linux/arch/arm/kernel/probes.h
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/probes.h
   3 *
   4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   5 *
   6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
   7 * Copyright (C) 2006, 2007 Motorola Inc.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 */
  18
  19#ifndef _ARM_KERNEL_PROBES_H
  20#define  _ARM_KERNEL_PROBES_H
  21
  22#include <linux/types.h>
  23#include <linux/stddef.h>
  24#include <asm/probes.h>
  25
  26void __init arm_probes_decode_init(void);
  27
  28extern probes_check_cc * const probes_condition_checks[16];
  29
  30#if __LINUX_ARM_ARCH__ >= 7
  31
  32/* str_pc_offset is architecturally defined from ARMv7 onwards */
  33#define str_pc_offset 8
  34#define find_str_pc_offset()
  35
  36#else /* __LINUX_ARM_ARCH__ < 7 */
  37
  38/* We need a run-time check to determine str_pc_offset */
  39extern int str_pc_offset;
  40void __init find_str_pc_offset(void);
  41
  42#endif
  43
  44
  45/*
  46 * Update ITSTATE after normal execution of an IT block instruction.
  47 *
  48 * The 8 IT state bits are split into two parts in CPSR:
  49 *      ITSTATE<1:0> are in CPSR<26:25>
  50 *      ITSTATE<7:2> are in CPSR<15:10>
  51 */
  52static inline unsigned long it_advance(unsigned long cpsr)
  53        {
  54        if ((cpsr & 0x06000400) == 0) {
  55                /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
  56                cpsr &= ~PSR_IT_MASK;
  57        } else {
  58                /* We need to shift left ITSTATE<4:0> */
  59                const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
  60                unsigned long it = cpsr & mask;
  61                it <<= 1;
  62                it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
  63                it &= mask;
  64                cpsr &= ~mask;
  65                cpsr |= it;
  66        }
  67        return cpsr;
  68}
  69
  70static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
  71{
  72        long cpsr = regs->ARM_cpsr;
  73        if (pcv & 0x1) {
  74                cpsr |= PSR_T_BIT;
  75                pcv &= ~0x1;
  76        } else {
  77                cpsr &= ~PSR_T_BIT;
  78                pcv &= ~0x2;    /* Avoid UNPREDICTABLE address allignment */
  79        }
  80        regs->ARM_cpsr = cpsr;
  81        regs->ARM_pc = pcv;
  82}
  83
  84
  85#if __LINUX_ARM_ARCH__ >= 6
  86
  87/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
  88#define load_write_pc_interworks true
  89#define test_load_write_pc_interworking()
  90
  91#else /* __LINUX_ARM_ARCH__ < 6 */
  92
  93/* We need run-time testing to determine if load_write_pc() should interwork. */
  94extern bool load_write_pc_interworks;
  95void __init test_load_write_pc_interworking(void);
  96
  97#endif
  98
  99static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
 100{
 101        if (load_write_pc_interworks)
 102                bx_write_pc(pcv, regs);
 103        else
 104                regs->ARM_pc = pcv;
 105}
 106
 107
 108#if __LINUX_ARM_ARCH__ >= 7
 109
 110#define alu_write_pc_interworks true
 111#define test_alu_write_pc_interworking()
 112
 113#elif __LINUX_ARM_ARCH__ <= 5
 114
 115/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
 116#define alu_write_pc_interworks false
 117#define test_alu_write_pc_interworking()
 118
 119#else /* __LINUX_ARM_ARCH__ == 6 */
 120
 121/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
 122extern bool alu_write_pc_interworks;
 123void __init test_alu_write_pc_interworking(void);
 124
 125#endif /* __LINUX_ARM_ARCH__ == 6 */
 126
 127static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
 128{
 129        if (alu_write_pc_interworks)
 130                bx_write_pc(pcv, regs);
 131        else
 132                regs->ARM_pc = pcv;
 133}
 134
 135
 136/*
 137 * Test if load/store instructions writeback the address register.
 138 * if P (bit 24) == 0 or W (bit 21) == 1
 139 */
 140#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
 141
 142/*
 143 * The following definitions and macros are used to build instruction
 144 * decoding tables for use by probes_decode_insn.
 145 *
 146 * These tables are a concatenation of entries each of which consist of one of
 147 * the decode_* structs. All of the fields in every type of decode structure
 148 * are of the union type decode_item, therefore the entire decode table can be
 149 * viewed as an array of these and declared like:
 150 *
 151 *      static const union decode_item table_name[] = {};
 152 *
 153 * In order to construct each entry in the table, macros are used to
 154 * initialise a number of sequential decode_item values in a layout which
 155 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
 156 * decode_simulate by initialising four decode_item objects like this...
