linux/arch/mips/kernel/cevt-smtc.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2007 MIPS Technologies, Inc.
   7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
   8 * Copyright (C) 2008 Kevin D. Kissell, Paralogos sarl
   9 */
  10#include <linux/clockchips.h>
  11#include <linux/interrupt.h>
  12#include <linux/percpu.h>
  13#include <linux/smp.h>
  14#include <linux/irq.h>
  15
  16#include <asm/smtc_ipi.h>
  17#include <asm/time.h>
  18#include <asm/cevt-r4k.h>
  19
  20/*
  21 * Variant clock event timer support for SMTC on MIPS 34K, 1004K
  22 * or other MIPS MT cores.
  23 *
  24 * Notes on SMTC Support:
  25 *
  26 * SMTC has multiple microthread TCs pretending to be Linux CPUs.
  27 * But there's only one Count/Compare pair per VPE, and Compare
  28 * interrupts are taken opportunisitically by available TCs
  29 * bound to the VPE with the Count register.  The new timer
  30 * framework provides for global broadcasts, but we really
  31 * want VPE-level multicasts for best behavior. So instead
  32 * of invoking the high-level clock-event broadcast code,
  33 * this version of SMTC support uses the historical SMTC
  34 * multicast mechanisms "under the hood", appearing to the
  35 * generic clock layer as if the interrupts are per-CPU.
  36 *
  37 * The approach taken here is to maintain a set of NR_CPUS
  38 * virtual timers, and track which "CPU" needs to be alerted
  39 * at each event.
  40 *
  41 * It's unlikely that we'll see a MIPS MT core with more than
  42 * 2 VPEs, but we *know* that we won't need to handle more
  43 * VPEs than we have "CPUs".  So NCPUs arrays of NCPUs elements
  44 * is always going to be overkill, but always going to be enough.
  45 */
  46
  47unsigned long smtc_nexttime[NR_CPUS][NR_CPUS];
  48static int smtc_nextinvpe[NR_CPUS];
  49
  50/*
  51 * Timestamps stored are absolute values to be programmed
  52 * into Count register.  Valid timestamps will never be zero.
  53 * If a Zero Count value is actually calculated, it is converted
  54 * to be a 1, which will introduce 1 or two CPU cycles of error
  55 * roughly once every four billion events, which at 1000 HZ means
  56 * about once every 50 days.  If that's actually a problem, one
  57 * could alternate squashing 0 to 1 and to -1.
  58 */
  59
  60#define MAKEVALID(x) (((x) == 0L) ? 1L : (x))
  61#define ISVALID(x) ((x) != 0L)
  62
  63/*
  64 * Time comparison is subtle, as it's really truncated
  65 * modular arithmetic.
  66 */
  67
  68#define IS_SOONER(a, b, reference) \
  69    (((a) - (unsigned long)(reference)) < ((b) - (unsigned long)(reference)))
  70
  71/*
  72 * CATCHUP_INCREMENT, used when the function falls behind the counter.
  73 * Could be an increasing function instead of a constant;
  74 */
  75
  76#define CATCHUP_INCREMENT 64
  77
  78static int mips_next_event(unsigned long delta,
  79                                struct clock_event_device *evt)
  80{
  81        unsigned long flags;
  82        unsigned int mtflags;
  83        unsigned long timestamp, reference, previous;
  84        unsigned long nextcomp = 0L;
  85        int vpe = current_cpu_data.vpe_id;
  86        int cpu = smp_processor_id();
  87        local_irq_save(flags);
  88        mtflags = dmt();
  89
  90        /*
  91         * Maintain the per-TC virtual timer
  92         * and program the per-VPE shared Count register
  93         * as appropriate here...
  94         */
  95        reference = (unsigned long)read_c0_count();
  96        timestamp = MAKEVALID(reference + delta);
  97        /*
  98         * To really model the clock, we have to catch the case
  99         * where the current next-in-VPE timestamp is the old
 100         * timestamp for the calling CPE, but the new value is
 101         * in fact later.  In that case, we have to do a full
 102         * scan and discover the new next-in-VPE CPU id and
 103         * timestamp.
