linux/arch/arm/common/bL_switcher.c
<<
>>
Prefs
   1/*
   2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
   3 *
   4 * Created by:  Nicolas Pitre, March 2012
   5 * Copyright:   (C) 2012-2013  Linaro Limited
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/atomic.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/sched.h>
  17#include <linux/interrupt.h>
  18#include <linux/cpu_pm.h>
  19#include <linux/cpu.h>
  20#include <linux/cpumask.h>
  21#include <linux/kthread.h>
  22#include <linux/wait.h>
  23#include <linux/time.h>
  24#include <linux/clockchips.h>
  25#include <linux/hrtimer.h>
  26#include <linux/tick.h>
  27#include <linux/notifier.h>
  28#include <linux/mm.h>
  29#include <linux/mutex.h>
  30#include <linux/smp.h>
  31#include <linux/spinlock.h>
  32#include <linux/string.h>
  33#include <linux/sysfs.h>
  34#include <linux/irqchip/arm-gic.h>
  35#include <linux/moduleparam.h>
  36
  37#include <asm/smp_plat.h>
  38#include <asm/cputype.h>
  39#include <asm/suspend.h>
  40#include <asm/mcpm.h>
  41#include <asm/bL_switcher.h>
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/power_cpu_migrate.h>
  45
  46
  47/*
  48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
  49 * __attribute_const__ and we don't want the compiler to assume any
  50 * constness here as the value _does_ change along some code paths.
  51 */
  52
  53static int read_mpidr(void)
  54{
  55        unsigned int id;
  56        asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
  57        return id & MPIDR_HWID_BITMASK;
  58}
  59
  60/*
  61 * Get a global nanosecond time stamp for tracing.
  62 */
  63static s64 get_ns(void)
  64{
  65        struct timespec ts;
  66        getnstimeofday(&ts);
  67        return timespec_to_ns(&ts);
  68}
  69
  70/*
  71 * bL switcher core code.
  72 */
  73
  74static void bL_do_switch(void *_arg)
  75{
  76        unsigned ib_mpidr, ib_cpu, ib_cluster;
  77        long volatile handshake, **handshake_ptr = _arg;
  78
  79        pr_debug("%s\n", __func__);
  80
  81        ib_mpidr = cpu_logical_map(smp_processor_id());
  82        ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
  83        ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
  84
  85        /* Advertise our handshake location */
  86        if (handshake_ptr) {
  87                handshake = 0;
  88                *handshake_ptr = &handshake;
  89        } else
  90                handshake = -1;
  91
  92        /*
  93         * Our state has been saved at this point.  Let's release our
  94         * inbound CPU.
  95         */
  96        mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
  97        sev();
  98
  99        /*
 100         * From this point, we must assume that our counterpart CPU might
 101         * have taken over in its parallel world already, as if execution
 102         * just returned from cpu_suspend().  It is therefore important to
 103         * be very careful not to make any change the other guy is not
 104         * expecting.  This is why we need stack isolation.
 105         *
 106         * Fancy under cover tasks could be performed here.  For now
 107         * we have none.
 108         */
 109
 110        /*
 111         * Let's wait until our inbound is alive.
 112         */
 113        while (!handshake) {
 114                wfe();
 115                smp_mb();
 116        }
 117
 118        /* Let's put ourself down. */
 119        mcpm_cpu_power_down();
 120
 121        /* should never get here */
 122        BUG();
 123}
 124
 125/*
 126 * Stack isolation.  To ensure 'current' remains valid, we just use another
 127 * piece of our thread's stack space which should be fairly lightly used.
 128 * The selected area starts just above the thread_info structure located
 129 * at the very bottom of the stack, aligned to a cache line, and indexed
 130 * with the cluster number.
 131 */
 132#define STACK_SIZE 512
 133extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
 134static int bL_switchpoint(unsigned long _arg)
 135{
 136        unsigned int mpidr = read_mpidr();
 137        unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 138        void *stack = current_thread_info() + 1;
 139        stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
 140        stack += clusterid * STACK_SIZE + STACK_SIZE;
 141        call_with_stack(bL_do_switch, (void *)_arg, stack);
 142        BUG();
 143}
 144
 145/*
 146 * Generic switcher interface
 147 */
 148
 149static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
 150static int bL_switcher_cpu_pairing[NR_CPUS];
 151
 152/*
 153 * bL_switch_to - Switch to a specific cluster for the current CPU
 154 * @new_cluster_id: the ID of the cluster to switch to.