 157 *
 158 *      {.bits = _type},
 159 *      {.bits = _mask},
 160 *      {.bits = _value},
 161 *      {.action = _handler},
 162 *
 163 * Initialising a specified member of the union means that the compiler
 164 * will produce a warning if the argument is of an incorrect type.
 165 *
 166 * Below is a list of each of the macros used to initialise entries and a
 167 * description of the action performed when that entry is matched to an
 168 * instruction. A match is found when (instruction & mask) == value.
 169 *
 170 * DECODE_TABLE(mask, value, table)
 171 *      Instruction decoding jumps to parsing the new sub-table 'table'.
 172 *
 173 * DECODE_CUSTOM(mask, value, decoder)
 174 *      The value of 'decoder' is used as an index into the array of
 175 *      action functions, and the retrieved decoder function is invoked
 176 *      to complete decoding of the instruction.
 177 *
 178 * DECODE_SIMULATE(mask, value, handler)
 179 *      The probes instruction handler is set to the value found by
 180 *      indexing into the action array using the value of 'handler'. This
 181 *      will be used to simulate the instruction when the probe is hit.
 182 *      Decoding returns with INSN_GOOD_NO_SLOT.
 183 *
 184 * DECODE_EMULATE(mask, value, handler)
 185 *      The probes instruction handler is set to the value found by
 186 *      indexing into the action array using the value of 'handler'. This
 187 *      will be used to emulate the instruction when the probe is hit. The
 188 *      modified instruction (see below) is placed in the probes instruction
 189 *      slot so it may be called by the emulation code. Decoding returns
 190 *      with INSN_GOOD.
 191 *
 192 * DECODE_REJECT(mask, value)
 193 *      Instruction decoding fails with INSN_REJECTED
 194 *
 195 * DECODE_OR(mask, value)
 196 *      This allows the mask/value test of multiple table entries to be
 197 *      logically ORed. Once an 'or' entry is matched the decoding action to
 198 *      be performed is that of the next entry which isn't an 'or'. E.g.
 199 *
 200 *              DECODE_OR       (mask1, value1)
 201 *              DECODE_OR       (mask2, value2)
 202 *              DECODE_SIMULATE (mask3, value3, simulation_handler)
 203 *
 204 *      This means that if any of the three mask/value pairs match the
 205 *      instruction being decoded, then 'simulation_handler' will be used
 206 *      for it.
 207 *
 208 * Both the SIMULATE and EMULATE macros have a second form which take an
 209 * additional 'regs' argument.
 210 *
 211 *      DECODE_SIMULATEX(mask, value, handler, regs)
 212 *      DECODE_EMULATEX (mask, value, handler, regs)
 213 *
 214 * These are used to specify what kind of CPU register is encoded in each of the
 215 * least significant 5 nibbles of the instruction being decoded. The regs value
 216 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
 217 * from enum decode_reg_type as arguments; only the '*' part of the name is
 218 * given. E.g.
 219 *
 220 *      REGS(0, ANY, NOPC, 0, ANY)
 221 *
 222 * This indicates an instruction is encoded like:
 223 *
 224 *      bits 19..16     ignore
 225 *      bits 15..12     any register allowed here
 226 *      bits 11.. 8     any register except PC allowed here
 227 *      bits  7.. 4     ignore
 228 *      bits  3.. 0     any register allowed here
 229 *
 230 * This register specification is checked after a decode table entry is found to
 231 * match an instruction (through the mask/value test). Any invalid register then
 232 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
 233 * the above example this would happen if bits 11..8 of the instruction were
 234 * 1111, indicating R15 or PC.
 235 *
 236 * As well as checking for legal combinations of registers, this data is also
 237 * used to modify the registers encoded in the instructions so that an
 238 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
 239 *
 240 * Here is a real example which matches ARM instructions of the form
 241 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
 242 *
 243 *      DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
 244 *                                               REGS(ANY, ANY, NOPC, 0, ANY)),
 245 *                                                    ^    ^    ^        ^
 246 *                                                    Rn   Rd   Rs       Rm
 247 *
 248 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
 249 * Rs == R15
 250 *
 251 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
 252 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
 253 * the kprobes instruction slot. This can then be called later by the handler
 254 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
 255 * the indicated slot in the action array), in order to simulate the instruction.
