linux/arch/x86/platform/uv/tlb_uv.c
<<
>>
Prefs
   1/*
   2 *      SGI UltraViolet TLB flush routines.
   3 *
   4 *      (c) 2008-2012 Cliff Wickman <cpw@sgi.com>, SGI.
   5 *
   6 *      This code is released under the GNU General Public License version 2 or
   7 *      later.
   8 */
   9#include <linux/seq_file.h>
  10#include <linux/proc_fs.h>
  11#include <linux/debugfs.h>
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/delay.h>
  15
  16#include <asm/mmu_context.h>
  17#include <asm/uv/uv.h>
  18#include <asm/uv/uv_mmrs.h>
  19#include <asm/uv/uv_hub.h>
  20#include <asm/uv/uv_bau.h>
  21#include <asm/apic.h>
  22#include <asm/idle.h>
  23#include <asm/tsc.h>
  24#include <asm/irq_vectors.h>
  25#include <asm/timer.h>
  26
  27/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
  28static int timeout_base_ns[] = {
  29                20,
  30                160,
  31                1280,
  32                10240,
  33                81920,
  34                655360,
  35                5242880,
  36                167772160
  37};
  38
  39static int timeout_us;
  40static int nobau;
  41static int nobau_perm;
  42static cycles_t congested_cycles;
  43
  44/* tunables: */
  45static int max_concurr          = MAX_BAU_CONCURRENT;
  46static int max_concurr_const    = MAX_BAU_CONCURRENT;
  47static int plugged_delay        = PLUGGED_DELAY;
  48static int plugsb4reset         = PLUGSB4RESET;
  49static int giveup_limit         = GIVEUP_LIMIT;
  50static int timeoutsb4reset      = TIMEOUTSB4RESET;
  51static int ipi_reset_limit      = IPI_RESET_LIMIT;
  52static int complete_threshold   = COMPLETE_THRESHOLD;
  53static int congested_respns_us  = CONGESTED_RESPONSE_US;
  54static int congested_reps       = CONGESTED_REPS;
  55static int disabled_period      = DISABLED_PERIOD;
  56
  57static struct tunables tunables[] = {
  58        {&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
  59        {&plugged_delay, PLUGGED_DELAY},
  60        {&plugsb4reset, PLUGSB4RESET},
  61        {&timeoutsb4reset, TIMEOUTSB4RESET},
  62        {&ipi_reset_limit, IPI_RESET_LIMIT},
  63        {&complete_threshold, COMPLETE_THRESHOLD},
  64        {&congested_respns_us, CONGESTED_RESPONSE_US},
  65        {&congested_reps, CONGESTED_REPS},
  66        {&disabled_period, DISABLED_PERIOD},
  67        {&giveup_limit, GIVEUP_LIMIT}
  68};
  69
  70static struct dentry *tunables_dir;
  71static struct dentry *tunables_file;
  72
  73/* these correspond to the statistics printed by ptc_seq_show() */
  74static char *stat_description[] = {
  75        "sent:     number of shootdown messages sent",
  76        "stime:    time spent sending messages",
  77        "numuvhubs: number of hubs targeted with shootdown",
  78        "numuvhubs16: number times 16 or more hubs targeted",
  79        "numuvhubs8: number times 8 or more hubs targeted",
  80        "numuvhubs4: number times 4 or more hubs targeted",
  81        "numuvhubs2: number times 2 or more hubs targeted",
  82        "numuvhubs1: number times 1 hub targeted",
  83        "numcpus:  number of cpus targeted with shootdown",
  84        "dto:      number of destination timeouts",
  85        "retries:  destination timeout retries sent",
  86        "rok:   :  destination timeouts successfully retried",
  87        "resetp:   ipi-style resource resets for plugs",
  88        "resett:   ipi-style resource resets for timeouts",
  89        "giveup:   fall-backs to ipi-style shootdowns",