 155 *
 156 * This function must be called on the CPU to be switched.
 157 * Returns 0 on success, else a negative status code.
 158 */
 159static int bL_switch_to(unsigned int new_cluster_id)
 160{
 161        unsigned int mpidr, this_cpu, that_cpu;
 162        unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
 163        struct completion inbound_alive;
 164        struct tick_device *tdev;
 165        enum clock_event_mode tdev_mode;
 166        long volatile *handshake_ptr;
 167        int ipi_nr, ret;
 168
 169        this_cpu = smp_processor_id();
 170        ob_mpidr = read_mpidr();
 171        ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
 172        ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
 173        BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
 174
 175        if (new_cluster_id == ob_cluster)
 176                return 0;
 177
 178        that_cpu = bL_switcher_cpu_pairing[this_cpu];
 179        ib_mpidr = cpu_logical_map(that_cpu);
 180        ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
 181        ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
 182
 183        pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
 184                 this_cpu, ob_mpidr, ib_mpidr);
 185
 186        this_cpu = smp_processor_id();
 187
 188        /* Close the gate for our entry vectors */
 189        mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
 190        mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
 191
 192        /* Install our "inbound alive" notifier. */
 193        init_completion(&inbound_alive);
 194        ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
 195        ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
 196        mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
 197
 198        /*
 199         * Let's wake up the inbound CPU now in case it requires some delay
 200         * to come online, but leave it gated in our entry vector code.
 201         */
 202        ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
 203        if (ret) {
 204                pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
 205                return ret;
 206        }
 207
 208        /*
 209         * Raise a SGI on the inbound CPU to make sure it doesn't stall
 210         * in a possible WFI, such as in bL_power_down().
 211         */
 212        gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
 213
 214        /*
 215         * Wait for the inbound to come up.  This allows for other
 216         * tasks to be scheduled in the mean time.
 217         */
 218        wait_for_completion(&inbound_alive);
 219        mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
 220
 221        /*
 222         * From this point we are entering the switch critical zone
 223         * and can't take any interrupts anymore.
 224         */
 225        local_irq_disable();
 226        local_fiq_disable();
 227        trace_cpu_migrate_begin(get_ns(), ob_mpidr);
 228
 229        /* redirect GIC's SGIs to our counterpart */
 230        gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
 231
 232        tdev = tick_get_device(this_cpu);
 233        if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu)))
 234                tdev = NULL;
 235        if (tdev) {
 236                tdev_mode = tdev->evtdev->mode;
 237                clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
 238        }
 239
 240        ret = cpu_pm_enter();
 241
 242        /* we can not tolerate errors at this point */
 243        if (ret)
 244                panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
 245
 246        /* Swap the physical CPUs in the logical map for this logical CPU. */
 247        cpu_logical_map(this_cpu) = ib_mpidr;
 248        cpu_logical_map(that_cpu) = ob_mpidr;
 249
 250        /* Let's do the actual CPU switch. */
 251        ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
 252        if (ret > 0)
 253                panic("%s: cpu_suspend() returned %d\n", __func__, ret);
 254
 255        /* We are executing on the inbound CPU at this point */
 256        mpidr = read_mpidr();
 257        pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
 258        BUG_ON(mpidr != ib_mpidr);
 259
 260        mcpm_cpu_powered_up();
 261
 262        ret = cpu_pm_exit();
 263
 264        if (tdev) {
 265                clockevents_set_mode(tdev->evtdev, tdev_mode);
 266                clockevents_program_event(tdev->evtdev,
 267                                          tdev->evtdev->next_event, 1);
 268        }
 269
