linux/net/core/skbuff.c
<<
>>
Prefs
   1/*
   2 *      Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *      Fixes:
   8 *              Alan Cox        :       Fixed the worst of the load
   9 *                                      balancer bugs.
  10 *              Dave Platt      :       Interrupt stacking fix.
  11 *      Richard Kooijman        :       Timestamp fixes.
  12 *              Alan Cox        :       Changed buffer format.
  13 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  14 *              Linus Torvalds  :       Better skb_clone.
  15 *              Alan Cox        :       Added skb_copy.
  16 *              Alan Cox        :       Added all the changed routines Linus
  17 *                                      only put in the headers
  18 *              Ray VanTassle   :       Fixed --skb->lock in free
  19 *              Alan Cox        :       skb_copy copy arp field
  20 *              Andi Kleen      :       slabified it.
  21 *              Robert Olsson   :       Removed skb_head_pool
  22 *
  23 *      NOTE:
  24 *              The __skb_ routines should be called with interrupts
  25 *      disabled, or you better be *real* sure that the operation is atomic
  26 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *      or via disabling bottom half handlers, etc).
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *      The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/tcp.h>
  51#include <linux/udp.h>
  52#include <linux/netdevice.h>
  53#ifdef CONFIG_NET_CLS_ACT
  54#include <net/pkt_sched.h>
  55#endif
  56#include <linux/string.h>
  57#include <linux/skbuff.h>
  58#include <linux/splice.h>
  59#include <linux/cache.h>
  60#include <linux/rtnetlink.h>
  61#include <linux/init.h>
  62#include <linux/scatterlist.h>
  63#include <linux/errqueue.h>
  64#include <linux/prefetch.h>
  65
  66#include <net/protocol.h>
  67#include <net/dst.h>
  68#include <net/sock.h>
  69#include <net/checksum.h>
  70#include <net/ip6_checksum.h>
  71#include <net/xfrm.h>
  72
  73#include <asm/uaccess.h>
  74#include <trace/events/skb.h>
  75#include <linux/highmem.h>
  76
  77struct kmem_cache *skbuff_head_cache __read_mostly;
  78static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  79
  80/**
  81 *      skb_panic - private function for out-of-line support
  82 *      @skb:   buffer
  83 *      @sz:    size
  84 *      @addr:  address
  85 *      @msg:   skb_over_panic or skb_under_panic
  86 *
  87 *      Out-of-line support for skb_put() and skb_push().
  88 *      Called via the wrapper skb_over_panic() or skb_under_panic().
  89 *      Keep out of line to prevent kernel bloat.
  90 *      __builtin_return_address is not used because it is not always reliable.
  91 */
  92static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  93                      const char msg[])
  94{
  95        pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
  96                 msg, addr, skb->len, sz, skb->head, skb->data,
  97                 (unsigned long)skb->tail, (unsigned long)skb->end,
  98                 skb->dev ? skb->dev->name : "<NULL>");
  99        BUG();
 100}
 101
 102static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 103{
 104        skb_panic(skb, sz, addr, __func__);
 105}
 106
 107static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 108{
 109        skb_panic(skb, sz, addr, __func__);
 110}
 111
 112/*
 113 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 114 * the caller if emergency pfmemalloc reserves are being used. If it is and
 115 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 116 * may be used. Otherwise, the packet data may be discarded until enough
 117 * memory is free
 118 */
 119#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 120         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 121
 122static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 123                               unsigned long ip, bool *pfmemalloc)
 124{
 125        void *obj;
 126        bool ret_pfmemalloc = false;
 127
 128        /*
 129         * Try a regular allocation, when that fails and we're not entitled
 130         * to the reserves, fail.
 131         */
 132        obj = kmalloc_node_track_caller(size,
 133                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 134                                        node);
 135        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 136                goto out;
 137
 138        /* Try again but now we are using pfmemalloc reserves */
 139        ret_pfmemalloc = true;
 140        obj = kmalloc_node_track_caller(size, flags, node);
 141
 142out:
 143        if (pfmemalloc)
 144                *pfmemalloc = ret_pfmemalloc;
 145
 146        return obj;
 147}
 148
 149/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 150 *      'private' fields and also do memory statistics to find all the
 151 *      [BEEP] leaks.
 152 *
 153 */
 154
 155struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 156{
 157        struct sk_buff *skb;
 158
 159        /* Get the HEAD */
 160        skb = kmem_cache_alloc_node(skbuff_head_cache,
 161                                    gfp_mask & ~__GFP_DMA, node);
 162        if (!skb)
 163                goto out;
 164
 165        /*
 166         * Only clear those fields we need to clear, not those that we will
 167         * actually initialise below. Hence, don't put any more fields after
 168         * the tail pointer in struct sk_buff!
 169         */
 170        memset(skb, 0, offsetof(struct sk_buff, tail));
 171        skb->head = NULL;
 172        skb->truesize = sizeof(struct sk_buff);
 173        atomic_set(&skb->users, 1);
 174
 175        skb->mac_header = (typeof(skb->mac_header))~0U;
 176out:
 177        return skb;
 178}
 179
 180/**
 181 *      __alloc_skb     -       allocate a network buffer
 182 *      @size: size to allocate
 183 *      @gfp_mask: allocation mask
 184 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 185 *              instead of head cache and allocate a cloned (child) skb.
 186 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 187 *              allocations in case the data is required for writeback
 188 *      @node: numa node to allocate memory on
 189 *
 190 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 191 *      tail room of at least size bytes. The object has a reference count
 192 *      of one. The return is the buffer. On a failure the return is %NULL.
 193 *
 194 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 195 *      %GFP_ATOMIC.
 196 */
 197struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 198                            int flags, int node)
 199{
 200        struct kmem_cache *cache;
 201        struct skb_shared_info *shinfo;
 202        struct sk_buff *skb;
 203        u8 *data;
 204        bool pfmemalloc;
 205
 206        cache = (flags & SKB_ALLOC_FCLONE)
 207                ? skbuff_fclone_cache : skbuff_head_cache;
 208
 209        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 210                gfp_mask |= __GFP_MEMALLOC;
 211
 212        /* Get the HEAD */
 213        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 214        if (!skb)
 215                goto out;
 216        prefetchw(skb);
 217
 218        /* We do our best to align skb_shared_info on a separate cache
 219         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 220         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 221         * Both skb->head and skb_shared_info are cache line aligned.
 222         */
 223        size = SKB_DATA_ALIGN(size);
 224        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 225        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 226        if (!data)
 227                goto nodata;
 228        /* kmalloc(size) might give us more room than requested.
 229         * Put skb_shared_info exactly at the end of allocated zone,
 230         * to allow max possible filling before reallocation.
 231         */
 232        size = SKB_WITH_OVERHEAD(ksize(data));
 233        prefetchw(data + size);
 234
 235        /*
 236         * Only clear those fields we need to clear, not those that we will
 237         * actually initialise below. Hence, don't put any more fields after
 238         * the tail pointer in struct sk_buff!
 239         */
 240        memset(skb, 0, offsetof(struct sk_buff, tail));
 241        /* Account for allocated memory : skb + skb->head */
 242        skb->truesize = SKB_TRUESIZE(size);
 243        skb->pfmemalloc = pfmemalloc;
 244        atomic_set(&skb->users, 1);
 245        skb->head = data;
 246        skb->data = data;
 247        skb_reset_tail_pointer(skb);
 248        skb->end = skb->tail + size;
 249        skb->mac_header = (typeof(skb->mac_header))~0U;
 250        skb->transport_header = (typeof(skb->transport_header))~0U;
 251
 252        /* make sure we initialize shinfo sequentially */
 253        shinfo = skb_shinfo(skb);
 254        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 255        atomic_set(&shinfo->dataref, 1);
 256        kmemcheck_annotate_variable(shinfo->destructor_arg);
 257
 258        if (flags & SKB_ALLOC_FCLONE) {
 259                struct sk_buff *child = skb + 1;
 260                atomic_t *fclone_ref = (atomic_t *) (child + 1);
 261
 262                kmemcheck_annotate_bitfield(child, flags1);
 263                kmemcheck_annotate_bitfield(child, flags2);
 264                skb->fclone = SKB_FCLONE_ORIG;
 265                atomic_set(fclone_ref, 1);
 266
 267                child->fclone = SKB_FCLONE_UNAVAILABLE;
 268                child->pfmemalloc = pfmemalloc;
 269        }
 270out:
 271        return skb;
 272nodata:
 273        kmem_cache_free(cache, skb);
 274        skb = NULL;
 275        goto out;
 276}
 277EXPORT_SYMBOL(__alloc_skb);
 278
 279/**
 280 * build_skb - build a network buffer
 281 * @data: data buffer provided by caller
 282 * @frag_size: size of fragment, or 0 if head was kmalloced
 283 *
 284 * Allocate a new &sk_buff. Caller provides space holding head and
 285 * skb_shared_info. @data must have been allocated by kmalloc() only if
 286 * @frag_size is 0, otherwise data should come from the page allocator.
 287 * The return is the new skb buffer.
 288 * On a failure the return is %NULL, and @data is not freed.
 289 * Notes :
 290 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 291 *  Driver should add room at head (NET_SKB_PAD) and
 292 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 293 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 294 *  before giving packet to stack.
 295 *  RX rings only contains data buffers, not full skbs.
 296 */
 297struct sk_buff *build_skb(void *data, unsigned int frag_size)
 298{
 299        struct skb_shared_info *shinfo;
 300        struct sk_buff *skb;
 301        unsigned int size = frag_size ? : ksize(data);
 302
 303        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 304        if (!skb)
 305                return NULL;
 306
 307        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 308
 309        memset(skb, 0, offsetof(struct sk_buff, tail));
 310        skb->truesize = SKB_TRUESIZE(size);
 311        skb->head_frag = frag_size != 0;
 312        atomic_set(&skb->users, 1);
 313        skb->head = data;
 314        skb->data = data;
 315        skb_reset_tail_pointer(skb);
 316        skb->end = skb->tail + size;
 317        skb->mac_header = (typeof(skb->mac_header))~0U;
 318        skb->transport_header = (typeof(skb->transport_header))~0U;
 319
 320        /* make sure we initialize shinfo sequentially */
 321        shinfo = skb_shinfo(skb);
 322        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 323        atomic_set(&shinfo->dataref, 1);
 324        kmemcheck_annotate_variable(shinfo->destructor_arg);
 325
 326        return skb;
 327}
 328EXPORT_SYMBOL(build_skb);
 329
 330struct netdev_alloc_cache {
 331        struct page_frag        frag;
 332        /* we maintain a pagecount bias, so that we dont dirty cache line
 333         * containing page->_count every time we allocate a fragment.
 334         */
 335        unsigned int            pagecnt_bias;
 336};
 337static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
 338
 339static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 340{
 341        struct netdev_alloc_cache *nc;
 342        void *data = NULL;
 343        int order;
 344        unsigned long flags;
 345
 346        local_irq_save(flags);
 347        nc = &__get_cpu_var(netdev_alloc_cache);
 348        if (unlikely(!nc->frag.page)) {
 349refill:
 350                for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
 351                        gfp_t gfp = gfp_mask;
 352
 353                        if (order)
 354                                gfp |= __GFP_COMP | __GFP_NOWARN;
 355                        nc->frag.page = alloc_pages(gfp, order);
 356                        if (likely(nc->frag.page))
 357                                break;
 358                        if (--order < 0)
 359                                goto end;
 360                }
 361                nc->frag.size = PAGE_SIZE << order;
 362recycle:
 363                atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
 364                nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
 365                nc->frag.offset = 0;
 366        }
 367
 368        if (nc->frag.offset + fragsz > nc->frag.size) {
 369                /* avoid unnecessary locked operations if possible */
 370                if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
 371                    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
 372                        goto recycle;
 373                goto refill;
 374        }
 375
 376        data = page_address(nc->frag.page) + nc->frag.offset;
 377        nc->frag.offset += fragsz;
 378        nc->pagecnt_bias--;
 379end:
 380        local_irq_restore(flags);
 381        return data;
 382}
 383
 384/**
 385 * netdev_alloc_frag - allocate a page fragment
 386 * @fragsz: fragment size
 387 *
 388 * Allocates a frag from a page for receive buffer.
 389 * Uses GFP_ATOMIC allocations.
 390 */
 391void *netdev_alloc_frag(unsigned int fragsz)
 392{
 393        return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 394}
 395EXPORT_SYMBOL(netdev_alloc_frag);
 396
 397/**
 398 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 399 *      @dev: network device to receive on
 400 *      @length: length to allocate
 401 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 402 *
 403 *      Allocate a new &sk_buff and assign it a usage count of one. The
 404 *      buffer has unspecified headroom built in. Users should allocate
 405 *      the headroom they think they need without accounting for the
 406 *      built in space. The built in space is used for optimisations.
 407 *
 408 *      %NULL is returned if there is no free memory.
 409 */
 410struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
 411                                   unsigned int length, gfp_t gfp_mask)
 412{
 413        struct sk_buff *skb = NULL;
 414        unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
 415                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 416
 417        if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
 418                void *data;
 419
 420                if (sk_memalloc_socks())
 421                        gfp_mask |= __GFP_MEMALLOC;
 422
 423                data = __netdev_alloc_frag(fragsz, gfp_mask);
 424
 425                if (likely(data)) {
 426                        skb = build_skb(data, fragsz);
 427                        if (unlikely(!skb))
 428                                put_page(virt_to_head_page(data));
 429                }
 430        } else {
 431                skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
 432                                  SKB_ALLOC_RX, NUMA_NO_NODE);
 433        }
 434        if (likely(skb)) {
 435                skb_reserve(skb, NET_SKB_PAD);
 436                skb->dev = dev;
 437        }
 438        return skb;
 439}
 440EXPORT_SYMBOL(__netdev_alloc_skb);
 441
 442void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 443                     int size, unsigned int truesize)
 444{
 445        skb_fill_page_desc(skb, i, page, off, size);
 446        skb->len += size;
 447        skb->data_len += size;
 448        skb->truesize += truesize;
 449}
 450EXPORT_SYMBOL(skb_add_rx_frag);
 451
 452void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 453                          unsigned int truesize)
 454{
 455        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 456
 457        skb_frag_size_add(frag, size);
 458        skb->len += size;
 459        skb->data_len += size;
 460        skb->truesize += truesize;
 461}
 462EXPORT_SYMBOL(skb_coalesce_rx_frag);
 463
 464static void skb_drop_list(struct sk_buff **listp)
 465{
 466        kfree_skb_list(*listp);
 467        *listp = NULL;
 468}
 469
 470static inline void skb_drop_fraglist(struct sk_buff *skb)
 471{
 472        skb_drop_list(&skb_shinfo(skb)->frag_list);
 473}
 474
 475static void skb_clone_fraglist(struct sk_buff *skb)
 476{
 477        struct sk_buff *list;
 478
 479        skb_walk_frags(skb, list)
 480                skb_get(list);
 481}
 482
 483static void skb_free_head(struct sk_buff *skb)
 484{
 485        if (skb->head_frag)
 486                put_page(virt_to_head_page(skb->head));
 487        else
 488                kfree(skb->head);
 489}
 490
 491static void skb_release_data(struct sk_buff *skb)
 492{
 493        if (!skb->cloned ||
 494            !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 495                               &skb_shinfo(skb)->dataref)) {
 496                if (skb_shinfo(skb)->nr_frags) {
 497                        int i;
 498                        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 499                                skb_frag_unref(skb, i);
 500                }
 501
 502                /*
 503                 * If skb buf is from userspace, we need to notify the caller
 504                 * the lower device DMA has done;
 505                 */
 506                if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 507                        struct ubuf_info *uarg;
 508
 509                        uarg = skb_shinfo(skb)->destructor_arg;
 510                        if (uarg->callback)
 511                                uarg->callback(uarg, true);
 512                }
 513
 514                if (skb_has_frag_list(skb))
 515                        skb_drop_fraglist(skb);
 516
 517                skb_free_head(skb);
 518        }
 519}
 520
 521/*
 522 *      Free an skbuff by memory without cleaning the state.