  90        "sto:      number of source timeouts",
  91        "bz:       number of stay-busy's",
  92        "throt:    number times spun in throttle",
  93        "swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
  94        "recv:     shootdown messages received",
  95        "rtime:    time spent processing messages",
  96        "all:      shootdown all-tlb messages",
  97        "one:      shootdown one-tlb messages",
  98        "mult:     interrupts that found multiple messages",
  99        "none:     interrupts that found no messages",
 100        "retry:    number of retry messages processed",
 101        "canc:     number messages canceled by retries",
 102        "nocan:    number retries that found nothing to cancel",
 103        "reset:    number of ipi-style reset requests processed",
 104        "rcan:     number messages canceled by reset requests",
 105        "disable:  number times use of the BAU was disabled",
 106        "enable:   number times use of the BAU was re-enabled"
 107};
 108
 109static int __init
 110setup_nobau(char *arg)
 111{
 112        nobau = 1;
 113        return 0;
 114}
 115early_param("nobau", setup_nobau);
 116
 117/* base pnode in this partition */
 118static int uv_base_pnode __read_mostly;
 119
 120static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
 121static DEFINE_PER_CPU(struct bau_control, bau_control);
 122static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
 123
 124static void
 125set_bau_on(void)
 126{
 127        int cpu;
 128        struct bau_control *bcp;
 129
 130        if (nobau_perm) {
 131                pr_info("BAU not initialized; cannot be turned on\n");
 132                return;
 133        }
 134        nobau = 0;
 135        for_each_present_cpu(cpu) {
 136                bcp = &per_cpu(bau_control, cpu);
 137                bcp->nobau = 0;
 138        }
 139        pr_info("BAU turned on\n");
 140        return;
 141}
 142
 143static void
 144set_bau_off(void)
 145{
 146        int cpu;
 147        struct bau_control *bcp;
 148
 149        nobau = 1;
 150        for_each_present_cpu(cpu) {
 151                bcp = &per_cpu(bau_control, cpu);
 152                bcp->nobau = 1;
 153        }
 154        pr_info("BAU turned off\n");
 155        return;
 156}
 157
 158/*
 159 * Determine the first node on a uvhub. 'Nodes' are used for kernel
 160 * memory allocation.
 161 */
 162static int __init uvhub_to_first_node(int uvhub)
 163{
 164        int node, b;
 165
 166        for_each_online_node(node) {
 167                b = uv_node_to_blade_id(node);
 168                if (uvhub == b)
 169                        return node;
 170        }
 171        return -1;
 172}
 173
 174/*
 175 * Determine the apicid of the first cpu on a uvhub.
 176 */
 177static int __init uvhub_to_first_apicid(int uvhub)
 178{
 179        int cpu;
 180
 181        for_each_present_cpu(cpu)
 182                if (uvhub == uv_cpu_to_blade_id(cpu))
 183                        return per_cpu(x86_cpu_to_apicid, cpu);
 184        return -1;
 185}
 186
 187/*
 188 * Free a software acknowledge hardware resource by clearing its Pending
 189 * bit. This will return a reply to the sender.
 190 * If the message has timed out, a reply has already been sent by the
 191 * hardware but the resource has not been released. In that case our
 192 * clear of the Timeout bit (as well) will free the resource. No reply will
 193 * be sent (the hardware will only do one reply per message).