 104         */
 105        previous = smtc_nexttime[vpe][cpu];
 106        if (cpu == smtc_nextinvpe[vpe] && ISVALID(previous)
 107            && IS_SOONER(previous, timestamp, reference)) {
 108                int i;
 109                int soonest = cpu;
 110
 111                /*
 112                 * Update timestamp array here, so that new
 113                 * value gets considered along with those of
 114                 * other virtual CPUs on the VPE.
 115                 */
 116                smtc_nexttime[vpe][cpu] = timestamp;
 117                for_each_online_cpu(i) {
 118                        if (ISVALID(smtc_nexttime[vpe][i])
 119                            && IS_SOONER(smtc_nexttime[vpe][i],
 120                                smtc_nexttime[vpe][soonest], reference)) {
 121                                    soonest = i;
 122                        }
 123                }
 124                smtc_nextinvpe[vpe] = soonest;
 125                nextcomp = smtc_nexttime[vpe][soonest];
 126        /*
 127         * Otherwise, we don't have to process the whole array rank,
 128         * we just have to see if the event horizon has gotten closer.
 129         */
 130        } else {
 131                if (!ISVALID(smtc_nexttime[vpe][smtc_nextinvpe[vpe]]) ||
 132                    IS_SOONER(timestamp,
 133                        smtc_nexttime[vpe][smtc_nextinvpe[vpe]], reference)) {
 134                            smtc_nextinvpe[vpe] = cpu;
 135                            nextcomp = timestamp;
 136                }
 137                /*
 138                 * Since next-in-VPE may me the same as the executing
 139                 * virtual CPU, we update the array *after* checking
 140                 * its value.
 141                 */
 142                smtc_nexttime[vpe][cpu] = timestamp;
 143        }
 144
 145        /*
 146         * It may be that, in fact, we don't need to update Compare,
 147         * but if we do, we want to make sure we didn't fall into
 148         * a crack just behind Count.
 149         */
 150        if (ISVALID(nextcomp)) {
 151                write_c0_compare(nextcomp);
 152                ehb();
 153                /*
 154                 * We never return an error, we just make sure
 155                 * that we trigger the handlers as quickly as
 156                 * we can if we fell behind.
 157                 */
 158                while ((nextcomp - (unsigned long)read_c0_count())
 159                        > (unsigned long)LONG_MAX) {
 160                        nextcomp += CATCHUP_INCREMENT;
 161                        write_c0_compare(nextcomp);
 162                        ehb();
 163                }
 164        }
 165        emt(mtflags);
 166        local_irq_restore(flags);
 167        return 0;
 168}
 169
 170
 171void smtc_distribute_timer(int vpe)
 172{
 173        unsigned long flags;
 174        unsigned int mtflags;
 175        int cpu;
 176        struct clock_event_device *cd;
 177        unsigned long nextstamp;
 178        unsigned long reference;
 179
 180
 181repeat:
 182        nextstamp = 0L;
 183        for_each_online_cpu(cpu) {
 184            /*
 185             * Find virtual CPUs within the current VPE who have
 186             * unserviced timer requests whose time is now past.
 187             */
 188            local_irq_save(flags);
 189            mtflags = dmt();
 190            if (cpu_data[cpu].vpe_id == vpe &&
 191                ISVALID(smtc_nexttime[vpe][cpu])) {
 192                reference = (unsigned long)read_c0_count();
 193                if ((smtc_nexttime[vpe][cpu] - reference)
 194                         > (unsigned long)LONG_MAX) {
 195                            smtc_nexttime[vpe][cpu] = 0L;
 196                            emt(mtflags);
 197                            local_irq_restore(flags);
 198                            /*
 199                             * We don't send IPIs to ourself.
