linux/arch/x86/kernel/nmi.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *  Copyright (C) 2011  Don Zickus Red Hat, Inc.
   5 *
   6 *  Pentium III FXSR, SSE support
   7 *      Gareth Hughes <gareth@valinux.com>, May 2000
   8 */
   9
  10/*
  11 * Handle hardware traps and faults.
  12 */
  13#include <linux/spinlock.h>
  14#include <linux/kprobes.h>
  15#include <linux/kdebug.h>
  16#include <linux/nmi.h>
  17#include <linux/debugfs.h>
  18#include <linux/delay.h>
  19#include <linux/hardirq.h>
  20#include <linux/slab.h>
  21#include <linux/export.h>
  22
  23#if defined(CONFIG_EDAC)
  24#include <linux/edac.h>
  25#endif
  26
  27#include <linux/atomic.h>
  28#include <asm/traps.h>
  29#include <asm/mach_traps.h>
  30#include <asm/nmi.h>
  31#include <asm/x86_init.h>
  32
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/nmi.h>
  35
  36struct nmi_desc {
  37        spinlock_t lock;
  38        struct list_head head;
  39};
  40
  41static struct nmi_desc nmi_desc[NMI_MAX] = 
  42{
  43        {
  44                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  45                .head = LIST_HEAD_INIT(nmi_desc[0].head),
  46        },
  47        {
  48                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  49                .head = LIST_HEAD_INIT(nmi_desc[1].head),
  50        },
  51        {
  52                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  53                .head = LIST_HEAD_INIT(nmi_desc[2].head),
  54        },
  55        {
  56                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  57                .head = LIST_HEAD_INIT(nmi_desc[3].head),
  58        },
  59
  60};
  61
  62struct nmi_stats {
  63        unsigned int normal;
  64        unsigned int unknown;
  65        unsigned int external;
  66        unsigned int swallow;
  67};
  68
  69static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  70
  71static int ignore_nmis;
  72
  73int unknown_nmi_panic;
  74/*
  75 * Prevent NMI reason port (0x61) being accessed simultaneously, can
  76 * only be used in NMI handler.
  77 */
  78static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  79
  80static int __init setup_unknown_nmi_panic(char *str)
  81{
  82        unknown_nmi_panic = 1;
  83        return 1;
  84}
  85__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  86
  87#define nmi_to_desc(type) (&nmi_desc[type])
  88
  89static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
  90
  91static int __init nmi_warning_debugfs(void)
  92{
  93        debugfs_create_u64("nmi_longest_ns", 0644,
  94                        arch_debugfs_dir, &nmi_longest_ns);
  95        return 0;
  96}
  97fs_initcall(nmi_warning_debugfs);
  98
  99static void nmi_max_handler(struct irq_work *w)
 100{
 101        struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
 102        int remainder_ns, decimal_msecs;
 103        u64 whole_msecs = ACCESS_ONCE(a->max_duration);
 104
 105        remainder_ns = do_div(whole_msecs, (1000 * 1000));
 106        decimal_msecs = remainder_ns / 1000;
 107
 108        printk_ratelimited(KERN_INFO
 109                "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
 110                a->handler, whole_msecs, decimal_msecs);
 111}
 112
 113static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
 114{
 115        struct nmi_desc *desc = nmi_to_desc(type);
 116        struct nmiaction *a;
 117        int handled=0;
 118
 119        rcu_read_lock();
 120
 121        /*
 122         * NMIs are edge-triggered, which means if you have enough
 123         * of them concurrently, you can lose some because only one
 124         * can be latched at any given time.  Walk the whole list
 125         * to handle those situations.
