populated_zone(zone))
1555                        continue;
1556
1557                if (!zone_reclaimable(zone))
1558                        continue;
1559
1560                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1561                if (!zone_watermark_ok(zone, 0,
1562                                       high_wmark_pages(zone) +
1563                                       nr_migrate_pages,
1564                                       0, 0))
1565                        continue;
1566                return true;
1567        }
1568        return false;
1569}
1570
1571static struct page *alloc_misplaced_dst_page(struct page *page,
1572                                           unsigned long data,
1573                                           int **result)
1574{
1575        int nid = (int) data;
1576        struct page *newpage;
1577
1578        newpage = alloc_pages_exact_node(nid,
1579                                         (GFP_HIGHUSER_MOVABLE |
1580                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1581                                          __GFP_NORETRY | __GFP_NOWARN) &
1582                                         ~GFP_IOFS, 0);
1583
1584        return newpage;
1585}
1586
1587/*
1588 * page migration rate limiting control.
1589 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1590 * window of time. Default here says do not migrate more than 1280M per second.
1591 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1592 * as it is faults that reset the window, pte updates will happen unconditionally
1593 * if there has not been a fault since @pteupdate_interval_millisecs after the
1594 * throttle window closed.
1595 */
1596static unsigned int migrate_interval_millisecs __read_mostly = 100;
1597static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1598static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1599
1600/* Returns true if NUMA migration is currently rate limited */
1601bool migrate_ratelimited(int node)
1602{
1603        pg_data_t *pgdat = NODE_DATA(node);
1604
1605        if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1606                                msecs_to_jiffies(pteupdate_interval_millisecs)))
1607                return false;
1608
1609        if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1610                return false;
1611
1612        return true;
1613}
1614
1615/* Returns true if the node is migrate rate-limited after the update */
1616static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1617                                        unsigned long nr_pages)
1618{
1619        /*
1620         * Rate-limit the amount of data that is being migrated to a node.
1621         * Optimal placement is no good if the memory bus is saturated and
1622         * all the time is being spent migrating!
1623         */
1624        if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1625                spin_lock(&pgdat->numabalancing_migrate_lock);
1626                pgdat->numabalancing_migrate_nr_pages = 0;
1627                pgdat->numabalancing_migrate_next_window = jiffies +
1628                        msecs_to_jiffies(migrate_interval_millisecs);
1629                spin_unlock(&pgdat->numabalancing_migrate_lock);
1630        }
1631        if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1632                trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1633                                                                nr_pages);
1634                return true;
1635        }
1636
1637        /*
1638         * This is an unlocked non-atomic update so errors are possible.
1639         * The consequences are failing to migrate when we potentiall should
1640         * have which is not severe enough to warrant locking. If it is ever
1641         * a problem, it can be converted to a per-cpu counter.
1642         */
1643        pgdat->numabalancing_migrate_nr_pages += nr_pages;
1644        return false;
1645}
1646
1647static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1648{
1649        int page_lru;
1650
1651        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1652
1653        /* Avoid migrating to a node that is nearly full */
1654        if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1655                return 0;
1656
1657        if (isolate_lru_page(page))
1658                return 0;
1659
1660        /*
1661         * migrate_misplaced_transhuge_page() skips page migration's usual
1662         * check on page_count(), so we must do it here, now that the page
1663         * has been isolated: a GUP pin, or any other pin, prevents migration.
1664         * The expected page count is 3: 1 for page's mapcount and 1 for the
1665         * caller's pin and 1 for the reference taken by isolate_lru_page().
1666         */
1667        if (PageTransHuge(page) && page_count(page) != 3) {
1668                putback_lru_page(page);
1669                return 0;
1670        }
1671
1672        page_lru = page_is_file_cache(page);
1673        mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1674                                hpage_nr_pages(page));
1675
1676        /*
1677         * Isolating the page has taken another reference, so the
1678         * caller's reference can be safely dropped without the page
1679         * disappearing underneath us during migration.