 194 */
 195static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
 196                                                int do_acknowledge)
 197{
 198        unsigned long dw;
 199        struct bau_pq_entry *msg;
 200
 201        msg = mdp->msg;
 202        if (!msg->canceled && do_acknowledge) {
 203                dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
 204                write_mmr_sw_ack(dw);
 205        }
 206        msg->replied_to = 1;
 207        msg->swack_vec = 0;
 208}
 209
 210/*
 211 * Process the receipt of a RETRY message
 212 */
 213static void bau_process_retry_msg(struct msg_desc *mdp,
 214                                        struct bau_control *bcp)
 215{
 216        int i;
 217        int cancel_count = 0;
 218        unsigned long msg_res;
 219        unsigned long mmr = 0;
 220        struct bau_pq_entry *msg = mdp->msg;
 221        struct bau_pq_entry *msg2;
 222        struct ptc_stats *stat = bcp->statp;
 223
 224        stat->d_retries++;
 225        /*
 226         * cancel any message from msg+1 to the retry itself
 227         */
 228        for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
 229                if (msg2 > mdp->queue_last)
 230                        msg2 = mdp->queue_first;
 231                if (msg2 == msg)
 232                        break;
 233
 234                /* same conditions for cancellation as do_reset */
 235                if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
 236                    (msg2->swack_vec) && ((msg2->swack_vec &
 237                        msg->swack_vec) == 0) &&
 238                    (msg2->sending_cpu == msg->sending_cpu) &&
 239                    (msg2->msg_type != MSG_NOOP)) {
 240                        mmr = read_mmr_sw_ack();
 241                        msg_res = msg2->swack_vec;
 242                        /*
 243                         * This is a message retry; clear the resources held
 244                         * by the previous message only if they timed out.
 245                         * If it has not timed out we have an unexpected
 246                         * situation to report.
 247                         */
 248                        if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
 249                                unsigned long mr;
 250                                /*
 251                                 * Is the resource timed out?
 252                                 * Make everyone ignore the cancelled message.
 253                                 */
 254                                msg2->canceled = 1;
 255                                stat->d_canceled++;
 256                                cancel_count++;
 257                                mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 258                                write_mmr_sw_ack(mr);
 259                        }
 260                }
 261        }
 262        if (!cancel_count)
 263                stat->d_nocanceled++;
 264}
 265
 266/*
 267 * Do all the things a cpu should do for a TLB shootdown message.
 268 * Other cpu's may come here at the same time for this message.
 269 */
 270static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
 271                                                int do_acknowledge)
 272{
 273        short socket_ack_count = 0;
 274        short *sp;
 275        struct atomic_short *asp;
 276        struct ptc_stats *stat = bcp->statp;
 277        struct bau_pq_entry *msg = mdp->msg;
 278        struct bau_control *smaster = bcp->socket_master;
 279
 280        /*
 281         * This must be a normal message, or retry of a normal message
 282         */
 283        if (msg->address == TLB_FLUSH_ALL) {
 284                local_flush_tlb();
 285                stat->d_alltlb++;
 286        } else {
 287                __flush_tlb_one(msg->address);
 288                stat->d_onetlb++;
 289        }
 290        stat->d_requestee++;
 291
 292        /*
 293         * One cpu on each uvhub has the additional job on a RETRY
 294         * of releasing the resource held by the message that is
 295         * being retried.  That message is identified by sending
 296         * cpu number.
 297         */
 298        if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
 299                bau_process_retry_msg(mdp, bcp);
 300
 301        /*
 302         * This is a swack message, so we have to reply to it.
 303         * Count each responding cpu on the socket. This avoids
 304         * pinging the count's cache line back and forth between
 305         * the sockets.
 306         */
 307        sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
 308        asp = (struct atomic_short *)sp;
 309        socket_ack_count = atom_asr(1, asp);
 310        if (socket_ack_count == bcp->cpus_in_socket) {
 311                int msg_ack_count;
 312                /*
 313                 * Both sockets dump their completed count total into
 314                 * the message's count.
 315                 */
 316                *sp = 0;
 317                asp = (struct atomic_short *)&msg->acknowledge_count;
 318                msg_ack_count = atom_asr(socket_ack_count, asp);
 319
 320                if (msg_ack_count == bcp->cpus_in_uvhub) {
 321                        /*
 322                         * All cpus in uvhub saw it; reply
 323                         * (unless we are in the UV2 workaround)
 324                         */
 325                        reply_to_message(mdp, bcp, do_acknowledge);
 326                }
 327        }
 328
 329        return;
 330}
 331
 332/*
 333 * Determine the first cpu on a pnode.