 126         */
 127        list_for_each_entry_rcu(a, &desc->head, list) {
 128                int thishandled;
 129                u64 delta;
 130
 131                delta = sched_clock();
 132                thishandled = a->handler(type, regs);
 133                handled += thishandled;
 134                delta = sched_clock() - delta;
 135                trace_nmi_handler(a->handler, (int)delta, thishandled);
 136
 137                if (delta < nmi_longest_ns || delta < a->max_duration)
 138                        continue;
 139
 140                a->max_duration = delta;
 141                irq_work_queue(&a->irq_work);
 142        }
 143
 144        rcu_read_unlock();
 145
 146        /* return total number of NMI events handled */
 147        return handled;
 148}
 149
 150int __register_nmi_handler(unsigned int type, struct nmiaction *action)
 151{
 152        struct nmi_desc *desc = nmi_to_desc(type);
 153        unsigned long flags;
 154
 155        if (!action->handler)
 156                return -EINVAL;
 157
 158        init_irq_work(&action->irq_work, nmi_max_handler);
 159
 160        spin_lock_irqsave(&desc->lock, flags);
 161
 162        /*
 163         * most handlers of type NMI_UNKNOWN never return because
 164         * they just assume the NMI is theirs.  Just a sanity check
 165         * to manage expectations
 166         */
 167        WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
 168        WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
 169        WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
 170
 171        /*
 172         * some handlers need to be executed first otherwise a fake
 173         * event confuses some handlers (kdump uses this flag)
 174         */
 175        if (action->flags & NMI_FLAG_FIRST)
 176                list_add_rcu(&action->list, &desc->head);
 177        else
 178                list_add_tail_rcu(&action->list, &desc->head);
 179        
 180        spin_unlock_irqrestore(&desc->lock, flags);
 181        return 0;
 182}
 183EXPORT_SYMBOL(__register_nmi_handler);
 184
 185void unregister_nmi_handler(unsigned int type, const char *name)
 186{
 187        struct nmi_desc *desc = nmi_to_desc(type);
 188        struct nmiaction *n;
 189        unsigned long flags;
 190
 191        spin_lock_irqsave(&desc->lock, flags);
 192
 193        list_for_each_entry_rcu(n, &desc->head, list) {
 194                /*
 195                 * the name passed in to describe the nmi handler
 196                 * is used as the lookup key
 197                 */
 198                if (!strcmp(n->name, name)) {
 199                        WARN(in_nmi(),
 200                                "Trying to free NMI (%s) from NMI context!\n", n->name);
 201                        list_del_rcu(&n->list);
 202                        break;
 203                }
 204        }
 205
 206        spin_unlock_irqrestore(&desc->lock, flags);
 207        synchronize_rcu();
 208}
 209EXPORT_SYMBOL_GPL(unregister_nmi_handler);
 210
 211static __kprobes void
 212pci_serr_error(unsigned char reason, struct pt_regs *regs)
 213{
 214        /* check to see if anyone registered against these types of errors */
 215        if (nmi_handle(NMI_SERR, regs, false))
 216                return;
 217
 218        pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
 219                 reason, smp_processor_id());
 220
 221        /*
 222         * On some machines, PCI SERR line is used to report memory
 223         * errors. EDAC makes use of it.
 224         */
 225#if defined(CONFIG_EDAC)
 226        if (edac_handler_set()) {
 227                edac_atomic_assert_error();
 228                return;
 229        }
 230#endif
 231
 232        if (panic_on_unrecovered_nmi)
 233                panic("NMI: Not continuing");
 234
 235        pr_emerg("Dazed and confused, but trying to continue\n");
 236
 237        /* Clear and disable the PCI SERR error line. */
 238        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
 239        outb(reason, NMI_REASON_PORT);
 240}
 241
 242static __kprobes void
 243io_check_error(unsigned char reason, struct pt_regs *regs)
 244{
 245        unsigned long i;
 246
 247        /* check to see if anyone registered against these types of errors */
 248        if (nmi_handle(NMI_IO_CHECK, regs, false))
 249                return;
 250
 251        pr_emerg(
 252        "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
 253                 reason, smp_processor_id());
 254        show_regs(regs);
 255
 256        if (panic_on_io_nmi)
 257                panic("NMI IOCK error: Not continuing");
 258
 259        /* Re-enable the IOCK line, wait for a few seconds */
 260        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
 261        outb(reason, NMI_REASON_PORT);
 262
 263        i = 20000;
 264        while (--i) {
 265                touch_nmi_watchdog();
 266                udelay(100);
 267        }
 268
 269        reason &= ~NMI_REASON_CLEAR_IOCHK;
 270        outb(reason, NMI_REASON_PORT);
 271}
 272
 273static __kprobes void
 274unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
 275{
 276        int handled;
 277
 278        /*
 279         * Use 'false' as back-to-back NMIs are dealt with one level up.
