linux/arch/openrisc/kernel/process.c
<<
>>
Prefs
   1/*
   2 * OpenRISC process.c
   3 *
   4 * Linux architectural port borrowing liberally from similar works of
   5 * others.  All original copyrights apply as per the original source
   6 * declaration.
   7 *
   8 * Modifications for the OpenRISC architecture:
   9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
  10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
  11 *
  12 *      This program is free software; you can redistribute it and/or
  13 *      modify it under the terms of the GNU General Public License
  14 *      as published by the Free Software Foundation; either version
  15 *      2 of the License, or (at your option) any later version.
  16 *
  17 * This file handles the architecture-dependent parts of process handling...
  18 */
  19
  20#define __KERNEL_SYSCALLS__
  21#include <stdarg.h>
  22
  23#include <linux/errno.h>
  24#include <linux/sched.h>
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/mm.h>
  28#include <linux/stddef.h>
  29#include <linux/unistd.h>
  30#include <linux/ptrace.h>
  31#include <linux/slab.h>
  32#include <linux/elfcore.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/init_task.h>
  36#include <linux/mqueue.h>
  37#include <linux/fs.h>
  38
  39#include <asm/uaccess.h>
  40#include <asm/pgtable.h>
  41#include <asm/io.h>
  42#include <asm/processor.h>
  43#include <asm/spr_defs.h>
  44
  45#include <linux/smp.h>
  46
  47/*
  48 * Pointer to Current thread info structure.
  49 *
  50 * Used at user space -> kernel transitions.
  51 */
  52struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
  53
  54void machine_restart(void)
  55{
  56        printk(KERN_INFO "*** MACHINE RESTART ***\n");
  57        __asm__("l.nop 1");
  58}
  59
  60/*
  61 * Similar to machine_power_off, but don't shut off power.  Add code
  62 * here to freeze the system for e.g. post-mortem debug purpose when
  63 * possible.  This halt has nothing to do with the idle halt.
  64 */
  65void machine_halt(void)
  66{
  67        printk(KERN_INFO "*** MACHINE HALT ***\n");
  68        __asm__("l.nop 1");
  69}
  70
  71/* If or when software power-off is implemented, add code here.  */
  72void machine_power_off(void)
  73{
  74        printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
  75        __asm__("l.nop 1");
  76}
  77
  78void (*pm_power_off) (void) = machine_power_off;
  79
  80/*
  81 * When a process does an "exec", machine state like FPU and debug
  82 * registers need to be reset.  This is a hook function for that.
  83 * Currently we don't have any such state to reset, so this is empty.
  84 */
  85void flush_thread(void)
  86{
  87}
  88
  89void show_regs(struct pt_regs *regs)
  90{
  91        extern void show_registers(struct pt_regs *regs);
  92
  93        show_regs_print_info(KERN_DEFAULT);
  94        /* __PHX__ cleanup this mess */
  95        show_registers(regs);
  96}
  97
  98unsigned long thread_saved_pc(struct task_struct *t)
  99{
 100        return (unsigned long)user_regs(t->stack)->pc;
 101}
 102
 103void release_thread(struct task_struct *dead_task)
 104{
 105}
 106
 107/*
 108 * Copy the thread-specific (arch specific) info from the current
 109 * process to the new one p
 110 */
 111extern asmlinkage void ret_from_fork(void);
 112
 113/*
 114 * copy_thread
 115 * @clone_flags: flags
 116 * @usp: user stack pointer or fn for kernel thread
 117 * @arg: arg to fn for kernel thread; always NULL for userspace thread
 118 * @p: the newly created task
 119 * @regs: CPU context to copy for userspace thread; always NULL for kthread
 120 *
 121 * At the top of a newly initialized kernel stack are two stacked pt_reg
 122 * structures.  The first (topmost) is the userspace context of the thread.
 123 * The second is the kernelspace context of the thread.
 124 *
 125 * A kernel thread will not be returning to userspace, so the topmost pt_regs
 126 * struct can be uninitialized; it _does_ need to exist, though, because
 127 * a kernel thread can become a userspace thread by doing a kernel_execve, in
 128 * which case the topmost context will be initialized and used for 'returning'
 129 * to userspace.
