linux/arch/arm/kernel/kprobes-test.c
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/kprobes-test.c
   3 *
   4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11/*
  12 * This file contains test code for ARM kprobes.
  13 *
  14 * The top level function run_all_tests() executes tests for all of the
  15 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
  16 * fall into two categories; run_api_tests() checks basic functionality of the
  17 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
  18 * instruction decoding and simulation.
  19 *
  20 * run_test_cases() first checks the kprobes decoding table for self consistency
  21 * (using table_test()) then executes a series of test cases for each of the CPU
  22 * instruction forms. coverage_start() and coverage_end() are used to verify
  23 * that these test cases cover all of the possible combinations of instructions
  24 * described by the kprobes decoding tables.
  25 *
  26 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
  27 * which use the macros defined in kprobes-test.h. The rest of this
  28 * documentation will describe the operation of the framework used by these
  29 * test cases.
  30 */
  31
  32/*
  33 * TESTING METHODOLOGY
  34 * -------------------
  35 *
  36 * The methodology used to test an ARM instruction 'test_insn' is to use
  37 * inline assembler like:
  38 *
  39 * test_before: nop
  40 * test_case:   test_insn
  41 * test_after:  nop
  42 *
  43 * When the test case is run a kprobe is placed of each nop. The
  44 * post-handler of the test_before probe is used to modify the saved CPU
  45 * register context to that which we require for the test case. The
  46 * pre-handler of the of the test_after probe saves a copy of the CPU
  47 * register context. In this way we can execute test_insn with a specific
  48 * register context and see the results afterwards.
  49 *
  50 * To actually test the kprobes instruction emulation we perform the above
  51 * step a second time but with an additional kprobe on the test_case
  52 * instruction itself. If the emulation is accurate then the results seen
  53 * by the test_after probe will be identical to the first run which didn't
  54 * have a probe on test_case.
  55 *
  56 * Each test case is run several times with a variety of variations in the
  57 * flags value of stored in CPSR, and for Thumb code, different ITState.
  58 *
  59 * For instructions which can modify PC, a second test_after probe is used
  60 * like this:
  61 *
  62 * test_before: nop
  63 * test_case:   test_insn
  64 * test_after:  nop
  65 *              b test_done
  66 * test_after2: nop
  67 * test_done:
  68 *
  69 * The test case is constructed such that test_insn branches to
  70 * test_after2, or, if testing a conditional instruction, it may just
  71 * continue to test_after. The probes inserted at both locations let us
  72 * determine which happened. A similar approach is used for testing
  73 * backwards branches...
  74 *
  75 *              b test_before
  76 *              b test_done  @ helps to cope with off by 1 branches
  77 * test_after2: nop
  78 *              b test_done
  79 * test_before: nop
  80 * test_case:   test_insn
  81 * test_after:  nop
  82 * test_done:
  83 *
  84 * The macros used to generate the assembler instructions describe above
  85 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
  86 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
  87 * 99 represent: test_before, test_case, test_after2 and test_done.
  88 *
  89 * FRAMEWORK
  90 * ---------
  91 *
  92 * Each test case is wrapped between the pair of macros TESTCASE_START and
  93 * TESTCASE_END. As well as performing the inline assembler boilerplate,
  94 * these call out to the kprobes_test_case_start() and
  95 * kprobes_test_case_end() functions which drive the execution of the test
  96 * case. The specific arguments to use for each test case are stored as
  97 * inline data constructed using the various TEST_ARG_* macros. Putting
  98 * this all together, a simple test case may look like:
  99 *
 100 *      TESTCASE_START("Testing mov r0, r7")
 101 *      TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
 102 *      TEST_ARG_END("")
 103 *      TEST_INSTRUCTION("mov r0, r7")
 104 *      TESTCASE_END
 105 *
 106 * Note, in practice the single convenience macro TEST_R would be used for this
 107 * instead.
 108 *
 109 * The above would expand to assembler looking something like:
 110 *
 111 *      @ TESTCASE_START
 112 *      bl      __kprobes_test_case_start
 113 *      @ start of inline data...
 114 *      .ascii "mov r0, r7"     @ text title for test case
 115 *      .byte   0
 116 *      .align  2, 0
 117 *
 118 *      @ TEST_ARG_REG
 119 *      .byte   ARG_TYPE_REG
 120 *      .byte   7
 121 *      .short  0
 122 *      .word   0x1234567
 123 *
 124 *      @ TEST_ARG_END
 125 *      .byte   ARG_TYPE_END
 126 *      .byte   TEST_ISA        @ flags, including ISA being tested
 127 *      .short  50f-0f          @ offset of 'test_before'
 128 *      .short  2f-0f           @ offset of 'test_after2' (if relevent)
 129 *      .short  99f-0f          @ offset of 'test_done'
 130 *      @ start of test case code...
 131 *      0:
 132 *      .code   TEST_ISA        @ switch to ISA being tested
 133 *
 134 *      @ TEST_INSTRUCTION
 135 *      50:     nop             @ location for 'test_before' probe
 136 *      1:      mov r0, r7      @ the test case instruction 'test_insn'
 137 *              nop             @ location for 'test_after' probe
 138 *
 139 *      // TESTCASE_END
 140 *      2:
 141 *      99:     bl __kprobes_test_case_end_##TEST_ISA
 142 *      .code   NONMAL_ISA
 143 *
 144 * When the above is execute the following happens...
 145 *
 146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
 147 * for a stack buffer and calls the C function kprobes_test_case_start().
 148 * This C function will do some initial processing of the inline data and
 149 * setup some global state. It then inserts the test_before and test_after
 150 * kprobes and returns a value which causes the assembler wrapper to jump
 151 * to the start of the test case code, (local label '0').
 152 *
 153 * When the test case code executes, the test_before probe will be hit and
 154 * test_before_post_handler will call setup_test_context(). This fills the
 155 * stack buffer and CPU registers with a test pattern and then processes
 156 * the test case arguments. In our example there is one TEST_ARG_REG which
 157 * indicates that R7 should be loaded with the value 0x12345678.
 158 *
 159 * When the test_before probe ends, the test case continues and executes
 160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
 161 * pre-handler for this (test_after_pre_handler) will save a copy of the
 162 * CPU register context. This should now have R0 holding the same value as
 163 * R7.
 164 *
 165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
 166 * an assembler wrapper which switches back to the ISA used by the test
 167 * code and calls the C function kprobes_test_case_end().
 168 *
 169 * For each run through the test case, test_case_run_count is incremented
 170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
 171 * register and stack buffer contents from the test case just run. It then
 172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
 173 * value to cause the test case code to be re-run.
