linux/net/sched/sch_fq.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
   3 *
   4 *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
   5 *
   6 *      This program is free software; you can redistribute it and/or
   7 *      modify it under the terms of the GNU General Public License
   8 *      as published by the Free Software Foundation; either version
   9 *      2 of the License, or (at your option) any later version.
  10 *
  11 *  Meant to be mostly used for localy generated traffic :
  12 *  Fast classification depends on skb->sk being set before reaching us.
  13 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  14 *  All packets belonging to a socket are considered as a 'flow'.
  15 *
  16 *  Flows are dynamically allocated and stored in a hash table of RB trees
  17 *  They are also part of one Round Robin 'queues' (new or old flows)
  18 *
  19 *  Burst avoidance (aka pacing) capability :
  20 *
  21 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  22 *  bunch of packets, and this packet scheduler adds delay between
  23 *  packets to respect rate limitation.
  24 *
  25 *  enqueue() :
  26 *   - lookup one RB tree (out of 1024 or more) to find the flow.
  27 *     If non existent flow, create it, add it to the tree.
  28 *     Add skb to the per flow list of skb (fifo).
  29 *   - Use a special fifo for high prio packets
  30 *
  31 *  dequeue() : serves flows in Round Robin
  32 *  Note : When a flow becomes empty, we do not immediately remove it from
  33 *  rb trees, for performance reasons (its expected to send additional packets,
  34 *  or SLAB cache will reuse socket for another flow)
  35 */
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/jiffies.h>
  41#include <linux/string.h>
  42#include <linux/in.h>
  43#include <linux/errno.h>
  44#include <linux/init.h>
  45#include <linux/skbuff.h>
  46#include <linux/slab.h>
  47#include <linux/rbtree.h>
  48#include <linux/hash.h>
  49#include <linux/prefetch.h>
  50#include <linux/vmalloc.h>
  51#include <net/netlink.h>
  52#include <net/pkt_sched.h>
  53#include <net/sock.h>
  54#include <net/tcp_states.h>
  55
  56/*
  57 * Per flow structure, dynamically allocated
  58 */
  59struct fq_flow {
  60        struct sk_buff  *head;          /* list of skbs for this flow : first skb */
  61        union {
  62                struct sk_buff *tail;   /* last skb in the list */
  63                unsigned long  age;     /* jiffies when flow was emptied, for gc */
  64        };
  65        struct rb_node  fq_node;        /* anchor in fq_root[] trees */
  66        struct sock     *sk;
  67        int             qlen;           /* number of packets in flow queue */
  68        int             credit;
  69        u32             socket_hash;    /* sk_hash */
  70        struct fq_flow *next;           /* next pointer in RR lists, or &detached */
  71
  72        struct rb_node  rate_node;      /* anchor in q->delayed tree */
  73        u64             time_next_packet;
  74};
  75
  76struct fq_flow_head {
  77        struct fq_flow *first;
  78        struct fq_flow *last;
  79};
  80
  81struct fq_sched_data {
  82        struct fq_flow_head new_flows;
  83
  84        struct fq_flow_head old_flows;
  85
  86        struct rb_root  delayed;        /* for rate limited flows */
  87        u64             time_next_delayed_flow;
  88
  89        struct fq_flow  internal;       /* for non classified or high prio packets */
  90        u32             quantum;
  91        u32             initial_quantum;
  92        u32             flow_refill_delay;
  93        u32             flow_max_rate;  /* optional max rate per flow */
  94        u32             flow_plimit;    /* max packets per flow */
  95        struct rb_root  *fq_root;
  96        u8              rate_enable;
  97        u8              fq_trees_log;
  98
  99        u32             flows;
 100        u32             inactive_flows;
 101        u32             throttled_flows;
 102
 103        u64             stat_gc_flows;
 104        u64             stat_internal_packets;
 105        u64             stat_tcp_retrans;
 106        u64             stat_throttled;
 107        u64             stat_flows_plimit;
 108        u64             stat_pkts_too_long;
 109        u64             stat_allocation_errors;
 110        struct qdisc_watchdog watchdog;
 111};
 112