 523 */
 524static void kfree_skbmem(struct sk_buff *skb)
 525{
 526        struct sk_buff *other;
 527        atomic_t *fclone_ref;
 528
 529        switch (skb->fclone) {
 530        case SKB_FCLONE_UNAVAILABLE:
 531                kmem_cache_free(skbuff_head_cache, skb);
 532                break;
 533
 534        case SKB_FCLONE_ORIG:
 535                fclone_ref = (atomic_t *) (skb + 2);
 536                if (atomic_dec_and_test(fclone_ref))
 537                        kmem_cache_free(skbuff_fclone_cache, skb);
 538                break;
 539
 540        case SKB_FCLONE_CLONE:
 541                fclone_ref = (atomic_t *) (skb + 1);
 542                other = skb - 1;
 543
 544                /* The clone portion is available for
 545                 * fast-cloning again.
 546                 */
 547                skb->fclone = SKB_FCLONE_UNAVAILABLE;
 548
 549                if (atomic_dec_and_test(fclone_ref))
 550                        kmem_cache_free(skbuff_fclone_cache, other);
 551                break;
 552        }
 553}
 554
 555static void skb_release_head_state(struct sk_buff *skb)
 556{
 557        skb_dst_drop(skb);
 558#ifdef CONFIG_XFRM
 559        secpath_put(skb->sp);
 560#endif
 561        if (skb->destructor) {
 562                WARN_ON(in_irq());
 563                skb->destructor(skb);
 564        }
 565#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 566        nf_conntrack_put(skb->nfct);
 567#endif
 568#ifdef CONFIG_BRIDGE_NETFILTER
 569        nf_bridge_put(skb->nf_bridge);
 570#endif
 571/* XXX: IS this still necessary? - JHS */
 572#ifdef CONFIG_NET_SCHED
 573        skb->tc_index = 0;
 574#ifdef CONFIG_NET_CLS_ACT
 575        skb->tc_verd = 0;
 576#endif
 577#endif
 578}
 579
 580/* Free everything but the sk_buff shell. */
 581static void skb_release_all(struct sk_buff *skb)
 582{
 583        skb_release_head_state(skb);
 584        if (likely(skb->head))
 585                skb_release_data(skb);
 586}
 587
 588/**
 589 *      __kfree_skb - private function
 590 *      @skb: buffer
 591 *
 592 *      Free an sk_buff. Release anything attached to the buffer.
 593 *      Clean the state. This is an internal helper function. Users should
 594 *      always call kfree_skb
 595 */
 596
 597void __kfree_skb(struct sk_buff *skb)
 598{
 599        skb_release_all(skb);
 600        kfree_skbmem(skb);
 601}
 602EXPORT_SYMBOL(__kfree_skb);
 603
 604/**
 605 *      kfree_skb - free an sk_buff
 606 *      @skb: buffer to free
 607 *
 608 *      Drop a reference to the buffer and free it if the usage count has
 609 *      hit zero.
 610 */
 611void kfree_skb(struct sk_buff *skb)
 612{
 613        if (unlikely(!skb))
 614                return;
 615        if (likely(atomic_read(&skb->users) == 1))
 616                smp_rmb();
 617        else if (likely(!atomic_dec_and_test(&skb->users)))
 618                return;
 619        trace_kfree_skb(skb, __builtin_return_address(0));
 620        __kfree_skb(skb);
 621}
 622EXPORT_SYMBOL(kfree_skb);
 623
 624void kfree_skb_list(struct sk_buff *segs)
 625{
 626        while (segs) {
 627                struct sk_buff *next = segs->next;
 628
 629                kfree_skb(segs);
 630                segs = next;
 631        }
 632}
 633EXPORT_SYMBOL(kfree_skb_list);
 634
 635/**
 636 *      skb_tx_error - report an sk_buff xmit error
 637 *      @skb: buffer that triggered an error
 638 *
 639 *      Report xmit error if a device callback is tracking this skb.
 640 *      skb must be freed afterwards.
 641 */
 642void skb_tx_error(struct sk_buff *skb)
 643{
 644        if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 645                struct ubuf_info *uarg;
 646
 647                uarg = skb_shinfo(skb)->destructor_arg;
 648                if (uarg->callback)
 649                        uarg->callback(uarg, false);
 650                skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 651        }
 652}
 653EXPORT_SYMBOL(skb_tx_error);
 654
 655/**
 656 *      consume_skb - free an skbuff
 657 *      @skb: buffer to free
 658 *
 659 *      Drop a ref to the buffer and free it if the usage count has hit zero
 660 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 661 *      is being dropped after a failure and notes that
 662 */
 663void consume_skb(struct sk_buff *skb)
 664{
 665        if (unlikely(!skb))
 666                return;
 667        if (likely(atomic_read(&skb->users) == 1))
 668                smp_rmb();
 669        else if (likely(!atomic_dec_and_test(&skb->users)))
 670                return;
 671        trace_consume_skb(skb);
 672        __kfree_skb(skb);
 673}
 674EXPORT_SYMBOL(consume_skb);
 675
 676static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 677{
 678        new->tstamp             = old->tstamp;
 679        new->dev                = old->dev;
 680        new->transport_header   = old->transport_header;
 681        new->network_header     = old->network_header;
 682        new->mac_header         = old->mac_header;
 683        new->inner_protocol     = old->inner_protocol;
 684        new->inner_transport_header = old->inner_transport_header;
 685        new->inner_network_header = old->inner_network_header;
 686        new->inner_mac_header = old->inner_mac_header;
 687        skb_dst_copy(new, old);
 688        skb_copy_hash(new, old);
 689        new->ooo_okay           = old->ooo_okay;
 690        new->no_fcs             = old->no_fcs;
 691        new->encapsulation      = old->encapsulation;
 692#ifdef CONFIG_XFRM
 693        new->sp                 = secpath_get(old->sp);
 694#endif
 695        memcpy(new->cb, old->cb, sizeof(old->cb));
 696        new->csum               = old->csum;
 697        new->local_df           = old->local_df;
 698        new->pkt_type           = old->pkt_type;
 699        new->ip_summed          = old->ip_summed;
 700        skb_copy_queue_mapping(new, old);
 701        new->priority           = old->priority;
 702#if IS_ENABLED(CONFIG_IP_VS)
 703        new->ipvs_property      = old->ipvs_property;
 704#endif
 705        new->pfmemalloc         = old->pfmemalloc;
 706        new->protocol           = old->protocol;
 707        new->mark               = old->mark;
 708        new->skb_iif            = old->skb_iif;
 709        __nf_copy(new, old);
 710#ifdef CONFIG_NET_SCHED
 711        new->tc_index           = old->tc_index;
 712#ifdef CONFIG_NET_CLS_ACT
 713        new->tc_verd            = old->tc_verd;
 714#endif
 715#endif
 716        new->vlan_proto         = old->vlan_proto;
 717        new->vlan_tci           = old->vlan_tci;
 718
 719        skb_copy_secmark(new, old);
 720
 721#ifdef CONFIG_NET_RX_BUSY_POLL
 722        new->napi_id    = old->napi_id;
 723#endif
 724}
 725
 726/*
 727 * You should not add any new code to this function.  Add it to
 728 * __copy_skb_header above instead.
 729 */
 730static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 731{
 732#define C(x) n->x = skb->x
 733
 734        n->next = n->prev = NULL;
 735        n->sk = NULL;
 736        __copy_skb_header(n, skb);
 737
 738        C(len);
 739        C(data_len);
 740        C(mac_len);
 741        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 742        n->cloned = 1;
 743        n->nohdr = 0;
 744        n->destructor = NULL;
 745        C(tail);
 746        C(end);
 747        C(head);
 748        C(head_frag);
 749        C(data);
 750        C(truesize);
 751        atomic_set(&n->users, 1);
 752
 753        atomic_inc(&(skb_shinfo(skb)->dataref));
 754        skb->cloned = 1;
 755
 756        return n;
 757#undef C
 758}
 759
 760/**
 761 *      skb_morph       -       morph one skb into another
 762 *      @dst: the skb to receive the contents
 763 *      @src: the skb to supply the contents
 764 *
 765 *      This is identical to skb_clone except that the target skb is
 766 *      supplied by the user.
 767 *
 768 *      The target skb is returned upon exit.
 769 */
 770struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 771{
 772        skb_release_all(dst);
 773        return __skb_clone(dst, src);
 774}
 775EXPORT_SYMBOL_GPL(skb_morph);
 776
 777/**
 778 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
 779 *      @skb: the skb to modify
 780 *      @gfp_mask: allocation priority
 781 *
 782 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
 783 *      It will copy all frags into kernel and drop the reference
 784 *      to userspace pages.
 785 *
 786 *      If this function is called from an interrupt gfp_mask() must be
 787 *      %GFP_ATOMIC.
 788 *
 789 *      Returns 0 on success or a negative error code on failure
 790 *      to allocate kernel memory to copy to.
 791 */
 792int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 793{
 794        int i;
 795        int num_frags = skb_shinfo(skb)->nr_frags;
 796        struct page *page, *head = NULL;
 797        struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 798
 799        for (i = 0; i < num_frags; i++) {
 800                u8 *vaddr;
 801                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 802
 803                page = alloc_page(gfp_mask);
 804                if (!page) {
 805                        while (head) {
 806                                struct page *next = (struct page *)page_private(head);
 807                                put_page(head);
 808                                head = next;
 809                        }
 810                        return -ENOMEM;
 811                }
 812                vaddr = kmap_atomic(skb_frag_page(f));
 813                memcpy(page_address(page),
 814                       vaddr + f->page_offset, skb_frag_size(f));
 815                kunmap_atomic(vaddr);
 816                set_page_private(page, (unsigned long)head);
 817                head = page;
 818        }
 819
 820        /* skb frags release userspace buffers */
 821        for (i = 0; i < num_frags; i++)
 822                skb_frag_unref(skb, i);
 823
 824        uarg->callback(uarg, false);
 825
 826        /* skb frags point to kernel buffers */
 827        for (i = num_frags - 1; i >= 0; i--) {
 828                __skb_fill_page_desc(skb, i, head, 0,
 829                                     skb_shinfo(skb)->frags[i].size);
 830                head = (struct page *)page_private(head);
 831        }
 832
 833        skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 834        return 0;
 835}
 836EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 837
 838/**
 839 *      skb_clone       -       duplicate an sk_buff
 840 *      @skb: buffer to clone
 841 *      @gfp_mask: allocation priority
 842 *
 843 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
 844 *      copies share the same packet data but not structure. The new
 845 *      buffer has a reference count of 1. If the allocation fails the
 846 *      function returns %NULL otherwise the new buffer is returned.
 847 *
 848 *      If this function is called from an interrupt gfp_mask() must be
 849 *      %GFP_ATOMIC.
 850 */
 851
 852struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
 853{
 854        struct sk_buff *n;
 855
 856        if (skb_orphan_frags(skb, gfp_mask))
 857                return NULL;
 858
 859        n = skb + 1;
 860        if (skb->fclone == SKB_FCLONE_ORIG &&
 861            n->fclone == SKB_FCLONE_UNAVAILABLE) {
 862                atomic_t *fclone_ref = (atomic_t *) (n + 1);
 863                n->fclone = SKB_FCLONE_CLONE;
 864                atomic_inc(fclone_ref);
 865        } else {
 866                if (skb_pfmemalloc(skb))
 867                        gfp_mask |= __GFP_MEMALLOC;
 868
 869                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
 870                if (!n)
 871                        return NULL;
 872
 873                kmemcheck_annotate_bitfield(n, flags1);
 874                kmemcheck_annotate_bitfield(n, flags2);
 875                n->fclone = SKB_FCLONE_UNAVAILABLE;
 876        }
 877
 878        return __skb_clone(n, skb);
 879}
 880EXPORT_SYMBOL(skb_clone);
 881
 882static void skb_headers_offset_update(struct sk_buff *skb, int off)
 883{
 884        /* Only adjust this if it actually is csum_start rather than csum */
 885        if (skb->ip_summed == CHECKSUM_PARTIAL)
 886                skb->csum_start += off;
 887        /* {transport,network,mac}_header and tail are relative to skb->head */
 888        skb->transport_header += off;
 889        skb->network_header   += off;
 890        if (skb_mac_header_was_set(skb))
 891                skb->mac_header += off;
 892        skb->inner_transport_header += off;
 893        skb->inner_network_header += off;
 894        skb->inner_mac_header += off;
 895}
 896
 897static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 898{
 899        __copy_skb_header(new, old);
 900
 901        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
 902        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
 903        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
 904}
 905
 906static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
 907{
 908        if (skb_pfmemalloc(skb))
 909                return SKB_ALLOC_RX;
 910        return 0;
 911}
 912
 913/**
 914 *      skb_copy        -       create private copy of an sk_buff
 915 *      @skb: buffer to copy
 916 *      @gfp_mask: allocation priority
 917 *
 918 *      Make a copy of both an &sk_buff and its data. This is used when the
 919 *      caller wishes to modify the data and needs a private copy of the
 920 *      data to alter. Returns %NULL on failure or the pointer to the buffer
 921 *      on success. The returned buffer has a reference count of 1.
 922 *
 923 *      As by-product this function converts non-linear &sk_buff to linear
 924 *      one, so that &sk_buff becomes completely private and caller is allowed
 925 *      to modify all the data of returned buffer. This means that this
 926 *      function is not recommended for use in circumstances when only
 927 *      header is going to be modified. Use pskb_copy() instead.
 928 */
 929
 930struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
 931{
 932        int headerlen = skb_headroom(skb);
 933        unsigned int size = skb_end_offset(skb) + skb->data_len;
 934        struct sk_buff *n = __alloc_skb(size, gfp_mask,
 935                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
 936
 937        if (!n)
 938                return NULL;
 939
 940        /* Set the data pointer */
 941        skb_reserve(n, headerlen);
 942        /* Set the tail pointer and length */
 943        skb_put(n, skb->len);
 944
 945        if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
 946                BUG();
 947
 948        copy_skb_header(n, skb);
 949        return n;
 950}
 951EXPORT_SYMBOL(skb_copy);
 952
 953/**
 954 *      __pskb_copy     -       create copy of an sk_buff with private head.