 174 *
 175 * For odd numbered runs, kprobes_test_case_end() compares the register and
 176 * stack buffer contents to those that were saved on the previous even
 177 * numbered run (the one without the kprobe on test_insn). These should be
 178 * the same if the kprobe instruction simulation routine is correct.
 179 *
 180 * The pair of test case runs is repeated with different combinations of
 181 * flag values in CPSR and, for Thumb, different ITState. This is
 182 * controlled by test_context_cpsr().
 183 *
 184 * BUILDING TEST CASES
 185 * -------------------
 186 *
 187 *
 188 * As an aid to building test cases, the stack buffer is initialised with
 189 * some special values:
 190 *
 191 *   [SP+13*4]  Contains SP+120. This can be used to test instructions
 192 *              which load a value into SP.
 193 *
 194 *   [SP+15*4]  When testing branching instructions using TEST_BRANCH_{F,B},
 195 *              this holds the target address of the branch, 'test_after2'.
 196 *              This can be used to test instructions which load a PC value
 197 *              from memory.
 198 */
 199
 200#include <linux/kernel.h>
 201#include <linux/module.h>
 202#include <linux/slab.h>
 203#include <linux/kprobes.h>
 204#include <linux/errno.h>
 205#include <linux/stddef.h>
 206#include <linux/bug.h>
 207#include <asm/opcodes.h>
 208
 209#include "kprobes.h"
 210#include "probes-arm.h"
 211#include "probes-thumb.h"
 212#include "kprobes-test.h"
 213
 214
 215#define BENCHMARKING    1
 216
 217
 218/*
 219 * Test basic API
 220 */
 221
 222static bool test_regs_ok;
 223static int test_func_instance;
 224static int pre_handler_called;
 225static int post_handler_called;
 226static int jprobe_func_called;
 227static int kretprobe_handler_called;
 228
 229#define FUNC_ARG1 0x12345678
 230#define FUNC_ARG2 0xabcdef
 231
 232
 233#ifndef CONFIG_THUMB2_KERNEL
 234
 235long arm_func(long r0, long r1);
 236
 237static void __used __naked __arm_kprobes_test_func(void)
 238{
 239        __asm__ __volatile__ (
 240                ".arm                                   \n\t"
 241                ".type arm_func, %%function             \n\t"
 242                "arm_func:                              \n\t"
 243                "adds   r0, r0, r1                      \n\t"
 244                "bx     lr                              \n\t"
 245                ".code "NORMAL_ISA       /* Back to Thumb if necessary */
 246                : : : "r0", "r1", "cc"
 247        );
 248}
 249
 250#else /* CONFIG_THUMB2_KERNEL */
 251
 252long thumb16_func(long r0, long r1);
 253long thumb32even_func(long r0, long r1);
 254long thumb32odd_func(long r0, long r1);
 255
 256static void __used __naked __thumb_kprobes_test_funcs(void)
 257{
 258        __asm__ __volatile__ (
 259                ".type thumb16_func, %%function         \n\t"
 260                "thumb16_func:                          \n\t"
 261                "adds.n r0, r0, r1                      \n\t"
 262                "bx     lr                              \n\t"
 263
 264                ".align                                 \n\t"
 265                ".type thumb32even_func, %%function     \n\t"
 266                "thumb32even_func:                      \n\t"
 267                "adds.w r0, r0, r1                      \n\t"
 268                "bx     lr                              \n\t"
 269
 270                ".align                                 \n\t"
 271                "nop.n                                  \n\t"
 272                ".type thumb32odd_func, %%function      \n\t"
 273                "thumb32odd_func:                       \n\t"
 274                "adds.w r0, r0, r1                      \n\t"
 275                "bx     lr                              \n\t"
 276
 277                : : : "r0", "r1", "cc"
 278        );
 279}
 280
 281#endif /* CONFIG_THUMB2_KERNEL */
 282
 283
 284static int call_test_func(long (*func)(long, long), bool check_test_regs)
 285{
 286        long ret;
 287
 288        ++test_func_instance;
 289        test_regs_ok = false;
 290
 291        ret = (*func)(FUNC_ARG1, FUNC_ARG2);
 292        if (ret != FUNC_ARG1 + FUNC_ARG2) {
 293                pr_err("FAIL: call_test_func: func returned %lx\n", ret);
 294                return false;
 295        }
 296
 297        if (check_test_regs && !test_regs_ok) {
 298                pr_err("FAIL: test regs not OK\n");
 299                return false;
 300        }
 301
 302        return true;
 303}
 304
 305static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
 306{
 307        pre_handler_called = test_func_instance;
 308        if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
 309                test_regs_ok = true;
 310        return 0;
 311}
 312
 313static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
 314                                unsigned long flags)
 315{
 316        post_handler_called = test_func_instance;
 317        if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
 318                test_regs_ok = false;
 319}
 320
 321static struct kprobe the_kprobe = {
 322        .addr           = 0,
 323        .pre_handler    = pre_handler,
 324        .post_handler   = post_handler
 325};
 326
 327static int test_kprobe(long (*func)(long, long))
 328{
 329        int ret;
 330
 331        the_kprobe.addr = (kprobe_opcode_t *)func;
 332        ret = register_kprobe(&the_kprobe);
 333        if (ret < 0) {
 334                pr_err("FAIL: register_kprobe failed with %d\n", ret);
 335                return ret;
 336        }
 337
 338        ret = call_test_func(func, true);
 339
 340        unregister_kprobe(&the_kprobe);
 341        the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
 342
 343        if (!ret)
 344                return -EINVAL;
 345        if (pre_handler_called != test_func_instance) {
 346                pr_err("FAIL: kprobe pre_handler not called\n");
 347                return -EINVAL;
 348        }
 349        if (post_handler_called != test_func_instance) {
 350                pr_err("FAIL: kprobe post_handler not called\n");
 351                return -EINVAL;
 352        }
 353        if (!call_test_func(func, false))
 354                return -EINVAL;
 355        if (pre_handler_called == test_func_instance ||
 356                                post_handler_called == test_func_instance) {
 357                pr_err("FAIL: probe called after unregistering\n");
 358                return -EINVAL;
 359        }
 360
 361        return 0;
 362}
 363
 364static void __kprobes jprobe_func(long r0, long r1)
 365{