 270        trace_cpu_migrate_finish(get_ns(), ib_mpidr);
 271        local_fiq_enable();
 272        local_irq_enable();
 273
 274        *handshake_ptr = 1;
 275        dsb_sev();
 276
 277        if (ret)
 278                pr_err("%s exiting with error %d\n", __func__, ret);
 279        return ret;
 280}
 281
 282struct bL_thread {
 283        spinlock_t lock;
 284        struct task_struct *task;
 285        wait_queue_head_t wq;
 286        int wanted_cluster;
 287        struct completion started;
 288        bL_switch_completion_handler completer;
 289        void *completer_cookie;
 290};
 291
 292static struct bL_thread bL_threads[NR_CPUS];
 293
 294static int bL_switcher_thread(void *arg)
 295{
 296        struct bL_thread *t = arg;
 297        struct sched_param param = { .sched_priority = 1 };
 298        int cluster;
 299        bL_switch_completion_handler completer;
 300        void *completer_cookie;
 301
 302        sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
 303        complete(&t->started);
 304
 305        do {
 306                if (signal_pending(current))
 307                        flush_signals(current);
 308                wait_event_interruptible(t->wq,
 309                                t->wanted_cluster != -1 ||
 310                                kthread_should_stop());
 311
 312                spin_lock(&t->lock);
 313                cluster = t->wanted_cluster;
 314                completer = t->completer;
 315                completer_cookie = t->completer_cookie;
 316                t->wanted_cluster = -1;
 317                t->completer = NULL;
 318                spin_unlock(&t->lock);
 319
 320                if (cluster != -1) {
 321                        bL_switch_to(cluster);
 322
 323                        if (completer)
 324                                completer(completer_cookie);
 325                }
 326        } while (!kthread_should_stop());
 327
 328        return 0;
 329}
 330
 331static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
 332{
 333        struct task_struct *task;
 334
 335        task = kthread_create_on_node(bL_switcher_thread, arg,
 336                                      cpu_to_node(cpu), "kswitcher_%d", cpu);
 337        if (!IS_ERR(task)) {
 338                kthread_bind(task, cpu);
 339                wake_up_process(task);
 340        } else
 341                pr_err("%s failed for CPU %d\n", __func__, cpu);
 342        return task;
 343}
 344
 345/*
 346 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
 347 *      with completion notification via a callback
 348 *
 349 * @cpu: the CPU to switch
 350 * @new_cluster_id: the ID of the cluster to switch to.
 351 * @completer: switch completion callback.  if non-NULL,
 352 *      @completer(@completer_cookie) will be called on completion of
 353 *      the switch, in non-atomic context.
 354 * @completer_cookie: opaque context argument for @completer.
 355 *
 356 * This function causes a cluster switch on the given CPU by waking up
 357 * the appropriate switcher thread.  This function may or may not return
 358 * before the switch has occurred.
 359 *
 360 * If a @completer callback function is supplied, it will be called when
 361 * the switch is complete.  This can be used to determine asynchronously
 362 * when the switch is complete, regardless of when bL_switch_request()
 363 * returns.  When @completer is supplied, no new switch request is permitted
 364 * for the affected CPU until after the switch is complete, and @completer
 365 * has returned.
 366 */
 367int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
 368                         bL_switch_completion_handler completer,
 369                         void *completer_cookie)
 370{
 371        struct bL_thread *t;
 372
 373        if (cpu >= ARRAY_SIZE(bL_threads)) {
 374                pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
 375                return -EINVAL;
 376        }
 377
 378        t = &bL_threads[cpu];
 379
 380        if (IS_ERR(t->task))
 381                return PTR_ERR(t->task);
 382        if (!t->task)
 383                return -ESRCH;
 384
 385        spin_lock(&t->lock);
 386        if (t->completer) {
 387                spin_unlock(&t->lock);
 388                return -EBUSY;
 389        }
 390        t->completer = completer;
 391        t->completer_cookie = completer_cookie;
 392        t->wanted_cluster = new_cluster_id;
 393        spin_unlock(&t->lock);
 394        wake_up(&t->wq);
 395        return 0;
 396}
 397EXPORT_SYMBOL_GPL(bL_switch_request_cb);
 398
 399/*
 400 * Activation and configuration code.
