linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 *  S390 version
   3 *    Copyright IBM Corp. 1999, 2000
   4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   5 *               Ulrich Weigand (weigand@de.ibm.com)
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 *
   8 *  Derived from "include/asm-i386/pgtable.h"
   9 */
  10
  11#ifndef _ASM_S390_PGTABLE_H
  12#define _ASM_S390_PGTABLE_H
  13
  14/*
  15 * The Linux memory management assumes a three-level page table setup. For
  16 * s390 31 bit we "fold" the mid level into the top-level page table, so
  17 * that we physically have the same two-level page table as the s390 mmu
  18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  19 * the hardware provides (region first and region second tables are not
  20 * used).
  21 *
  22 * The "pgd_xxx()" functions are trivial for a folded two-level
  23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  24 * into the pgd entry)
  25 *
  26 * This file contains the functions and defines necessary to modify and use
  27 * the S390 page table tree.
  28 */
  29#ifndef __ASSEMBLY__
  30#include <linux/sched.h>
  31#include <linux/mm_types.h>
  32#include <linux/page-flags.h>
  33#include <asm/bug.h>
  34#include <asm/page.h>
  35
  36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  37extern void paging_init(void);
  38extern void vmem_map_init(void);
  39
  40/*
  41 * The S390 doesn't have any external MMU info: the kernel page
  42 * tables contain all the necessary information.
  43 */
  44#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  46
  47/*
  48 * ZERO_PAGE is a global shared page that is always zero; used
  49 * for zero-mapped memory areas etc..
  50 */
  51
  52extern unsigned long empty_zero_page;
  53extern unsigned long zero_page_mask;
  54
  55#define ZERO_PAGE(vaddr) \
  56        (virt_to_page((void *)(empty_zero_page + \
  57         (((unsigned long)(vaddr)) &zero_page_mask))))
  58#define __HAVE_COLOR_ZERO_PAGE
  59
  60/* TODO: s390 cannot support io_remap_pfn_range... */
  61#endif /* !__ASSEMBLY__ */
  62
  63/*
  64 * PMD_SHIFT determines the size of the area a second-level page
  65 * table can map
  66 * PGDIR_SHIFT determines what a third-level page table entry can map
  67 */
  68#ifndef CONFIG_64BIT
  69# define PMD_SHIFT      20
  70# define PUD_SHIFT      20
  71# define PGDIR_SHIFT    20
  72#else /* CONFIG_64BIT */
  73# define PMD_SHIFT      20
  74# define PUD_SHIFT      31
  75# define PGDIR_SHIFT    42
  76#endif /* CONFIG_64BIT */
  77
  78#define PMD_SIZE        (1UL << PMD_SHIFT)
  79#define PMD_MASK        (~(PMD_SIZE-1))
  80#define PUD_SIZE        (1UL << PUD_SHIFT)
  81#define PUD_MASK        (~(PUD_SIZE-1))
  82#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  83#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  84
  85/*
  86 * entries per page directory level: the S390 is two-level, so
  87 * we don't really have any PMD directory physically.
  88 * for S390 segment-table entries are combined to one PGD
  89 * that leads to 1024 pte per pgd
  90 */
  91#define PTRS_PER_PTE    256
  92#ifndef CONFIG_64BIT
  93#define PTRS_PER_PMD    1
  94#define PTRS_PER_PUD    1
  95#else /* CONFIG_64BIT */
  96#define PTRS_PER_PMD    2048
  97#define PTRS_PER_PUD    2048
  98#endif /* CONFIG_64BIT */
  99#define PTRS_PER_PGD    2048
 100
 101#define FIRST_USER_ADDRESS  0
 102
 103#define pte_ERROR(e) \
 104        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
 105#define pmd_ERROR(e) \
 106        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 107#define pud_ERROR(e) \
 108        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 109#define pgd_ERROR(e) \
 110        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 111
 112#ifndef __ASSEMBLY__
 113/*
 114 * The vmalloc and module area will always be on the topmost area of the kernel
 115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
 116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
 117 * modules will reside. That makes sure that inter module branches always
 118 * happen without trampolines and in addition the placement within a 2GB frame
 119 * is branch prediction unit friendly.
 120 */
 121extern unsigned long VMALLOC_START;
 122extern unsigned long VMALLOC_END;
 123extern struct page *vmemmap;
 124
 125#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
 126
 127#ifdef CONFIG_64BIT
 128extern unsigned long MODULES_VADDR;
 129extern unsigned long MODULES_END;
 130#define MODULES_VADDR   MODULES_VADDR
 131#define MODULES_END     MODULES_END
 132#define MODULES_LEN     (1UL << 31)
 133#endif
 134
 135/*
 136 * A 31 bit pagetable entry of S390 has following format:
 137 *  |   PFRA          |    |  OS  |
 138 * 0                   0IP0
 139 * 00000000001111111111222222222233
 140 * 01234567890123456789012345678901
 141 *
 142 * I Page-Invalid Bit:    Page is not available for address-translation
 143 * P Page-Protection Bit: Store access not possible for page
 144 *
 145 * A 31 bit segmenttable entry of S390 has following format:
 146 *  |   P-table origin      |  |PTL
 147 * 0                         IC
 148 * 00000000001111111111222222222233
 149 * 01234567890123456789012345678901
 150 *
 151 * I Segment-Invalid Bit:    Segment is not available for address-translation
 152 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 153 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 154 *
 155 * The 31 bit segmenttable origin of S390 has following format:
 156 *
 157 *  |S-table origin   |     | STL |
 158 * X                   **GPS
 159 * 00000000001111111111222222222233
 160 * 01234567890123456789012345678901
 161 *
 162 * X Space-Switch event:
 163 * G Segment-Invalid Bit:     *
 164 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 165 * S Storage-Alteration:
 166 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 167 *
 168 * A 64 bit pagetable entry of S390 has following format:
 169 * |                     PFRA                         |0IPC|  OS  |
 170 * 0000000000111111111122222222223333333333444444444455555555556666
 171 * 0123456789012345678901234567890123456789012345678901234567890123
 172 *
 173 * I Page-Invalid Bit:    Page is not available for address-translation
 174 * P Page-Protection Bit: Store access not possible for page
 175 * C Change-bit override: HW is not required to set change bit
 176 *
 177 * A 64 bit segmenttable entry of S390 has following format:
 178 * |        P-table origin                              |      TT
 179 * 0000000000111111111122222222223333333333444444444455555555556666
 180 * 0123456789012345678901234567890123456789012345678901234567890123
 181 *
 182 * I Segment-Invalid Bit:    Segment is not available for address-translation
 183 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 184 * P Page-Protection Bit: Store access not possible for page
 185 * TT Type 00
 186 *
 187 * A 64 bit region table entry of S390 has following format:
 188 * |        S-table origin                             |   TF  TTTL
 189 * 0000000000111111111122222222223333333333444444444455555555556666
 190 * 0123456789012345678901234567890123456789012345678901234567890123
 191 *
 192 * I Segment-Invalid Bit:    Segment is not available for address-translation
 193 * TT Type 01
 194 * TF
 195 * TL Table length
 196 *
 197 * The 64 bit regiontable origin of S390 has following format:
 198 * |      region table origon                          |       DTTL
 199 * 0000000000111111111122222222223333333333444444444455555555556666
 200 * 0123456789012345678901234567890123456789012345678901234567890123
 201 *
 202 * X Space-Switch event:
 203 * G Segment-Invalid Bit:  
 204 * P Private-Space Bit:    
 205 * S Storage-Alteration:
 206 * R Real space
 207 * TL Table-Length:
 208 *
 209 * A storage key has the following format:
 210 * | ACC |F|R|C|0|
 211 *  0   3 4 5 6 7
 212 * ACC: access key
 213 * F  : fetch protection bit
 214 * R  : referenced bit
 215 * C  : changed bit
 216 */
 217
 218/* Hardware bits in the page table entry */
 219#define _PAGE_CO        0x100           /* HW Change-bit override */
 220#define _PAGE_PROTECT   0x200           /* HW read-only bit  */
 221#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 222#define _PAGE_LARGE     0x800           /* Bit to mark a large pte */
 223
 224/* Software bits in the page table entry */
 225#define _PAGE_PRESENT   0x001           /* SW pte present bit */
 226#define _PAGE_TYPE      0x002           /* SW pte type bit */
 227#define _PAGE_YOUNG     0x004           /* SW pte young bit */
 228#define _PAGE_DIRTY     0x008           /* SW pte dirty bit */
 229#define _PAGE_READ      0x010           /* SW pte read bit */
 230#define _PAGE_WRITE     0x020           /* SW pte write bit */
 231#define _PAGE_SPECIAL   0x040           /* SW associated with special page */
 232#define _PAGE_UNUSED    0x080           /* SW bit for pgste usage state */
 233#define __HAVE_ARCH_PTE_SPECIAL
 234
 235/* Set of bits not changed in pte_modify */
 236#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
 237                                 _PAGE_DIRTY | _PAGE_YOUNG)
 238
 239/*
 240 * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
 241 * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
 242 * is used to distinguish present from not-present ptes. It is changed only
 243 * with the page table lock held.