 955 *      @skb: buffer to copy
 956 *      @headroom: headroom of new skb
 957 *      @gfp_mask: allocation priority
 958 *
 959 *      Make a copy of both an &sk_buff and part of its data, located
 960 *      in header. Fragmented data remain shared. This is used when
 961 *      the caller wishes to modify only header of &sk_buff and needs
 962 *      private copy of the header to alter. Returns %NULL on failure
 963 *      or the pointer to the buffer on success.
 964 *      The returned buffer has a reference count of 1.
 965 */
 966
 967struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
 968{
 969        unsigned int size = skb_headlen(skb) + headroom;
 970        struct sk_buff *n = __alloc_skb(size, gfp_mask,
 971                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
 972
 973        if (!n)
 974                goto out;
 975
 976        /* Set the data pointer */
 977        skb_reserve(n, headroom);
 978        /* Set the tail pointer and length */
 979        skb_put(n, skb_headlen(skb));
 980        /* Copy the bytes */
 981        skb_copy_from_linear_data(skb, n->data, n->len);
 982
 983        n->truesize += skb->data_len;
 984        n->data_len  = skb->data_len;
 985        n->len       = skb->len;
 986
 987        if (skb_shinfo(skb)->nr_frags) {
 988                int i;
 989
 990                if (skb_orphan_frags(skb, gfp_mask)) {
 991                        kfree_skb(n);
 992                        n = NULL;
 993                        goto out;
 994                }
 995                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 996                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
 997                        skb_frag_ref(skb, i);
 998                }
 999                skb_shinfo(n)->nr_frags = i;
1000        }
1001
1002        if (skb_has_frag_list(skb)) {
1003                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1004                skb_clone_fraglist(n);
1005        }
1006
1007        copy_skb_header(n, skb);
1008out:
1009        return n;
1010}
1011EXPORT_SYMBOL(__pskb_copy);
1012
1013/**
1014 *      pskb_expand_head - reallocate header of &sk_buff
1015 *      @skb: buffer to reallocate
1016 *      @nhead: room to add at head
1017 *      @ntail: room to add at tail
1018 *      @gfp_mask: allocation priority
1019 *
1020 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1021 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1022 *      reference count of 1. Returns zero in the case of success or error,
1023 *      if expansion failed. In the last case, &sk_buff is not changed.
1024 *
1025 *      All the pointers pointing into skb header may change and must be
1026 *      reloaded after call to this function.
1027 */
1028
1029int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1030                     gfp_t gfp_mask)
1031{
1032        int i;
1033        u8 *data;
1034        int size = nhead + skb_end_offset(skb) + ntail;
1035        long off;
1036
1037        BUG_ON(nhead < 0);
1038
1039        if (skb_shared(skb))
1040                BUG();
1041
1042        size = SKB_DATA_ALIGN(size);
1043
1044        if (skb_pfmemalloc(skb))
1045                gfp_mask |= __GFP_MEMALLOC;
1046        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1047                               gfp_mask, NUMA_NO_NODE, NULL);
1048        if (!data)
1049                goto nodata;
1050        size = SKB_WITH_OVERHEAD(ksize(data));
1051
1052        /* Copy only real data... and, alas, header. This should be
1053         * optimized for the cases when header is void.
1054         */
1055        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1056
1057        memcpy((struct skb_shared_info *)(data + size),
1058               skb_shinfo(skb),
1059               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1060
1061        /*
1062         * if shinfo is shared we must drop the old head gracefully, but if it
1063         * is not we can just drop the old head and let the existing refcount
1064         * be since all we did is relocate the values
1065         */
1066        if (skb_cloned(skb)) {
1067                /* copy this zero copy skb frags */
1068                if (skb_orphan_frags(skb, gfp_mask))
1069                        goto nofrags;
1070                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1071                        skb_frag_ref(skb, i);
1072
1073                if (skb_has_frag_list(skb))
1074                        skb_clone_fraglist(skb);
1075
1076                skb_release_data(skb);
1077        } else {
1078                skb_free_head(skb);
1079        }
1080        off = (data + nhead) - skb->head;
1081
1082        skb->head     = data;
1083        skb->head_frag = 0;
1084        skb->data    += off;
1085#ifdef NET_SKBUFF_DATA_USES_OFFSET
1086        skb->end      = size;
1087        off           = nhead;
1088#else
1089        skb->end      = skb->head + size;
1090#endif
1091        skb->tail             += off;
1092        skb_headers_offset_update(skb, nhead);
1093        skb->cloned   = 0;
1094        skb->hdr_len  = 0;
1095        skb->nohdr    = 0;
1096        atomic_set(&skb_shinfo(skb)->dataref, 1);
1097        return 0;
1098
1099nofrags:
1100        kfree(data);
1101nodata:
1102        return -ENOMEM;
1103}
1104EXPORT_SYMBOL(pskb_expand_head);
1105
1106/* Make private copy of skb with writable head and some headroom */
1107
1108struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1109{
1110        struct sk_buff *skb2;
1111        int delta = headroom - skb_headroom(skb);
1112
1113        if (delta <= 0)
1114                skb2 = pskb_copy(skb, GFP_ATOMIC);
1115        else {
1116                skb2 = skb_clone(skb, GFP_ATOMIC);
1117                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1118                                             GFP_ATOMIC)) {
1119                        kfree_skb(skb2);
1120                        skb2 = NULL;
1121                }
1122        }
1123        return skb2;
1124}
1125EXPORT_SYMBOL(skb_realloc_headroom);
1126
1127/**
1128 *      skb_copy_expand -       copy and expand sk_buff
1129 *      @skb: buffer to copy
1130 *      @newheadroom: new free bytes at head
1131 *      @newtailroom: new free bytes at tail
1132 *      @gfp_mask: allocation priority
1133 *
1134 *      Make a copy of both an &sk_buff and its data and while doing so
1135 *      allocate additional space.
1136 *
1137 *      This is used when the caller wishes to modify the data and needs a
1138 *      private copy of the data to alter as well as more space for new fields.
1139 *      Returns %NULL on failure or the pointer to the buffer
1140 *      on success. The returned buffer has a reference count of 1.
1141 *
1142 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1143 *      is called from an interrupt.
1144 */
1145struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1146                                int newheadroom, int newtailroom,
1147                                gfp_t gfp_mask)
1148{
1149        /*
1150         *      Allocate the copy buffer
1151         */
1152        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1153                                        gfp_mask, skb_alloc_rx_flag(skb),
1154                                        NUMA_NO_NODE);
1155        int oldheadroom = skb_headroom(skb);
1156        int head_copy_len, head_copy_off;
1157
1158        if (!n)
1159                return NULL;
1160
1161        skb_reserve(n, newheadroom);
1162
1163        /* Set the tail pointer and length */
1164        skb_put(n, skb->len);
1165
1166        head_copy_len = oldheadroom;
1167        head_copy_off = 0;
1168        if (newheadroom <= head_copy_len)
1169                head_copy_len = newheadroom;
1170        else
1171                head_copy_off = newheadroom - head_copy_len;
1172
1173        /* Copy the linear header and data. */
1174        if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1175                          skb->len + head_copy_len))
1176                BUG();
1177
1178        copy_skb_header(n, skb);
1179
1180        skb_headers_offset_update(n, newheadroom - oldheadroom);
1181
1182        return n;
1183}
1184EXPORT_SYMBOL(skb_copy_expand);
1185
1186/**
1187 *      skb_pad                 -       zero pad the tail of an skb
1188 *      @skb: buffer to pad
1189 *      @pad: space to pad
1190 *
1191 *      Ensure that a buffer is followed by a padding area that is zero
1192 *      filled. Used by network drivers which may DMA or transfer data
1193 *      beyond the buffer end onto the wire.
1194 *
1195 *      May return error in out of memory cases. The skb is freed on error.
1196 */
1197
1198int skb_pad(struct sk_buff *skb, int pad)
1199{
1200        int err;
1201        int ntail;
1202
1203        /* If the skbuff is non linear tailroom is always zero.. */
1204        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1205                memset(skb->data+skb->len, 0, pad);
1206                return 0;
1207        }
1208
1209        ntail = skb->data_len + pad - (skb->end - skb->tail);
1210        if (likely(skb_cloned(skb) || ntail > 0)) {
1211                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1212                if (unlikely(err))
1213                        goto free_skb;
1214        }
1215
1216        /* FIXME: The use of this function with non-linear skb's really needs
1217         * to be audited.
1218         */
1219        err = skb_linearize(skb);
1220        if (unlikely(err))
1221                goto free_skb;
1222
1223        memset(skb->data + skb->len, 0, pad);
1224        return 0;
1225
1226free_skb:
1227        kfree_skb(skb);
1228        return err;
1229}
1230EXPORT_SYMBOL(skb_pad);
1231
1232/**
1233 *      pskb_put - add data to the tail of a potentially fragmented buffer
1234 *      @skb: start of the buffer to use
1235 *      @tail: tail fragment of the buffer to use
1236 *      @len: amount of data to add
1237 *
1238 *      This function extends the used data area of the potentially
1239 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1240 *      @skb itself. If this would exceed the total buffer size the kernel
1241 *      will panic. A pointer to the first byte of the extra data is
1242 *      returned.
1243 */
1244
1245unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1246{
1247        if (tail != skb) {
1248                skb->data_len += len;
1249                skb->len += len;
1250        }
1251        return skb_put(tail, len);
1252}
1253EXPORT_SYMBOL_GPL(pskb_put);
1254
1255/**
1256 *      skb_put - add data to a buffer
1257 *      @skb: buffer to use
1258 *      @len: amount of data to add
1259 *
1260 *      This function extends the used data area of the buffer. If this would
1261 *      exceed the total buffer size the kernel will panic. A pointer to the
1262 *      first byte of the extra data is returned.
1263 */
1264unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1265{
1266        unsigned char *tmp = skb_tail_pointer(skb);
1267        SKB_LINEAR_ASSERT(skb);
1268        skb->tail += len;
1269        skb->len  += len;
1270        if (unlikely(skb->tail > skb->end))
1271                skb_over_panic(skb, len, __builtin_return_address(0));
1272        return tmp;
1273}
1274EXPORT_SYMBOL(skb_put);
1275
1276/**
1277 *      skb_push - add data to the start of a buffer
1278 *      @skb: buffer to use
1279 *      @len: amount of data to add
1280 *
1281 *      This function extends the used data area of the buffer at the buffer
1282 *      start. If this would exceed the total buffer headroom the kernel will
1283 *      panic. A pointer to the first byte of the extra data is returned.
1284 */
1285unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1286{
1287        skb->data -= len;
1288        skb->len  += len;
1289        if (unlikely(skb->data<skb->head))
1290                skb_under_panic(skb, len, __builtin_return_address(0));
1291        return skb->data;
1292}
1293EXPORT_SYMBOL(skb_push);
1294
1295/**
1296 *      skb_pull - remove data from the start of a buffer
1297 *      @skb: buffer to use
1298 *      @len: amount of data to remove
1299 *
1300 *      This function removes data from the start of a buffer, returning
1301 *      the memory to the headroom. A pointer to the next data in the buffer
1302 *      is returned. Once the data has been pulled future pushes will overwrite
1303 *      the old data.
1304 */
1305unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1306{
1307        return skb_pull_inline(skb, len);
1308}
1309EXPORT_SYMBOL(skb_pull);
1310
1311/**
1312 *      skb_trim - remove end from a buffer
1313 *      @skb: buffer to alter
1314 *      @len: new length
1315 *
1316 *      Cut the length of a buffer down by removing data from the tail. If
1317 *      the buffer is already under the length specified it is not modified.
1318 *      The skb must be linear.
1319 */
1320void skb_trim(struct sk_buff *skb, unsigned int len)
1321{
1322        if (skb->len > len)
1323                __skb_trim(skb, len);
1324}
1325EXPORT_SYMBOL(skb_trim);
1326
1327/* Trims skb to length len. It can change skb pointers.
1328 */
1329
1330int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1331{
1332        struct sk_buff **fragp;
1333        struct sk_buff *frag;
1334        int offset = skb_headlen(skb);
1335        int nfrags = skb_shinfo(skb)->nr_frags;
1336        int i;
1337        int err;
1338
1339        if (skb_cloned(skb) &&
1340            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1341                return err;
1342
1343        i = 0;
1344        if (offset >= len)
1345                goto drop_pages;
1346
1347        for (; i < nfrags; i++) {
1348                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1349
1350                if (end < len) {
1351                        offset = end;
1352                        continue;
1353                }
1354
1355                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1356
1357drop_pages:
1358                skb_shinfo(skb)->nr_frags = i;
1359
1360                for (; i < nfrags; i++)
1361                        skb_frag_unref(skb, i);
1362
1363                if (skb_has_frag_list(skb))
1364                        skb_drop_fraglist(skb);
1365                goto done;
1366        }
1367
1368        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1369             fragp = &frag->next) {
1370                int end = offset + frag->len;
1371
1372                if (skb_shared(frag)) {
1373                        struct sk_buff *nfrag;
1374
1375                        nfrag = skb_clone(frag, GFP_ATOMIC);
1376                        if (unlikely(!nfrag))
1377                                return -ENOMEM;
1378
1379                        nfrag->next = frag->next;
1380                        consume_skb(frag);
1381                        frag = nfrag;
1382                        *fragp = frag;
1383                }
1384
1385                if (end < len) {
1386                        offset = end;
1387                        continue;
1388                }
1389
1390                if (end > len &&
1391                    unlikely((err = pskb_trim(frag, len - offset))))
1392                        return err;
1393
1394                if (frag->next)
1395                        skb_drop_list(&frag->next);
1396                break;
1397        }
1398
1399done:
1400        if (len > skb_headlen(skb)) {
1401                skb->data_len -= skb->len - len;
1402                skb->len       = len;
1403        } else {
1404                skb->len       = len;
1405                skb->data_len  = 0;
1406                skb_set_tail_pointer(skb, len);
1407        }
1408
1409        return 0;
1410}
1411EXPORT_SYMBOL(___pskb_trim);
1412
1413/**
1414 *      __pskb_pull_tail - advance tail of skb header
1415 *      @skb: buffer to reallocate
1416 *      @delta: number of bytes to advance tail
1417 *
1418 *      The function makes a sense only on a fragmented &sk_buff,
1419 *      it expands header moving its tail forward and copying necessary
1420 *      data from fragmented part.
1421 *
1422 *      &sk_buff MUST have reference count of 1.
1423 *
1424 *      Returns %NULL (and &sk_buff does not change) if pull failed
1425 *      or value of new tail of skb in the case of success.
1426 *
1427 *      All the pointers pointing into skb header may change and must be
1428 *      reloaded after call to this function.
1429 */
1430
1431/* Moves tail of skb head forward, copying data from fragmented part,
1432 * when it is necessary.
1433 * 1. It may fail due to malloc failure.
1434 * 2. It may change skb pointers.
1435 *
1436 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1437 */
1438unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1439{
1440        /* If skb has not enough free space at tail, get new one
1441         * plus 128 bytes for future expansions. If we have enough
1442         * room at tail, reallocate without expansion only if skb is cloned.
1443         */
1444        int i, k, eat = (skb->tail + delta) - skb->end;
1445
1446        if (eat > 0 || skb_cloned(skb)) {
1447                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1448                                     GFP_ATOMIC))
1449                        return NULL;
1450        }
1451
1452        if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1453                BUG();
1454
1455        /* Optimization: no fragments, no reasons to preestimate
1456         * size of pulled pages. Superb.