1680         */
1681        put_page(page);
1682        return 1;
1683}
1684
1685bool pmd_trans_migrating(pmd_t pmd)
1686{
1687        struct page *page = pmd_page(pmd);
1688        return PageLocked(page);
1689}
1690
1691void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1692{
1693        struct page *page = pmd_page(*pmd);
1694        wait_on_page_locked(page);
1695}
1696
1697/*
1698 * Attempt to migrate a misplaced page to the specified destination
1699 * node. Caller is expected to have an elevated reference count on
1700 * the page that will be dropped by this function before returning.
1701 */
1702int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1703                           int node)
1704{
1705        pg_data_t *pgdat = NODE_DATA(node);
1706        int isolated;
1707        int nr_remaining;
1708        LIST_HEAD(migratepages);
1709
1710        /*
1711         * Don't migrate file pages that are mapped in multiple processes
1712         * with execute permissions as they are probably shared libraries.
1713         */
1714        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1715            (vma->vm_flags & VM_EXEC))
1716                goto out;
1717
1718        /*
1719         * Rate-limit the amount of data that is being migrated to a node.
1720         * Optimal placement is no good if the memory bus is saturated and
1721         * all the time is being spent migrating!
1722         */
1723        if (numamigrate_update_ratelimit(pgdat, 1))
1724                goto out;
1725
1726        isolated = numamigrate_isolate_page(pgdat, page);
1727        if (!isolated)
1728                goto out;
1729
1730        list_add(&page->lru, &migratepages);
1731        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1732                                     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1733        if (nr_remaining) {
1734                if (!list_empty(&migratepages)) {
1735                        list_del(&page->lru);
1736                        dec_zone_page_state(page, NR_ISOLATED_ANON +
1737                                        page_is_file_cache(page));
1738                        putback_lru_page(page);
1739                }
1740                isolated = 0;
1741        } else
1742                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1743        BUG_ON(!list_empty(&migratepages));
1744        return isolated;
1745
1746out:
1747        put_page(page);
1748        return 0;
1749}
1750#endif /* CONFIG_NUMA_BALANCING */
1751
1752#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1753/*
1754 * Migrates a THP to a given target node. page must be locked and is unlocked
1755 * before returning.
1756 */
1757int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1758                                struct vm_area_struct *vma,
1759                                pmd_t *pmd, pmd_t entry,
1760                                unsigned long address,
1761                                struct page *page, int node)
1762{
1763        spinlock_t *ptl;
1764        pg_data_t *pgdat = NODE_DATA(node);
1765        int isolated = 0;
1766        struct page *new_page = NULL;
1767        struct mem_cgroup *memcg = NULL;
1768        int page_lru = page_is_file_cache(page);
1769        unsigned long mmun_start = address & HPAGE_PMD_MASK;
1770        unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1771        pmd_t orig_entry;
1772
1773        /*
1774         * Rate-limit the amount of data that is being migrated to a node.
1775         * Optimal placement is no good if the memory bus is saturated and
1776         * all the time is being spent migrating!