 401 */
 402
 403static DEFINE_MUTEX(bL_switcher_activation_lock);
 404static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
 405static unsigned int bL_switcher_active;
 406static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
 407static cpumask_t bL_switcher_removed_logical_cpus;
 408
 409int bL_switcher_register_notifier(struct notifier_block *nb)
 410{
 411        return blocking_notifier_chain_register(&bL_activation_notifier, nb);
 412}
 413EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
 414
 415int bL_switcher_unregister_notifier(struct notifier_block *nb)
 416{
 417        return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
 418}
 419EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
 420
 421static int bL_activation_notify(unsigned long val)
 422{
 423        int ret;
 424
 425        ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
 426        if (ret & NOTIFY_STOP_MASK)
 427                pr_err("%s: notifier chain failed with status 0x%x\n",
 428                        __func__, ret);
 429        return notifier_to_errno(ret);
 430}
 431
 432static void bL_switcher_restore_cpus(void)
 433{
 434        int i;
 435
 436        for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
 437                struct device *cpu_dev = get_cpu_device(i);
 438                int ret = device_online(cpu_dev);
 439                if (ret)
 440                        dev_err(cpu_dev, "switcher: unable to restore CPU\n");
 441        }
 442}
 443
 444static int bL_switcher_halve_cpus(void)
 445{
 446        int i, j, cluster_0, gic_id, ret;
 447        unsigned int cpu, cluster, mask;
 448        cpumask_t available_cpus;
 449
 450        /* First pass to validate what we have */
 451        mask = 0;
 452        for_each_online_cpu(i) {
 453                cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
 454                cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
 455                if (cluster >= 2) {
 456                        pr_err("%s: only dual cluster systems are supported\n", __func__);
 457                        return -EINVAL;
 458                }
 459                if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
 460                        return -EINVAL;
 461                mask |= (1 << cluster);
 462        }
 463        if (mask != 3) {
 464                pr_err("%s: no CPU pairing possible\n", __func__);
 465                return -EINVAL;
 466        }
 467
 468        /*
 469         * Now let's do the pairing.  We match each CPU with another CPU
 470         * from a different cluster.  To get a uniform scheduling behavior
 471         * without fiddling with CPU topology and compute capacity data,
 472         * we'll use logical CPUs initially belonging to the same cluster.
 473         */
 474        memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
 475        cpumask_copy(&available_cpus, cpu_online_mask);
 476        cluster_0 = -1;
 477        for_each_cpu(i, &available_cpus) {
 478                int match = -1;
 479                cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
 480                if (cluster_0 == -1)
 481                        cluster_0 = cluster;
 482                if (cluster != cluster_0)
 483                        continue;
 484                cpumask_clear_cpu(i, &available_cpus);
 485                for_each_cpu(j, &available_cpus) {
 486                        cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
 487                        /*
 488                         * Let's remember the last match to create "odd"
 489                         * pairings on purpose in order for other code not
 490                         * to assume any relation between physical and
 491                         * logical CPU numbers.
 492                         */
 493                        if (cluster != cluster_0)
 494                                match = j;
 495                }
 496                if (match != -1) {
 497                        bL_switcher_cpu_pairing[i] = match;
 498                        cpumask_clear_cpu(match, &available_cpus);
 499                        pr_info("CPU%d paired with CPU%d\n", i, match);
 500                }
 501        }
 502
 503        /*
 504         * Now we disable the unwanted CPUs i.e. everything that has no
 505         * pairing information (that includes the pairing counterparts).
 506         */
 507        cpumask_clear(&bL_switcher_removed_logical_cpus);
 508        for_each_online_cpu(i) {
 509                cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
 510                cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
 511
 512                /* Let's take note of the GIC ID for this CPU */