1457         */
1458        if (!skb_has_frag_list(skb))
1459                goto pull_pages;
1460
1461        /* Estimate size of pulled pages. */
1462        eat = delta;
1463        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1464                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1465
1466                if (size >= eat)
1467                        goto pull_pages;
1468                eat -= size;
1469        }
1470
1471        /* If we need update frag list, we are in troubles.
1472         * Certainly, it possible to add an offset to skb data,
1473         * but taking into account that pulling is expected to
1474         * be very rare operation, it is worth to fight against
1475         * further bloating skb head and crucify ourselves here instead.
1476         * Pure masohism, indeed. 8)8)
1477         */
1478        if (eat) {
1479                struct sk_buff *list = skb_shinfo(skb)->frag_list;
1480                struct sk_buff *clone = NULL;
1481                struct sk_buff *insp = NULL;
1482
1483                do {
1484                        BUG_ON(!list);
1485
1486                        if (list->len <= eat) {
1487                                /* Eaten as whole. */
1488                                eat -= list->len;
1489                                list = list->next;
1490                                insp = list;
1491                        } else {
1492                                /* Eaten partially. */
1493
1494                                if (skb_shared(list)) {
1495                                        /* Sucks! We need to fork list. :-( */
1496                                        clone = skb_clone(list, GFP_ATOMIC);
1497                                        if (!clone)
1498                                                return NULL;
1499                                        insp = list->next;
1500                                        list = clone;
1501                                } else {
1502                                        /* This may be pulled without
1503                                         * problems. */
1504                                        insp = list;
1505                                }
1506                                if (!pskb_pull(list, eat)) {
1507                                        kfree_skb(clone);
1508                                        return NULL;
1509                                }
1510                                break;
1511                        }
1512                } while (eat);
1513
1514                /* Free pulled out fragments. */
1515                while ((list = skb_shinfo(skb)->frag_list) != insp) {
1516                        skb_shinfo(skb)->frag_list = list->next;
1517                        kfree_skb(list);
1518                }
1519                /* And insert new clone at head. */
1520                if (clone) {
1521                        clone->next = list;
1522                        skb_shinfo(skb)->frag_list = clone;
1523                }
1524        }
1525        /* Success! Now we may commit changes to skb data. */
1526
1527pull_pages:
1528        eat = delta;
1529        k = 0;
1530        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1531                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1532
1533                if (size <= eat) {
1534                        skb_frag_unref(skb, i);
1535                        eat -= size;
1536                } else {
1537                        skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1538                        if (eat) {
1539                                skb_shinfo(skb)->frags[k].page_offset += eat;
1540                                skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1541                                eat = 0;
1542                        }
1543                        k++;
1544                }
1545        }
1546        skb_shinfo(skb)->nr_frags = k;
1547
1548        skb->tail     += delta;
1549        skb->data_len -= delta;
1550
1551        return skb_tail_pointer(skb);
1552}
1553EXPORT_SYMBOL(__pskb_pull_tail);
1554
1555/**
1556 *      skb_copy_bits - copy bits from skb to kernel buffer
1557 *      @skb: source skb
1558 *      @offset: offset in source
1559 *      @to: destination buffer
1560 *      @len: number of bytes to copy
1561 *
1562 *      Copy the specified number of bytes from the source skb to the
1563 *      destination buffer.
1564 *
1565 *      CAUTION ! :
1566 *              If its prototype is ever changed,
1567 *              check arch/{*}/net/{*}.S files,
1568 *              since it is called from BPF assembly code.
1569 */
1570int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1571{
1572        int start = skb_headlen(skb);
1573        struct sk_buff *frag_iter;
1574        int i, copy;
1575
1576        if (offset > (int)skb->len - len)
1577                goto fault;
1578
1579        /* Copy header. */
1580        if ((copy = start - offset) > 0) {
1581                if (copy > len)
1582                        copy = len;
1583                skb_copy_from_linear_data_offset(skb, offset, to, copy);
1584                if ((len -= copy) == 0)
1585                        return 0;
1586                offset += copy;
1587                to     += copy;
1588        }
1589
1590        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1591                int end;
1592                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1593
1594                WARN_ON(start > offset + len);
1595
1596                end = start + skb_frag_size(f);
1597                if ((copy = end - offset) > 0) {
1598                        u8 *vaddr;
1599
1600                        if (copy > len)
1601                                copy = len;
1602
1603                        vaddr = kmap_atomic(skb_frag_page(f));
1604                        memcpy(to,
1605                               vaddr + f->page_offset + offset - start,
1606                               copy);
1607                        kunmap_atomic(vaddr);
1608
1609                        if ((len -= copy) == 0)
1610                                return 0;
1611                        offset += copy;
1612                        to     += copy;
1613                }
1614                start = end;
1615        }
1616
1617        skb_walk_frags(skb, frag_iter) {
1618                int end;
1619
1620                WARN_ON(start > offset + len);
1621
1622                end = start + frag_iter->len;
1623                if ((copy = end - offset) > 0) {
1624                        if (copy > len)
1625                                copy = len;
1626                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
1627                                goto fault;
1628                        if ((len -= copy) == 0)
1629                                return 0;
1630                        offset += copy;
1631                        to     += copy;
1632                }
1633                start = end;
1634        }
1635
1636        if (!len)
1637                return 0;
1638
1639fault:
1640        return -EFAULT;
1641}
1642EXPORT_SYMBOL(skb_copy_bits);
1643
1644/*
1645 * Callback from splice_to_pipe(), if we need to release some pages
1646 * at the end of the spd in case we error'ed out in filling the pipe.
1647 */
1648static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1649{
1650        put_page(spd->pages[i]);
1651}
1652
1653static struct page *linear_to_page(struct page *page, unsigned int *len,
1654                                   unsigned int *offset,
1655                                   struct sock *sk)
1656{
1657        struct page_frag *pfrag = sk_page_frag(sk);
1658
1659        if (!sk_page_frag_refill(sk, pfrag))
1660                return NULL;
1661
1662        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1663
1664        memcpy(page_address(pfrag->page) + pfrag->offset,
1665               page_address(page) + *offset, *len);
1666        *offset = pfrag->offset;
1667        pfrag->offset += *len;
1668
1669        return pfrag->page;
1670}
1671
1672static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1673                             struct page *page,
1674                             unsigned int offset)
1675{
1676        return  spd->nr_pages &&
1677                spd->pages[spd->nr_pages - 1] == page &&
1678                (spd->partial[spd->nr_pages - 1].offset +
1679                 spd->partial[spd->nr_pages - 1].len == offset);
1680}
1681
1682/*
1683 * Fill page/offset/length into spd, if it can hold more pages.
1684 */
1685static bool spd_fill_page(struct splice_pipe_desc *spd,
1686                          struct pipe_inode_info *pipe, struct page *page,
1687                          unsigned int *len, unsigned int offset,
1688                          bool linear,
1689                          struct sock *sk)
1690{
1691        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1692                return true;
1693
1694        if (linear) {
1695                page = linear_to_page(page, len, &offset, sk);
1696                if (!page)
1697                        return true;
1698        }
1699        if (spd_can_coalesce(spd, page, offset)) {
1700                spd->partial[spd->nr_pages - 1].len += *len;
1701                return false;
1702        }
1703        get_page(page);
1704        spd->pages[spd->nr_pages] = page;
1705        spd->partial[spd->nr_pages].len = *len;
1706        spd->partial[spd->nr_pages].offset = offset;
1707        spd->nr_pages++;
1708
1709        return false;
1710}
1711
1712static bool __splice_segment(struct page *page, unsigned int poff,
1713                             unsigned int plen, unsigned int *off,
1714                             unsigned int *len,
1715                             struct splice_pipe_desc *spd, bool linear,
1716                             struct sock *sk,
1717                             struct pipe_inode_info *pipe)
1718{
1719        if (!*len)
1720                return true;
1721
1722        /* skip this segment if already processed */
1723        if (*off >= plen) {
1724                *off -= plen;
1725                return false;
1726        }
1727
1728        /* ignore any bits we already processed */
1729        poff += *off;
1730        plen -= *off;
1731        *off = 0;
1732
1733        do {
1734                unsigned int flen = min(*len, plen);
1735
1736                if (spd_fill_page(spd, pipe, page, &flen, poff,
1737                                  linear, sk))
1738                        return true;
1739                poff += flen;
1740                plen -= flen;
1741                *len -= flen;
1742        } while (*len && plen);
1743
1744        return false;
1745}
1746
1747/*
1748 * Map linear and fragment data from the skb to spd. It reports true if the
1749 * pipe is full or if we already spliced the requested length.
1750 */
1751static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1752                              unsigned int *offset, unsigned int *len,
1753                              struct splice_pipe_desc *spd, struct sock *sk)
1754{
1755        int seg;
1756
1757        /* map the linear part :
1758         * If skb->head_frag is set, this 'linear' part is backed by a
1759         * fragment, and if the head is not shared with any clones then
1760         * we can avoid a copy since we own the head portion of this page.
1761         */
1762        if (__splice_segment(virt_to_page(skb->data),
1763                             (unsigned long) skb->data & (PAGE_SIZE - 1),
1764                             skb_headlen(skb),
1765                             offset, len, spd,
1766                             skb_head_is_locked(skb),
1767                             sk, pipe))
1768                return true;
1769
1770        /*
1771         * then map the fragments
1772         */
1773        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1774                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1775
1776                if (__splice_segment(skb_frag_page(f),
1777                                     f->page_offset, skb_frag_size(f),
1778                                     offset, len, spd, false, sk, pipe))
1779                        return true;
1780        }
1781
1782        return false;
1783}
1784
1785/*
1786 * Map data from the skb to a pipe. Should handle both the linear part,
1787 * the fragments, and the frag list. It does NOT handle frag lists within
1788 * the frag list, if such a thing exists. We'd probably need to recurse to
1789 * handle that cleanly.
1790 */
1791int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1792                    struct pipe_inode_info *pipe, unsigned int tlen,
1793                    unsigned int flags)
1794{
1795        struct partial_page partial[MAX_SKB_FRAGS];
1796        struct page *pages[MAX_SKB_FRAGS];
1797        struct splice_pipe_desc spd = {
1798                .pages = pages,
1799                .partial = partial,
1800                .nr_pages_max = MAX_SKB_FRAGS,
1801                .flags = flags,
1802                .ops = &nosteal_pipe_buf_ops,
1803                .spd_release = sock_spd_release,
1804        };
1805        struct sk_buff *frag_iter;
1806        struct sock *sk = skb->sk;
1807        int ret = 0;
1808
1809        /*
1810         * __skb_splice_bits() only fails if the output has no room left,
1811         * so no point in going over the frag_list for the error case.
1812         */
1813        if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1814                goto done;
1815        else if (!tlen)
1816                goto done;
1817
1818        /*
1819         * now see if we have a frag_list to map
1820         */
1821        skb_walk_frags(skb, frag_iter) {
1822                if (!tlen)
1823                        break;
1824                if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1825                        break;
1826        }
1827
1828done:
1829        if (spd.nr_pages) {
1830                /*
1831                 * Drop the socket lock, otherwise we have reverse
1832                 * locking dependencies between sk_lock and i_mutex
1833                 * here as compared to sendfile(). We enter here
1834                 * with the socket lock held, and splice_to_pipe() will
1835                 * grab the pipe inode lock. For sendfile() emulation,
1836                 * we call into ->sendpage() with the i_mutex lock held
1837                 * and networking will grab the socket lock.
1838                 */
1839                release_sock(sk);
1840                ret = splice_to_pipe(pipe, &spd);
1841                lock_sock(sk);
1842        }
1843
1844        return ret;
1845}
1846
1847/**
1848 *      skb_store_bits - store bits from kernel buffer to skb
1849 *      @skb: destination buffer
1850 *      @offset: offset in destination
1851 *      @from: source buffer
1852 *      @len: number of bytes to copy
1853 *
1854 *      Copy the specified number of bytes from the source buffer to the
1855 *      destination skb.  This function handles all the messy bits of
1856 *      traversing fragment lists and such.