 280         * Of course this makes having multiple 'unknown' handlers useless
 281         * as only the first one is ever run (unless it can actually determine
 282         * if it caused the NMI)
 283         */
 284        handled = nmi_handle(NMI_UNKNOWN, regs, false);
 285        if (handled) {
 286                __this_cpu_add(nmi_stats.unknown, handled);
 287                return;
 288        }
 289
 290        __this_cpu_add(nmi_stats.unknown, 1);
 291
 292        pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
 293                 reason, smp_processor_id());
 294
 295        pr_emerg("Do you have a strange power saving mode enabled?\n");
 296        if (unknown_nmi_panic || panic_on_unrecovered_nmi)
 297                panic("NMI: Not continuing");
 298
 299        pr_emerg("Dazed and confused, but trying to continue\n");
 300}
 301
 302static DEFINE_PER_CPU(bool, swallow_nmi);
 303static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
 304
 305static __kprobes void default_do_nmi(struct pt_regs *regs)
 306{
 307        unsigned char reason = 0;
 308        int handled;
 309        bool b2b = false;
 310
 311        /*
 312         * CPU-specific NMI must be processed before non-CPU-specific
 313         * NMI, otherwise we may lose it, because the CPU-specific
 314         * NMI can not be detected/processed on other CPUs.
 315         */
 316
 317        /*
 318         * Back-to-back NMIs are interesting because they can either
 319         * be two NMI or more than two NMIs (any thing over two is dropped
 320         * due to NMI being edge-triggered).  If this is the second half
 321         * of the back-to-back NMI, assume we dropped things and process
 322         * more handlers.  Otherwise reset the 'swallow' NMI behaviour
 323         */
 324        if (regs->ip == __this_cpu_read(last_nmi_rip))
 325                b2b = true;
 326        else
 327                __this_cpu_write(swallow_nmi, false);
 328
 329        __this_cpu_write(last_nmi_rip, regs->ip);
 330
 331        handled = nmi_handle(NMI_LOCAL, regs, b2b);
 332        __this_cpu_add(nmi_stats.normal, handled);
 333        if (handled) {
 334                /*
 335                 * There are cases when a NMI handler handles multiple
 336                 * events in the current NMI.  One of these events may
 337                 * be queued for in the next NMI.  Because the event is
 338                 * already handled, the next NMI will result in an unknown
 339                 * NMI.  Instead lets flag this for a potential NMI to
 340                 * swallow.
 341                 */
 342                if (handled > 1)
 343                        __this_cpu_write(swallow_nmi, true);
 344                return;
 345        }
 346
 347        /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
 348        raw_spin_lock(&nmi_reason_lock);
 349        reason = x86_platform.get_nmi_reason();
 350
 351        if (reason & NMI_REASON_MASK) {
 352                if (reason & NMI_REASON_SERR)
 353                        pci_serr_error(reason, regs);
 354                else if (reason & NMI_REASON_IOCHK)
 355                        io_check_error(reason, regs);
 356#ifdef CONFIG_X86_32
 357                /*
 358                 * Reassert NMI in case it became active
 359                 * meanwhile as it's edge-triggered:
 360                 */
 361                reassert_nmi();
 362#endif
 363                __this_cpu_add(nmi_stats.external, 1);
 364                raw_spin_unlock(&nmi_reason_lock);
 365                return;
 366        }
 367        raw_spin_unlock(&nmi_reason_lock);
 368
 369        /*
 370         * Only one NMI can be latched at a time.  To handle
 371         * this we may process multiple nmi handlers at once to
 372         * cover the case where an NMI is dropped.  The downside
 373         * to this approach is we may process an NMI prematurely,
 374         * while its real NMI is sitting latched.  This will cause
 375         * an unknown NMI on the next run of the NMI processing.