 113/* special value to mark a detached flow (not on old/new list) */
 114static struct fq_flow detached, throttled;
 115
 116static void fq_flow_set_detached(struct fq_flow *f)
 117{
 118        f->next = &detached;
 119        f->age = jiffies;
 120}
 121
 122static bool fq_flow_is_detached(const struct fq_flow *f)
 123{
 124        return f->next == &detached;
 125}
 126
 127static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
 128{
 129        struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
 130
 131        while (*p) {
 132                struct fq_flow *aux;
 133
 134                parent = *p;
 135                aux = container_of(parent, struct fq_flow, rate_node);
 136                if (f->time_next_packet >= aux->time_next_packet)
 137                        p = &parent->rb_right;
 138                else
 139                        p = &parent->rb_left;
 140        }
 141        rb_link_node(&f->rate_node, parent, p);
 142        rb_insert_color(&f->rate_node, &q->delayed);
 143        q->throttled_flows++;
 144        q->stat_throttled++;
 145
 146        f->next = &throttled;
 147        if (q->time_next_delayed_flow > f->time_next_packet)
 148                q->time_next_delayed_flow = f->time_next_packet;
 149}
 150
 151
 152static struct kmem_cache *fq_flow_cachep __read_mostly;
 153
 154static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
 155{
 156        if (head->first)
 157                head->last->next = flow;
 158        else
 159                head->first = flow;
 160        head->last = flow;
 161        flow->next = NULL;
 162}
 163
 164/* limit number of collected flows per round */
 165#define FQ_GC_MAX 8
 166#define FQ_GC_AGE (3*HZ)
 167
 168static bool fq_gc_candidate(const struct fq_flow *f)
 169{
 170        return fq_flow_is_detached(f) &&
 171               time_after(jiffies, f->age + FQ_GC_AGE);
 172}
 173
 174static void fq_gc(struct fq_sched_data *q,
 175                  struct rb_root *root,
 176                  struct sock *sk)
 177{
 178        struct fq_flow *f, *tofree[FQ_GC_MAX];
 179        struct rb_node **p, *parent;
 180        int fcnt = 0;
 181
 182        p = &root->rb_node;
 183        parent = NULL;
 184        while (*p) {
 185                parent = *p;
 186
 187                f = container_of(parent, struct fq_flow, fq_node);
 188                if (f->sk == sk)
 189                        break;
 190
 191                if (fq_gc_candidate(f)) {
 192                        tofree[fcnt++] = f;
 193                        if (fcnt == FQ_GC_MAX)
 194                                break;
 195                }
 196
 197                if (f->sk > sk)
 198                        p = &parent->rb_right;
 199                else
 200                        p = &parent->rb_left;
 201        }
 202
 203        q->flows -= fcnt;
 204        q->inactive_flows -= fcnt;
 205        q->stat_gc_flows += fcnt;
 206        while (fcnt) {
 207                struct fq_flow *f = tofree[--fcnt];
 208
 209                rb_erase(&f->fq_node, root);
 210                kmem_cache_free(fq_flow_cachep, f);
 211        }
 212}
 213
 214static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
 215{
 216        struct rb_node **p, *parent;
 217        struct sock *sk = skb->sk;
 218        struct rb_root *root;
 219        struct fq_flow *f;
 220
 221        /* warning: no starvation prevention... */
 222        if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
 223                return &q->internal;
 224
 225        if (unlikely(!sk)) {
 226                /* By forcing low order bit to 1, we make sure to not
 227                 * collide with a local flow (socket pointers are word aligned)
 228                 */
 229                sk = (struct sock *)(skb_get_hash(skb) | 1L);
 230        }
 231
 232        root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
 233
 234        if (q->flows >= (2U << q->fq_trees_log) &&
 235            q->inactive_flows > q->flows/2)
 236                fq_gc(q, root, sk);
 237
 238        p = &root->rb_node;
 239        parent = NULL;
 240        while (*p) {
 241                parent = *p;
 242
 243                f = container_of(parent, struct fq_flow, fq_node);
 244                if (f->sk == sk) {
 245                        /* socket might have been reallocated, so check
 246                         * if its sk_hash is the same.