1857 */
1858
1859int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1860{
1861        int start = skb_headlen(skb);
1862        struct sk_buff *frag_iter;
1863        int i, copy;
1864
1865        if (offset > (int)skb->len - len)
1866                goto fault;
1867
1868        if ((copy = start - offset) > 0) {
1869                if (copy > len)
1870                        copy = len;
1871                skb_copy_to_linear_data_offset(skb, offset, from, copy);
1872                if ((len -= copy) == 0)
1873                        return 0;
1874                offset += copy;
1875                from += copy;
1876        }
1877
1878        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1879                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1880                int end;
1881
1882                WARN_ON(start > offset + len);
1883
1884                end = start + skb_frag_size(frag);
1885                if ((copy = end - offset) > 0) {
1886                        u8 *vaddr;
1887
1888                        if (copy > len)
1889                                copy = len;
1890
1891                        vaddr = kmap_atomic(skb_frag_page(frag));
1892                        memcpy(vaddr + frag->page_offset + offset - start,
1893                               from, copy);
1894                        kunmap_atomic(vaddr);
1895
1896                        if ((len -= copy) == 0)
1897                                return 0;
1898                        offset += copy;
1899                        from += copy;
1900                }
1901                start = end;
1902        }
1903
1904        skb_walk_frags(skb, frag_iter) {
1905                int end;
1906
1907                WARN_ON(start > offset + len);
1908
1909                end = start + frag_iter->len;
1910                if ((copy = end - offset) > 0) {
1911                        if (copy > len)
1912                                copy = len;
1913                        if (skb_store_bits(frag_iter, offset - start,
1914                                           from, copy))
1915                                goto fault;
1916                        if ((len -= copy) == 0)
1917                                return 0;
1918                        offset += copy;
1919                        from += copy;
1920                }
1921                start = end;
1922        }
1923        if (!len)
1924                return 0;
1925
1926fault:
1927        return -EFAULT;
1928}
1929EXPORT_SYMBOL(skb_store_bits);
1930
1931/* Checksum skb data. */
1932__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1933                      __wsum csum, const struct skb_checksum_ops *ops)
1934{
1935        int start = skb_headlen(skb);
1936        int i, copy = start - offset;
1937        struct sk_buff *frag_iter;
1938        int pos = 0;
1939
1940        /* Checksum header. */
1941        if (copy > 0) {
1942                if (copy > len)
1943                        copy = len;
1944                csum = ops->update(skb->data + offset, copy, csum);
1945                if ((len -= copy) == 0)
1946                        return csum;
1947                offset += copy;
1948                pos     = copy;
1949        }
1950
1951        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1952                int end;
1953                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1954
1955                WARN_ON(start > offset + len);
1956
1957                end = start + skb_frag_size(frag);
1958                if ((copy = end - offset) > 0) {
1959                        __wsum csum2;
1960                        u8 *vaddr;
1961
1962                        if (copy > len)
1963                                copy = len;
1964                        vaddr = kmap_atomic(skb_frag_page(frag));
1965                        csum2 = ops->update(vaddr + frag->page_offset +
1966                                            offset - start, copy, 0);
1967                        kunmap_atomic(vaddr);
1968                        csum = ops->combine(csum, csum2, pos, copy);
1969                        if (!(len -= copy))
1970                                return csum;
1971                        offset += copy;
1972                        pos    += copy;
1973                }
1974                start = end;
1975        }
1976
1977        skb_walk_frags(skb, frag_iter) {
1978                int end;
1979
1980                WARN_ON(start > offset + len);
1981
1982                end = start + frag_iter->len;
1983                if ((copy = end - offset) > 0) {
1984                        __wsum csum2;
1985                        if (copy > len)
1986                                copy = len;
1987                        csum2 = __skb_checksum(frag_iter, offset - start,
1988                                               copy, 0, ops);
1989                        csum = ops->combine(csum, csum2, pos, copy);
1990                        if ((len -= copy) == 0)
1991                                return csum;
1992                        offset += copy;
1993                        pos    += copy;
1994                }
1995                start = end;
1996        }
1997        BUG_ON(len);
1998
1999        return csum;
2000}
2001EXPORT_SYMBOL(__skb_checksum);
2002
2003__wsum skb_checksum(const struct sk_buff *skb, int offset,
2004                    int len, __wsum csum)
2005{
2006        const struct skb_checksum_ops ops = {
2007                .update  = csum_partial_ext,
2008                .combine = csum_block_add_ext,
2009        };
2010
2011        return __skb_checksum(skb, offset, len, csum, &ops);
2012}
2013EXPORT_SYMBOL(skb_checksum);
2014
2015/* Both of above in one bottle. */
2016
2017__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2018                                    u8 *to, int len, __wsum csum)
2019{
2020        int start = skb_headlen(skb);
2021        int i, copy = start - offset;
2022        struct sk_buff *frag_iter;
2023        int pos = 0;
2024
2025        /* Copy header. */
2026        if (copy > 0) {
2027                if (copy > len)
2028                        copy = len;
2029                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2030                                                 copy, csum);
2031                if ((len -= copy) == 0)
2032                        return csum;
2033                offset += copy;
2034                to     += copy;
2035                pos     = copy;
2036        }
2037
2038        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2039                int end;
2040
2041                WARN_ON(start > offset + len);
2042
2043                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2044                if ((copy = end - offset) > 0) {
2045                        __wsum csum2;
2046                        u8 *vaddr;
2047                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048
2049                        if (copy > len)
2050                                copy = len;
2051                        vaddr = kmap_atomic(skb_frag_page(frag));
2052                        csum2 = csum_partial_copy_nocheck(vaddr +
2053                                                          frag->page_offset +
2054                                                          offset - start, to,
2055                                                          copy, 0);
2056                        kunmap_atomic(vaddr);
2057                        csum = csum_block_add(csum, csum2, pos);
2058                        if (!(len -= copy))
2059                                return csum;
2060                        offset += copy;
2061                        to     += copy;
2062                        pos    += copy;
2063                }
2064                start = end;
2065        }
2066
2067        skb_walk_frags(skb, frag_iter) {
2068                __wsum csum2;
2069                int end;
2070
2071                WARN_ON(start > offset + len);
2072
2073                end = start + frag_iter->len;
2074                if ((copy = end - offset) > 0) {
2075                        if (copy > len)
2076                                copy = len;
2077                        csum2 = skb_copy_and_csum_bits(frag_iter,
2078                                                       offset - start,
2079                                                       to, copy, 0);
2080                        csum = csum_block_add(csum, csum2, pos);
2081                        if ((len -= copy) == 0)
2082                                return csum;
2083                        offset += copy;
2084                        to     += copy;
2085                        pos    += copy;
2086                }
2087                start = end;
2088        }
2089        BUG_ON(len);
2090        return csum;
2091}
2092EXPORT_SYMBOL(skb_copy_and_csum_bits);
2093
2094 /**
2095 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2096 *      @from: source buffer
2097 *
2098 *      Calculates the amount of linear headroom needed in the 'to' skb passed
2099 *      into skb_zerocopy().
2100 */
2101unsigned int
2102skb_zerocopy_headlen(const struct sk_buff *from)
2103{
2104        unsigned int hlen = 0;
2105
2106        if (!from->head_frag ||
2107            skb_headlen(from) < L1_CACHE_BYTES ||
2108            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2109                hlen = skb_headlen(from);
2110
2111        if (skb_has_frag_list(from))
2112                hlen = from->len;
2113
2114        return hlen;
2115}
2116EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2117
2118/**
2119 *      skb_zerocopy - Zero copy skb to skb
2120 *      @to: destination buffer
2121 *      @from: source buffer
2122 *      @len: number of bytes to copy from source buffer
2123 *      @hlen: size of linear headroom in destination buffer
2124 *
2125 *      Copies up to `len` bytes from `from` to `to` by creating references
2126 *      to the frags in the source buffer.
2127 *
2128 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2129 *      headroom in the `to` buffer.
2130 *
2131 *      Return value:
2132 *      0: everything is OK
2133 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2134 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2135 */
2136int
2137skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2138{
2139        int i, j = 0;
2140        int plen = 0; /* length of skb->head fragment */
2141        int ret;
2142        struct page *page;
2143        unsigned int offset;
2144
2145        BUG_ON(!from->head_frag && !hlen);
2146
2147        /* dont bother with small payloads */
2148        if (len <= skb_tailroom(to))
2149                return skb_copy_bits(from, 0, skb_put(to, len), len);
2150
2151        if (hlen) {
2152                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2153                if (unlikely(ret))
2154                        return ret;
2155                len -= hlen;
2156        } else {
2157                plen = min_t(int, skb_headlen(from), len);
2158                if (plen) {
2159                        page = virt_to_head_page(from->head);
2160                        offset = from->data - (unsigned char *)page_address(page);
2161                        __skb_fill_page_desc(to, 0, page, offset, plen);
2162                        get_page(page);
2163                        j = 1;
2164                        len -= plen;
2165                }
2166        }
2167
2168        to->truesize += len + plen;
2169        to->len += len + plen;
2170        to->data_len += len + plen;
2171
2172        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2173                skb_tx_error(from);
2174                return -ENOMEM;
2175        }
2176
2177        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2178                if (!len)
2179                        break;
2180                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2181                skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2182                len -= skb_shinfo(to)->frags[j].size;
2183                skb_frag_ref(to, j);
2184                j++;
2185        }
2186        skb_shinfo(to)->nr_frags = j;
2187
2188        return 0;
2189}
2190EXPORT_SYMBOL_GPL(skb_zerocopy);
2191
2192void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2193{
2194        __wsum csum;
2195        long csstart;
2196
2197        if (skb->ip_summed == CHECKSUM_PARTIAL)
2198                csstart = skb_checksum_start_offset(skb);
2199        else
2200                csstart = skb_headlen(skb);
2201
2202        BUG_ON(csstart > skb_headlen(skb));
2203
2204        skb_copy_from_linear_data(skb, to, csstart);
2205
2206        csum = 0;
2207        if (csstart != skb->len)
2208                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2209                                              skb->len - csstart, 0);
2210
2211        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2212                long csstuff = csstart + skb->csum_offset;
2213
2214                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2215        }
2216}
2217EXPORT_SYMBOL(skb_copy_and_csum_dev);
2218
2219/**
2220 *      skb_dequeue - remove from the head of the queue
2221 *      @list: list to dequeue from
2222 *
2223 *      Remove the head of the list. The list lock is taken so the function
2224 *      may be used safely with other locking list functions. The head item is
2225 *      returned or %NULL if the list is empty.
2226 */
2227
2228struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2229{
2230        unsigned long flags;
2231        struct sk_buff *result;
2232
2233        spin_lock_irqsave(&list->lock, flags);
2234        result = __skb_dequeue(list);
2235        spin_unlock_irqrestore(&list->lock, flags);
2236        return result;
2237}
2238EXPORT_SYMBOL(skb_dequeue);
2239
2240/**
2241 *      skb_dequeue_tail - remove from the tail of the queue
2242 *      @list: list to dequeue from
2243 *
2244 *      Remove the tail of the list. The list lock is taken so the function
2245 *      may be used safely with other locking list functions. The tail item is
2246 *      returned or %NULL if the list is empty.
2247 */
2248struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2249{
2250        unsigned long flags;
2251        struct sk_buff *result;
2252
2253        spin_lock_irqsave(&list->lock, flags);
2254        result = __skb_dequeue_tail(list);
2255        spin_unlock_irqrestore(&list->lock, flags);
2256        return result;
2257}
2258EXPORT_SYMBOL(skb_dequeue_tail);
2259
2260/**
2261 *      skb_queue_purge - empty a list
2262 *      @list: list to empty
2263 *
2264 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2265 *      the list and one reference dropped. This function takes the list
2266 *      lock and is atomic with respect to other list locking functions.
2267 */
2268void skb_queue_purge(struct sk_buff_head *list)
2269{
2270        struct sk_buff *skb;
2271        while ((skb = skb_dequeue(list)) != NULL)
2272                kfree_skb(skb);
2273}
2274EXPORT_SYMBOL(skb_queue_purge);
2275
2276/**
2277 *      skb_queue_head - queue a buffer at the list head
2278 *      @list: list to use
2279 *      @newsk: buffer to queue
2280 *
2281 *      Queue a buffer at the start of the list. This function takes the
2282 *      list lock and can be used safely with other locking &sk_buff functions
2283 *      safely.
2284 *
2285 *      A buffer cannot be placed on two lists at the same time.
2286 */
2287void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2288{
2289        unsigned long flags;
2290
2291        spin_lock_irqsave(&list->lock, flags);
2292        __skb_queue_head(list, newsk);
2293        spin_unlock_irqrestore(&list->lock, flags);
2294}
2295EXPORT_SYMBOL(skb_queue_head);
2296
2297/**
2298 *      skb_queue_tail - queue a buffer at the list tail
2299 *      @list: list to use
2300 *      @newsk: buffer to queue
2301 *
2302 *      Queue a buffer at the tail of the list. This function takes the
2303 *      list lock and can be used safely with other locking &sk_buff functions
2304 *      safely.
2305 *
2306 *      A buffer cannot be placed on two lists at the same time.
2307 */
2308void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2309{
2310        unsigned long flags;
2311
2312        spin_lock_irqsave(&list->lock, flags);
2313        __skb_queue_tail(list, newsk);
2314        spin_unlock_irqrestore(&list->lock, flags);
2315}
2316EXPORT_SYMBOL(skb_queue_tail);
2317
2318/**
2319 *      skb_unlink      -       remove a buffer from a list
2320 *      @skb: buffer to remove
2321 *      @list: list to use
2322 *
2323 *      Remove a packet from a list. The list locks are taken and this
2324 *      function is atomic with respect to other list locked calls
2325 *
2326 *      You must know what list the SKB is on.
2327 */
2328void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2329{
2330        unsigned long flags;
2331
2332        spin_lock_irqsave(&list->lock, flags);
2333        __skb_unlink(skb, list);
2334        spin_unlock_irqrestore(&list->lock, flags);
2335}
2336EXPORT_SYMBOL(skb_unlink);
2337
2338/**
2339 *      skb_append      -       append a buffer
2340 *      @old: buffer to insert after
2341 *      @newsk: buffer to insert
2342 *      @list: list to use
2343 *
2344 *      Place a packet after a given packet in a list. The list locks are taken
2345 *      and this function is atomic with respect to other list locked calls.
2346 *      A buffer cannot be placed on two lists at the same time.
2347 */
2348void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2349{
2350        unsigned long flags;
2351
2352        spin_lock_irqsave(&list->lock, flags);
2353        __skb_queue_after(list, old, newsk);
2354        spin_unlock_irqrestore(&list->lock, flags);
2355}
2356EXPORT_SYMBOL(skb_append);
2357
2358/**
2359 *      skb_insert      -       insert a buffer
2360 *      @old: buffer to insert before
2361 *      @newsk: buffer to insert
2362 *      @list: list to use
2363 *
2364 *      Place a packet before a given packet in a list. The list locks are
2365 *      taken and this function is atomic with respect to other list locked
2366 *      calls.
2367 *
2368 *      A buffer cannot be placed on two lists at the same time.
2369 */
2370void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2371{
2372        unsigned long flags;
2373
2374        spin_lock_irqsave(&list->lock, flags);
2375        __skb_insert(newsk, old->prev, old, list);
2376        spin_unlock_irqrestore(&list->lock, flags);
2377}
2378EXPORT_SYMBOL(skb_insert);
2379
2380static inline void skb_split_inside_header(struct sk_buff *skb,
2381                                           struct sk_buff* skb1,
2382                                           const u32 len, const int pos)
2383{
2384        int i;
2385
2386        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2387                                         pos - len);
2388        /* And move data appendix as is. */
2389        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2390                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2391
2392        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2393        skb_shinfo(skb)->nr_frags  = 0;
2394        skb1->data_len             = skb->data_len;
2395        skb1->len                  += skb1->data_len;
2396        skb->data_len              = 0;
2397        skb->len                   = len;
2398        skb_set_tail_pointer(skb, len);
2399}
2400
2401static inline void skb_split_no_header(struct sk_buff *skb,
2402                                       struct sk_buff* skb1,
2403                                       const u32 len, int pos)
2404{
2405        int i, k = 0;
2406        const int nfrags = skb_shinfo(skb)->nr_frags;
2407
2408        skb_shinfo(skb)->nr_frags = 0;
2409        skb1->len                 = skb1->data_len = skb->len - len;
2410        skb->len                  = len;
2411        skb->data_len             = len - pos;
2412
2413        for (i = 0; i < nfrags; i++) {
2414                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2415
2416                if (pos + size > len) {
2417                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2418
2419                        if (pos < len) {
2420                                /* Split frag.
2421                                 * We have two variants in this case:
2422                                 * 1. Move all the frag to the second
2423                                 *    part, if it is possible. F.e.
2424                                 *    this approach is mandatory for TUX,
2425                                 *    where splitting is expensive.
2426                                 * 2. Split is accurately. We make this.
2427                                 */
2428                                skb_frag_ref(skb, i);
2429                                skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2430                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2431                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2432                                skb_shinfo(skb)->nr_frags++;
2433                        }
2434                        k++;
2435                } else
2436                        skb_shinfo(skb)->nr_frags++;
2437                pos += size;
2438        }
2439        skb_shinfo(skb1)->nr_frags = k;
2440}
2441
2442/**
2443 * skb_split - Split fragmented skb to two parts at length len.
2444 * @skb: the buffer to split
2445 * @skb1: the buffer to receive the second part
2446 * @len: new length for skb
2447 */
2448void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2449{
2450        int pos = skb_headlen(skb);
2451
2452        skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2453        if (len < pos)  /* Split line is inside header. */
2454                skb_split_inside_header(skb, skb1, len, pos);
2455        else            /* Second chunk has no header, nothing to copy. */
2456                skb_split_no_header(skb, skb1, len, pos);
2457}
2458EXPORT_SYMBOL(skb_split);
2459
2460/* Shifting from/to a cloned skb is a no-go.
2461 *
2462 * Caller cannot keep skb_shinfo related pointers past calling here!