 366        jprobe_func_called = test_func_instance;
 367        if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
 368                test_regs_ok = true;
 369        jprobe_return();
 370}
 371
 372static struct jprobe the_jprobe = {
 373        .entry          = jprobe_func,
 374};
 375
 376static int test_jprobe(long (*func)(long, long))
 377{
 378        int ret;
 379
 380        the_jprobe.kp.addr = (kprobe_opcode_t *)func;
 381        ret = register_jprobe(&the_jprobe);
 382        if (ret < 0) {
 383                pr_err("FAIL: register_jprobe failed with %d\n", ret);
 384                return ret;
 385        }
 386
 387        ret = call_test_func(func, true);
 388
 389        unregister_jprobe(&the_jprobe);
 390        the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 391
 392        if (!ret)
 393                return -EINVAL;
 394        if (jprobe_func_called != test_func_instance) {
 395                pr_err("FAIL: jprobe handler function not called\n");
 396                return -EINVAL;
 397        }
 398        if (!call_test_func(func, false))
 399                return -EINVAL;
 400        if (jprobe_func_called == test_func_instance) {
 401                pr_err("FAIL: probe called after unregistering\n");
 402                return -EINVAL;
 403        }
 404
 405        return 0;
 406}
 407
 408static int __kprobes
 409kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
 410{
 411        kretprobe_handler_called = test_func_instance;
 412        if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
 413                test_regs_ok = true;
 414        return 0;
 415}
 416
 417static struct kretprobe the_kretprobe = {
 418        .handler        = kretprobe_handler,
 419};
 420
 421static int test_kretprobe(long (*func)(long, long))
 422{
 423        int ret;
 424
 425        the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
 426        ret = register_kretprobe(&the_kretprobe);
 427        if (ret < 0) {
 428                pr_err("FAIL: register_kretprobe failed with %d\n", ret);
 429                return ret;
 430        }
 431
 432        ret = call_test_func(func, true);
 433
 434        unregister_kretprobe(&the_kretprobe);
 435        the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 436
 437        if (!ret)
 438                return -EINVAL;
 439        if (kretprobe_handler_called != test_func_instance) {
 440                pr_err("FAIL: kretprobe handler not called\n");
 441                return -EINVAL;
 442        }
 443        if (!call_test_func(func, false))
 444                return -EINVAL;
 445        if (jprobe_func_called == test_func_instance) {
 446                pr_err("FAIL: kretprobe called after unregistering\n");
 447                return -EINVAL;
 448        }
 449
 450        return 0;
 451}
 452
 453static int run_api_tests(long (*func)(long, long))
 454{
 455        int ret;
 456
 457        pr_info("    kprobe\n");
 458        ret = test_kprobe(func);
 459        if (ret < 0)
 460                return ret;
 461
 462        pr_info("    jprobe\n");
 463        ret = test_jprobe(func);
 464        if (ret < 0)
 465                return ret;
 466
 467        pr_info("    kretprobe\n");
 468        ret = test_kretprobe(func);
 469        if (ret < 0)
 470                return ret;
 471
 472        return 0;
 473}
 474
 475
 476/*
 477 * Benchmarking
 478 */
 479
 480#if BENCHMARKING
 481
 482static void __naked benchmark_nop(void)
 483{
 484        __asm__ __volatile__ (
 485                "nop            \n\t"
 486                "bx     lr"
 487        );
 488}
 489
 490#ifdef CONFIG_THUMB2_KERNEL
 491#define wide ".w"
 492#else
 493#define wide
 494#endif
 495
 496static void __naked benchmark_pushpop1(void)
 497{
 498        __asm__ __volatile__ (
 499                "stmdb"wide"    sp!, {r3-r11,lr}  \n\t"
 500                "ldmia"wide"    sp!, {r3-r11,pc}"
 501        );
 502}
 503
 504static void __naked benchmark_pushpop2(void)
 505{
 506        __asm__ __volatile__ (
 507                "stmdb"wide"    sp!, {r0-r8,lr}  \n\t"
 508                "ldmia"wide"    sp!, {r0-r8,pc}"
 509        );
 510}
 511
 512static void __naked benchmark_pushpop3(void)
 513{
 514        __asm__ __volatile__ (
 515                "stmdb"wide"    sp!, {r4,lr}  \n\t"
 516                "ldmia"wide"    sp!, {r4,pc}"
 517        );
 518}
 519
 520static void __naked benchmark_pushpop4(void)
 521{
 522        __asm__ __volatile__ (
 523                "stmdb"wide"    sp!, {r0,lr}  \n\t"
 524                "ldmia"wide"    sp!, {r0,pc}"
 525        );
 526}
 527
 528
 529#ifdef CONFIG_THUMB2_KERNEL
 530
 531static void __naked benchmark_pushpop_thumb(void)
 532{
 533        __asm__ __volatile__ (
 534                "push.n {r0-r7,lr}  \n\t"
 535                "pop.n  {r0-r7,pc}"
 536        );
 537}
 538
 539#endif
 540
 541static int __kprobes
 542benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
 543{
 544        return 0;
 545}
 546
 547static int benchmark(void(*fn)(void))
 548{
 549        unsigned n, i, t, t0;
 550
 551        for (n = 1000; ; n *= 2) {
 552                t0 = sched_clock();
 553                for (i = n; i > 0; --i)
 554                        fn();
 555                t = sched_clock() - t0;
 556                if (t >= 250000000)
 557                        break; /* Stop once we took more than 0.25 seconds */
 558        }
 559        return t / n; /* Time for one iteration in nanoseconds */
 560};
 561
 562static int kprobe_benchmark(void(*fn)(void), unsigned offset)
 563{
 564        struct kprobe k = {
 565                .addr           = (kprobe_opcode_t *)((uintptr_t)fn + offset),
 566                .pre_handler    = benchmark_pre_handler,
 567        };
 568
 569        int ret = register_kprobe(&k);
 570        if (ret < 0) {
 571                pr_err("FAIL: register_kprobe failed with %d\n", ret);
 572                return ret;
 573        }
 574
 575        ret = benchmark(fn);
 576
 577        unregister_kprobe(&k);
 578        return ret;
 579};
 580
 581struct benchmarks {
 582        void            (*fn)(void);
 583        unsigned        offset;
 584        const char      *title;
 585};
 586
 587static int run_benchmarks(void)
 588{
 589        int ret;
 590        struct benchmarks list[] = {
 591                {&benchmark_nop, 0, "nop"},
 592                /*
 593                 * benchmark_pushpop{1,3} will have the optimised
 594                 * instruction emulation, whilst benchmark_pushpop{2,4} will
 595                 * be the equivalent unoptimised instructions.