 376         *
 377         * We tried to flag that condition above, by setting the
 378         * swallow_nmi flag when we process more than one event.
 379         * This condition is also only present on the second half
 380         * of a back-to-back NMI, so we flag that condition too.
 381         *
 382         * If both are true, we assume we already processed this
 383         * NMI previously and we swallow it.  Otherwise we reset
 384         * the logic.
 385         *
 386         * There are scenarios where we may accidentally swallow
 387         * a 'real' unknown NMI.  For example, while processing
 388         * a perf NMI another perf NMI comes in along with a
 389         * 'real' unknown NMI.  These two NMIs get combined into
 390         * one (as descibed above).  When the next NMI gets
 391         * processed, it will be flagged by perf as handled, but
 392         * noone will know that there was a 'real' unknown NMI sent
 393         * also.  As a result it gets swallowed.  Or if the first
 394         * perf NMI returns two events handled then the second
 395         * NMI will get eaten by the logic below, again losing a
 396         * 'real' unknown NMI.  But this is the best we can do
 397         * for now.
 398         */
 399        if (b2b && __this_cpu_read(swallow_nmi))
 400                __this_cpu_add(nmi_stats.swallow, 1);
 401        else
 402                unknown_nmi_error(reason, regs);
 403}
 404
 405/*
 406 * NMIs can hit breakpoints which will cause it to lose its
 407 * NMI context with the CPU when the breakpoint does an iret.
 408 */
 409#ifdef CONFIG_X86_32
 410/*
 411 * For i386, NMIs use the same stack as the kernel, and we can
 412 * add a workaround to the iret problem in C (preventing nested
 413 * NMIs if an NMI takes a trap). Simply have 3 states the NMI
 414 * can be in:
 415 *
 416 *  1) not running
 417 *  2) executing
 418 *  3) latched
 419 *
 420 * When no NMI is in progress, it is in the "not running" state.
 421 * When an NMI comes in, it goes into the "executing" state.
 422 * Normally, if another NMI is triggered, it does not interrupt
 423 * the running NMI and the HW will simply latch it so that when
 424 * the first NMI finishes, it will restart the second NMI.
 425 * (Note, the latch is binary, thus multiple NMIs triggering,
 426 *  when one is running, are ignored. Only one NMI is restarted.)
 427 *
 428 * If an NMI hits a breakpoint that executes an iret, another
 429 * NMI can preempt it. We do not want to allow this new NMI
 430 * to run, but we want to execute it when the first one finishes.
 431 * We set the state to "latched", and the exit of the first NMI will
 432 * perform a dec_return, if the result is zero (NOT_RUNNING), then
 433 * it will simply exit the NMI handler. If not, the dec_return
 434 * would have set the state to NMI_EXECUTING (what we want it to
 435 * be when we are running). In this case, we simply jump back
 436 * to rerun the NMI handler again, and restart the 'latched' NMI.
 437 *
 438 * No trap (breakpoint or page fault) should be hit before nmi_restart,
 439 * thus there is no race between the first check of state for NOT_RUNNING
 440 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
 441 * at this point.