 244 *
 245 * The following table gives the different possible bit combinations for
 246 * the pte hardware and software bits in the last 12 bits of a pte:
 247 *
 248 *                              842100000000
 249 *                              000084210000
 250 *                              000000008421
 251 *                              .IR...wrdytp
 252 * empty                        .10...000000
 253 * swap                         .10...xxxx10
 254 * file                         .11...xxxxx0
 255 * prot-none, clean, old        .11...000001
 256 * prot-none, clean, young      .11...000101
 257 * prot-none, dirty, old        .10...001001
 258 * prot-none, dirty, young      .10...001101
 259 * read-only, clean, old        .11...010001
 260 * read-only, clean, young      .01...010101
 261 * read-only, dirty, old        .11...011001
 262 * read-only, dirty, young      .01...011101
 263 * read-write, clean, old       .11...110001
 264 * read-write, clean, young     .01...110101
 265 * read-write, dirty, old       .10...111001
 266 * read-write, dirty, young     .00...111101
 267 *
 268 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
 269 * pte_none    is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
 270 * pte_file    is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
 271 * pte_swap    is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
 272 */
 273
 274#ifndef CONFIG_64BIT
 275
 276/* Bits in the segment table address-space-control-element */
 277#define _ASCE_SPACE_SWITCH      0x80000000UL    /* space switch event       */
 278#define _ASCE_ORIGIN_MASK       0x7ffff000UL    /* segment table origin     */
 279#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 280#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 281#define _ASCE_TABLE_LENGTH      0x7f    /* 128 x 64 entries = 8k            */
 282
 283/* Bits in the segment table entry */
 284#define _SEGMENT_ENTRY_BITS     0x7fffffffUL    /* Valid segment table bits */
 285#define _SEGMENT_ENTRY_ORIGIN   0x7fffffc0UL    /* page table origin        */
 286#define _SEGMENT_ENTRY_PROTECT  0x200   /* page protection bit              */
 287#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 288#define _SEGMENT_ENTRY_COMMON   0x10    /* common segment bit               */
 289#define _SEGMENT_ENTRY_PTL      0x0f    /* page table length                */
 290#define _SEGMENT_ENTRY_NONE     _SEGMENT_ENTRY_PROTECT
 291
 292#define _SEGMENT_ENTRY          (_SEGMENT_ENTRY_PTL)
 293#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 294
 295/*
 296 * Segment table entry encoding (I = invalid, R = read-only bit):
 297 *              ..R...I.....
 298 * prot-none    ..1...1.....
 299 * read-only    ..1...0.....
 300 * read-write   ..0...0.....
 301 * empty        ..0...1.....
 302 */
 303
 304/* Page status table bits for virtualization */
 305#define PGSTE_ACC_BITS  0xf0000000UL
 306#define PGSTE_FP_BIT    0x08000000UL
 307#define PGSTE_PCL_BIT   0x00800000UL
 308#define PGSTE_HR_BIT    0x00400000UL
 309#define PGSTE_HC_BIT    0x00200000UL
 310#define PGSTE_GR_BIT    0x00040000UL
 311#define PGSTE_GC_BIT    0x00020000UL
 312#define PGSTE_IN_BIT    0x00008000UL    /* IPTE notify bit */
 313
 314#else /* CONFIG_64BIT */
 315
 316/* Bits in the segment/region table address-space-control-element */
 317#define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
 318#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 319#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 320#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 321#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 322#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 323#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 324#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 325#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 326#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 327#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 328
 329/* Bits in the region table entry */
 330#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 331#define _REGION_ENTRY_PROTECT   0x200   /* region protection bit            */
 332#define _REGION_ENTRY_INVALID   0x20    /* invalid region table entry       */
 333#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
 334#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 335#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 336#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 337#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 338
 339#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 340#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 341#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 342#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 343#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 344#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 345
 346#define _REGION3_ENTRY_LARGE    0x400   /* RTTE-format control, large page  */
 347#define _REGION3_ENTRY_RO       0x200   /* page protection bit              */
 348#define _REGION3_ENTRY_CO       0x100   /* change-recording override        */
 349
 350/* Bits in the segment table entry */
 351#define _SEGMENT_ENTRY_BITS     0xfffffffffffffe33UL
 352#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff1ff33UL
 353#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 354#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
 355#define _SEGMENT_ENTRY_PROTECT  0x200   /* page protection bit              */
 356#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 357
 358#define _SEGMENT_ENTRY          (0)
 359#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 360
 361#define _SEGMENT_ENTRY_LARGE    0x400   /* STE-format control, large page   */
 362#define _SEGMENT_ENTRY_CO       0x100   /* change-recording override   */
 363#define _SEGMENT_ENTRY_SPLIT    0x001   /* THP splitting bit */
 364#define _SEGMENT_ENTRY_YOUNG    0x002   /* SW segment young bit */
 365#define _SEGMENT_ENTRY_NONE     _SEGMENT_ENTRY_YOUNG
 366
 367/*
 368 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
 369 *                      ..R...I...y.
 370 * prot-none, old       ..0...1...1.
 371 * prot-none, young     ..1...1...1.