 596                 */
 597                {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
 598                {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
 599                {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
 600                {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
 601                {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
 602                {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
 603                {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
 604                {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
 605#ifdef CONFIG_THUMB2_KERNEL
 606                {&benchmark_pushpop_thumb, 0, "push.n   {r0-r7,lr}"},
 607                {&benchmark_pushpop_thumb, 2, "pop.n    {r0-r7,pc}"},
 608#endif
 609                {0}
 610        };
 611
 612        struct benchmarks *b;
 613        for (b = list; b->fn; ++b) {
 614                ret = kprobe_benchmark(b->fn, b->offset);
 615                if (ret < 0)
 616                        return ret;
 617                pr_info("    %dns for kprobe %s\n", ret, b->title);
 618        }
 619
 620        pr_info("\n");
 621        return 0;
 622}
 623
 624#endif /* BENCHMARKING */
 625
 626
 627/*
 628 * Decoding table self-consistency tests
 629 */
 630
 631static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
 632        [DECODE_TYPE_TABLE]     = sizeof(struct decode_table),
 633        [DECODE_TYPE_CUSTOM]    = sizeof(struct decode_custom),
 634        [DECODE_TYPE_SIMULATE]  = sizeof(struct decode_simulate),
 635        [DECODE_TYPE_EMULATE]   = sizeof(struct decode_emulate),
 636        [DECODE_TYPE_OR]        = sizeof(struct decode_or),
 637        [DECODE_TYPE_REJECT]    = sizeof(struct decode_reject)
 638};
 639
 640static int table_iter(const union decode_item *table,
 641                        int (*fn)(const struct decode_header *, void *),
 642                        void *args)
 643{
 644        const struct decode_header *h = (struct decode_header *)table;
 645        int result;
 646
 647        for (;;) {
 648                enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 649
 650                if (type == DECODE_TYPE_END)
 651                        return 0;
 652
 653                result = fn(h, args);
 654                if (result)
 655                        return result;
 656
 657                h = (struct decode_header *)
 658                        ((uintptr_t)h + decode_struct_sizes[type]);
 659
 660        }
 661}
 662
 663static int table_test_fail(const struct decode_header *h, const char* message)
 664{
 665
 666        pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
 667                                        message, h->mask.bits, h->value.bits);
 668        return -EINVAL;
 669}
 670
 671struct table_test_args {
 672        const union decode_item *root_table;
 673        u32                     parent_mask;
 674        u32                     parent_value;
 675};
 676
 677static int table_test_fn(const struct decode_header *h, void *args)
 678{
 679        struct table_test_args *a = (struct table_test_args *)args;
 680        enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 681
 682        if (h->value.bits & ~h->mask.bits)
 683                return table_test_fail(h, "Match value has bits not in mask");
 684
 685        if ((h->mask.bits & a->parent_mask) != a->parent_mask)
 686                return table_test_fail(h, "Mask has bits not in parent mask");
 687
 688        if ((h->value.bits ^ a->parent_value) & a->parent_mask)
 689                return table_test_fail(h, "Value is inconsistent with parent");
 690
 691        if (type == DECODE_TYPE_TABLE) {
 692                struct decode_table *d = (struct decode_table *)h;
 693                struct table_test_args args2 = *a;
 694                args2.parent_mask = h->mask.bits;
 695                args2.parent_value = h->value.bits;
 696                return table_iter(d->table.table, table_test_fn, &args2);
 697        }
 698
 699        return 0;
 700}
 701
 702static int table_test(const union decode_item *table)
 703{
 704        struct table_test_args args = {
 705                .root_table     = table,
 706                .parent_mask    = 0,
 707                .parent_value   = 0
 708        };
 709        return table_iter(args.root_table, table_test_fn, &args);
 710}
 711
 712
 713/*
 714 * Decoding table test coverage analysis
 715 *
 716 * coverage_start() builds a coverage_table which contains a list of
 717 * coverage_entry's to match each entry in the specified kprobes instruction
 718 * decoding table.
 719 *
 720 * When test cases are run, coverage_add() is called to process each case.
 721 * This looks up the corresponding entry in the coverage_table and sets it as
 722 * being matched, as well as clearing the regs flag appropriate for the test.
 723 *
 724 * After all test cases have been run, coverage_end() is called to check that
 725 * all entries in coverage_table have been matched and that all regs flags are
 726 * cleared. I.e. that all possible combinations of instructions described by
 727 * the kprobes decoding tables have had a test case executed for them.
 728 */
 729
 730bool coverage_fail;
 731
 732#define MAX_COVERAGE_ENTRIES 256
 733
 734struct coverage_entry {
 735        const struct decode_header      *header;
 736        unsigned                        regs;
 737        unsigned                        nesting;
 738        char                            matched;
 739};
 740
 741struct coverage_table {
 742        struct coverage_entry   *base;
 743        unsigned                num_entries;
 744        unsigned                nesting;
 745};
 746
 747struct coverage_table coverage;
 748
 749#define COVERAGE_ANY_REG        (1<<0)
 750#define COVERAGE_SP             (1<<1)
 751#define COVERAGE_PC             (1<<2)
 752#define COVERAGE_PCWB           (1<<3)
 753
 754static const char coverage_register_lookup[16] = {
 755        [REG_TYPE_ANY]          = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 756        [REG_TYPE_SAMEAS16]     = COVERAGE_ANY_REG,
 757        [REG_TYPE_SP]           = COVERAGE_SP,
 758        [REG_TYPE_PC]           = COVERAGE_PC,
 759        [REG_TYPE_NOSP]         = COVERAGE_ANY_REG | COVERAGE_SP,
 760        [REG_TYPE_NOSPPC]       = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 761        [REG_TYPE_NOPC]         = COVERAGE_ANY_REG | COVERAGE_PC,
 762        [REG_TYPE_NOPCWB]       = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
 763        [REG_TYPE_NOPCX]        = COVERAGE_ANY_REG,
 764        [REG_TYPE_NOSPPCX]      = COVERAGE_ANY_REG | COVERAGE_SP,
 765};
 766
 767unsigned coverage_start_registers(const struct decode_header *h)
 768{
 769        unsigned regs = 0;
 770        int i;
 771        for (i = 0; i < 20; i += 4) {
 772                int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
 773                regs |= coverage_register_lookup[r] << i;
 774        }
 775        return regs;
 776}
 777
 778static int coverage_start_fn(const struct decode_header *h, void *args)
 779{
 780        struct coverage_table *coverage = (struct coverage_table *)args;
 781        enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 782        struct coverage_entry *entry = coverage->base + coverage->num_entries;
 783
 784        if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
 785                pr_err("FAIL: Out of space for test coverage data");
 786                return -ENOMEM;
 787        }
 788
 789        ++coverage->num_entries;
 790
 791        entry->header = h;
 792        entry->regs = coverage_start_registers(h);
 793        entry->nesting = coverage->nesting;
 794        entry->matched = false;
 795
 796        if (type == DECODE_TYPE_TABLE) {
 797                struct decode_table *d = (struct decode_table *)h;
 798                int ret;
 799                ++coverage->nesting;
 800                ret = table_iter(d->table.table, coverage_start_fn, coverage);
 801                --coverage->nesting;
 802                return ret;
 803        }
 804
 805        return 0;
 806}
 807
 808static int coverage_start(const union decode_item *table)
 809{
 810        coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
 811                                sizeof(struct coverage_entry), GFP_KERNEL);
 812        coverage.num_entries = 0;
 813        coverage.nesting = 0;
 814        return table_iter(table, coverage_start_fn, &coverage);
 815}
 816
 817static void
 818coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