 334 */
 335static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
 336{
 337        int cpu;
 338        struct hub_and_pnode *hpp;
 339
 340        for_each_present_cpu(cpu) {
 341                hpp = &smaster->thp[cpu];
 342                if (pnode == hpp->pnode)
 343                        return cpu;
 344        }
 345        return -1;
 346}
 347
 348/*
 349 * Last resort when we get a large number of destination timeouts is
 350 * to clear resources held by a given cpu.
 351 * Do this with IPI so that all messages in the BAU message queue
 352 * can be identified by their nonzero swack_vec field.
 353 *
 354 * This is entered for a single cpu on the uvhub.
 355 * The sender want's this uvhub to free a specific message's
 356 * swack resources.
 357 */
 358static void do_reset(void *ptr)
 359{
 360        int i;
 361        struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
 362        struct reset_args *rap = (struct reset_args *)ptr;
 363        struct bau_pq_entry *msg;
 364        struct ptc_stats *stat = bcp->statp;
 365
 366        stat->d_resets++;
 367        /*
 368         * We're looking for the given sender, and
 369         * will free its swack resource.
 370         * If all cpu's finally responded after the timeout, its
 371         * message 'replied_to' was set.
 372         */
 373        for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
 374                unsigned long msg_res;
 375                /* do_reset: same conditions for cancellation as
 376                   bau_process_retry_msg() */
 377                if ((msg->replied_to == 0) &&
 378                    (msg->canceled == 0) &&
 379                    (msg->sending_cpu == rap->sender) &&
 380                    (msg->swack_vec) &&
 381                    (msg->msg_type != MSG_NOOP)) {
 382                        unsigned long mmr;
 383                        unsigned long mr;
 384                        /*
 385                         * make everyone else ignore this message
 386                         */
 387                        msg->canceled = 1;
 388                        /*
 389                         * only reset the resource if it is still pending
 390                         */
 391                        mmr = read_mmr_sw_ack();
 392                        msg_res = msg->swack_vec;
 393                        mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 394                        if (mmr & msg_res) {
 395                                stat->d_rcanceled++;
 396                                write_mmr_sw_ack(mr);
 397                        }
 398                }
 399        }
 400        return;
 401}
 402
 403/*
 404 * Use IPI to get all target uvhubs to release resources held by
 405 * a given sending cpu number.
 406 */
 407static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
 408{
 409        int pnode;
 410        int apnode;
 411        int maskbits;
 412        int sender = bcp->cpu;
 413        cpumask_t *mask = bcp->uvhub_master->cpumask;
 414        struct bau_control *smaster = bcp->socket_master;
 415        struct reset_args reset_args;
 416
 417        reset_args.sender = sender;
 418        cpus_clear(*mask);
 419        /* find a single cpu for each uvhub in this distribution mask */
 420        maskbits = sizeof(struct pnmask) * BITSPERBYTE;
 421        /* each bit is a pnode relative to the partition base pnode */
 422        for (pnode = 0; pnode < maskbits; pnode++) {
 423                int cpu;
 424                if (!bau_uvhub_isset(pnode, distribution))
 425                        continue;
 426                apnode = pnode + bcp->partition_base_pnode;
 427                cpu = pnode_to_first_cpu(apnode, smaster);
 428                cpu_set(cpu, *mask);
 429        }
 430
 431        /* IPI all cpus; preemption is already disabled */
 432        smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
 433        return;
 434}
 435
 436/*
 437 * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
 438 * number, not an absolute. It converts a duration in cycles to a duration in
 439 * ns.