 200                             */
 201                            if (cpu != smp_processor_id()) {
 202                                smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
 203                            } else {
 204                                cd = &per_cpu(mips_clockevent_device, cpu);
 205                                cd->event_handler(cd);
 206                            }
 207                } else {
 208                        /* Local to VPE but Valid Time not yet reached. */
 209                        if (!ISVALID(nextstamp) ||
 210                            IS_SOONER(smtc_nexttime[vpe][cpu], nextstamp,
 211                            reference)) {
 212                                smtc_nextinvpe[vpe] = cpu;
 213                                nextstamp = smtc_nexttime[vpe][cpu];
 214                        }
 215                        emt(mtflags);
 216                        local_irq_restore(flags);
 217                }
 218            } else {
 219                emt(mtflags);
 220                local_irq_restore(flags);
 221
 222            }
 223        }
 224        /* Reprogram for interrupt at next soonest timestamp for VPE */
 225        if (ISVALID(nextstamp)) {
 226                write_c0_compare(nextstamp);
 227                ehb();
 228                if ((nextstamp - (unsigned long)read_c0_count())
 229                        > (unsigned long)LONG_MAX)
 230                                goto repeat;
 231        }
 232}
 233
 234
 235irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
 236{
 237        int cpu = smp_processor_id();
 238
 239        /* If we're running SMTC, we've got MIPS MT and therefore MIPS32R2 */
 240        handle_perf_irq(1);
 241
 242        if (read_c0_cause() & (1 << 30)) {
 243                /* Clear Count/Compare Interrupt */
 244                write_c0_compare(read_c0_compare());
 245                smtc_distribute_timer(cpu_data[cpu].vpe_id);
 246        }
 247        return IRQ_HANDLED;
 248}
 249
 250
 251int smtc_clockevent_init(void)
 252{
 253        uint64_t mips_freq = mips_hpt_frequency;
 254        unsigned int cpu = smp_processor_id();
 255        struct clock_event_device *cd;
 256        unsigned int irq;
 257        int i;
 258        int j;
 259
 260        if (!cpu_has_counter || !mips_hpt_frequency)
 261                return -ENXIO;
 262        if (cpu == 0) {
 263                for (i = 0; i < num_possible_cpus(); i++) {
 264                        smtc_nextinvpe[i] = 0;
 265                        for (j = 0; j < num_possible_cpus(); j++)
 266                                smtc_nexttime[i][j] = 0L;
 267                }
 268                /*
 269                 * SMTC also can't have the usablility test
 270                 * run by secondary TCs once Compare is in use.
 271                 */
 272                if (!c0_compare_int_usable())
 273                        return -ENXIO;
 274        }
 275
 276        /*
 277         * With vectored interrupts things are getting platform specific.
 278         * get_c0_compare_int is a hook to allow a platform to return the
 279         * interrupt number of it's liking.
 280         */
 281        irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq;
 282        if (get_c0_compare_int)
 283                irq = get_c0_compare_int();
 284
 285        cd = &per_cpu(mips_clockevent_device, cpu);
 286
 287        cd->name                = "MIPS";
 288        cd->features            = CLOCK_EVT_FEAT_ONESHOT;
 289
 290        /* Calculate the min / max delta */
 291        cd->mult        = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
 292        cd->shift               = 32;
 293        cd->max_delta_ns        = clockevent_delta2ns(0x7fffffff, cd);
 294        cd->min_delta_ns        = clockevent_delta2ns(0x300, cd);
 295
 296        cd->rating              = 300;
 297        cd->irq                 = irq;
 298        cd->cpumask             = cpumask_of(cpu);
 299        cd->set_next_event      = mips_next_event;
 300        cd->set_mode            = mips_set_clock_mode;
 301        cd->event_handler       = mips_event_handler;
 302
 303        clockevents_register_device(cd);
 304
 305        /*
 306         * On SMTC we only want to do the data structure
 307         * initialization and IRQ setup once.
 308         */
 309        if (cpu)
 310                return 0;
 311        /*
 312         * And we need the hwmask associated with the c0_compare
 313         * vector to be initialized.
 314         */
 315        irq_hwmask[irq] = (0x100 << cp0_compare_irq);
 316        if (cp0_timer_irq_installed)
 317                return 0;
 318
 319        cp0_timer_irq_installed = 1;
 320
 321        setup_irq(irq, &c0_compare_irqaction);
 322
 323        return 0;
 324}
 325