2463 */
2464static int skb_prepare_for_shift(struct sk_buff *skb)
2465{
2466        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2467}
2468
2469/**
2470 * skb_shift - Shifts paged data partially from skb to another
2471 * @tgt: buffer into which tail data gets added
2472 * @skb: buffer from which the paged data comes from
2473 * @shiftlen: shift up to this many bytes
2474 *
2475 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2476 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2477 * It's up to caller to free skb if everything was shifted.
2478 *
2479 * If @tgt runs out of frags, the whole operation is aborted.
2480 *
2481 * Skb cannot include anything else but paged data while tgt is allowed
2482 * to have non-paged data as well.
2483 *
2484 * TODO: full sized shift could be optimized but that would need
2485 * specialized skb free'er to handle frags without up-to-date nr_frags.
2486 */
2487int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2488{
2489        int from, to, merge, todo;
2490        struct skb_frag_struct *fragfrom, *fragto;
2491
2492        BUG_ON(shiftlen > skb->len);
2493        BUG_ON(skb_headlen(skb));       /* Would corrupt stream */
2494
2495        todo = shiftlen;
2496        from = 0;
2497        to = skb_shinfo(tgt)->nr_frags;
2498        fragfrom = &skb_shinfo(skb)->frags[from];
2499
2500        /* Actual merge is delayed until the point when we know we can
2501         * commit all, so that we don't have to undo partial changes
2502         */
2503        if (!to ||
2504            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2505                              fragfrom->page_offset)) {
2506                merge = -1;
2507        } else {
2508                merge = to - 1;
2509
2510                todo -= skb_frag_size(fragfrom);
2511                if (todo < 0) {
2512                        if (skb_prepare_for_shift(skb) ||
2513                            skb_prepare_for_shift(tgt))
2514                                return 0;
2515
2516                        /* All previous frag pointers might be stale! */
2517                        fragfrom = &skb_shinfo(skb)->frags[from];
2518                        fragto = &skb_shinfo(tgt)->frags[merge];
2519
2520                        skb_frag_size_add(fragto, shiftlen);
2521                        skb_frag_size_sub(fragfrom, shiftlen);
2522                        fragfrom->page_offset += shiftlen;
2523
2524                        goto onlymerged;
2525                }
2526
2527                from++;
2528        }
2529
2530        /* Skip full, not-fitting skb to avoid expensive operations */
2531        if ((shiftlen == skb->len) &&
2532            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2533                return 0;
2534
2535        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2536                return 0;
2537
2538        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2539                if (to == MAX_SKB_FRAGS)
2540                        return 0;
2541
2542                fragfrom = &skb_shinfo(skb)->frags[from];
2543                fragto = &skb_shinfo(tgt)->frags[to];
2544
2545                if (todo >= skb_frag_size(fragfrom)) {
2546                        *fragto = *fragfrom;
2547                        todo -= skb_frag_size(fragfrom);
2548                        from++;
2549                        to++;
2550
2551                } else {
2552                        __skb_frag_ref(fragfrom);
2553                        fragto->page = fragfrom->page;
2554                        fragto->page_offset = fragfrom->page_offset;
2555                        skb_frag_size_set(fragto, todo);
2556
2557                        fragfrom->page_offset += todo;
2558                        skb_frag_size_sub(fragfrom, todo);
2559                        todo = 0;
2560
2561                        to++;
2562                        break;
2563                }
2564        }
2565
2566        /* Ready to "commit" this state change to tgt */
2567        skb_shinfo(tgt)->nr_frags = to;
2568
2569        if (merge >= 0) {
2570                fragfrom = &skb_shinfo(skb)->frags[0];
2571                fragto = &skb_shinfo(tgt)->frags[merge];
2572
2573                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2574                __skb_frag_unref(fragfrom);
2575        }
2576
2577        /* Reposition in the original skb */
2578        to = 0;
2579        while (from < skb_shinfo(skb)->nr_frags)
2580                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2581        skb_shinfo(skb)->nr_frags = to;
2582
2583        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2584
2585onlymerged:
2586        /* Most likely the tgt won't ever need its checksum anymore, skb on
2587         * the other hand might need it if it needs to be resent
2588         */
2589        tgt->ip_summed = CHECKSUM_PARTIAL;
2590        skb->ip_summed = CHECKSUM_PARTIAL;
2591
2592        /* Yak, is it really working this way? Some helper please? */
2593        skb->len -= shiftlen;
2594        skb->data_len -= shiftlen;
2595        skb->truesize -= shiftlen;
2596        tgt->len += shiftlen;
2597        tgt->data_len += shiftlen;
2598        tgt->truesize += shiftlen;
2599
2600        return shiftlen;
2601}
2602
2603/**
2604 * skb_prepare_seq_read - Prepare a sequential read of skb data
2605 * @skb: the buffer to read
2606 * @from: lower offset of data to be read
2607 * @to: upper offset of data to be read
2608 * @st: state variable
2609 *
2610 * Initializes the specified state variable. Must be called before
2611 * invoking skb_seq_read() for the first time.
2612 */
2613void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2614                          unsigned int to, struct skb_seq_state *st)
2615{
2616        st->lower_offset = from;
2617        st->upper_offset = to;
2618        st->root_skb = st->cur_skb = skb;
2619        st->frag_idx = st->stepped_offset = 0;
2620        st->frag_data = NULL;
2621}
2622EXPORT_SYMBOL(skb_prepare_seq_read);
2623
2624/**
2625 * skb_seq_read - Sequentially read skb data
2626 * @consumed: number of bytes consumed by the caller so far
2627 * @data: destination pointer for data to be returned
2628 * @st: state variable
2629 *
2630 * Reads a block of skb data at @consumed relative to the
2631 * lower offset specified to skb_prepare_seq_read(). Assigns
2632 * the head of the data block to @data and returns the length
2633 * of the block or 0 if the end of the skb data or the upper
2634 * offset has been reached.
2635 *
2636 * The caller is not required to consume all of the data
2637 * returned, i.e. @consumed is typically set to the number
2638 * of bytes already consumed and the next call to
2639 * skb_seq_read() will return the remaining part of the block.
2640 *
2641 * Note 1: The size of each block of data returned can be arbitrary,
2642 *       this limitation is the cost for zerocopy seqeuental
2643 *       reads of potentially non linear data.
2644 *
2645 * Note 2: Fragment lists within fragments are not implemented
2646 *       at the moment, state->root_skb could be replaced with
2647 *       a stack for this purpose.
2648 */
2649unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2650                          struct skb_seq_state *st)
2651{
2652        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2653        skb_frag_t *frag;
2654
2655        if (unlikely(abs_offset >= st->upper_offset)) {
2656                if (st->frag_data) {
2657                        kunmap_atomic(st->frag_data);
2658                        st->frag_data = NULL;
2659                }
2660                return 0;
2661        }
2662
2663next_skb:
2664        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2665
2666        if (abs_offset < block_limit && !st->frag_data) {
2667                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2668                return block_limit - abs_offset;
2669        }
2670
2671        if (st->frag_idx == 0 && !st->frag_data)
2672                st->stepped_offset += skb_headlen(st->cur_skb);
2673
2674        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2675                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2676                block_limit = skb_frag_size(frag) + st->stepped_offset;
2677
2678                if (abs_offset < block_limit) {
2679                        if (!st->frag_data)
2680                                st->frag_data = kmap_atomic(skb_frag_page(frag));
2681
2682                        *data = (u8 *) st->frag_data + frag->page_offset +
2683                                (abs_offset - st->stepped_offset);
2684
2685                        return block_limit - abs_offset;
2686                }
2687
2688                if (st->frag_data) {
2689                        kunmap_atomic(st->frag_data);
2690                        st->frag_data = NULL;
2691                }
2692
2693                st->frag_idx++;
2694                st->stepped_offset += skb_frag_size(frag);
2695        }
2696
2697        if (st->frag_data) {
2698                kunmap_atomic(st->frag_data);
2699                st->frag_data = NULL;
2700        }
2701
2702        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2703                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2704                st->frag_idx = 0;
2705                goto next_skb;
2706        } else if (st->cur_skb->next) {
2707                st->cur_skb = st->cur_skb->next;
2708                st->frag_idx = 0;
2709                goto next_skb;
2710        }
2711
2712        return 0;
2713}
2714EXPORT_SYMBOL(skb_seq_read);
2715
2716/**
2717 * skb_abort_seq_read - Abort a sequential read of skb data
2718 * @st: state variable
2719 *
2720 * Must be called if skb_seq_read() was not called until it
2721 * returned 0.
2722 */
2723void skb_abort_seq_read(struct skb_seq_state *st)
2724{
2725        if (st->frag_data)
2726                kunmap_atomic(st->frag_data);
2727}
2728EXPORT_SYMBOL(skb_abort_seq_read);
2729
2730#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
2731
2732static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2733                                          struct ts_config *conf,
2734                                          struct ts_state *state)
2735{
2736        return skb_seq_read(offset, text, TS_SKB_CB(state));
2737}
2738
2739static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2740{
2741        skb_abort_seq_read(TS_SKB_CB(state));
2742}
2743
2744/**
2745 * skb_find_text - Find a text pattern in skb data
2746 * @skb: the buffer to look in
2747 * @from: search offset
2748 * @to: search limit
2749 * @config: textsearch configuration
2750 * @state: uninitialized textsearch state variable
2751 *
2752 * Finds a pattern in the skb data according to the specified
2753 * textsearch configuration. Use textsearch_next() to retrieve
2754 * subsequent occurrences of the pattern. Returns the offset
2755 * to the first occurrence or UINT_MAX if no match was found.
2756 */
2757unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2758                           unsigned int to, struct ts_config *config,
2759                           struct ts_state *state)
2760{
2761        unsigned int ret;
2762
2763        config->get_next_block = skb_ts_get_next_block;
2764        config->finish = skb_ts_finish;
2765
2766        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2767
2768        ret = textsearch_find(config, state);
2769        return (ret <= to - from ? ret : UINT_MAX);
2770}
2771EXPORT_SYMBOL(skb_find_text);
2772
2773/**
2774 * skb_append_datato_frags - append the user data to a skb
2775 * @sk: sock  structure
2776 * @skb: skb structure to be appened with user data.
2777 * @getfrag: call back function to be used for getting the user data
2778 * @from: pointer to user message iov
2779 * @length: length of the iov message
2780 *
2781 * Description: This procedure append the user data in the fragment part
2782 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2783 */
2784int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2785                        int (*getfrag)(void *from, char *to, int offset,
2786                                        int len, int odd, struct sk_buff *skb),
2787                        void *from, int length)
2788{
2789        int frg_cnt = skb_shinfo(skb)->nr_frags;
2790        int copy;
2791        int offset = 0;
2792        int ret;
2793        struct page_frag *pfrag = &current->task_frag;
2794
2795        do {
2796                /* Return error if we don't have space for new frag */
2797                if (frg_cnt >= MAX_SKB_FRAGS)
2798                        return -EMSGSIZE;
2799
2800                if (!sk_page_frag_refill(sk, pfrag))
2801                        return -ENOMEM;
2802
2803                /* copy the user data to page */
2804                copy = min_t(int, length, pfrag->size - pfrag->offset);
2805
2806                ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2807                              offset, copy, 0, skb);
2808                if (ret < 0)
2809                        return -EFAULT;
2810
2811                /* copy was successful so update the size parameters */
2812                skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2813                                   copy);
2814                frg_cnt++;
2815                pfrag->offset += copy;
2816                get_page(pfrag->page);
2817
2818                skb->truesize += copy;
2819                atomic_add(copy, &sk->sk_wmem_alloc);
2820                skb->len += copy;
2821                skb->data_len += copy;
2822                offset += copy;
2823                length -= copy;
2824
2825        } while (length > 0);
2826
2827        return 0;
2828}
2829EXPORT_SYMBOL(skb_append_datato_frags);
2830
2831/**
2832 *      skb_pull_rcsum - pull skb and update receive checksum
2833 *      @skb: buffer to update
2834 *      @len: length of data pulled
2835 *
2836 *      This function performs an skb_pull on the packet and updates
2837 *      the CHECKSUM_COMPLETE checksum.  It should be used on
2838 *      receive path processing instead of skb_pull unless you know
2839 *      that the checksum difference is zero (e.g., a valid IP header)
2840 *      or you are setting ip_summed to CHECKSUM_NONE.
2841 */
2842unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2843{
2844        BUG_ON(len > skb->len);
2845        skb->len -= len;
2846        BUG_ON(skb->len < skb->data_len);
2847        skb_postpull_rcsum(skb, skb->data, len);
2848        return skb->data += len;
2849}
2850EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2851
2852/**
2853 *      skb_segment - Perform protocol segmentation on skb.
2854 *      @head_skb: buffer to segment
2855 *      @features: features for the output path (see dev->features)
2856 *
2857 *      This function performs segmentation on the given skb.  It returns
2858 *      a pointer to the first in a list of new skbs for the segments.
2859 *      In case of error it returns ERR_PTR(err).