 440 */
 441static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 442{
 443        struct cyc2ns_data *data = cyc2ns_read_begin();
 444        unsigned long long ns;
 445
 446        ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 447
 448        cyc2ns_read_end(data);
 449        return ns;
 450}
 451
 452/*
 453 * The reverse of the above; converts a duration in ns to a duration in cycles.
 454 */ 
 455static inline unsigned long long ns_2_cycles(unsigned long long ns)
 456{
 457        struct cyc2ns_data *data = cyc2ns_read_begin();
 458        unsigned long long cyc;
 459
 460        cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul;
 461
 462        cyc2ns_read_end(data);
 463        return cyc;
 464}
 465
 466static inline unsigned long cycles_2_us(unsigned long long cyc)
 467{
 468        return cycles_2_ns(cyc) / NSEC_PER_USEC;
 469}
 470
 471static inline cycles_t sec_2_cycles(unsigned long sec)
 472{
 473        return ns_2_cycles(sec * NSEC_PER_SEC);
 474}
 475
 476static inline unsigned long long usec_2_cycles(unsigned long usec)
 477{
 478        return ns_2_cycles(usec * NSEC_PER_USEC);
 479}
 480
 481/*
 482 * wait for all cpus on this hub to finish their sends and go quiet
 483 * leaves uvhub_quiesce set so that no new broadcasts are started by
 484 * bau_flush_send_and_wait()
 485 */
 486static inline void quiesce_local_uvhub(struct bau_control *hmaster)
 487{
 488        atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 489}
 490
 491/*
 492 * mark this quiet-requestor as done
 493 */
 494static inline void end_uvhub_quiesce(struct bau_control *hmaster)
 495{
 496        atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 497}
 498
 499static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
 500{
 501        unsigned long descriptor_status;
 502
 503        descriptor_status = uv_read_local_mmr(mmr_offset);
 504        descriptor_status >>= right_shift;
 505        descriptor_status &= UV_ACT_STATUS_MASK;
 506        return descriptor_status;
 507}
 508
 509/*
 510 * Wait for completion of a broadcast software ack message
 511 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
 512 */
 513static int uv1_wait_completion(struct bau_desc *bau_desc,
 514                                unsigned long mmr_offset, int right_shift,
 515                                struct bau_control *bcp, long try)
 516{
 517        unsigned long descriptor_status;
 518        cycles_t ttm;
 519        struct ptc_stats *stat = bcp->statp;
 520
 521        descriptor_status = uv1_read_status(mmr_offset, right_shift);
 522        /* spin on the status MMR, waiting for it to go idle */
 523        while ((descriptor_status != DS_IDLE)) {
 524                /*
 525                 * Our software ack messages may be blocked because
 526                 * there are no swack resources available.  As long
 527                 * as none of them has timed out hardware will NACK
 528                 * our message and its state will stay IDLE.
 529                 */
 530                if (descriptor_status == DS_SOURCE_TIMEOUT) {
 531                        stat->s_stimeout++;
 532                        return FLUSH_GIVEUP;
 533                } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
 534                        stat->s_dtimeout++;
 535                        ttm = get_cycles();
 536
 537                        /*
 538                         * Our retries may be blocked by all destination
 539                         * swack resources being consumed, and a timeout
 540                         * pending.  In that case hardware returns the
 541                         * ERROR that looks like a destination timeout.
 542                         */
 543                        if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 544                                bcp->conseccompletes = 0;
 545                                return FLUSH_RETRY_PLUGGED;
 546                        }
 547
 548                        bcp->conseccompletes = 0;
 549                        return FLUSH_RETRY_TIMEOUT;
 550                } else {
 551                        /*
 552                         * descriptor_status is still BUSY
 553                         */
 554                        cpu_relax();
 555                }
 556                descriptor_status = uv1_read_status(mmr_offset, right_shift);
 557        }
 558        bcp->conseccompletes++;
 559        return FLUSH_COMPLETE;
 560}
 561
 562/*
 563 * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
 564 * But not currently used.