 247                         * It not, we need to refill credit with
 248                         * initial quantum
 249                         */
 250                        if (unlikely(skb->sk &&
 251                                     f->socket_hash != sk->sk_hash)) {
 252                                f->credit = q->initial_quantum;
 253                                f->socket_hash = sk->sk_hash;
 254                                f->time_next_packet = 0ULL;
 255                        }
 256                        return f;
 257                }
 258                if (f->sk > sk)
 259                        p = &parent->rb_right;
 260                else
 261                        p = &parent->rb_left;
 262        }
 263
 264        f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
 265        if (unlikely(!f)) {
 266                q->stat_allocation_errors++;
 267                return &q->internal;
 268        }
 269        fq_flow_set_detached(f);
 270        f->sk = sk;
 271        if (skb->sk)
 272                f->socket_hash = sk->sk_hash;
 273        f->credit = q->initial_quantum;
 274
 275        rb_link_node(&f->fq_node, parent, p);
 276        rb_insert_color(&f->fq_node, root);
 277
 278        q->flows++;
 279        q->inactive_flows++;
 280        return f;
 281}
 282
 283
 284/* remove one skb from head of flow queue */
 285static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
 286{
 287        struct sk_buff *skb = flow->head;
 288
 289        if (skb) {
 290                flow->head = skb->next;
 291                skb->next = NULL;
 292                flow->qlen--;
 293                sch->qstats.backlog -= qdisc_pkt_len(skb);
 294                sch->q.qlen--;
 295        }
 296        return skb;
 297}
 298
 299/* We might add in the future detection of retransmits
 300 * For the time being, just return false
 301 */
 302static bool skb_is_retransmit(struct sk_buff *skb)
 303{
 304        return false;
 305}
 306
 307/* add skb to flow queue
 308 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
 309 * We special case tcp retransmits to be transmitted before other packets.
 310 * We rely on fact that TCP retransmits are unlikely, so we do not waste
 311 * a separate queue or a pointer.
 312 * head->  [retrans pkt 1]
 313 *         [retrans pkt 2]
 314 *         [ normal pkt 1]
 315 *         [ normal pkt 2]
 316 *         [ normal pkt 3]
 317 * tail->  [ normal pkt 4]
 318 */
 319static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
 320{
 321        struct sk_buff *prev, *head = flow->head;
 322
 323        skb->next = NULL;
 324        if (!head) {
 325                flow->head = skb;
 326                flow->tail = skb;
 327                return;
 328        }
 329        if (likely(!skb_is_retransmit(skb))) {
 330                flow->tail->next = skb;
 331                flow->tail = skb;
 332                return;
 333        }
 334
 335        /* This skb is a tcp retransmit,
 336         * find the last retrans packet in the queue
 337         */
 338        prev = NULL;
 339        while (skb_is_retransmit(head)) {
 340                prev = head;
 341                head = head->next;
 342                if (!head)
 343                        break;
 344        }
 345        if (!prev) { /* no rtx packet in queue, become the new head */
 346                skb->next = flow->head;
 347                flow->head = skb;
 348        } else {
 349                if (prev == flow->tail)
 350                        flow->tail = skb;
 351                else
 352                        skb->next = prev->next;
 353                prev->next = skb;
 354        }
 355}
 356
 357static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 358{
 359        struct fq_sched_data *q = qdisc_priv(sch);
 360        struct fq_flow *f;
 361
 362        if (unlikely(sch->q.qlen >= sch->limit))
 363                return qdisc_drop(skb, sch);
 364
 365        f = fq_classify(skb, q);
 366        if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
 367                q->stat_flows_plimit++;
 368                return qdisc_drop(skb, sch);
 369        }
 370
 371        f->qlen++;