 372 * read-only, old       ..1...1...0.
 373 * read-only, young     ..1...0...1.
 374 * read-write, old      ..0...1...0.
 375 * read-write, young    ..0...0...1.
 376 * The segment table origin is used to distinguish empty (origin==0) from
 377 * read-write, old segment table entries (origin!=0)
 378 */
 379
 380#define _SEGMENT_ENTRY_SPLIT_BIT 0      /* THP splitting bit number */
 381
 382/* Set of bits not changed in pmd_modify */
 383#define _SEGMENT_CHG_MASK       (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
 384                                 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
 385
 386/* Page status table bits for virtualization */
 387#define PGSTE_ACC_BITS  0xf000000000000000UL
 388#define PGSTE_FP_BIT    0x0800000000000000UL
 389#define PGSTE_PCL_BIT   0x0080000000000000UL
 390#define PGSTE_HR_BIT    0x0040000000000000UL
 391#define PGSTE_HC_BIT    0x0020000000000000UL
 392#define PGSTE_GR_BIT    0x0004000000000000UL
 393#define PGSTE_GC_BIT    0x0002000000000000UL
 394#define PGSTE_IN_BIT    0x0000800000000000UL    /* IPTE notify bit */
 395
 396#endif /* CONFIG_64BIT */
 397
 398/* Guest Page State used for virtualization */
 399#define _PGSTE_GPS_ZERO         0x0000000080000000UL
 400#define _PGSTE_GPS_USAGE_MASK   0x0000000003000000UL
 401#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
 402#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
 403
 404/*
 405 * A user page table pointer has the space-switch-event bit, the
 406 * private-space-control bit and the storage-alteration-event-control
 407 * bit set. A kernel page table pointer doesn't need them.
 408 */
 409#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 410                                 _ASCE_ALT_EVENT)
 411
 412/*
 413 * Page protection definitions.
 414 */
 415#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
 416#define PAGE_READ       __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 417                                 _PAGE_INVALID | _PAGE_PROTECT)
 418#define PAGE_WRITE      __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 419                                 _PAGE_INVALID | _PAGE_PROTECT)
 420
 421#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 422                                 _PAGE_YOUNG | _PAGE_DIRTY)
 423#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 424                                 _PAGE_YOUNG | _PAGE_DIRTY)
 425#define PAGE_KERNEL_RO  __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 426                                 _PAGE_PROTECT)
 427
 428/*
 429 * On s390 the page table entry has an invalid bit and a read-only bit.
 430 * Read permission implies execute permission and write permission
 431 * implies read permission.
 432 */
 433         /*xwr*/
 434#define __P000  PAGE_NONE
 435#define __P001  PAGE_READ
 436#define __P010  PAGE_READ
 437#define __P011  PAGE_READ
 438#define __P100  PAGE_READ
 439#define __P101  PAGE_READ
 440#define __P110  PAGE_READ
 441#define __P111  PAGE_READ
 442
 443#define __S000  PAGE_NONE
 444#define __S001  PAGE_READ
 445#define __S010  PAGE_WRITE
 446#define __S011  PAGE_WRITE
 447#define __S100  PAGE_READ
 448#define __S101  PAGE_READ
 449#define __S110  PAGE_WRITE
 450#define __S111  PAGE_WRITE
 451
 452/*
 453 * Segment entry (large page) protection definitions.
 454 */
 455#define SEGMENT_NONE    __pgprot(_SEGMENT_ENTRY_INVALID | \
 456                                 _SEGMENT_ENTRY_NONE)
 457#define SEGMENT_READ    __pgprot(_SEGMENT_ENTRY_INVALID | \
 458                                 _SEGMENT_ENTRY_PROTECT)
 459#define SEGMENT_WRITE   __pgprot(_SEGMENT_ENTRY_INVALID)
 460
 461static inline int mm_has_pgste(struct mm_struct *mm)
 462{
 463#ifdef CONFIG_PGSTE
 464        if (unlikely(mm->context.has_pgste))
 465                return 1;
 466#endif
 467        return 0;
 468}
 469/*
 470 * pgd/pmd/pte query functions
 471 */
 472#ifndef CONFIG_64BIT
 473
 474static inline int pgd_present(pgd_t pgd) { return 1; }
 475static inline int pgd_none(pgd_t pgd)    { return 0; }
 476static inline int pgd_bad(pgd_t pgd)     { return 0; }
 477
 478static inline int pud_present(pud_t pud) { return 1; }
 479static inline int pud_none(pud_t pud)    { return 0; }
 480static inline int pud_large(pud_t pud)   { return 0; }
 481static inline int pud_bad(pud_t pud)     { return 0; }
 482
 483#else /* CONFIG_64BIT */
 484
 485static inline int pgd_present(pgd_t pgd)
 486{
 487        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 488                return 1;
 489        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 490}
 491
 492static inline int pgd_none(pgd_t pgd)
 493{
 494        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 495                return 0;
 496        return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 497}
 498
 499static inline int pgd_bad(pgd_t pgd)
 500{
 501        /*
 502         * With dynamic page table levels the pgd can be a region table
 503         * entry or a segment table entry. Check for the bit that are
 504         * invalid for either table entry.
 505         */
 506        unsigned long mask =
 507                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 508                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 509        return (pgd_val(pgd) & mask) != 0;
 510}
 511
 512static inline int pud_present(pud_t pud)
 513{
 514        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 515                return 1;
 516        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 517}
 518
 519static inline int pud_none(pud_t pud)
 520{
 521        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 522                return 0;
 523        return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
 524}
 525
 526static inline int pud_large(pud_t pud)
 527{
 528        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 529                return 0;
 530        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 531}
 532
 533static inline int pud_bad(pud_t pud)
 534{
 535        /*
 536         * With dynamic page table levels the pud can be a region table
 537         * entry or a segment table entry. Check for the bit that are
 538         * invalid for either table entry.