2860 */
2861struct sk_buff *skb_segment(struct sk_buff *head_skb,
2862                            netdev_features_t features)
2863{
2864        struct sk_buff *segs = NULL;
2865        struct sk_buff *tail = NULL;
2866        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2867        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2868        unsigned int mss = skb_shinfo(head_skb)->gso_size;
2869        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2870        struct sk_buff *frag_skb = head_skb;
2871        unsigned int offset = doffset;
2872        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2873        unsigned int headroom;
2874        unsigned int len;
2875        __be16 proto;
2876        bool csum;
2877        int sg = !!(features & NETIF_F_SG);
2878        int nfrags = skb_shinfo(head_skb)->nr_frags;
2879        int err = -ENOMEM;
2880        int i = 0;
2881        int pos;
2882        int dummy;
2883
2884        proto = skb_network_protocol(head_skb, &dummy);
2885        if (unlikely(!proto))
2886                return ERR_PTR(-EINVAL);
2887
2888        csum = !!can_checksum_protocol(features, proto);
2889        __skb_push(head_skb, doffset);
2890        headroom = skb_headroom(head_skb);
2891        pos = skb_headlen(head_skb);
2892
2893        do {
2894                struct sk_buff *nskb;
2895                skb_frag_t *nskb_frag;
2896                int hsize;
2897                int size;
2898
2899                len = head_skb->len - offset;
2900                if (len > mss)
2901                        len = mss;
2902
2903                hsize = skb_headlen(head_skb) - offset;
2904                if (hsize < 0)
2905                        hsize = 0;
2906                if (hsize > len || !sg)
2907                        hsize = len;
2908
2909                if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
2910                    (skb_headlen(list_skb) == len || sg)) {
2911                        BUG_ON(skb_headlen(list_skb) > len);
2912
2913                        i = 0;
2914                        nfrags = skb_shinfo(list_skb)->nr_frags;
2915                        frag = skb_shinfo(list_skb)->frags;
2916                        frag_skb = list_skb;
2917                        pos += skb_headlen(list_skb);
2918
2919                        while (pos < offset + len) {
2920                                BUG_ON(i >= nfrags);
2921
2922                                size = skb_frag_size(frag);
2923                                if (pos + size > offset + len)
2924                                        break;
2925
2926                                i++;
2927                                pos += size;
2928                                frag++;
2929                        }
2930
2931                        nskb = skb_clone(list_skb, GFP_ATOMIC);
2932                        list_skb = list_skb->next;
2933
2934                        if (unlikely(!nskb))
2935                                goto err;
2936
2937                        if (unlikely(pskb_trim(nskb, len))) {
2938                                kfree_skb(nskb);
2939                                goto err;
2940                        }
2941
2942                        hsize = skb_end_offset(nskb);
2943                        if (skb_cow_head(nskb, doffset + headroom)) {
2944                                kfree_skb(nskb);
2945                                goto err;
2946                        }
2947
2948                        nskb->truesize += skb_end_offset(nskb) - hsize;
2949                        skb_release_head_state(nskb);
2950                        __skb_push(nskb, doffset);
2951                } else {
2952                        nskb = __alloc_skb(hsize + doffset + headroom,
2953                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
2954                                           NUMA_NO_NODE);
2955
2956                        if (unlikely(!nskb))
2957                                goto err;
2958
2959                        skb_reserve(nskb, headroom);
2960                        __skb_put(nskb, doffset);
2961                }
2962
2963                if (segs)
2964                        tail->next = nskb;
2965                else
2966                        segs = nskb;
2967                tail = nskb;
2968
2969                __copy_skb_header(nskb, head_skb);
2970                nskb->mac_len = head_skb->mac_len;
2971
2972                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2973
2974                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
2975                                                 nskb->data - tnl_hlen,
2976                                                 doffset + tnl_hlen);
2977
2978                if (nskb->len == len + doffset)
2979                        goto perform_csum_check;
2980
2981                if (!sg) {
2982                        nskb->ip_summed = CHECKSUM_NONE;
2983                        nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
2984                                                            skb_put(nskb, len),
2985                                                            len, 0);
2986                        continue;
2987                }
2988
2989                nskb_frag = skb_shinfo(nskb)->frags;
2990
2991                skb_copy_from_linear_data_offset(head_skb, offset,
2992                                                 skb_put(nskb, hsize), hsize);
2993
2994                skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
2995                        SKBTX_SHARED_FRAG;
2996
2997                while (pos < offset + len) {
2998                        if (i >= nfrags) {
2999                                BUG_ON(skb_headlen(list_skb));
3000
3001                                i = 0;
3002                                nfrags = skb_shinfo(list_skb)->nr_frags;
3003                                frag = skb_shinfo(list_skb)->frags;
3004                                frag_skb = list_skb;
3005
3006                                BUG_ON(!nfrags);
3007
3008                                list_skb = list_skb->next;
3009                        }
3010
3011                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
3012                                     MAX_SKB_FRAGS)) {
3013                                net_warn_ratelimited(
3014                                        "skb_segment: too many frags: %u %u\n",
3015                                        pos, mss);
3016                                goto err;
3017                        }
3018
3019                        if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3020                                goto err;
3021
3022                        *nskb_frag = *frag;
3023                        __skb_frag_ref(nskb_frag);
3024                        size = skb_frag_size(nskb_frag);
3025
3026                        if (pos < offset) {
3027                                nskb_frag->page_offset += offset - pos;
3028                                skb_frag_size_sub(nskb_frag, offset - pos);
3029                        }
3030
3031                        skb_shinfo(nskb)->nr_frags++;
3032
3033                        if (pos + size <= offset + len) {
3034                                i++;
3035                                frag++;
3036                                pos += size;
3037                        } else {
3038                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3039                                goto skip_fraglist;
3040                        }
3041
3042                        nskb_frag++;
3043                }
3044
3045skip_fraglist:
3046                nskb->data_len = len - hsize;
3047                nskb->len += nskb->data_len;
3048                nskb->truesize += nskb->data_len;
3049
3050perform_csum_check:
3051                if (!csum) {
3052                        nskb->csum = skb_checksum(nskb, doffset,
3053                                                  nskb->len - doffset, 0);
3054                        nskb->ip_summed = CHECKSUM_NONE;
3055                }
3056        } while ((offset += len) < head_skb->len);
3057
3058        return segs;
3059
3060err:
3061        kfree_skb_list(segs);
3062        return ERR_PTR(err);
3063}
3064EXPORT_SYMBOL_GPL(skb_segment);
3065
3066int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3067{
3068        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3069        unsigned int offset = skb_gro_offset(skb);
3070        unsigned int headlen = skb_headlen(skb);
3071        struct sk_buff *nskb, *lp, *p = *head;
3072        unsigned int len = skb_gro_len(skb);
3073        unsigned int delta_truesize;
3074        unsigned int headroom;
3075
3076        if (unlikely(p->len + len >= 65536))
3077                return -E2BIG;
3078
3079        lp = NAPI_GRO_CB(p)->last ?: p;
3080        pinfo = skb_shinfo(lp);
3081
3082        if (headlen <= offset) {
3083                skb_frag_t *frag;
3084                skb_frag_t *frag2;
3085                int i = skbinfo->nr_frags;
3086                int nr_frags = pinfo->nr_frags + i;
3087
3088                if (nr_frags > MAX_SKB_FRAGS)
3089                        goto merge;
3090
3091                offset -= headlen;
3092                pinfo->nr_frags = nr_frags;
3093                skbinfo->nr_frags = 0;
3094
3095                frag = pinfo->frags + nr_frags;
3096                frag2 = skbinfo->frags + i;
3097                do {
3098                        *--frag = *--frag2;
3099                } while (--i);
3100
3101                frag->page_offset += offset;
3102                skb_frag_size_sub(frag, offset);
3103
3104                /* all fragments truesize : remove (head size + sk_buff) */
3105                delta_truesize = skb->truesize -
3106                                 SKB_TRUESIZE(skb_end_offset(skb));
3107
3108                skb->truesize -= skb->data_len;
3109                skb->len -= skb->data_len;
3110                skb->data_len = 0;
3111
3112                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3113                goto done;
3114        } else if (skb->head_frag) {
3115                int nr_frags = pinfo->nr_frags;
3116                skb_frag_t *frag = pinfo->frags + nr_frags;
3117                struct page *page = virt_to_head_page(skb->head);
3118                unsigned int first_size = headlen - offset;
3119                unsigned int first_offset;
3120
3121                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3122                        goto merge;
3123
3124                first_offset = skb->data -
3125                               (unsigned char *)page_address(page) +
3126                               offset;
3127
3128                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3129
3130                frag->page.p      = page;
3131                frag->page_offset = first_offset;
3132                skb_frag_size_set(frag, first_size);
3133
3134                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3135                /* We dont need to clear skbinfo->nr_frags here */
3136
3137                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3138                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3139                goto done;
3140        }
3141        if (pinfo->frag_list)
3142                goto merge;
3143        if (skb_gro_len(p) != pinfo->gso_size)
3144                return -E2BIG;
3145
3146        headroom = skb_headroom(p);
3147        nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3148        if (unlikely(!nskb))
3149                return -ENOMEM;
3150
3151        __copy_skb_header(nskb, p);
3152        nskb->mac_len = p->mac_len;
3153
3154        skb_reserve(nskb, headroom);
3155        __skb_put(nskb, skb_gro_offset(p));
3156
3157        skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3158        skb_set_network_header(nskb, skb_network_offset(p));
3159        skb_set_transport_header(nskb, skb_transport_offset(p));
3160
3161        __skb_pull(p, skb_gro_offset(p));
3162        memcpy(skb_mac_header(nskb), skb_mac_header(p),
3163               p->data - skb_mac_header(p));
3164
3165        skb_shinfo(nskb)->frag_list = p;
3166        skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3167        pinfo->gso_size = 0;
3168        skb_header_release(p);
3169        NAPI_GRO_CB(nskb)->last = p;
3170
3171        nskb->data_len += p->len;
3172        nskb->truesize += p->truesize;
3173        nskb->len += p->len;
3174
3175        *head = nskb;
3176        nskb->next = p->next;
3177        p->next = NULL;
3178
3179        p = nskb;
3180
3181merge:
3182        delta_truesize = skb->truesize;
3183        if (offset > headlen) {
3184                unsigned int eat = offset - headlen;
3185
3186                skbinfo->frags[0].page_offset += eat;
3187                skb_frag_size_sub(&skbinfo->frags[0], eat);
3188                skb->data_len -= eat;
3189                skb->len -= eat;
3190                offset = headlen;
3191        }
3192
3193        __skb_pull(skb, offset);
3194
3195        if (!NAPI_GRO_CB(p)->last)
3196                skb_shinfo(p)->frag_list = skb;
3197        else
3198                NAPI_GRO_CB(p)->last->next = skb;
3199        NAPI_GRO_CB(p)->last = skb;
3200        skb_header_release(skb);
3201        lp = p;
3202
3203done:
3204        NAPI_GRO_CB(p)->count++;
3205        p->data_len += len;
3206        p->truesize += delta_truesize;
3207        p->len += len;
3208        if (lp != p) {
3209                lp->data_len += len;
3210                lp->truesize += delta_truesize;
3211                lp->len += len;
3212        }
3213        NAPI_GRO_CB(skb)->same_flow = 1;
3214        return 0;
3215}
3216EXPORT_SYMBOL_GPL(skb_gro_receive);
3217
3218void __init skb_init(void)
3219{
3220        skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3221                                              sizeof(struct sk_buff),
3222                                              0,
3223                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3224                                              NULL);
3225        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3226                                                (2*sizeof(struct sk_buff)) +
3227                                                sizeof(atomic_t),
3228                                                0,
3229                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3230                                                NULL);
3231}
3232
3233/**
3234 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3235 *      @skb: Socket buffer containing the buffers to be mapped
3236 *      @sg: The scatter-gather list to map into
3237 *      @offset: The offset into the buffer's contents to start mapping
3238 *      @len: Length of buffer space to be mapped
3239 *
3240 *      Fill the specified scatter-gather list with mappings/pointers into a
3241 *      region of the buffer space attached to a socket buffer.
3242 */
3243static int
3244__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3245{
3246        int start = skb_headlen(skb);
3247        int i, copy = start - offset;
3248        struct sk_buff *frag_iter;
3249        int elt = 0;
3250
3251        if (copy > 0) {
3252                if (copy > len)
3253                        copy = len;
3254                sg_set_buf(sg, skb->data + offset, copy);
3255                elt++;
3256                if ((len -= copy) == 0)
3257                        return elt;
3258                offset += copy;
3259        }
3260
3261        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3262                int end;
3263
3264                WARN_ON(start > offset + len);
3265
3266                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3267                if ((copy = end - offset) > 0) {
3268                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3269
3270                        if (copy > len)
3271                                copy = len;
3272                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3273                                        frag->page_offset+offset-start);
3274                        elt++;
3275                        if (!(len -= copy))
3276                                return elt;
3277                        offset += copy;
3278                }
3279                start = end;
3280        }
3281
3282        skb_walk_frags(skb, frag_iter) {
3283                int end;
3284
3285                WARN_ON(start > offset + len);
3286
3287                end = start + frag_iter->len;
3288                if ((copy = end - offset) > 0) {
3289                        if (copy > len)
3290                                copy = len;
3291                        elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3292                                              copy);
3293                        if ((len -= copy) == 0)
3294                                return elt;
3295                        offset += copy;
3296                }
3297                start = end;
3298        }
3299        BUG_ON(len);
3300        return elt;
3301}
3302
3303int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3304{
3305        int nsg = __skb_to_sgvec(skb, sg, offset, len);
3306
3307        sg_mark_end(&sg[nsg - 1]);
3308
3309        return nsg;
3310}
3311EXPORT_SYMBOL_GPL(skb_to_sgvec);
3312
3313/**
3314 *      skb_cow_data - Check that a socket buffer's data buffers are writable
3315 *      @skb: The socket buffer to check.
3316 *      @tailbits: Amount of trailing space to be added
3317 *      @trailer: Returned pointer to the skb where the @tailbits space begins
3318 *
3319 *      Make sure that the data buffers attached to a socket buffer are
3320 *      writable. If they are not, private copies are made of the data buffers
3321 *      and the socket buffer is set to use these instead.
3322 *
3323 *      If @tailbits is given, make sure that there is space to write @tailbits
3324 *      bytes of data beyond current end of socket buffer.  @trailer will be
3325 *      set to point to the skb in which this space begins.
3326 *
3327 *      The number of scatterlist elements required to completely map the
3328 *      COW'd and extended socket buffer will be returned.
3329 */
3330int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3331{
3332        int copyflag;
3333        int elt;
3334        struct sk_buff *skb1, **skb_p;
3335
3336        /* If skb is cloned or its head is paged, reallocate
3337         * head pulling out all the pages (pages are considered not writable
3338         * at the moment even if they are anonymous).
3339         */
3340        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3341            __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3342                return -ENOMEM;
3343
3344        /* Easy case. Most of packets will go this way. */
3345        if (!skb_has_frag_list(skb)) {
3346                /* A little of trouble, not enough of space for trailer.
3347                 * This should not happen, when stack is tuned to generate
3348                 * good frames. OK, on miss we reallocate and reserve even more
3349                 * space, 128 bytes is fair. */
3350
3351                if (skb_tailroom(skb) < tailbits &&
3352                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3353                        return -ENOMEM;
3354
3355                /* Voila! */
3356                *trailer = skb;
3357                return 1;
3358        }
3359
3360        /* Misery. We are in troubles, going to mincer fragments... */
3361
3362        elt = 1;
3363        skb_p = &skb_shinfo(skb)->frag_list;
3364        copyflag = 0;
3365
3366        while ((skb1 = *skb_p) != NULL) {
3367                int ntail = 0;
3368
3369                /* The fragment is partially pulled by someone,
3370                 * this can happen on input. Copy it and everything
3371                 * after it. */
3372
3373                if (skb_shared(skb1))
3374                        copyflag = 1;
3375
3376                /* If the skb is the last, worry about trailer. */
3377
3378                if (skb1->next == NULL && tailbits) {
3379                        if (skb_shinfo(skb1)->nr_frags ||
3380                            skb_has_frag_list(skb1) ||
3381                            skb_tailroom(skb1) < tailbits)
3382                                ntail = tailbits + 128;
3383                }
3384
3385                if (copyflag ||
3386                    skb_cloned(skb1) ||
3387                    ntail ||
3388                    skb_shinfo(skb1)->nr_frags ||
3389                    skb_has_frag_list(skb1)) {
3390                        struct sk_buff *skb2;
3391
3392                        /* Fuck, we are miserable poor guys... */
3393                        if (ntail == 0)
3394                                skb2 = skb_copy(skb1, GFP_ATOMIC);
3395                        else
3396                                skb2 = skb_copy_expand(skb1,
3397                                                       skb_headroom(skb1),
3398                                                       ntail,
3399                                                       GFP_ATOMIC);
3400                        if (unlikely(skb2 == NULL))
3401                                return -ENOMEM;
3402
3403                        if (skb1->sk)
3404                                skb_set_owner_w(skb2, skb1->sk);
3405
3406                        /* Looking around. Are we still alive?