 372        if (skb_is_retransmit(skb))
 373                q->stat_tcp_retrans++;
 374        sch->qstats.backlog += qdisc_pkt_len(skb);
 375        if (fq_flow_is_detached(f)) {
 376                fq_flow_add_tail(&q->new_flows, f);
 377                if (time_after(jiffies, f->age + q->flow_refill_delay))
 378                        f->credit = max_t(u32, f->credit, q->quantum);
 379                q->inactive_flows--;
 380                qdisc_unthrottled(sch);
 381        }
 382
 383        /* Note: this overwrites f->age */
 384        flow_queue_add(f, skb);
 385
 386        if (unlikely(f == &q->internal)) {
 387                q->stat_internal_packets++;
 388                qdisc_unthrottled(sch);
 389        }
 390        sch->q.qlen++;
 391
 392        return NET_XMIT_SUCCESS;
 393}
 394
 395static void fq_check_throttled(struct fq_sched_data *q, u64 now)
 396{
 397        struct rb_node *p;
 398
 399        if (q->time_next_delayed_flow > now)
 400                return;
 401
 402        q->time_next_delayed_flow = ~0ULL;
 403        while ((p = rb_first(&q->delayed)) != NULL) {
 404                struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
 405
 406                if (f->time_next_packet > now) {
 407                        q->time_next_delayed_flow = f->time_next_packet;
 408                        break;
 409                }
 410                rb_erase(p, &q->delayed);
 411                q->throttled_flows--;
 412                fq_flow_add_tail(&q->old_flows, f);
 413        }
 414}
 415
 416static struct sk_buff *fq_dequeue(struct Qdisc *sch)
 417{
 418        struct fq_sched_data *q = qdisc_priv(sch);
 419        u64 now = ktime_to_ns(ktime_get());
 420        struct fq_flow_head *head;
 421        struct sk_buff *skb;
 422        struct fq_flow *f;
 423        u32 rate;
 424
 425        skb = fq_dequeue_head(sch, &q->internal);
 426        if (skb)
 427                goto out;
 428        fq_check_throttled(q, now);
 429begin:
 430        head = &q->new_flows;
 431        if (!head->first) {
 432                head = &q->old_flows;
 433                if (!head->first) {
 434                        if (q->time_next_delayed_flow != ~0ULL)
 435                                qdisc_watchdog_schedule_ns(&q->watchdog,
 436                                                           q->time_next_delayed_flow);
 437                        return NULL;
 438                }
 439        }
 440        f = head->first;
 441
 442        if (f->credit <= 0) {
 443                f->credit += q->quantum;
 444                head->first = f->next;
 445                fq_flow_add_tail(&q->old_flows, f);
 446                goto begin;
 447        }
 448
 449        if (unlikely(f->head && now < f->time_next_packet)) {
 450                head->first = f->next;
 451                fq_flow_set_throttled(q, f);
 452                goto begin;
 453        }
 454
 455        skb = fq_dequeue_head(sch, f);
 456        if (!skb) {
 457                head->first = f->next;
 458                /* force a pass through old_flows to prevent starvation */
 459                if ((head == &q->new_flows) && q->old_flows.first) {
 460                        fq_flow_add_tail(&q->old_flows, f);
 461                } else {
 462                        fq_flow_set_detached(f);
 463                        q->inactive_flows++;
 464                }
 465                goto begin;
 466        }
 467        prefetch(&skb->end);
 468        f->time_next_packet = now;
 469        f->credit -= qdisc_pkt_len(skb);
 470
 471        if (f->credit > 0 || !q->rate_enable)
 472                goto out;
 473
 474        rate = q->flow_max_rate;
 475        if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
 476                rate = min(skb->sk->sk_pacing_rate, rate);
 477
 478        if (rate != ~0U) {
 479                u32 plen = max(qdisc_pkt_len(skb), q->quantum);
 480                u64 len = (u64)plen * NSEC_PER_SEC;
 481
 482                if (likely(rate))
 483                        do_div(len, rate);
 484                /* Since socket rate can change later,
 485                 * clamp the delay to 125 ms.