 130 *
 131 * The second pt_reg struct needs to be initialized to 'return' to
 132 * ret_from_fork.  A kernel thread will need to set r20 to the address of
 133 * a function to call into (with arg in r22); userspace threads need to set
 134 * r20 to NULL in which case ret_from_fork will just continue a return to
 135 * userspace.
 136 *
 137 * A kernel thread 'fn' may return; this is effectively what happens when
 138 * kernel_execve is called.  In that case, the userspace pt_regs must have
 139 * been initialized (which kernel_execve takes care of, see start_thread
 140 * below); ret_from_fork will then continue its execution causing the
 141 * 'kernel thread' to return to userspace as a userspace thread.
 142 */
 143
 144int
 145copy_thread(unsigned long clone_flags, unsigned long usp,
 146            unsigned long arg, struct task_struct *p)
 147{
 148        struct pt_regs *userregs;
 149        struct pt_regs *kregs;
 150        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 151        unsigned long top_of_kernel_stack;
 152
 153        top_of_kernel_stack = sp;
 154
 155        p->set_child_tid = p->clear_child_tid = NULL;
 156
 157        /* Locate userspace context on stack... */
 158        sp -= STACK_FRAME_OVERHEAD;     /* redzone */
 159        sp -= sizeof(struct pt_regs);
 160        userregs = (struct pt_regs *) sp;
 161
 162        /* ...and kernel context */
 163        sp -= STACK_FRAME_OVERHEAD;     /* redzone */
 164        sp -= sizeof(struct pt_regs);
 165        kregs = (struct pt_regs *)sp;
 166
 167        if (unlikely(p->flags & PF_KTHREAD)) {
 168                memset(kregs, 0, sizeof(struct pt_regs));
 169                kregs->gpr[20] = usp; /* fn, kernel thread */
 170                kregs->gpr[22] = arg;
 171        } else {
 172                *userregs = *current_pt_regs();
 173
 174                if (usp)
 175                        userregs->sp = usp;
 176                userregs->gpr[11] = 0;  /* Result from fork() */
 177
 178                kregs->gpr[20] = 0;     /* Userspace thread */
 179        }
 180
 181        /*
 182         * _switch wants the kernel stack page in pt_regs->sp so that it
 183         * can restore it to thread_info->ksp... see _switch for details.
 184         */
 185        kregs->sp = top_of_kernel_stack;
 186        kregs->gpr[9] = (unsigned long)ret_from_fork;
 187
 188        task_thread_info(p)->ksp = (unsigned long)kregs;
 189
 190        return 0;
 191}
 192
 193/*
 194 * Set up a thread for executing a new program
 195 */
 196void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
 197{
 198        unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
 199
 200        set_fs(USER_DS);
 201        memset(regs, 0, sizeof(struct pt_regs));
 202
 203        regs->pc = pc;
 204        regs->sr = sr;
 205        regs->sp = sp;
 206}
 207
 208/* Fill in the fpu structure for a core dump.  */
 209int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
 210{
 211        /* TODO */
 212        return 0;
 213}
 214
 215extern struct thread_info *_switch(struct thread_info *old_ti,
 216                                   struct thread_info *new_ti);
 217
 218struct task_struct *__switch_to(struct task_struct *old,
 219                                struct task_struct *new)
 220{
 221        struct task_struct *last;
 222        struct thread_info *new_ti, *old_ti;
 223        unsigned long flags;
 224
 225        local_irq_save(flags);
 226
 227        /* current_set is an array of saved current pointers
 228         * (one for each cpu). we need them at user->kernel transition,
 229         * while we save them at kernel->user transition
 230         */
 231        new_ti = new->stack;
 232        old_ti = old->stack;
 233
 234        current_thread_info_set[smp_processor_id()] = new_ti;
 235        last = (_switch(old_ti, new_ti))->task;
 236
 237        local_irq_restore(flags);
 238
 239        return last;
 240}
 241
 242/*
 243 * Write out registers in core dump format, as defined by the
 244 * struct user_regs_struct
 245 */
 246void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
 247{
 248        dest[0] = 0; /* r0 */
 249        memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
 250        dest[32] = regs->pc;
 251        dest[33] = regs->sr;
 252        dest[34] = 0;
 253        dest[35] = 0;
 254}
 255
 256unsigned long get_wchan(struct task_struct *p)
 257{
 258        /* TODO */
 259
 260        return 0;
 261}
 262