 819{
 820        int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
 821        int i;
 822        for (i = 0; i < 20; i += 4) {
 823                enum decode_reg_type reg_type = (regs >> i) & 0xf;
 824                int reg = (insn >> i) & 0xf;
 825                int flag;
 826
 827                if (!reg_type)
 828                        continue;
 829
 830                if (reg == 13)
 831                        flag = COVERAGE_SP;
 832                else if (reg == 15)
 833                        flag = COVERAGE_PC;
 834                else
 835                        flag = COVERAGE_ANY_REG;
 836                entry->regs &= ~(flag << i);
 837
 838                switch (reg_type) {
 839
 840                case REG_TYPE_NONE:
 841                case REG_TYPE_ANY:
 842                case REG_TYPE_SAMEAS16:
 843                        break;
 844
 845                case REG_TYPE_SP:
 846                        if (reg != 13)
 847                                return;
 848                        break;
 849
 850                case REG_TYPE_PC:
 851                        if (reg != 15)
 852                                return;
 853                        break;
 854
 855                case REG_TYPE_NOSP:
 856                        if (reg == 13)
 857                                return;
 858                        break;
 859
 860                case REG_TYPE_NOSPPC:
 861                case REG_TYPE_NOSPPCX:
 862                        if (reg == 13 || reg == 15)
 863                                return;
 864                        break;
 865
 866                case REG_TYPE_NOPCWB:
 867                        if (!is_writeback(insn))
 868                                break;
 869                        if (reg == 15) {
 870                                entry->regs &= ~(COVERAGE_PCWB << i);
 871                                return;
 872                        }
 873                        break;
 874
 875                case REG_TYPE_NOPC:
 876                case REG_TYPE_NOPCX:
 877                        if (reg == 15)
 878                                return;
 879                        break;
 880                }
 881
 882        }
 883}
 884
 885static void coverage_add(kprobe_opcode_t insn)
 886{
 887        struct coverage_entry *entry = coverage.base;
 888        struct coverage_entry *end = coverage.base + coverage.num_entries;
 889        bool matched = false;
 890        unsigned nesting = 0;
 891
 892        for (; entry < end; ++entry) {
 893                const struct decode_header *h = entry->header;
 894                enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 895
 896                if (entry->nesting > nesting)
 897                        continue; /* Skip sub-table we didn't match */
 898
 899                if (entry->nesting < nesting)
 900                        break; /* End of sub-table we were scanning */
 901
 902                if (!matched) {
 903                        if ((insn & h->mask.bits) != h->value.bits)
 904                                continue;
 905                        entry->matched = true;
 906                }
 907
 908                switch (type) {
 909
 910                case DECODE_TYPE_TABLE:
 911                        ++nesting;
 912                        break;
 913
 914                case DECODE_TYPE_CUSTOM:
 915                case DECODE_TYPE_SIMULATE:
 916                case DECODE_TYPE_EMULATE:
 917                        coverage_add_registers(entry, insn);
 918                        return;
 919
 920                case DECODE_TYPE_OR:
 921                        matched = true;
 922                        break;
 923
 924                case DECODE_TYPE_REJECT:
 925                default:
 926                        return;
 927                }
 928
 929        }
 930}
 931
 932static void coverage_end(void)
 933{
 934        struct coverage_entry *entry = coverage.base;
 935        struct coverage_entry *end = coverage.base + coverage.num_entries;
 936
 937        for (; entry < end; ++entry) {
 938                u32 mask = entry->header->mask.bits;
 939                u32 value = entry->header->value.bits;
 940
 941                if (entry->regs) {
 942                        pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
 943                                mask, value, entry->regs);
 944                        coverage_fail = true;
 945                }
 946                if (!entry->matched) {
 947                        pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
 948                                mask, value);
 949                        coverage_fail = true;
 950                }
 951        }
 952
 953        kfree(coverage.base);
 954}
 955
 956
 957/*
 958 * Framework for instruction set test cases
 959 */
 960
 961void __naked __kprobes_test_case_start(void)
 962{
 963        __asm__ __volatile__ (
 964                "stmdb  sp!, {r4-r11}                           \n\t"
 965                "sub    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 966                "bic    r0, lr, #1  @ r0 = inline title string  \n\t"
 967                "mov    r1, sp                                  \n\t"
 968                "bl     kprobes_test_case_start                 \n\t"
 969                "bx     r0                                      \n\t"
 970        );
 971}
 972
 973#ifndef CONFIG_THUMB2_KERNEL
 974
 975void __naked __kprobes_test_case_end_32(void)
 976{
 977        __asm__ __volatile__ (
 978                "mov    r4, lr                                  \n\t"
 979                "bl     kprobes_test_case_end                   \n\t"
 980                "cmp    r0, #0                                  \n\t"
 981                "movne  pc, r0                                  \n\t"
 982                "mov    r0, r4                                  \n\t"
 983                "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 984                "ldmia  sp!, {r4-r11}                           \n\t"
 985                "mov    pc, r0                                  \n\t"
 986        );
 987}
 988
 989#else /* CONFIG_THUMB2_KERNEL */
 990
 991void __naked __kprobes_test_case_end_16(void)
 992{
 993        __asm__ __volatile__ (
 994                "mov    r4, lr                                  \n\t"
 995                "bl     kprobes_test_case_end                   \n\t"
 996                "cmp    r0, #0                                  \n\t"
 997                "bxne   r0                                      \n\t"
 998                "mov    r0, r4                                  \n\t"
 999                "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
1000                "ldmia  sp!, {r4-r11}                           \n\t"
1001                "bx     r0                                      \n\t"
1002        );
1003}
1004
1005void __naked __kprobes_test_case_end_32(void)
1006{
1007        __asm__ __volatile__ (
1008                ".arm                                           \n\t"
1009                "orr    lr, lr, #1  @ will return to Thumb code \n\t"
1010                "ldr    pc, 1f                                  \n\t"
1011                "1:                                             \n\t"
1012                ".word  __kprobes_test_case_end_16              \n\t"
1013        );
1014}
1015
1016#endif
1017
1018
1019int kprobe_test_flags;
1020int kprobe_test_cc_position;
1021
1022static int test_try_count;
1023static int test_pass_count;
1024static int test_fail_count;
1025
1026static struct pt_regs initial_regs;
1027static struct pt_regs expected_regs;
1028static struct pt_regs result_regs;
1029
1030static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1031
1032static const char *current_title;
1033static struct test_arg *current_args;
1034static u32 *current_stack;
1035static uintptr_t current_branch_target;
1036
1037static uintptr_t current_code_start;
1038static kprobe_opcode_t current_instruction;
1039
1040
1041#define TEST_CASE_PASSED -1
1042#define TEST_CASE_FAILED -2
1043
1044static int test_case_run_count;
1045static bool test_case_is_thumb;
1046static int test_instance;
1047
1048/*
1049 * We ignore the state of the imprecise abort disable flag (CPSR.A) because this
1050 * can change randomly as the kernel doesn't take care to preserve or initialise
1051 * this across context switches. Also, with Security Extentions, the flag may
1052 * not be under control of the kernel; for this reason we ignore the state of
1053 * the FIQ disable flag CPSR.F as well.