 486                 * TODO: maybe segment the too big skb, as in commit
 487                 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
 488                 */
 489                if (unlikely(len > 125 * NSEC_PER_MSEC)) {
 490                        len = 125 * NSEC_PER_MSEC;
 491                        q->stat_pkts_too_long++;
 492                }
 493
 494                f->time_next_packet = now + len;
 495        }
 496out:
 497        qdisc_bstats_update(sch, skb);
 498        qdisc_unthrottled(sch);
 499        return skb;
 500}
 501
 502static void fq_reset(struct Qdisc *sch)
 503{
 504        struct fq_sched_data *q = qdisc_priv(sch);
 505        struct rb_root *root;
 506        struct sk_buff *skb;
 507        struct rb_node *p;
 508        struct fq_flow *f;
 509        unsigned int idx;
 510
 511        while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
 512                kfree_skb(skb);
 513
 514        if (!q->fq_root)
 515                return;
 516
 517        for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
 518                root = &q->fq_root[idx];
 519                while ((p = rb_first(root)) != NULL) {
 520                        f = container_of(p, struct fq_flow, fq_node);
 521                        rb_erase(p, root);
 522
 523                        while ((skb = fq_dequeue_head(sch, f)) != NULL)
 524                                kfree_skb(skb);
 525
 526                        kmem_cache_free(fq_flow_cachep, f);
 527                }
 528        }
 529        q->new_flows.first      = NULL;
 530        q->old_flows.first      = NULL;
 531        q->delayed              = RB_ROOT;
 532        q->flows                = 0;
 533        q->inactive_flows       = 0;
 534        q->throttled_flows      = 0;
 535}
 536
 537static void fq_rehash(struct fq_sched_data *q,
 538                      struct rb_root *old_array, u32 old_log,
 539                      struct rb_root *new_array, u32 new_log)
 540{
 541        struct rb_node *op, **np, *parent;
 542        struct rb_root *oroot, *nroot;
 543        struct fq_flow *of, *nf;
 544        int fcnt = 0;
 545        u32 idx;
 546
 547        for (idx = 0; idx < (1U << old_log); idx++) {
 548                oroot = &old_array[idx];
 549                while ((op = rb_first(oroot)) != NULL) {
 550                        rb_erase(op, oroot);
 551                        of = container_of(op, struct fq_flow, fq_node);
 552                        if (fq_gc_candidate(of)) {
 553                                fcnt++;
 554                                kmem_cache_free(fq_flow_cachep, of);
 555                                continue;
 556                        }
 557                        nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
 558
 559                        np = &nroot->rb_node;
 560                        parent = NULL;
 561                        while (*np) {
 562                                parent = *np;
 563
 564                                nf = container_of(parent, struct fq_flow, fq_node);
 565                                BUG_ON(nf->sk == of->sk);
 566
 567                                if (nf->sk > of->sk)
 568                                        np = &parent->rb_right;
 569                                else
 570                                        np = &parent->rb_left;
 571                        }
 572
 573                        rb_link_node(&of->fq_node, parent, np);
 574                        rb_insert_color(&of->fq_node, nroot);
 575                }
 576        }
 577        q->flows -= fcnt;
 578        q->inactive_flows -= fcnt;
 579        q->stat_gc_flows += fcnt;
 580}
 581
 582static void *fq_alloc_node(size_t sz, int node)
 583{
 584        void *ptr;
 585
 586        ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
 587        if (!ptr)
 588                ptr = vmalloc_node(sz, node);
 589        return ptr;
 590}
 591
 592static void fq_free(void *addr)
 593{
 594        if (addr && is_vmalloc_addr(addr))
 595                vfree(addr);
 596        else
 597                kfree(addr);
 598}
 599
 600static int fq_resize(struct Qdisc *sch, u32 log)
 601{
 602        struct fq_sched_data *q = qdisc_priv(sch);
 603        struct rb_root *array;
 604        void *old_fq_root;
 605        u32 idx;
 606
 607        if (q->fq_root && log == q->fq_trees_log)
 608                return 0;
 609
 610        /* If XPS was setup, we can allocate memory on right NUMA node */