 539         */
 540        unsigned long mask =
 541                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 542                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 543        return (pud_val(pud) & mask) != 0;
 544}
 545
 546#endif /* CONFIG_64BIT */
 547
 548static inline int pmd_present(pmd_t pmd)
 549{
 550        return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
 551}
 552
 553static inline int pmd_none(pmd_t pmd)
 554{
 555        return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
 556}
 557
 558static inline int pmd_large(pmd_t pmd)
 559{
 560#ifdef CONFIG_64BIT
 561        return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 562#else
 563        return 0;
 564#endif
 565}
 566
 567static inline int pmd_prot_none(pmd_t pmd)
 568{
 569        return (pmd_val(pmd) & _SEGMENT_ENTRY_INVALID) &&
 570                (pmd_val(pmd) & _SEGMENT_ENTRY_NONE);
 571}
 572
 573static inline int pmd_bad(pmd_t pmd)
 574{
 575#ifdef CONFIG_64BIT
 576        if (pmd_large(pmd))
 577                return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
 578#endif
 579        return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 580}
 581
 582#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
 583extern void pmdp_splitting_flush(struct vm_area_struct *vma,
 584                                 unsigned long addr, pmd_t *pmdp);
 585
 586#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 587extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 588                                 unsigned long address, pmd_t *pmdp,
 589                                 pmd_t entry, int dirty);
 590
 591#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 592extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 593                                  unsigned long address, pmd_t *pmdp);
 594
 595#define __HAVE_ARCH_PMD_WRITE
 596static inline int pmd_write(pmd_t pmd)
 597{
 598        if (pmd_prot_none(pmd))
 599                return 0;
 600        return (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) == 0;
 601}
 602
 603static inline int pmd_young(pmd_t pmd)
 604{
 605        int young = 0;
 606#ifdef CONFIG_64BIT
 607        if (pmd_prot_none(pmd))
 608                young = (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) != 0;
 609        else
 610                young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 611#endif
 612        return young;
 613}
 614
 615static inline int pte_present(pte_t pte)
 616{
 617        /* Bit pattern: (pte & 0x001) == 0x001 */
 618        return (pte_val(pte) & _PAGE_PRESENT) != 0;
 619}
 620
 621static inline int pte_none(pte_t pte)
 622{
 623        /* Bit pattern: pte == 0x400 */
 624        return pte_val(pte) == _PAGE_INVALID;
 625}
 626
 627static inline int pte_swap(pte_t pte)
 628{
 629        /* Bit pattern: (pte & 0x603) == 0x402 */
 630        return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
 631                                _PAGE_TYPE | _PAGE_PRESENT))
 632                == (_PAGE_INVALID | _PAGE_TYPE);
 633}
 634
 635static inline int pte_file(pte_t pte)
 636{
 637        /* Bit pattern: (pte & 0x601) == 0x600 */
 638        return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
 639                == (_PAGE_INVALID | _PAGE_PROTECT);
 640}
 641
 642static inline int pte_special(pte_t pte)
 643{
 644        return (pte_val(pte) & _PAGE_SPECIAL);
 645}
 646
 647#define __HAVE_ARCH_PTE_SAME
 648static inline int pte_same(pte_t a, pte_t b)
 649{
 650        return pte_val(a) == pte_val(b);
 651}
 652
 653static inline pgste_t pgste_get_lock(pte_t *ptep)
 654{
 655        unsigned long new = 0;
 656#ifdef CONFIG_PGSTE
 657        unsigned long old;
 658
 659        preempt_disable();
 660        asm(
 661                "       lg      %0,%2\n"
 662                "0:     lgr     %1,%0\n"
 663                "       nihh    %0,0xff7f\n"    /* clear PCL bit in old */
 664                "       oihh    %1,0x0080\n"    /* set PCL bit in new */
 665                "       csg     %0,%1,%2\n"
 666                "       jl      0b\n"
 667                : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
 668                : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
 669#endif
 670        return __pgste(new);
 671}
 672
 673static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
 674{
 675#ifdef CONFIG_PGSTE
 676        asm(
 677                "       nihh    %1,0xff7f\n"    /* clear PCL bit */
 678                "       stg     %1,%0\n"
 679                : "=Q" (ptep[PTRS_PER_PTE])
 680                : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
 681                : "cc", "memory");
 682        preempt_enable();
 683#endif
 684}
 685
 686static inline pgste_t pgste_get(pte_t *ptep)
 687{
 688        unsigned long pgste = 0;
 689#ifdef CONFIG_PGSTE
 690        pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
 691#endif
 692        return __pgste(pgste);
 693}
 694
 695static inline void pgste_set(pte_t *ptep, pgste_t pgste)
 696{
 697#ifdef CONFIG_PGSTE
 698        *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
 699#endif
 700}
 701
 702static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
 703{
 704#ifdef CONFIG_PGSTE
 705        unsigned long address, bits, skey;
 706
 707        if (pte_val(*ptep) & _PAGE_INVALID)
 708                return pgste;
 709        address = pte_val(*ptep) & PAGE_MASK;
 710        skey = (unsigned long) page_get_storage_key(address);
 711        bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
 712        if (!(pgste_val(pgste) & PGSTE_HC_BIT) && (bits & _PAGE_CHANGED)) {
 713                /* Transfer dirty + referenced bit to host bits in pgste */
 714                pgste_val(pgste) |= bits << 52;
 715                page_set_storage_key(address, skey ^ bits, 0);
 716        } else if (!(pgste_val(pgste) & PGSTE_HR_BIT) &&
 717                   (bits & _PAGE_REFERENCED)) {
 718                /* Transfer referenced bit to host bit in pgste */
 719                pgste_val(pgste) |= PGSTE_HR_BIT;
 720                page_reset_referenced(address);
 721        }
 722        /* Transfer page changed & referenced bit to guest bits in pgste */
 723        pgste_val(pgste) |= bits << 48;         /* GR bit & GC bit */
 724        /* Copy page access key and fetch protection bit to pgste */
 725        pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
 726        pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
 727#endif
 728        return pgste;
 729
 730}
 731
 732static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
 733{
 734#ifdef CONFIG_PGSTE
 735        if (pte_val(*ptep) & _PAGE_INVALID)
 736                return pgste;
 737        /* Get referenced bit from storage key */
 738        if (page_reset_referenced(pte_val(*ptep) & PAGE_MASK))
 739                pgste_val(pgste) |= PGSTE_HR_BIT | PGSTE_GR_BIT;
 740#endif
 741        return pgste;
 742}
 743
 744static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
 745{
 746#ifdef CONFIG_PGSTE
 747        unsigned long address;
 748        unsigned long nkey;
 749
 750        if (pte_val(entry) & _PAGE_INVALID)
 751                return;
 752        VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
 753        address = pte_val(entry) & PAGE_MASK;
 754        /*
 755         * Set page access key and fetch protection bit from pgste.
 756         * The guest C/R information is still in the PGSTE, set real
 757         * key C/R to 0.
 758         */
 759        nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
 760        page_set_storage_key(address, nkey, 0);
 761#endif
 762}
 763
 764static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
 765{
 766        if (!MACHINE_HAS_ESOP &&
 767            (pte_val(entry) & _PAGE_PRESENT) &&
 768            (pte_val(entry) & _PAGE_WRITE)) {
 769                /*
 770                 * Without enhanced suppression-on-protection force
 771                 * the dirty bit on for all writable ptes.