 565 */
 566static unsigned long uv2_read_status(unsigned long offset, int rshft, int desc)
 567{
 568        unsigned long descriptor_status;
 569
 570        descriptor_status =
 571                ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
 572        return descriptor_status;
 573}
 574
 575/*
 576 * Return whether the status of the descriptor that is normally used for this
 577 * cpu (the one indexed by its hub-relative cpu number) is busy.
 578 * The status of the original 32 descriptors is always reflected in the 64
 579 * bits of UVH_LB_BAU_SB_ACTIVATION_STATUS_0.
 580 * The bit provided by the activation_status_2 register is irrelevant to
 581 * the status if it is only being tested for busy or not busy.
 582 */
 583int normal_busy(struct bau_control *bcp)
 584{
 585        int cpu = bcp->uvhub_cpu;
 586        int mmr_offset;
 587        int right_shift;
 588
 589        mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
 590        right_shift = cpu * UV_ACT_STATUS_SIZE;
 591        return (((((read_lmmr(mmr_offset) >> right_shift) &
 592                                UV_ACT_STATUS_MASK)) << 1) == UV2H_DESC_BUSY);
 593}
 594
 595/*
 596 * Entered when a bau descriptor has gone into a permanent busy wait because
 597 * of a hardware bug.
 598 * Workaround the bug.
 599 */
 600int handle_uv2_busy(struct bau_control *bcp)
 601{
 602        struct ptc_stats *stat = bcp->statp;
 603
 604        stat->s_uv2_wars++;
 605        bcp->busy = 1;
 606        return FLUSH_GIVEUP;
 607}
 608
 609static int uv2_wait_completion(struct bau_desc *bau_desc,
 610                                unsigned long mmr_offset, int right_shift,
 611                                struct bau_control *bcp, long try)
 612{
 613        unsigned long descriptor_stat;
 614        cycles_t ttm;
 615        int desc = bcp->uvhub_cpu;
 616        long busy_reps = 0;
 617        struct ptc_stats *stat = bcp->statp;
 618
 619        descriptor_stat = uv2_read_status(mmr_offset, right_shift, desc);
 620
 621        /* spin on the status MMR, waiting for it to go idle */
 622        while (descriptor_stat != UV2H_DESC_IDLE) {
 623                if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT)) {
 624                        /*
 625                         * A h/w bug on the destination side may
 626                         * have prevented the message being marked
 627                         * pending, thus it doesn't get replied to
 628                         * and gets continually nacked until it times
 629                         * out with a SOURCE_TIMEOUT.
 630                         */
 631                        stat->s_stimeout++;
 632                        return FLUSH_GIVEUP;
 633                } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
 634                        ttm = get_cycles();
 635
 636                        /*
 637                         * Our retries may be blocked by all destination
 638                         * swack resources being consumed, and a timeout
 639                         * pending.  In that case hardware returns the
 640                         * ERROR that looks like a destination timeout.
 641                         * Without using the extended status we have to
 642                         * deduce from the short time that this was a
 643                         * strong nack.
 644                         */
 645                        if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 646                                bcp->conseccompletes = 0;
 647                                stat->s_plugged++;
 648                                /* FLUSH_RETRY_PLUGGED causes hang on boot */
 649                                return FLUSH_GIVEUP;
 650                        }
 651                        stat->s_dtimeout++;
 652                        bcp->conseccompletes = 0;
 653                        /* FLUSH_RETRY_TIMEOUT causes hang on boot */
 654                        return FLUSH_GIVEUP;
 655                } else {
 656                        busy_reps++;
 657                        if (busy_reps > 1000000) {
 658                                /* not to hammer on the clock */
 659                                busy_reps = 0;
 660                                ttm = get_cycles();
 661                                if ((ttm - bcp->send_message) >
 662                                                bcp->timeout_interval)
 663                                        return handle_uv2_busy(bcp);
 664                        }
 665                        /*
 666                         * descriptor_stat is still BUSY
 667                         */
 668                        cpu_relax();
 669                }
 670                descriptor_stat = uv2_read_status(mmr_offset, right_shift,
 671                                                                        desc);
 672        }
 673        bcp->conseccompletes++;
 674        return FLUSH_COMPLETE;
 675}
 676
 677/*
 678 * There are 2 status registers; each and array[32] of 2 bits. Set up for
 679 * which register to read and position in that register based on cpu in
 680 * current hub.