 611        array = fq_alloc_node(sizeof(struct rb_root) << log,
 612                              netdev_queue_numa_node_read(sch->dev_queue));
 613        if (!array)
 614                return -ENOMEM;
 615
 616        for (idx = 0; idx < (1U << log); idx++)
 617                array[idx] = RB_ROOT;
 618
 619        sch_tree_lock(sch);
 620
 621        old_fq_root = q->fq_root;
 622        if (old_fq_root)
 623                fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
 624
 625        q->fq_root = array;
 626        q->fq_trees_log = log;
 627
 628        sch_tree_unlock(sch);
 629
 630        fq_free(old_fq_root);
 631
 632        return 0;
 633}
 634
 635static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
 636        [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
 637        [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
 638        [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
 639        [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
 640        [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
 641        [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
 642        [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
 643        [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
 644        [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
 645};
 646
 647static int fq_change(struct Qdisc *sch, struct nlattr *opt)
 648{
 649        struct fq_sched_data *q = qdisc_priv(sch);
 650        struct nlattr *tb[TCA_FQ_MAX + 1];
 651        int err, drop_count = 0;
 652        u32 fq_log;
 653
 654        if (!opt)
 655                return -EINVAL;
 656
 657        err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
 658        if (err < 0)
 659                return err;
 660
 661        sch_tree_lock(sch);
 662
 663        fq_log = q->fq_trees_log;
 664
 665        if (tb[TCA_FQ_BUCKETS_LOG]) {
 666                u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
 667
 668                if (nval >= 1 && nval <= ilog2(256*1024))
 669                        fq_log = nval;
 670                else
 671                        err = -EINVAL;
 672        }
 673        if (tb[TCA_FQ_PLIMIT])
 674                sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
 675
 676        if (tb[TCA_FQ_FLOW_PLIMIT])
 677                q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
 678
 679        if (tb[TCA_FQ_QUANTUM])
 680                q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
 681
 682        if (tb[TCA_FQ_INITIAL_QUANTUM])
 683                q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
 684
 685        if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
 686                pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
 687                                    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
 688
 689        if (tb[TCA_FQ_FLOW_MAX_RATE])
 690                q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
 691
 692        if (tb[TCA_FQ_RATE_ENABLE]) {
 693                u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
 694
 695                if (enable <= 1)
 696                        q->rate_enable = enable;
 697                else
 698                        err = -EINVAL;
 699        }
 700
 701        if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
 702                u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
 703
 704                q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
 705        }
 706
 707        if (!err) {
 708                sch_tree_unlock(sch);
 709                err = fq_resize(sch, fq_log);
 710                sch_tree_lock(sch);
 711        }
 712        while (sch->q.qlen > sch->limit) {
 713                struct sk_buff *skb = fq_dequeue(sch);
 714
 715                if (!skb)
 716                        break;
 717                kfree_skb(skb);
 718                drop_count++;
 719        }
 720        qdisc_tree_decrease_qlen(sch, drop_count);
 721
 722        sch_tree_unlock(sch);
 723        return err;
 724}
 725
 726static void fq_destroy(struct Qdisc *sch)
 727{
 728        struct fq_sched_data *q = qdisc_priv(sch);
 729
 730        fq_reset(sch);
 731        fq_free(q->fq_root);
 732        qdisc_watchdog_cancel(&q->watchdog);
 733}
 734
 735static int fq_init(struct Qdisc *sch, struct nlattr *opt)
 736{
 737        struct fq_sched_data *q = qdisc_priv(sch);
 738        int err;
 739