 772                 */
 773                pte_val(entry) |= _PAGE_DIRTY;
 774                pte_val(entry) &= ~_PAGE_PROTECT;
 775        }
 776        *ptep = entry;
 777}
 778
 779/**
 780 * struct gmap_struct - guest address space
 781 * @mm: pointer to the parent mm_struct
 782 * @table: pointer to the page directory
 783 * @asce: address space control element for gmap page table
 784 * @crst_list: list of all crst tables used in the guest address space
 785 * @pfault_enabled: defines if pfaults are applicable for the guest
 786 */
 787struct gmap {
 788        struct list_head list;
 789        struct mm_struct *mm;
 790        unsigned long *table;
 791        unsigned long asce;
 792        void *private;
 793        struct list_head crst_list;
 794        bool pfault_enabled;
 795};
 796
 797/**
 798 * struct gmap_rmap - reverse mapping for segment table entries
 799 * @gmap: pointer to the gmap_struct
 800 * @entry: pointer to a segment table entry
 801 * @vmaddr: virtual address in the guest address space
 802 */
 803struct gmap_rmap {
 804        struct list_head list;
 805        struct gmap *gmap;
 806        unsigned long *entry;
 807        unsigned long vmaddr;
 808};
 809
 810/**
 811 * struct gmap_pgtable - gmap information attached to a page table
 812 * @vmaddr: address of the 1MB segment in the process virtual memory
 813 * @mapper: list of segment table entries mapping a page table
 814 */
 815struct gmap_pgtable {
 816        unsigned long vmaddr;
 817        struct list_head mapper;
 818};
 819
 820/**
 821 * struct gmap_notifier - notify function block for page invalidation
 822 * @notifier_call: address of callback function
 823 */
 824struct gmap_notifier {
 825        struct list_head list;
 826        void (*notifier_call)(struct gmap *gmap, unsigned long address);
 827};
 828
 829struct gmap *gmap_alloc(struct mm_struct *mm);
 830void gmap_free(struct gmap *gmap);
 831void gmap_enable(struct gmap *gmap);
 832void gmap_disable(struct gmap *gmap);
 833int gmap_map_segment(struct gmap *gmap, unsigned long from,
 834                     unsigned long to, unsigned long len);
 835int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
 836unsigned long __gmap_translate(unsigned long address, struct gmap *);
 837unsigned long gmap_translate(unsigned long address, struct gmap *);
 838unsigned long __gmap_fault(unsigned long address, struct gmap *);
 839unsigned long gmap_fault(unsigned long address, struct gmap *);
 840void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
 841void __gmap_zap(unsigned long address, struct gmap *);
 842
 843void gmap_register_ipte_notifier(struct gmap_notifier *);
 844void gmap_unregister_ipte_notifier(struct gmap_notifier *);
 845int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
 846void gmap_do_ipte_notify(struct mm_struct *, pte_t *);
 847
 848static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
 849                                        pte_t *ptep, pgste_t pgste)
 850{
 851#ifdef CONFIG_PGSTE
 852        if (pgste_val(pgste) & PGSTE_IN_BIT) {
 853                pgste_val(pgste) &= ~PGSTE_IN_BIT;
 854                gmap_do_ipte_notify(mm, ptep);
 855        }
 856#endif
 857        return pgste;
 858}
 859
 860/*
 861 * Certain architectures need to do special things when PTEs
 862 * within a page table are directly modified.  Thus, the following
 863 * hook is made available.
 864 */
 865static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 866                              pte_t *ptep, pte_t entry)
 867{
 868        pgste_t pgste;
 869
 870        if (mm_has_pgste(mm)) {
 871                pgste = pgste_get_lock(ptep);
 872                pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
 873                pgste_set_key(ptep, pgste, entry);
 874                pgste_set_pte(ptep, entry);
 875                pgste_set_unlock(ptep, pgste);
 876        } else {
 877                if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
 878                        pte_val(entry) |= _PAGE_CO;
 879                *ptep = entry;
 880        }
 881}
 882
 883/*
 884 * query functions pte_write/pte_dirty/pte_young only work if
 885 * pte_present() is true. Undefined behaviour if not..
 886 */
 887static inline int pte_write(pte_t pte)
 888{
 889        return (pte_val(pte) & _PAGE_WRITE) != 0;
 890}
 891
 892static inline int pte_dirty(pte_t pte)
 893{
 894        return (pte_val(pte) & _PAGE_DIRTY) != 0;
 895}
 896
 897static inline int pte_young(pte_t pte)
 898{
 899        return (pte_val(pte) & _PAGE_YOUNG) != 0;
 900}
 901
 902#define __HAVE_ARCH_PTE_UNUSED
 903static inline int pte_unused(pte_t pte)
 904{
 905        return pte_val(pte) & _PAGE_UNUSED;
 906}
 907
 908/*
 909 * pgd/pmd/pte modification functions
 910 */
 911
 912static inline void pgd_clear(pgd_t *pgd)
 913{
 914#ifdef CONFIG_64BIT
 915        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 916                pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 917#endif
 918}
 919
 920static inline void pud_clear(pud_t *pud)
 921{
 922#ifdef CONFIG_64BIT
 923        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 924                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 925#endif
 926}
 927
 928static inline void pmd_clear(pmd_t *pmdp)
 929{
 930        pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
 931}
 932
 933static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 934{
 935        pte_val(*ptep) = _PAGE_INVALID;
 936}
 937
 938/*
 939 * The following pte modification functions only work if
 940 * pte_present() is true. Undefined behaviour if not..
 941 */
 942static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 943{
 944        pte_val(pte) &= _PAGE_CHG_MASK;
 945        pte_val(pte) |= pgprot_val(newprot);
 946        /*
 947         * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
 948         * invalid bit set, clear it again for readable, young pages
 949         */
 950        if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 951                pte_val(pte) &= ~_PAGE_INVALID;
 952        /*
 953         * newprot for PAGE_READ and PAGE_WRITE has the page protection
 954         * bit set, clear it again for writable, dirty pages
 955         */
 956        if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 957                pte_val(pte) &= ~_PAGE_PROTECT;
 958        return pte;
 959}
 960
 961static inline pte_t pte_wrprotect(pte_t pte)
 962{
 963        pte_val(pte) &= ~_PAGE_WRITE;
 964        pte_val(pte) |= _PAGE_PROTECT;
 965        return pte;
 966}
 967
 968static inline pte_t pte_mkwrite(pte_t pte)
 969{
 970        pte_val(pte) |= _PAGE_WRITE;
 971        if (pte_val(pte) & _PAGE_DIRTY)
 972                pte_val(pte) &= ~_PAGE_PROTECT;
 973        return pte;
 974}
 975
 976static inline pte_t pte_mkclean(pte_t pte)
 977{
 978        pte_val(pte) &= ~_PAGE_DIRTY;
 979        pte_val(pte) |= _PAGE_PROTECT;
 980        return pte;
 981}
 982
 983static inline pte_t pte_mkdirty(pte_t pte)
 984{
 985        pte_val(pte) |= _PAGE_DIRTY;
 986        if (pte_val(pte) & _PAGE_WRITE)
 987                pte_val(pte) &= ~_PAGE_PROTECT;
 988        return pte;
 989}
 990
 991static inline pte_t pte_mkold(pte_t pte)
 992{
 993        pte_val(pte) &= ~_PAGE_YOUNG;
 994        pte_val(pte) |= _PAGE_INVALID;
 995        return pte;
 996}
 997
 998static inline pte_t pte_mkyoung(pte_t pte)
 999{
1000        pte_val(pte) |= _PAGE_YOUNG;
1001        if (pte_val(pte) & _PAGE_READ)
1002                pte_val(pte) &= ~_PAGE_INVALID;
1003        return pte;
1004}
1005
1006static inline pte_t pte_mkspecial(pte_t pte)
1007{
1008        pte_val(pte) |= _PAGE_SPECIAL;
1009        return pte;
1010}
1011
1012#ifdef CONFIG_HUGETLB_PAGE
1013static inline pte_t pte_mkhuge(pte_t pte)
1014{
1015        pte_val(pte) |= _PAGE_LARGE;
1016        return pte;
1017}
1018#endif
1019
1020/*
1021 * Get (and clear) the user dirty bit for a pte.