 513                gic_id = gic_get_cpu_id(i);
 514                if (gic_id < 0) {
 515                        pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
 516                        bL_switcher_restore_cpus();
 517                        return -EINVAL;
 518                }
 519                bL_gic_id[cpu][cluster] = gic_id;
 520                pr_info("GIC ID for CPU %u cluster %u is %u\n",
 521                        cpu, cluster, gic_id);
 522
 523                if (bL_switcher_cpu_pairing[i] != -1) {
 524                        bL_switcher_cpu_original_cluster[i] = cluster;
 525                        continue;
 526                }
 527
 528                ret = device_offline(get_cpu_device(i));
 529                if (ret) {
 530                        bL_switcher_restore_cpus();
 531                        return ret;
 532                }
 533                cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
 534        }
 535
 536        return 0;
 537}
 538
 539/* Determine the logical CPU a given physical CPU is grouped on. */
 540int bL_switcher_get_logical_index(u32 mpidr)
 541{
 542        int cpu;
 543
 544        if (!bL_switcher_active)
 545                return -EUNATCH;
 546
 547        mpidr &= MPIDR_HWID_BITMASK;
 548        for_each_online_cpu(cpu) {
 549                int pairing = bL_switcher_cpu_pairing[cpu];
 550                if (pairing == -1)
 551                        continue;
 552                if ((mpidr == cpu_logical_map(cpu)) ||
 553                    (mpidr == cpu_logical_map(pairing)))
 554                        return cpu;
 555        }
 556        return -EINVAL;
 557}
 558
 559static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
 560{
 561        trace_cpu_migrate_current(get_ns(), read_mpidr());
 562}
 563
 564int bL_switcher_trace_trigger(void)
 565{
 566        int ret;
 567
 568        preempt_disable();
 569
 570        bL_switcher_trace_trigger_cpu(NULL);
 571        ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
 572
 573        preempt_enable();
 574
 575        return ret;
 576}
 577EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
 578
 579static int bL_switcher_enable(void)
 580{
 581        int cpu, ret;
 582
 583        mutex_lock(&bL_switcher_activation_lock);
 584        lock_device_hotplug();
 585        if (bL_switcher_active) {
 586                unlock_device_hotplug();
 587                mutex_unlock(&bL_switcher_activation_lock);
 588                return 0;
 589        }
 590
 591        pr_info("big.LITTLE switcher initializing\n");
 592
 593        ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
 594        if (ret)
 595                goto error;
 596
 597        ret = bL_switcher_halve_cpus();
 598        if (ret)
 599                goto error;
 600
 601        bL_switcher_trace_trigger();
 602
 603        for_each_online_cpu(cpu) {
 604                struct bL_thread *t = &bL_threads[cpu];
 605                spin_lock_init(&t->lock);
 606                init_waitqueue_head(&t->wq);
 607                init_completion(&t->started);
 608                t->wanted_cluster = -1;
 609                t->task = bL_switcher_thread_create(cpu, t);
 610        }
 611
 612        bL_switcher_active = 1;
 613        bL_activation_notify(BL_NOTIFY_POST_ENABLE);
 614        pr_info("big.LITTLE switcher initialized\n");
 615        goto out;
 616
 617error:
 618        pr_warn("big.LITTLE switcher initialization failed\n");
 619        bL_activation_notify(BL_NOTIFY_POST_DISABLE);
 620
 621out:
 622        unlock_device_hotplug();
 623        mutex_unlock(&bL_switcher_activation_lock);
 624        return ret;
 625}
 626
 627#ifdef CONFIG_SYSFS
 628
 629static void bL_switcher_disable(void)
 630{
 631        unsigned int cpu, cluster;
 632        struct bL_thread *t;
 633        struct task_struct *task;
 634
 635        mutex_lock(&bL_switcher_activation_lock);
 636        lock_device_hotplug();
 637
 638        if (!bL_switcher_active)
 639                goto out;
 640
 641        if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
 642                bL_activation_notify(BL_NOTIFY_POST_ENABLE);
 643                goto out;
 644        }
 645
 646        bL_switcher_active = 0;
 647
 648        /*
 649         * To deactivate the switcher, we must shut down the switcher
 650         * threads to prevent any other requests from being accepted.
 651         * Then, if the final cluster for given logical CPU is not the
 652         * same as the original one, we'll recreate a switcher thread
 653         * just for the purpose of switching the CPU back without any
 654         * possibility for interference from external requests.