 442 *
 443 * In case the NMI takes a page fault, we need to save off the CR2
 444 * because the NMI could have preempted another page fault and corrupt
 445 * the CR2 that is about to be read. As nested NMIs must be restarted
 446 * and they can not take breakpoints or page faults, the update of the
 447 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
 448 * Otherwise, there would be a race of another nested NMI coming in
 449 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
 450 */
 451enum nmi_states {
 452        NMI_NOT_RUNNING = 0,
 453        NMI_EXECUTING,
 454        NMI_LATCHED,
 455};
 456static DEFINE_PER_CPU(enum nmi_states, nmi_state);
 457static DEFINE_PER_CPU(unsigned long, nmi_cr2);
 458
 459#define nmi_nesting_preprocess(regs)                                    \
 460        do {                                                            \
 461                if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {      \
 462                        this_cpu_write(nmi_state, NMI_LATCHED);         \
 463                        return;                                         \
 464                }                                                       \
 465                this_cpu_write(nmi_state, NMI_EXECUTING);               \
 466                this_cpu_write(nmi_cr2, read_cr2());                    \
 467        } while (0);                                                    \
 468        nmi_restart:
 469
 470#define nmi_nesting_postprocess()                                       \
 471        do {                                                            \
 472                if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))     \
 473                        write_cr2(this_cpu_read(nmi_cr2));              \
 474                if (this_cpu_dec_return(nmi_state))                     \
 475                        goto nmi_restart;                               \
 476        } while (0)
 477#else /* x86_64 */
 478/*
 479 * In x86_64 things are a bit more difficult. This has the same problem
 480 * where an NMI hitting a breakpoint that calls iret will remove the
 481 * NMI context, allowing a nested NMI to enter. What makes this more
 482 * difficult is that both NMIs and breakpoints have their own stack.
 483 * When a new NMI or breakpoint is executed, the stack is set to a fixed
 484 * point. If an NMI is nested, it will have its stack set at that same
 485 * fixed address that the first NMI had, and will start corrupting the
 486 * stack. This is handled in entry_64.S, but the same problem exists with
 487 * the breakpoint stack.
 488 *
 489 * If a breakpoint is being processed, and the debug stack is being used,
 490 * if an NMI comes in and also hits a breakpoint, the stack pointer
 491 * will be set to the same fixed address as the breakpoint that was
 492 * interrupted, causing that stack to be corrupted. To handle this case,
 493 * check if the stack that was interrupted is the debug stack, and if
 494 * so, change the IDT so that new breakpoints will use the current stack
 495 * and not switch to the fixed address. On return of the NMI, switch back
 496 * to the original IDT.
 497 */
 498static DEFINE_PER_CPU(int, update_debug_stack);
 499
 500static inline void nmi_nesting_preprocess(struct pt_regs *regs)
 501{
 502        /*
 503         * If we interrupted a breakpoint, it is possible that
 504         * the nmi handler will have breakpoints too. We need to
 505         * change the IDT such that breakpoints that happen here
 506         * continue to use the NMI stack.
 507         */
 508        if (unlikely(is_debug_stack(regs->sp))) {
 509                debug_stack_set_zero();
 510                this_cpu_write(update_debug_stack, 1);
 511        }
 512}
 513
 514static inline void nmi_nesting_postprocess(void)
 515{
 516        if (unlikely(this_cpu_read(update_debug_stack))) {
 517                debug_stack_reset();
 518                this_cpu_write(update_debug_stack, 0);
 519        }
 520}
 521#endif
 522
 523dotraplinkage notrace __kprobes void
 524do_nmi(struct pt_regs *regs, long error_code)
 525{
 526        nmi_nesting_preprocess(regs);
 527
 528        nmi_enter();
 529
 530        inc_irq_stat(__nmi_count);
 531
 532        if (!ignore_nmis)
 533                default_do_nmi(regs);
 534
 535        nmi_exit();
 536
 537        /* On i386, may loop back to preprocess */
 538        nmi_nesting_postprocess();
 539}
 540
 541void stop_nmi(void)
 542{
 543        ignore_nmis++;
 544}
 545
 546void restart_nmi(void)
 547{
 548        ignore_nmis--;
 549}
 550
 551/* reset the back-to-back NMI logic */
 552void local_touch_nmi(void)
 553{
 554        __this_cpu_write(last_nmi_rip, 0);
 555}
 556EXPORT_SYMBOL_GPL(local_touch_nmi);
 557