1022 */
1023static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1024                                                 pte_t *ptep)
1025{
1026        pgste_t pgste;
1027        int dirty = 0;
1028
1029        if (mm_has_pgste(mm)) {
1030                pgste = pgste_get_lock(ptep);
1031                pgste = pgste_update_all(ptep, pgste);
1032                dirty = !!(pgste_val(pgste) & PGSTE_HC_BIT);
1033                pgste_val(pgste) &= ~PGSTE_HC_BIT;
1034                pgste_set_unlock(ptep, pgste);
1035                return dirty;
1036        }
1037        return dirty;
1038}
1039
1040/*
1041 * Get (and clear) the user referenced bit for a pte.
1042 */
1043static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
1044                                                 pte_t *ptep)
1045{
1046        pgste_t pgste;
1047        int young = 0;
1048
1049        if (mm_has_pgste(mm)) {
1050                pgste = pgste_get_lock(ptep);
1051                pgste = pgste_update_young(ptep, pgste);
1052                young = !!(pgste_val(pgste) & PGSTE_HR_BIT);
1053                pgste_val(pgste) &= ~PGSTE_HR_BIT;
1054                pgste_set_unlock(ptep, pgste);
1055        }
1056        return young;
1057}
1058
1059static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1060{
1061        unsigned long pto = (unsigned long) ptep;
1062
1063#ifndef CONFIG_64BIT
1064        /* pto in ESA mode must point to the start of the segment table */
1065        pto &= 0x7ffffc00;
1066#endif
1067        /* Invalidation + global TLB flush for the pte */
1068        asm volatile(
1069                "       ipte    %2,%3"
1070                : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1071}
1072
1073static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
1074{
1075        unsigned long pto = (unsigned long) ptep;
1076
1077#ifndef CONFIG_64BIT
1078        /* pto in ESA mode must point to the start of the segment table */
1079        pto &= 0x7ffffc00;
1080#endif
1081        /* Invalidation + local TLB flush for the pte */
1082        asm volatile(
1083                "       .insn rrf,0xb2210000,%2,%3,0,1"
1084                : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1085}
1086
1087static inline void ptep_flush_direct(struct mm_struct *mm,
1088                                     unsigned long address, pte_t *ptep)
1089{
1090        int active, count;
1091
1092        if (pte_val(*ptep) & _PAGE_INVALID)
1093                return;
1094        active = (mm == current->active_mm) ? 1 : 0;
1095        count = atomic_add_return(0x10000, &mm->context.attach_count);
1096        if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1097            cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1098                __ptep_ipte_local(address, ptep);
1099        else
1100                __ptep_ipte(address, ptep);
1101        atomic_sub(0x10000, &mm->context.attach_count);
1102}
1103
1104static inline void ptep_flush_lazy(struct mm_struct *mm,
1105                                   unsigned long address, pte_t *ptep)
1106{
1107        int active, count;
1108
1109        if (pte_val(*ptep) & _PAGE_INVALID)
1110                return;
1111        active = (mm == current->active_mm) ? 1 : 0;
1112        count = atomic_add_return(0x10000, &mm->context.attach_count);
1113        if ((count & 0xffff) <= active) {
1114                pte_val(*ptep) |= _PAGE_INVALID;
1115                mm->context.flush_mm = 1;
1116        } else
1117                __ptep_ipte(address, ptep);
1118        atomic_sub(0x10000, &mm->context.attach_count);
1119}
1120
1121#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1122static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1123                                            unsigned long addr, pte_t *ptep)
1124{
1125        pgste_t pgste;
1126        pte_t pte;
1127        int young;
1128
1129        if (mm_has_pgste(vma->vm_mm)) {
1130                pgste = pgste_get_lock(ptep);
1131                pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1132        }
1133
1134        pte = *ptep;
1135        ptep_flush_direct(vma->vm_mm, addr, ptep);
1136        young = pte_young(pte);
1137        pte = pte_mkold(pte);
1138
1139        if (mm_has_pgste(vma->vm_mm)) {
1140                pgste_set_pte(ptep, pte);
1141                pgste_set_unlock(ptep, pgste);
1142        } else
1143                *ptep = pte;
1144
1145        return young;
1146}
1147
1148#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1149static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1150                                         unsigned long address, pte_t *ptep)
1151{
1152        return ptep_test_and_clear_young(vma, address, ptep);
1153}
1154
1155/*
1156 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1157 * both clear the TLB for the unmapped pte. The reason is that
1158 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1159 * to modify an active pte. The sequence is
1160 *   1) ptep_get_and_clear
1161 *   2) set_pte_at
1162 *   3) flush_tlb_range
1163 * On s390 the tlb needs to get flushed with the modification of the pte
1164 * if the pte is active. The only way how this can be implemented is to
1165 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1166 * is a nop.
1167 */
1168#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1169static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1170                                       unsigned long address, pte_t *ptep)
1171{
1172        pgste_t pgste;
1173        pte_t pte;
1174
1175        if (mm_has_pgste(mm)) {
1176                pgste = pgste_get_lock(ptep);
1177                pgste = pgste_ipte_notify(mm, ptep, pgste);
1178        }
1179
1180        pte = *ptep;
1181        ptep_flush_lazy(mm, address, ptep);
1182        pte_val(*ptep) = _PAGE_INVALID;
1183
1184        if (mm_has_pgste(mm)) {
1185                pgste = pgste_update_all(&pte, pgste);
1186                pgste_set_unlock(ptep, pgste);
1187        }
1188        return pte;
1189}
1190
1191#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1192static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1193                                           unsigned long address,
1194                                           pte_t *ptep)
1195{
1196        pgste_t pgste;
1197        pte_t pte;
1198
1199        if (mm_has_pgste(mm)) {
1200                pgste = pgste_get_lock(ptep);
1201                pgste_ipte_notify(mm, ptep, pgste);
1202        }
1203
1204        pte = *ptep;
1205        ptep_flush_lazy(mm, address, ptep);
1206
1207        if (mm_has_pgste(mm)) {
1208                pgste = pgste_update_all(&pte, pgste);
1209                pgste_set(ptep, pgste);
1210        }
1211        return pte;
1212}
1213
1214static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1215                                           unsigned long address,
1216                                           pte_t *ptep, pte_t pte)
1217{
1218        pgste_t pgste;
1219
1220        if (mm_has_pgste(mm)) {
1221                pgste = pgste_get(ptep);
1222                pgste_set_key(ptep, pgste, pte);
1223                pgste_set_pte(ptep, pte);
1224                pgste_set_unlock(ptep, pgste);
1225        } else
1226                *ptep = pte;
1227}
1228
1229#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1230static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1231                                     unsigned long address, pte_t *ptep)
1232{
1233        pgste_t pgste;
1234        pte_t pte;
1235
1236        if (mm_has_pgste(vma->vm_mm)) {
1237                pgste = pgste_get_lock(ptep);
1238                pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1239        }
1240
1241        pte = *ptep;
1242        ptep_flush_direct(vma->vm_mm, address, ptep);
1243        pte_val(*ptep) = _PAGE_INVALID;
1244
1245        if (mm_has_pgste(vma->vm_mm)) {
1246                if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1247                    _PGSTE_GPS_USAGE_UNUSED)
1248                        pte_val(pte) |= _PAGE_UNUSED;
1249                pgste = pgste_update_all(&pte, pgste);
1250                pgste_set_unlock(ptep, pgste);
1251        }
1252        return pte;
1253}
1254
1255/*
1256 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1257 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1258 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1259 * cannot be accessed while the batched unmap is running. In this case
1260 * full==1 and a simple pte_clear is enough. See tlb.h.