 740        sch->limit              = 10000;
 741        q->flow_plimit          = 100;
 742        q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
 743        q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
 744        q->flow_refill_delay    = msecs_to_jiffies(40);
 745        q->flow_max_rate        = ~0U;
 746        q->rate_enable          = 1;
 747        q->new_flows.first      = NULL;
 748        q->old_flows.first      = NULL;
 749        q->delayed              = RB_ROOT;
 750        q->fq_root              = NULL;
 751        q->fq_trees_log         = ilog2(1024);
 752        qdisc_watchdog_init(&q->watchdog, sch);
 753
 754        if (opt)
 755                err = fq_change(sch, opt);
 756        else
 757                err = fq_resize(sch, q->fq_trees_log);
 758
 759        return err;
 760}
 761
 762static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
 763{
 764        struct fq_sched_data *q = qdisc_priv(sch);
 765        struct nlattr *opts;
 766
 767        opts = nla_nest_start(skb, TCA_OPTIONS);
 768        if (opts == NULL)
 769                goto nla_put_failure;
 770
 771        /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
 772
 773        if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
 774            nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
 775            nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
 776            nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
 777            nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
 778            nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
 779            nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
 780                        jiffies_to_usecs(q->flow_refill_delay)) ||
 781            nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
 782                goto nla_put_failure;
 783
 784        nla_nest_end(skb, opts);
 785        return skb->len;
 786
 787nla_put_failure:
 788        return -1;
 789}
 790
 791static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 792{
 793        struct fq_sched_data *q = qdisc_priv(sch);
 794        u64 now = ktime_to_ns(ktime_get());
 795        struct tc_fq_qd_stats st = {
 796                .gc_flows               = q->stat_gc_flows,
 797                .highprio_packets       = q->stat_internal_packets,
 798                .tcp_retrans            = q->stat_tcp_retrans,
 799                .throttled              = q->stat_throttled,
 800                .flows_plimit           = q->stat_flows_plimit,
 801                .pkts_too_long          = q->stat_pkts_too_long,
 802                .allocation_errors      = q->stat_allocation_errors,
 803                .flows                  = q->flows,
 804                .inactive_flows         = q->inactive_flows,
 805                .throttled_flows        = q->throttled_flows,
 806                .time_next_delayed_flow = q->time_next_delayed_flow - now,
 807        };
 808
 809        return gnet_stats_copy_app(d, &st, sizeof(st));
 810}
 811
 812static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
 813        .id             =       "fq",
 814        .priv_size      =       sizeof(struct fq_sched_data),
 815
 816        .enqueue        =       fq_enqueue,
 817        .dequeue        =       fq_dequeue,
 818        .peek           =       qdisc_peek_dequeued,
 819        .init           =       fq_init,
 820        .reset          =       fq_reset,
 821        .destroy        =       fq_destroy,
 822        .change         =       fq_change,
 823        .dump           =       fq_dump,
 824        .dump_stats     =       fq_dump_stats,
 825        .owner          =       THIS_MODULE,
 826};
 827
 828static int __init fq_module_init(void)
 829{
 830        int ret;
 831
 832        fq_flow_cachep = kmem_cache_create("fq_flow_cache",
 833                                           sizeof(struct fq_flow),
 834                                           0, 0, NULL);
 835        if (!fq_flow_cachep)
 836                return -ENOMEM;
 837
 838        ret = register_qdisc(&fq_qdisc_ops);
 839        if (ret)
 840                kmem_cache_destroy(fq_flow_cachep);
 841        return ret;
 842}
 843
 844static void __exit fq_module_exit(void)
 845{
 846        unregister_qdisc(&fq_qdisc_ops);
 847        kmem_cache_destroy(fq_flow_cachep);
 848}
 849
 850module_init(fq_module_init)
 851module_exit(fq_module_exit)
 852MODULE_AUTHOR("Eric Dumazet");
 853MODULE_LICENSE("GPL");
 854