3407                         * OK, link new skb, drop old one */
3408
3409                        skb2->next = skb1->next;
3410                        *skb_p = skb2;
3411                        kfree_skb(skb1);
3412                        skb1 = skb2;
3413                }
3414                elt++;
3415                *trailer = skb1;
3416                skb_p = &skb1->next;
3417        }
3418
3419        return elt;
3420}
3421EXPORT_SYMBOL_GPL(skb_cow_data);
3422
3423static void sock_rmem_free(struct sk_buff *skb)
3424{
3425        struct sock *sk = skb->sk;
3426
3427        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3428}
3429
3430/*
3431 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3432 */
3433int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3434{
3435        int len = skb->len;
3436
3437        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3438            (unsigned int)sk->sk_rcvbuf)
3439                return -ENOMEM;
3440
3441        skb_orphan(skb);
3442        skb->sk = sk;
3443        skb->destructor = sock_rmem_free;
3444        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3445
3446        /* before exiting rcu section, make sure dst is refcounted */
3447        skb_dst_force(skb);
3448
3449        skb_queue_tail(&sk->sk_error_queue, skb);
3450        if (!sock_flag(sk, SOCK_DEAD))
3451                sk->sk_data_ready(sk, len);
3452        return 0;
3453}
3454EXPORT_SYMBOL(sock_queue_err_skb);
3455
3456void skb_tstamp_tx(struct sk_buff *orig_skb,
3457                struct skb_shared_hwtstamps *hwtstamps)
3458{
3459        struct sock *sk = orig_skb->sk;
3460        struct sock_exterr_skb *serr;
3461        struct sk_buff *skb;
3462        int err;
3463
3464        if (!sk)
3465                return;
3466
3467        if (hwtstamps) {
3468                *skb_hwtstamps(orig_skb) =
3469                        *hwtstamps;
3470        } else {
3471                /*
3472                 * no hardware time stamps available,
3473                 * so keep the shared tx_flags and only
3474                 * store software time stamp
3475                 */
3476                orig_skb->tstamp = ktime_get_real();
3477        }
3478
3479        skb = skb_clone(orig_skb, GFP_ATOMIC);
3480        if (!skb)
3481                return;
3482
3483        serr = SKB_EXT_ERR(skb);
3484        memset(serr, 0, sizeof(*serr));
3485        serr->ee.ee_errno = ENOMSG;
3486        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3487
3488        err = sock_queue_err_skb(sk, skb);
3489
3490        if (err)
3491                kfree_skb(skb);
3492}
3493EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3494
3495void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3496{
3497        struct sock *sk = skb->sk;
3498        struct sock_exterr_skb *serr;
3499        int err;
3500
3501        skb->wifi_acked_valid = 1;
3502        skb->wifi_acked = acked;
3503
3504        serr = SKB_EXT_ERR(skb);
3505        memset(serr, 0, sizeof(*serr));
3506        serr->ee.ee_errno = ENOMSG;
3507        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3508
3509        err = sock_queue_err_skb(sk, skb);
3510        if (err)
3511                kfree_skb(skb);
3512}
3513EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3514
3515
3516/**
3517 * skb_partial_csum_set - set up and verify partial csum values for packet
3518 * @skb: the skb to set
3519 * @start: the number of bytes after skb->data to start checksumming.
3520 * @off: the offset from start to place the checksum.
3521 *
3522 * For untrusted partially-checksummed packets, we need to make sure the values
3523 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3524 *
3525 * This function checks and sets those values and skb->ip_summed: if this
3526 * returns false you should drop the packet.
3527 */
3528bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3529{
3530        if (unlikely(start > skb_headlen(skb)) ||
3531            unlikely((int)start + off > skb_headlen(skb) - 2)) {
3532                net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3533                                     start, off, skb_headlen(skb));
3534                return false;
3535        }
3536        skb->ip_summed = CHECKSUM_PARTIAL;
3537        skb->csum_start = skb_headroom(skb) + start;
3538        skb->csum_offset = off;
3539        skb_set_transport_header(skb, start);
3540        return true;
3541}
3542EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3543
3544static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3545                               unsigned int max)
3546{
3547        if (skb_headlen(skb) >= len)
3548                return 0;
3549
3550        /* If we need to pullup then pullup to the max, so we
3551         * won't need to do it again.
3552         */
3553        if (max > skb->len)
3554                max = skb->len;
3555
3556        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3557                return -ENOMEM;
3558
3559        if (skb_headlen(skb) < len)
3560                return -EPROTO;
3561
3562        return 0;
3563}
3564
3565/* This value should be large enough to cover a tagged ethernet header plus
3566 * maximally sized IP and TCP or UDP headers.
3567 */
3568#define MAX_IP_HDR_LEN 128
3569
3570static int skb_checksum_setup_ip(struct sk_buff *skb, bool recalculate)
3571{
3572        unsigned int off;
3573        bool fragment;
3574        int err;
3575
3576        fragment = false;
3577
3578        err = skb_maybe_pull_tail(skb,
3579                                  sizeof(struct iphdr),
3580                                  MAX_IP_HDR_LEN);
3581        if (err < 0)
3582                goto out;
3583
3584        if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3585                fragment = true;
3586
3587        off = ip_hdrlen(skb);
3588
3589        err = -EPROTO;
3590
3591        if (fragment)
3592                goto out;
3593
3594        switch (ip_hdr(skb)->protocol) {
3595        case IPPROTO_TCP:
3596                err = skb_maybe_pull_tail(skb,
3597                                          off + sizeof(struct tcphdr),
3598                                          MAX_IP_HDR_LEN);
3599                if (err < 0)
3600                        goto out;
3601
3602                if (!skb_partial_csum_set(skb, off,
3603                                          offsetof(struct tcphdr, check))) {
3604                        err = -EPROTO;
3605                        goto out;
3606                }
3607
3608                if (recalculate)
3609                        tcp_hdr(skb)->check =
3610                                ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3611                                                   ip_hdr(skb)->daddr,
3612                                                   skb->len - off,
3613                                                   IPPROTO_TCP, 0);
3614                break;
3615        case IPPROTO_UDP:
3616                err = skb_maybe_pull_tail(skb,
3617                                          off + sizeof(struct udphdr),
3618                                          MAX_IP_HDR_LEN);
3619                if (err < 0)
3620                        goto out;
3621
3622                if (!skb_partial_csum_set(skb, off,
3623                                          offsetof(struct udphdr, check))) {
3624                        err = -EPROTO;
3625                        goto out;
3626                }
3627
3628                if (recalculate)
3629                        udp_hdr(skb)->check =
3630                                ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3631                                                   ip_hdr(skb)->daddr,
3632                                                   skb->len - off,
3633                                                   IPPROTO_UDP, 0);
3634                break;
3635        default:
3636                goto out;
3637        }
3638
3639        err = 0;
3640
3641out:
3642        return err;
3643}
3644
3645/* This value should be large enough to cover a tagged ethernet header plus
3646 * an IPv6 header, all options, and a maximal TCP or UDP header.
3647 */
3648#define MAX_IPV6_HDR_LEN 256
3649
3650#define OPT_HDR(type, skb, off) \
3651        (type *)(skb_network_header(skb) + (off))
3652
3653static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3654{
3655        int err;
3656        u8 nexthdr;
3657        unsigned int off;
3658        unsigned int len;
3659        bool fragment;
3660        bool done;
3661
3662        fragment = false;
3663        done = false;
3664
3665        off = sizeof(struct ipv6hdr);
3666
3667        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3668        if (err < 0)
3669                goto out;
3670
3671        nexthdr = ipv6_hdr(skb)->nexthdr;
3672
3673        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3674        while (off <= len && !done) {
3675                switch (nexthdr) {
3676                case IPPROTO_DSTOPTS:
3677                case IPPROTO_HOPOPTS:
3678                case IPPROTO_ROUTING: {
3679                        struct ipv6_opt_hdr *hp;
3680
3681                        err = skb_maybe_pull_tail(skb,
3682                                                  off +
3683                                                  sizeof(struct ipv6_opt_hdr),
3684                                                  MAX_IPV6_HDR_LEN);
3685                        if (err < 0)
3686                                goto out;
3687
3688                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3689                        nexthdr = hp->nexthdr;
3690                        off += ipv6_optlen(hp);
3691                        break;
3692                }
3693                case IPPROTO_AH: {
3694                        struct ip_auth_hdr *hp;
3695
3696                        err = skb_maybe_pull_tail(skb,
3697                                                  off +
3698                                                  sizeof(struct ip_auth_hdr),
3699                                                  MAX_IPV6_HDR_LEN);
3700                        if (err < 0)
3701                                goto out;
3702
3703                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3704                        nexthdr = hp->nexthdr;
3705                        off += ipv6_authlen(hp);
3706                        break;
3707                }
3708                case IPPROTO_FRAGMENT: {
3709                        struct frag_hdr *hp;
3710
3711                        err = skb_maybe_pull_tail(skb,
3712                                                  off +
3713                                                  sizeof(struct frag_hdr),
3714                                                  MAX_IPV6_HDR_LEN);
3715                        if (err < 0)
3716                                goto out;
3717
3718                        hp = OPT_HDR(struct frag_hdr, skb, off);
3719
3720                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3721                                fragment = true;
3722
3723                        nexthdr = hp->nexthdr;
3724                        off += sizeof(struct frag_hdr);
3725                        break;
3726                }
3727                default:
3728                        done = true;
3729                        break;
3730                }
3731        }
3732
3733        err = -EPROTO;
3734
3735        if (!done || fragment)
3736                goto out;
3737
3738        switch (nexthdr) {
3739        case IPPROTO_TCP:
3740                err = skb_maybe_pull_tail(skb,
3741                                          off + sizeof(struct tcphdr),
3742                                          MAX_IPV6_HDR_LEN);
3743                if (err < 0)
3744                        goto out;
3745
3746                if (!skb_partial_csum_set(skb, off,
3747                                          offsetof(struct tcphdr, check))) {
3748                        err = -EPROTO;
3749                        goto out;
3750                }
3751
3752                if (recalculate)
3753                        tcp_hdr(skb)->check =
3754                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3755                                                 &ipv6_hdr(skb)->daddr,
3756                                                 skb->len - off,
3757                                                 IPPROTO_TCP, 0);
3758                break;
3759        case IPPROTO_UDP:
3760                err = skb_maybe_pull_tail(skb,
3761                                          off + sizeof(struct udphdr),
3762                                          MAX_IPV6_HDR_LEN);
3763                if (err < 0)
3764                        goto out;
3765
3766                if (!skb_partial_csum_set(skb, off,
3767                                          offsetof(struct udphdr, check))) {
3768                        err = -EPROTO;
3769                        goto out;
3770                }
3771
3772                if (recalculate)
3773                        udp_hdr(skb)->check =
3774                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3775                                                 &ipv6_hdr(skb)->daddr,
3776                                                 skb->len - off,
3777                                                 IPPROTO_UDP, 0);
3778                break;
3779        default:
3780                goto out;
3781        }
3782
3783        err = 0;
3784
3785out:
3786        return err;
3787}
3788
3789/**
3790 * skb_checksum_setup - set up partial checksum offset
3791 * @skb: the skb to set up
3792 * @recalculate: if true the pseudo-header checksum will be recalculated
3793 */
3794int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3795{
3796        int err;
3797
3798        switch (skb->protocol) {
3799        case htons(ETH_P_IP):
3800                err = skb_checksum_setup_ip(skb, recalculate);
3801                break;
3802
3803        case htons(ETH_P_IPV6):
3804                err = skb_checksum_setup_ipv6(skb, recalculate);
3805                break;
3806
3807        default:
3808                err = -EPROTO;
3809                break;
3810        }
3811
3812        return err;
3813}
3814EXPORT_SYMBOL(skb_checksum_setup);
3815
3816void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3817{
3818        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3819                             skb->dev->name);
3820}
3821EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3822
3823void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3824{
3825        if (head_stolen) {
3826                skb_release_head_state(skb);
3827                kmem_cache_free(skbuff_head_cache, skb);
3828        } else {
3829                __kfree_skb(skb);
3830        }
3831}
3832EXPORT_SYMBOL(kfree_skb_partial);
3833
3834/**
3835 * skb_try_coalesce - try to merge skb to prior one
3836 * @to: prior buffer
3837 * @from: buffer to add
3838 * @fragstolen: pointer to boolean
3839 * @delta_truesize: how much more was allocated than was requested
3840 */
3841bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3842                      bool *fragstolen, int *delta_truesize)
3843{
3844        int i, delta, len = from->len;
3845
3846        *fragstolen = false;
3847
3848        if (skb_cloned(to))
3849                return false;
3850
3851        if (len <= skb_tailroom(to)) {
3852                BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3853                *delta_truesize = 0;
3854                return true;
3855        }
3856
3857        if (skb_has_frag_list(to) || skb_has_frag_list(from))
3858                return false;
3859
3860        if (skb_headlen(from) != 0) {
3861                struct page *page;
3862                unsigned int offset;
3863
3864                if (skb_shinfo(to)->nr_frags +
3865                    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3866                        return false;
3867
3868                if (skb_head_is_locked(from))
3869                        return false;
3870
3871                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3872
3873                page = virt_to_head_page(from->head);
3874                offset = from->data - (unsigned char *)page_address(page);
3875
3876                skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3877                                   page, offset, skb_headlen(from));
3878                *fragstolen = true;
3879        } else {
3880                if (skb_shinfo(to)->nr_frags +
3881                    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3882                        return false;
3883
3884                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3885        }
3886
3887        WARN_ON_ONCE(delta < len);
3888
3889        memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3890               skb_shinfo(from)->frags,
3891               skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3892        skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3893
3894        if (!skb_cloned(from))
3895                skb_shinfo(from)->nr_frags = 0;
3896
3897        /* if the skb is not cloned this does nothing
3898         * since we set nr_frags to 0.
3899         */
3900        for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3901                skb_frag_ref(from, i);
3902
3903        to->truesize += delta;
3904        to->len += len;
3905        to->data_len += len;
3906
3907        *delta_truesize = delta;
3908        return true;
3909}
3910EXPORT_SYMBOL(skb_try_coalesce);
3911
3912/**
3913 * skb_scrub_packet - scrub an skb
3914 *
3915 * @skb: buffer to clean
3916 * @xnet: packet is crossing netns
3917 *
3918 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3919 * into/from a tunnel. Some information have to be cleared during these
3920 * operations.
3921 * skb_scrub_packet can also be used to clean a skb before injecting it in
3922 * another namespace (@xnet == true). We have to clear all information in the
3923 * skb that could impact namespace isolation.
3924 */
3925void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3926{
3927        if (xnet)
3928                skb_orphan(skb);
3929        skb->tstamp.tv64 = 0;
3930        skb->pkt_type = PACKET_HOST;
3931        skb->skb_iif = 0;
3932        skb->local_df = 0;
3933        skb_dst_drop(skb);
3934        skb->mark = 0;
3935        secpath_reset(skb);
3936        nf_reset(skb);
3937        nf_reset_trace(skb);
3938}
3939EXPORT_SYMBOL_GPL(skb_scrub_packet);
3940
3941/**
3942 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3943 *
3944 * @skb: GSO skb
3945 *
3946 * skb_gso_transport_seglen is used to determine the real size of the
3947 * individual segments, including Layer4 headers (TCP/UDP).
3948 *
3949 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3950 */
3951unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3952{
3953        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3954        unsigned int hdr_len;
3955
3956        if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3957                hdr_len = tcp_hdrlen(skb);
3958        else
3959                hdr_len = sizeof(struct udphdr);
3960        return hdr_len + shinfo->gso_size;
3961}
3962EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
3963