1261 */
1262#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1263static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1264                                            unsigned long address,
1265                                            pte_t *ptep, int full)
1266{
1267        pgste_t pgste;
1268        pte_t pte;
1269
1270        if (!full && mm_has_pgste(mm)) {
1271                pgste = pgste_get_lock(ptep);
1272                pgste = pgste_ipte_notify(mm, ptep, pgste);
1273        }
1274
1275        pte = *ptep;
1276        if (!full)
1277                ptep_flush_lazy(mm, address, ptep);
1278        pte_val(*ptep) = _PAGE_INVALID;
1279
1280        if (!full && mm_has_pgste(mm)) {
1281                pgste = pgste_update_all(&pte, pgste);
1282                pgste_set_unlock(ptep, pgste);
1283        }
1284        return pte;
1285}
1286
1287#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1288static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1289                                       unsigned long address, pte_t *ptep)
1290{
1291        pgste_t pgste;
1292        pte_t pte = *ptep;
1293
1294        if (pte_write(pte)) {
1295                if (mm_has_pgste(mm)) {
1296                        pgste = pgste_get_lock(ptep);
1297                        pgste = pgste_ipte_notify(mm, ptep, pgste);
1298                }
1299
1300                ptep_flush_lazy(mm, address, ptep);
1301                pte = pte_wrprotect(pte);
1302
1303                if (mm_has_pgste(mm)) {
1304                        pgste_set_pte(ptep, pte);
1305                        pgste_set_unlock(ptep, pgste);
1306                } else
1307                        *ptep = pte;
1308        }
1309        return pte;
1310}
1311
1312#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1313static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1314                                        unsigned long address, pte_t *ptep,
1315                                        pte_t entry, int dirty)
1316{
1317        pgste_t pgste;
1318
1319        if (pte_same(*ptep, entry))
1320                return 0;
1321        if (mm_has_pgste(vma->vm_mm)) {
1322                pgste = pgste_get_lock(ptep);
1323                pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1324        }
1325
1326        ptep_flush_direct(vma->vm_mm, address, ptep);
1327
1328        if (mm_has_pgste(vma->vm_mm)) {
1329                pgste_set_pte(ptep, entry);
1330                pgste_set_unlock(ptep, pgste);
1331        } else
1332                *ptep = entry;
1333        return 1;
1334}
1335
1336/*
1337 * Conversion functions: convert a page and protection to a page entry,
1338 * and a page entry and page directory to the page they refer to.
1339 */
1340static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1341{
1342        pte_t __pte;
1343        pte_val(__pte) = physpage + pgprot_val(pgprot);
1344        return pte_mkyoung(__pte);
1345}
1346
1347static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1348{
1349        unsigned long physpage = page_to_phys(page);
1350        pte_t __pte = mk_pte_phys(physpage, pgprot);
1351
1352        if (pte_write(__pte) && PageDirty(page))
1353                __pte = pte_mkdirty(__pte);
1354        return __pte;
1355}
1356
1357#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1358#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1359#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1360#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1361
1362#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1363#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1364
1365#ifndef CONFIG_64BIT
1366
1367#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1368#define pud_deref(pmd) ({ BUG(); 0UL; })
1369#define pgd_deref(pmd) ({ BUG(); 0UL; })
1370
1371#define pud_offset(pgd, address) ((pud_t *) pgd)
1372#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1373
1374#else /* CONFIG_64BIT */
1375
1376#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1377#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1378#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1379
1380static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1381{
1382        pud_t *pud = (pud_t *) pgd;
1383        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1384                pud = (pud_t *) pgd_deref(*pgd);
1385        return pud  + pud_index(address);
1386}
1387
1388static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1389{
1390        pmd_t *pmd = (pmd_t *) pud;
1391        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1392                pmd = (pmd_t *) pud_deref(*pud);
1393        return pmd + pmd_index(address);
1394}
1395
1396#endif /* CONFIG_64BIT */
1397
1398#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1399#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1400#define pte_page(x) pfn_to_page(pte_pfn(x))
1401
1402#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1403
1404/* Find an entry in the lowest level page table.. */
1405#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1406#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1407#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1408#define pte_unmap(pte) do { } while (0)
1409
1410#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1411static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1412{
1413        /*
1414         * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1415         * Convert to segment table entry format.
1416         */
1417        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1418                return pgprot_val(SEGMENT_NONE);
1419        if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1420                return pgprot_val(SEGMENT_READ);
1421        return pgprot_val(SEGMENT_WRITE);
1422}
1423
1424static inline pmd_t pmd_mkyoung(pmd_t pmd)
1425{
1426#ifdef CONFIG_64BIT
1427        if (pmd_prot_none(pmd)) {
1428                pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1429        } else {
1430                pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1431                pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1432        }
1433#endif
1434        return pmd;
1435}
1436
1437static inline pmd_t pmd_mkold(pmd_t pmd)
1438{
1439#ifdef CONFIG_64BIT
1440        if (pmd_prot_none(pmd)) {
1441                pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1442        } else {
1443                pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1444                pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1445        }
1446#endif
1447        return pmd;
1448}
1449
1450static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1451{
1452        int young;
1453
1454        young = pmd_young(pmd);
1455        pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1456        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1457        if (young)
1458                pmd = pmd_mkyoung(pmd);
1459        return pmd;
1460}
1461
1462static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1463{
1464        pmd_t __pmd;
1465        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1466        return pmd_mkyoung(__pmd);
1467}
1468
1469static inline pmd_t pmd_mkwrite(pmd_t pmd)
1470{
1471        /* Do not clobber PROT_NONE segments! */
1472        if (!pmd_prot_none(pmd))
1473                pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1474        return pmd;
1475}
1476#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1477
1478static inline void __pmdp_csp(pmd_t *pmdp)
1479{
1480        register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1481        register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1482                                               _SEGMENT_ENTRY_INVALID;
1483        register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1484
1485        asm volatile(
1486                "       csp %1,%3"
1487                : "=m" (*pmdp)
1488                : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1489}
1490
1491static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1492{
1493        unsigned long sto;
1494
1495        sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1496        asm volatile(
1497                "       .insn   rrf,0xb98e0000,%2,%3,0,0"
1498                : "=m" (*pmdp)
1499                : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1500                : "cc" );
1501}
1502
1503static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1504{
1505        unsigned long sto;
1506
1507        sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1508        asm volatile(