 256 */
 257
 258enum decode_type {
 259        DECODE_TYPE_END,
 260        DECODE_TYPE_TABLE,
 261        DECODE_TYPE_CUSTOM,
 262        DECODE_TYPE_SIMULATE,
 263        DECODE_TYPE_EMULATE,
 264        DECODE_TYPE_OR,
 265        DECODE_TYPE_REJECT,
 266        NUM_DECODE_TYPES /* Must be last enum */
 267};
 268
 269#define DECODE_TYPE_BITS        4
 270#define DECODE_TYPE_MASK        ((1 << DECODE_TYPE_BITS) - 1)
 271
 272enum decode_reg_type {
 273        REG_TYPE_NONE = 0, /* Not a register, ignore */
 274        REG_TYPE_ANY,      /* Any register allowed */
 275        REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
 276        REG_TYPE_SP,       /* Register must be SP */
 277        REG_TYPE_PC,       /* Register must be PC */
 278        REG_TYPE_NOSP,     /* Register must not be SP */
 279        REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
 280        REG_TYPE_NOPC,     /* Register must not be PC */
 281        REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
 282
 283        /* The following types are used when the encoding for PC indicates
 284         * another instruction form. This distiction only matters for test
 285         * case coverage checks.
 286         */
 287        REG_TYPE_NOPCX,    /* Register must not be PC */
 288        REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
 289
 290        /* Alias to allow '0' arg to be used in REGS macro. */
 291        REG_TYPE_0 = REG_TYPE_NONE
 292};
 293
 294#define REGS(r16, r12, r8, r4, r0)      \
 295        (((REG_TYPE_##r16) << 16) +     \
 296        ((REG_TYPE_##r12) << 12) +      \
 297        ((REG_TYPE_##r8) << 8) +        \
 298        ((REG_TYPE_##r4) << 4) +        \
 299        (REG_TYPE_##r0))
 300
 301union decode_item {
 302        u32                     bits;
 303        const union decode_item *table;
 304        int                     action;
 305};
 306
 307struct decode_header;
 308typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
 309                                                  struct arch_probes_insn *,
 310                                                  const struct decode_header *);
 311
 312union decode_action {
 313        probes_insn_handler_t   *handler;
 314        probes_custom_decode_t  *decoder;
 315};
 316
 317#define DECODE_END                      \
 318        {.bits = DECODE_TYPE_END}
 319
 320
 321struct decode_header {
 322        union decode_item       type_regs;
 323        union decode_item       mask;
 324        union decode_item       value;
 325};
 326
 327#define DECODE_HEADER(_type, _mask, _value, _regs)              \
 328        {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},      \
 329        {.bits = (_mask)},                                      \
 330        {.bits = (_value)}
 331
 332
 333struct decode_table {
 334        struct decode_header    header;
 335        union decode_item       table;
 336};
 337
 338#define DECODE_TABLE(_mask, _value, _table)                     \
 339        DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),     \
 340        {.table = (_table)}
 341
 342
 343struct decode_custom {
 344        struct decode_header    header;
 345        union decode_item       decoder;
 346};
 347
 348#define DECODE_CUSTOM(_mask, _value, _decoder)                  \
 349        DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),    \
 350        {.action = (_decoder)}
 351
 352
 353struct decode_simulate {
 354        struct decode_header    header;
 355        union decode_item       handler;
 356};
 357
 358#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)                \
 359        DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),      \
 360        {.action = (_handler)}
 361
 362#define DECODE_SIMULATE(_mask, _value, _handler)        \
 363        DECODE_SIMULATEX(_mask, _value, _handler, 0)
 364
 365
 366struct decode_emulate {
 367        struct decode_header    header;
 368        union decode_item       handler;
 369};
 370
 371#define DECODE_EMULATEX(_mask, _value, _handler, _regs)                 \
 372        DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),       \
 373        {.action = (_handler)}
 374
 375#define DECODE_EMULATE(_mask, _value, _handler)         \
 376        DECODE_EMULATEX(_mask, _value, _handler, 0)
 377
 378
 379struct decode_or {
 380        struct decode_header    header;
 381};
 382
 383#define DECODE_OR(_mask, _value)                                \
 384        DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
 385
 386enum probes_insn {
 387        INSN_REJECTED,
 388        INSN_GOOD,
 389        INSN_GOOD_NO_SLOT
 390};
 391
 392struct decode_reject {
 393        struct decode_header    header;
 394};
 395
 396#define DECODE_REJECT(_mask, _value)                            \
 397        DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
 398
 399probes_insn_handler_t probes_simulate_nop;
 400probes_insn_handler_t probes_emulate_none;
 401
 402int __kprobes
 403probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
 404                const union decode_item *table, bool thumb, bool emulate,
 405                const union decode_action *actions);
 406
 407#endif
 408