1054 */
1055#define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)
1056
1057static unsigned long test_check_cc(int cc, unsigned long cpsr)
1058{
1059        int ret = arm_check_condition(cc << 28, cpsr);
1060
1061        return (ret != ARM_OPCODE_CONDTEST_FAIL);
1062}
1063
1064static int is_last_scenario;
1065static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1066static int memory_needs_checking;
1067
1068static unsigned long test_context_cpsr(int scenario)
1069{
1070        unsigned long cpsr;
1071
1072        probe_should_run = 1;
1073
1074        /* Default case is that we cycle through 16 combinations of flags */
1075        cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1076        cpsr |= (scenario & 0xf) << 16; /* GE flags */
1077        cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1078
1079        if (!test_case_is_thumb) {
1080                /* Testing ARM code */
1081                int cc = current_instruction >> 28;
1082
1083                probe_should_run = test_check_cc(cc, cpsr) != 0;
1084                if (scenario == 15)
1085                        is_last_scenario = true;
1086
1087        } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1088                /* Testing Thumb code without setting ITSTATE */
1089                if (kprobe_test_cc_position) {
1090                        int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1091                        probe_should_run = test_check_cc(cc, cpsr) != 0;
1092                }
1093
1094                if (scenario == 15)
1095                        is_last_scenario = true;
1096
1097        } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1098                /* Testing Thumb code with all combinations of ITSTATE */
1099                unsigned x = (scenario >> 4);
1100                unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1101                unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1102
1103                if (mask > 0x1f) {
1104                        /* Finish by testing state from instruction 'itt al' */
1105                        cond_base = 7;
1106                        mask = 0x4;
1107                        if ((scenario & 0xf) == 0xf)
1108                                is_last_scenario = true;
1109                }
1110
1111                cpsr |= cond_base << 13;        /* ITSTATE<7:5> */
1112                cpsr |= (mask & 0x1) << 12;     /* ITSTATE<4> */
1113                cpsr |= (mask & 0x2) << 10;     /* ITSTATE<3> */
1114                cpsr |= (mask & 0x4) << 8;      /* ITSTATE<2> */
1115                cpsr |= (mask & 0x8) << 23;     /* ITSTATE<1> */
1116                cpsr |= (mask & 0x10) << 21;    /* ITSTATE<0> */
1117
1118                probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1119
1120        } else {
1121                /* Testing Thumb code with several combinations of ITSTATE */
1122                switch (scenario) {
1123                case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1124                        cpsr = 0x00000800;
1125                        probe_should_run = 0;
1126                        break;
1127                case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1128                        cpsr = 0xf0007800;
1129                        probe_should_run = 0;
1130                        break;
1131                case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1132                        cpsr = 0x00009800;
1133                        break;
1134                case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1135                        cpsr = 0xf0002800;
1136                        is_last_scenario = true;
1137                        break;
1138                }
1139        }
1140
1141        return cpsr;
1142}
1143
1144static void setup_test_context(struct pt_regs *regs)
1145{
1146        int scenario = test_case_run_count>>1;
1147        unsigned long val;
1148        struct test_arg *args;
1149        int i;
1150
1151        is_last_scenario = false;
1152        memory_needs_checking = false;
1153
1154        /* Initialise test memory on stack */
1155        val = (scenario & 1) ? VALM : ~VALM;
1156        for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1157                current_stack[i] = val + (i << 8);
1158        /* Put target of branch on stack for tests which load PC from memory */
1159        if (current_branch_target)
1160                current_stack[15] = current_branch_target;
1161        /* Put a value for SP on stack for tests which load SP from memory */
1162        current_stack[13] = (u32)current_stack + 120;
1163
1164        /* Initialise register values to their default state */
1165        val = (scenario & 2) ? VALR : ~VALR;
1166        for (i = 0; i < 13; ++i)
1167                regs->uregs[i] = val ^ (i << 8);
1168        regs->ARM_lr = val ^ (14 << 8);
1169        regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1170        regs->ARM_cpsr |= test_context_cpsr(scenario);
1171
1172        /* Perform testcase specific register setup  */
1173        args = current_args;
1174        for (; args[0].type != ARG_TYPE_END; ++args)
1175                switch (args[0].type) {
1176                case ARG_TYPE_REG: {
1177                        struct test_arg_regptr *arg =
1178                                (struct test_arg_regptr *)args;
1179                        regs->uregs[arg->reg] = arg->val;
1180                        break;
1181                }
1182                case ARG_TYPE_PTR: {
1183                        struct test_arg_regptr *arg =
1184                                (struct test_arg_regptr *)args;
1185                        regs->uregs[arg->reg] =
1186                                (unsigned long)current_stack + arg->val;
1187                        memory_needs_checking = true;
1188                        break;
1189                }
1190                case ARG_TYPE_MEM: {
1191                        struct test_arg_mem *arg = (struct test_arg_mem *)args;
1192                        current_stack[arg->index] = arg->val;
1193                        break;
1194                }
1195                default:
1196                        break;
1197                }
1198}
1199
1200struct test_probe {
1201        struct kprobe   kprobe;
1202        bool            registered;
1203        int             hit;
1204};
1205
1206static void unregister_test_probe(struct test_probe *probe)
1207{
1208        if (probe->registered) {
1209                unregister_kprobe(&probe->kprobe);
1210                probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1211        }
1212        probe->registered = false;
1213}
1214
1215static int register_test_probe(struct test_probe *probe)
1216{
1217        int ret;
1218
1219        if (probe->registered)
1220                BUG();
1221
1222        ret = register_kprobe(&probe->kprobe);
1223        if (ret >= 0) {
1224                probe->registered = true;
1225                probe->hit = -1;
1226        }
1227        return ret;
1228}
1229
1230static int __kprobes
1231test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1232{
1233        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1234        return 0;
1235}
1236
1237static void __kprobes
1238test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1239                                                        unsigned long flags)
1240{
1241        setup_test_context(regs);
1242        initial_regs = *regs;
1243        initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1244}
1245
1246static int __kprobes
1247test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1248{
1249        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1250        return 0;
1251}
1252
1253static int __kprobes
1254test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1255{
1256        if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1257                return 0; /* Already run for this test instance */
1258
1259        result_regs = *regs;
1260        result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1261
1262        /* Undo any changes done to SP by the test case */
1263        regs->ARM_sp = (unsigned long)current_stack;
1264
1265        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1266        return 0;
1267}
1268
1269static struct test_probe test_before_probe = {
1270        .kprobe.pre_handler     = test_before_pre_handler,
1271        .kprobe.post_handler    = test_before_post_handler,
1272};
1273
1274static struct test_probe test_case_probe = {
1275        .kprobe.pre_handler     = test_case_pre_handler,
1276};
1277
1278static struct test_probe test_after_probe = {
1279        .kprobe.pre_handler     = test_after_pre_handler,
1280};
1281
1282static struct test_probe test_after2_probe = {
1283        .kprobe.pre_handler     = test_after_pre_handler,
1284};
1285
1286static void test_case_cleanup(void)
1287{
1288        unregister_test_probe(&test_before_probe);
1289        unregister_test_probe(&test_case_probe);