1509                "       .insn   rrf,0xb98e0000,%2,%3,0,1"
1510                : "=m" (*pmdp)
1511                : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1512                : "cc" );
1513}
1514
1515static inline void pmdp_flush_direct(struct mm_struct *mm,
1516                                     unsigned long address, pmd_t *pmdp)
1517{
1518        int active, count;
1519
1520        if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1521                return;
1522        if (!MACHINE_HAS_IDTE) {
1523                __pmdp_csp(pmdp);
1524                return;
1525        }
1526        active = (mm == current->active_mm) ? 1 : 0;
1527        count = atomic_add_return(0x10000, &mm->context.attach_count);
1528        if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1529            cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1530                __pmdp_idte_local(address, pmdp);
1531        else
1532                __pmdp_idte(address, pmdp);
1533        atomic_sub(0x10000, &mm->context.attach_count);
1534}
1535
1536static inline void pmdp_flush_lazy(struct mm_struct *mm,
1537                                   unsigned long address, pmd_t *pmdp)
1538{
1539        int active, count;
1540
1541        if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1542                return;
1543        active = (mm == current->active_mm) ? 1 : 0;
1544        count = atomic_add_return(0x10000, &mm->context.attach_count);
1545        if ((count & 0xffff) <= active) {
1546                pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1547                mm->context.flush_mm = 1;
1548        } else if (MACHINE_HAS_IDTE)
1549                __pmdp_idte(address, pmdp);
1550        else
1551                __pmdp_csp(pmdp);
1552        atomic_sub(0x10000, &mm->context.attach_count);
1553}
1554
1555#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1556
1557#define __HAVE_ARCH_PGTABLE_DEPOSIT
1558extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1559                                       pgtable_t pgtable);
1560
1561#define __HAVE_ARCH_PGTABLE_WITHDRAW
1562extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1563
1564static inline int pmd_trans_splitting(pmd_t pmd)
1565{
1566        return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1567}
1568
1569static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1570                              pmd_t *pmdp, pmd_t entry)
1571{
1572        if (!(pmd_val(entry) & _SEGMENT_ENTRY_INVALID) && MACHINE_HAS_EDAT1)
1573                pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1574        *pmdp = entry;
1575}
1576
1577static inline pmd_t pmd_mkhuge(pmd_t pmd)
1578{
1579        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1580        return pmd;
1581}
1582
1583static inline pmd_t pmd_wrprotect(pmd_t pmd)
1584{
1585        /* Do not clobber PROT_NONE segments! */
1586        if (!pmd_prot_none(pmd))
1587                pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1588        return pmd;
1589}
1590
1591static inline pmd_t pmd_mkdirty(pmd_t pmd)
1592{
1593        /* No dirty bit in the segment table entry. */
1594        return pmd;
1595}
1596
1597#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1598static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1599                                            unsigned long address, pmd_t *pmdp)
1600{
1601        pmd_t pmd;
1602
1603        pmd = *pmdp;
1604        pmdp_flush_direct(vma->vm_mm, address, pmdp);
1605        *pmdp = pmd_mkold(pmd);
1606        return pmd_young(pmd);
1607}
1608
1609#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1610static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1611                                       unsigned long address, pmd_t *pmdp)
1612{
1613        pmd_t pmd = *pmdp;
1614
1615        pmdp_flush_direct(mm, address, pmdp);
1616        pmd_clear(pmdp);
1617        return pmd;
1618}
1619
1620#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1621static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1622                                     unsigned long address, pmd_t *pmdp)
1623{
1624        return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1625}
1626
1627#define __HAVE_ARCH_PMDP_INVALIDATE
1628static inline void pmdp_invalidate(struct vm_area_struct *vma,
1629                                   unsigned long address, pmd_t *pmdp)
1630{
1631        pmdp_flush_direct(vma->vm_mm, address, pmdp);
1632}
1633
1634#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1635static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1636                                      unsigned long address, pmd_t *pmdp)
1637{
1638        pmd_t pmd = *pmdp;
1639
1640        if (pmd_write(pmd)) {
1641                pmdp_flush_direct(mm, address, pmdp);
1642                set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1643        }
1644}
1645
1646#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1647#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1648
1649static inline int pmd_trans_huge(pmd_t pmd)
1650{
1651        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1652}
1653
1654static inline int has_transparent_hugepage(void)
1655{
1656        return MACHINE_HAS_HPAGE ? 1 : 0;
1657}
1658
1659static inline unsigned long pmd_pfn(pmd_t pmd)
1660{
1661        return pmd_val(pmd) >> PAGE_SHIFT;
1662}
1663#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1664
1665/*
1666 * 31 bit swap entry format:
1667 * A page-table entry has some bits we have to treat in a special way.
1668 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1669 * exception will occur instead of a page translation exception. The
1670 * specifiation exception has the bad habit not to store necessary
1671 * information in the lowcore.
1672 * Bits 21, 22, 30 and 31 are used to indicate the page type.
1673 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1674 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1675 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1676 * plus 24 for the offset.
1677 * 0|     offset        |0110|o|type |00|
1678 * 0 0000000001111111111 2222 2 22222 33
1679 * 0 1234567890123456789 0123 4 56789 01
1680 *
1681 * 64 bit swap entry format:
1682 * A page-table entry has some bits we have to treat in a special way.
1683 * Bits 52 and bit 55 have to be zero, otherwise an specification
1684 * exception will occur instead of a page translation exception. The
1685 * specifiation exception has the bad habit not to store necessary
1686 * information in the lowcore.
1687 * Bits 53, 54, 62 and 63 are used to indicate the page type.
1688 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1689 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1690 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1691 * plus 56 for the offset.
1692 * |                      offset                        |0110|o|type |00|
1693 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1694 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1695 */
1696#ifndef CONFIG_64BIT
1697#define __SWP_OFFSET_MASK (~0UL >> 12)
1698#else
1699#define __SWP_OFFSET_MASK (~0UL >> 11)
1700#endif
1701static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1702{
1703        pte_t pte;
1704        offset &= __SWP_OFFSET_MASK;
1705        pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1706                ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1707        return pte;
1708}
1709
1710#define __swp_type(entry)       (((entry).val >> 2) & 0x1f)
1711#define __swp_offset(entry)     (((entry).val >> 11) | (((entry).val >> 7) & 1))
1712#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1713
1714#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1715#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1716
1717#ifndef CONFIG_64BIT
1718# define PTE_FILE_MAX_BITS      26
1719#else /* CONFIG_64BIT */
1720# define PTE_FILE_MAX_BITS      59
1721#endif /* CONFIG_64BIT */
1722
1723#define pte_to_pgoff(__pte) \
1724        ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1725
1726#define pgoff_to_pte(__off) \
1727        ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1728                   | _PAGE_INVALID | _PAGE_PROTECT })
1729
1730#endif /* !__ASSEMBLY__ */
1731
1732#define kern_addr_valid(addr)   (1)
1733
1734extern int vmem_add_mapping(unsigned long start, unsigned long size);
1735extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1736extern int s390_enable_sie(void);
1737
1738/*
1739 * No page table caches to initialise
1740 */
1741static inline void pgtable_cache_init(void) { }
1742static inline void check_pgt_cache(void) { }
1743
1744#include <asm-generic/pgtable.h>
1745
1746#endif /* _S390_PAGE_H */
1747