1777         */
1778        if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1779                goto out_dropref;
1780
1781        new_page = alloc_pages_node(node,
1782                (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1783                HPAGE_PMD_ORDER);
1784        if (!new_page)
1785                goto out_fail;
1786
1787        isolated = numamigrate_isolate_page(pgdat, page);
1788        if (!isolated) {
1789                put_page(new_page);
1790                goto out_fail;
1791        }
1792
1793        if (mm_tlb_flush_pending(mm))
1794                flush_tlb_range(vma, mmun_start, mmun_end);
1795
1796        /* Prepare a page as a migration target */
1797        __set_page_locked(new_page);
1798        SetPageSwapBacked(new_page);
1799
1800        /* anon mapping, we can simply copy page->mapping to the new page: */
1801        new_page->mapping = page->mapping;
1802        new_page->index = page->index;
1803        migrate_page_copy(new_page, page);
1804        WARN_ON(PageLRU(new_page));
1805
1806        /* Recheck the target PMD */
1807        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1808        ptl = pmd_lock(mm, pmd);
1809        if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1810fail_putback:
1811                spin_unlock(ptl);
1812                mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1813
1814                /* Reverse changes made by migrate_page_copy() */
1815                if (TestClearPageActive(new_page))
1816                        SetPageActive(page);
1817                if (TestClearPageUnevictable(new_page))
1818                        SetPageUnevictable(page);
1819                mlock_migrate_page(page, new_page);
1820
1821                unlock_page(new_page);
1822                put_page(new_page);             /* Free it */
1823
1824                /* Retake the callers reference and putback on LRU */
1825                get_page(page);
1826                putback_lru_page(page);
1827                mod_zone_page_state(page_zone(page),
1828                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1829
1830                goto out_unlock;
1831        }
1832
1833        /*
1834         * Traditional migration needs to prepare the memcg charge
1835         * transaction early to prevent the old page from being
1836         * uncharged when installing migration entries.  Here we can
1837         * save the potential rollback and start the charge transfer
1838         * only when migration is already known to end successfully.
1839         */
1840        mem_cgroup_prepare_migration(page, new_page, &memcg);
1841
1842        orig_entry = *pmd;
1843        entry = mk_pmd(new_page, vma->vm_page_prot);
1844        entry = pmd_mkhuge(entry);
1845        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1846
1847        /*
1848         * Clear the old entry under pagetable lock and establish the new PTE.
1849         * Any parallel GUP will either observe the old page blocking on the
1850         * page lock, block on the page table lock or observe the new page.
1851         * The SetPageUptodate on the new page and page_add_new_anon_rmap
1852         * guarantee the copy is visible before the pagetable update.
1853         */
1854        flush_cache_range(vma, mmun_start, mmun_end);
1855        page_add_new_anon_rmap(new_page, vma, mmun_start);
1856        pmdp_clear_flush(vma, mmun_start, pmd);
1857        set_pmd_at(mm, mmun_start, pmd, entry);
1858        flush_tlb_range(vma, mmun_start, mmun_end);
1859        update_mmu_cache_pmd(vma, address, &entry);
1860
1861        if (page_count(page) != 2) {
1862                set_pmd_at(mm, mmun_start, pmd, orig_entry);
1863                flush_tlb_range(vma, mmun_start, mmun_end);
1864                update_mmu_cache_pmd(vma, address, &entry);
1865                page_remove_rmap(new_page);
1866                goto fail_putback;
1867        }
1868
1869        page_remove_rmap(page);
1870
1871        /*
1872         * Finish the charge transaction under the page table lock to
1873         * prevent split_huge_page() from dividing up the charge
1874         * before it's fully transferred to the new page.
1875         */
1876        mem_cgroup_end_migration(memcg, page, new_page, true);
1877        spin_unlock(ptl);
1878        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1879
1880        unlock_page(new_page);
1881        unlock_page(page);
1882        put_page(page);                 /* Drop the rmap reference */
1883        put_page(page);                 /* Drop the LRU isolation reference */
1884
1885        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1886        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1887
1888        mod_zone_page_state(page_zone(page),
1889                        NR_ISOLATED_ANON + page_lru,
1890                        -HPAGE_PMD_NR);
1891        return isolated;
1892
1893out_fail:
1894        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1895out_dropref:
1896        ptl = pmd_lock(mm, pmd);
1897        if (pmd_same(*pmd, entry)) {
1898                entry = pmd_mknonnuma(entry);
1899                set_pmd_at(mm, mmun_start, pmd, entry);
1900                update_mmu_cache_pmd(vma, address, &entry);
1901        }
1902        spin_unlock(ptl);
1903
1904out_unlock:
1905        unlock_page(page);
1906        put_page(page);
1907        return 0;
1908}
1909#endif /* CONFIG_NUMA_BALANCING */
1910
1911#endif /* CONFIG_NUMA */
1912