1290        unregister_test_probe(&test_after_probe);
1291        unregister_test_probe(&test_after2_probe);
1292}
1293
1294static void print_registers(struct pt_regs *regs)
1295{
1296        pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1297                regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1298        pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1299                regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1300        pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1301                regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1302        pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1303                regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1304        pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1305}
1306
1307static void print_memory(u32 *mem, size_t size)
1308{
1309        int i;
1310        for (i = 0; i < size / sizeof(u32); i += 4)
1311                pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1312                                                mem[i+2], mem[i+3]);
1313}
1314
1315static size_t expected_memory_size(u32 *sp)
1316{
1317        size_t size = sizeof(expected_memory);
1318        int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1319        if (offset > 0)
1320                size -= offset;
1321        return size;
1322}
1323
1324static void test_case_failed(const char *message)
1325{
1326        test_case_cleanup();
1327
1328        pr_err("FAIL: %s\n", message);
1329        pr_err("FAIL: Test %s\n", current_title);
1330        pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1331}
1332
1333static unsigned long next_instruction(unsigned long pc)
1334{
1335#ifdef CONFIG_THUMB2_KERNEL
1336        if ((pc & 1) &&
1337            !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1338                return pc + 2;
1339        else
1340#endif
1341        return pc + 4;
1342}
1343
1344static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
1345{
1346        struct test_arg *args;
1347        struct test_arg_end *end_arg;
1348        unsigned long test_code;
1349
1350        args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);
1351
1352        current_title = title;
1353        current_args = args;
1354        current_stack = stack;
1355
1356        ++test_try_count;
1357
1358        while (args->type != ARG_TYPE_END)
1359                ++args;
1360        end_arg = (struct test_arg_end *)args;
1361
1362        test_code = (unsigned long)(args + 1); /* Code starts after args */
1363
1364        test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1365        if (test_case_is_thumb)
1366                test_code |= 1;
1367
1368        current_code_start = test_code;
1369
1370        current_branch_target = 0;
1371        if (end_arg->branch_offset != end_arg->end_offset)
1372                current_branch_target = test_code + end_arg->branch_offset;
1373
1374        test_code += end_arg->code_offset;
1375        test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1376
1377        test_code = next_instruction(test_code);
1378        test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1379
1380        if (test_case_is_thumb) {
1381                u16 *p = (u16 *)(test_code & ~1);
1382                current_instruction = __mem_to_opcode_thumb16(p[0]);
1383                if (is_wide_instruction(current_instruction)) {
1384                        u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1385                        current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1386                }
1387        } else {
1388                current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1389        }
1390
1391        if (current_title[0] == '.')
1392                verbose("%s\n", current_title);
1393        else
1394                verbose("%s\t@ %0*x\n", current_title,
1395                                        test_case_is_thumb ? 4 : 8,
1396                                        current_instruction);
1397
1398        test_code = next_instruction(test_code);
1399        test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1400
1401        if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1402                if (!test_case_is_thumb ||
1403                        is_wide_instruction(current_instruction)) {
1404                                test_case_failed("expected 16-bit instruction");
1405                                goto fail;
1406                }
1407        } else {
1408                if (test_case_is_thumb &&
1409                        !is_wide_instruction(current_instruction)) {
1410                                test_case_failed("expected 32-bit instruction");
1411                                goto fail;
1412                }
1413        }
1414
1415        coverage_add(current_instruction);
1416
1417        if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1418                if (register_test_probe(&test_case_probe) < 0)
1419                        goto pass;
1420                test_case_failed("registered probe for unsupported instruction");
1421                goto fail;
1422        }
1423
1424        if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1425                if (register_test_probe(&test_case_probe) >= 0)
1426                        goto pass;
1427                test_case_failed("couldn't register probe for supported instruction");
1428                goto fail;
1429        }
1430
1431        if (register_test_probe(&test_before_probe) < 0) {
1432                test_case_failed("register test_before_probe failed");
1433                goto fail;
1434        }
1435        if (register_test_probe(&test_after_probe) < 0) {
1436                test_case_failed("register test_after_probe failed");
1437                goto fail;
1438        }
1439        if (current_branch_target) {
1440                test_after2_probe.kprobe.addr =
1441                                (kprobe_opcode_t *)current_branch_target;
1442                if (register_test_probe(&test_after2_probe) < 0) {
1443                        test_case_failed("register test_after2_probe failed");
1444                        goto fail;
1445                }
1446        }
1447
1448        /* Start first run of test case */
1449        test_case_run_count = 0;
1450        ++test_instance;
1451        return current_code_start;
1452pass:
1453        test_case_run_count = TEST_CASE_PASSED;
1454        return (uintptr_t)test_after_probe.kprobe.addr;
1455fail:
1456        test_case_run_count = TEST_CASE_FAILED;
1457        return (uintptr_t)test_after_probe.kprobe.addr;
1458}
1459
1460static bool check_test_results(void)
1461{
1462        size_t mem_size = 0;
1463        u32 *mem = 0;
1464
1465        if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1466                test_case_failed("registers differ");
1467                goto fail;
1468        }
1469
1470        if (memory_needs_checking) {
1471                mem = (u32 *)result_regs.ARM_sp;
1472                mem_size = expected_memory_size(mem);
1473                if (memcmp(expected_memory, mem, mem_size)) {
1474                        test_case_failed("test memory differs");
1475                        goto fail;
1476                }
1477        }
1478
1479        return true;
1480
1481fail:
1482        pr_err("initial_regs:\n");
1483        print_registers(&initial_regs);
1484        pr_err("expected_regs:\n");
1485        print_registers(&expected_regs);
1486        pr_err("result_regs:\n");
1487        print_registers(&result_regs);
1488
1489        if (mem) {
1490                pr_err("current_stack=%p\n", current_stack);
1491                pr_err("expected_memory:\n");
1492                print_memory(expected_memory, mem_size);
1493                pr_err("result_memory:\n");
1494                print_memory(mem, mem_size);
1495        }
1496
1497        return false;
1498}
1499
1500static uintptr_t __used kprobes_test_case_end(void)
1501{
1502        if (test_case_run_count < 0) {
1503                if (test_case_run_count == TEST_CASE_PASSED)
1504                        /* kprobes_test_case_start did all the needed testing */
1505                        goto pass;
1506                else
1507                        /* kprobes_test_case_start failed */
1508                        goto fail;
1509        }
1510
1511        if (test_before_probe.hit != test_instance) {
1512                test_case_failed("test_before_handler not run");
1513                goto fail;
1514        }
1515
1516        if (test_after_probe.hit != test_instance &&
1517                                test_after2_probe.hit != test_instance) {
1518                test_case_failed("test_after_handler not run");
1519                goto fail;
1520        }
1521
1522        /*
1523         * Even numbered test runs ran without a probe on the test case so
1524         * we can gather reference results. The subsequent odd numbered run
1525         * will have the probe inserted.