 655         */
 656        for_each_online_cpu(cpu) {
 657                t = &bL_threads[cpu];
 658                task = t->task;
 659                t->task = NULL;
 660                if (!task || IS_ERR(task))
 661                        continue;
 662                kthread_stop(task);
 663                /* no more switch may happen on this CPU at this point */
 664                cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
 665                if (cluster == bL_switcher_cpu_original_cluster[cpu])
 666                        continue;
 667                init_completion(&t->started);
 668                t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
 669                task = bL_switcher_thread_create(cpu, t);
 670                if (!IS_ERR(task)) {
 671                        wait_for_completion(&t->started);
 672                        kthread_stop(task);
 673                        cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
 674                        if (cluster == bL_switcher_cpu_original_cluster[cpu])
 675                                continue;
 676                }
 677                /* If execution gets here, we're in trouble. */
 678                pr_crit("%s: unable to restore original cluster for CPU %d\n",
 679                        __func__, cpu);
 680                pr_crit("%s: CPU %d can't be restored\n",
 681                        __func__, bL_switcher_cpu_pairing[cpu]);
 682                cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
 683                                  &bL_switcher_removed_logical_cpus);
 684        }
 685
 686        bL_switcher_restore_cpus();
 687        bL_switcher_trace_trigger();
 688
 689        bL_activation_notify(BL_NOTIFY_POST_DISABLE);
 690
 691out:
 692        unlock_device_hotplug();
 693        mutex_unlock(&bL_switcher_activation_lock);
 694}
 695
 696static ssize_t bL_switcher_active_show(struct kobject *kobj,
 697                struct kobj_attribute *attr, char *buf)
 698{
 699        return sprintf(buf, "%u\n", bL_switcher_active);
 700}
 701
 702static ssize_t bL_switcher_active_store(struct kobject *kobj,
 703                struct kobj_attribute *attr, const char *buf, size_t count)
 704{
 705        int ret;
 706
 707        switch (buf[0]) {
 708        case '0':
 709                bL_switcher_disable();
 710                ret = 0;
 711                break;
 712        case '1':
 713                ret = bL_switcher_enable();
 714                break;
 715        default:
 716                ret = -EINVAL;
 717        }
 718
 719        return (ret >= 0) ? count : ret;
 720}
 721
 722static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
 723                struct kobj_attribute *attr, const char *buf, size_t count)
 724{
 725        int ret = bL_switcher_trace_trigger();
 726
 727        return ret ? ret : count;
 728}
 729
 730static struct kobj_attribute bL_switcher_active_attr =
 731        __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
 732
 733static struct kobj_attribute bL_switcher_trace_trigger_attr =
 734        __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
 735
 736static struct attribute *bL_switcher_attrs[] = {
 737        &bL_switcher_active_attr.attr,
 738        &bL_switcher_trace_trigger_attr.attr,
 739        NULL,
 740};
 741
 742static struct attribute_group bL_switcher_attr_group = {
 743        .attrs = bL_switcher_attrs,
 744};
 745
 746static struct kobject *bL_switcher_kobj;
 747
 748static int __init bL_switcher_sysfs_init(void)
 749{
 750        int ret;
 751
 752        bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
 753        if (!bL_switcher_kobj)
 754                return -ENOMEM;
 755        ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
 756        if (ret)
 757                kobject_put(bL_switcher_kobj);
 758        return ret;
 759}
 760
 761#endif  /* CONFIG_SYSFS */
 762
 763bool bL_switcher_get_enabled(void)
 764{
 765        mutex_lock(&bL_switcher_activation_lock);
 766
 767        return bL_switcher_active;
 768}
 769EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
 770
 771void bL_switcher_put_enabled(void)
 772{
 773        mutex_unlock(&bL_switcher_activation_lock);
 774}
 775EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
 776
 777/*
 778 * Veto any CPU hotplug operation on those CPUs we've removed
 779 * while the switcher is active.
 780 * We're just not ready to deal with that given the trickery involved.
 781 */
 782static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
 783                                        unsigned long action, void *hcpu)
 784{
 785        if (bL_switcher_active) {
 786                int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
 787                switch (action & 0xf) {
 788                case CPU_UP_PREPARE:
 789                case CPU_DOWN_PREPARE:
 790                        if (pairing == -1)
 791                                return NOTIFY_BAD;
 792                }
 793        }
 794        return NOTIFY_DONE;
 795}
 796
 797static bool no_bL_switcher;
 798core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
 799
 800static int __init bL_switcher_init(void)
 801{
 802        int ret;
 803
 804        if (!mcpm_is_available())
 805                return -ENODEV;
 806
 807        cpu_notifier(bL_switcher_hotplug_callback, 0);
 808
 809        if (!no_bL_switcher) {
 810                ret = bL_switcher_enable();
 811                if (ret)
 812                        return ret;
 813        }
 814
 815#ifdef CONFIG_SYSFS
 816        ret = bL_switcher_sysfs_init();
 817        if (ret)
 818                pr_err("%s: unable to create sysfs entry\n", __func__);
 819#endif
 820
 821        return 0;
 822}
 823
 824late_initcall(bL_switcher_init);
 825