1526        */
1527        if ((test_case_run_count & 1) == 0) {
1528                /* Save results from run without probe */
1529                u32 *mem = (u32 *)result_regs.ARM_sp;
1530                expected_regs = result_regs;
1531                memcpy(expected_memory, mem, expected_memory_size(mem));
1532
1533                /* Insert probe onto test case instruction */
1534                if (register_test_probe(&test_case_probe) < 0) {
1535                        test_case_failed("register test_case_probe failed");
1536                        goto fail;
1537                }
1538        } else {
1539                /* Check probe ran as expected */
1540                if (probe_should_run == 1) {
1541                        if (test_case_probe.hit != test_instance) {
1542                                test_case_failed("test_case_handler not run");
1543                                goto fail;
1544                        }
1545                } else if (probe_should_run == 0) {
1546                        if (test_case_probe.hit == test_instance) {
1547                                test_case_failed("test_case_handler ran");
1548                                goto fail;
1549                        }
1550                }
1551
1552                /* Remove probe for any subsequent reference run */
1553                unregister_test_probe(&test_case_probe);
1554
1555                if (!check_test_results())
1556                        goto fail;
1557
1558                if (is_last_scenario)
1559                        goto pass;
1560        }
1561
1562        /* Do next test run */
1563        ++test_case_run_count;
1564        ++test_instance;
1565        return current_code_start;
1566fail:
1567        ++test_fail_count;
1568        goto end;
1569pass:
1570        ++test_pass_count;
1571end:
1572        test_case_cleanup();
1573        return 0;
1574}
1575
1576
1577/*
1578 * Top level test functions
1579 */
1580
1581static int run_test_cases(void (*tests)(void), const union decode_item *table)
1582{
1583        int ret;
1584
1585        pr_info("    Check decoding tables\n");
1586        ret = table_test(table);
1587        if (ret)
1588                return ret;
1589
1590        pr_info("    Run test cases\n");
1591        ret = coverage_start(table);
1592        if (ret)
1593                return ret;
1594
1595        tests();
1596
1597        coverage_end();
1598        return 0;
1599}
1600
1601
1602static int __init run_all_tests(void)
1603{
1604        int ret = 0;
1605
1606        pr_info("Beginning kprobe tests...\n");
1607
1608#ifndef CONFIG_THUMB2_KERNEL
1609
1610        pr_info("Probe ARM code\n");
1611        ret = run_api_tests(arm_func);
1612        if (ret)
1613                goto out;
1614
1615        pr_info("ARM instruction simulation\n");
1616        ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1617        if (ret)
1618                goto out;
1619
1620#else /* CONFIG_THUMB2_KERNEL */
1621
1622        pr_info("Probe 16-bit Thumb code\n");
1623        ret = run_api_tests(thumb16_func);
1624        if (ret)
1625                goto out;
1626
1627        pr_info("Probe 32-bit Thumb code, even halfword\n");
1628        ret = run_api_tests(thumb32even_func);
1629        if (ret)
1630                goto out;
1631
1632        pr_info("Probe 32-bit Thumb code, odd halfword\n");
1633        ret = run_api_tests(thumb32odd_func);
1634        if (ret)
1635                goto out;
1636
1637        pr_info("16-bit Thumb instruction simulation\n");
1638        ret = run_test_cases(kprobe_thumb16_test_cases,
1639                                probes_decode_thumb16_table);
1640        if (ret)
1641                goto out;
1642
1643        pr_info("32-bit Thumb instruction simulation\n");
1644        ret = run_test_cases(kprobe_thumb32_test_cases,
1645                                probes_decode_thumb32_table);
1646        if (ret)
1647                goto out;
1648#endif
1649
1650        pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1651                test_try_count, test_pass_count, test_fail_count);
1652        if (test_fail_count) {
1653                ret = -EINVAL;
1654                goto out;
1655        }
1656
1657#if BENCHMARKING
1658        pr_info("Benchmarks\n");
1659        ret = run_benchmarks();
1660        if (ret)
1661                goto out;
1662#endif
1663
1664#if __LINUX_ARM_ARCH__ >= 7
1665        /* We are able to run all test cases so coverage should be complete */
1666        if (coverage_fail) {
1667                pr_err("FAIL: Test coverage checks failed\n");
1668                ret = -EINVAL;
1669                goto out;
1670        }
1671#endif
1672
1673out:
1674        if (ret == 0)
1675                pr_info("Finished kprobe tests OK\n");
1676        else
1677                pr_err("kprobe tests failed\n");
1678
1679        return ret;
1680}
1681
1682
1683/*
1684 * Module setup
1685 */
1686
1687#ifdef MODULE
1688
1689static void __exit kprobe_test_exit(void)
1690{
1691}
1692
1693module_init(run_all_tests)
1694module_exit(kprobe_test_exit)
1695MODULE_LICENSE("GPL");
1696
1697#else /* !MODULE */
1698
1699late_initcall(run_all_tests);
1700
1701#endif
1702