 681 */
 682static int wait_completion(struct bau_desc *bau_desc,
 683                                struct bau_control *bcp, long try)
 684{
 685        int right_shift;
 686        unsigned long mmr_offset;
 687        int desc = bcp->uvhub_cpu;
 688
 689        if (desc < UV_CPUS_PER_AS) {
 690                mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
 691                right_shift = desc * UV_ACT_STATUS_SIZE;
 692        } else {
 693                mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
 694                right_shift = ((desc - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
 695        }
 696
 697        if (bcp->uvhub_version == 1)
 698                return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
 699                                                                bcp, try);
 700        else
 701                return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
 702                                                                bcp, try);
 703}
 704
 705/*
 706 * Our retries are blocked by all destination sw ack resources being
 707 * in use, and a timeout is pending. In that case hardware immediately
 708 * returns the ERROR that looks like a destination timeout.
 709 */
 710static void destination_plugged(struct bau_desc *bau_desc,
 711                        struct bau_control *bcp,
 712                        struct bau_control *hmaster, struct ptc_stats *stat)
 713{
 714        udelay(bcp->plugged_delay);
 715        bcp->plugged_tries++;
 716
 717        if (bcp->plugged_tries >= bcp->plugsb4reset) {
 718                bcp->plugged_tries = 0;
 719
 720                quiesce_local_uvhub(hmaster);
 721
 722                spin_lock(&hmaster->queue_lock);
 723                reset_with_ipi(&bau_desc->distribution, bcp);
 724                spin_unlock(&hmaster->queue_lock);
 725
 726                end_uvhub_quiesce(hmaster);
 727
 728                bcp->ipi_attempts++;
 729                stat->s_resets_plug++;
 730        }
 731}
 732
 733static void destination_timeout(struct bau_desc *bau_desc,
 734                        struct bau_control *bcp, struct bau_control *hmaster,
 735                        struct ptc_stats *stat)
 736{
 737        hmaster->max_concurr = 1;
 738        bcp->timeout_tries++;
 739        if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
 740                bcp->timeout_tries = 0;
 741
 742                quiesce_local_uvhub(hmaster);
 743
 744                spin_lock(&hmaster->queue_lock);
 745                reset_with_ipi(&bau_desc->distribution, bcp);
 746                spin_unlock(&hmaster->queue_lock);
 747
 748                end_uvhub_quiesce(hmaster);
 749
 750                bcp->ipi_attempts++;
 751                stat->s_resets_timeout++;
 752        }
 753}
 754
 755/*
 756 * Stop all cpus on a uvhub from using the BAU for a period of time.
 757 * This is reversed by check_enable.
 758 */
 759static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
 760{
 761        int tcpu;
 762        struct bau_control *tbcp;
 763        struct bau_control *hmaster;
 764        cycles_t tm1;
 765
 766        hmaster = bcp->uvhub_master;
 767        spin_lock(&hmaster->disable_lock);
 768        if (!bcp->baudisabled) {
 769                stat->s_bau_disabled++;
 770                tm1 = get_cycles();
 771                for_each_present_cpu(tcpu) {
 772                        tbcp = &per_cpu(bau_control, tcpu);
 773                        if (tbcp->uvhub_master == hmaster) {
 774                                tbcp->baudisabled = 1;
 775                                tbcp->set_bau_on_time =
 776                                        tm1 + bcp->disabled_period;
 777                        }
 778                }
 779        }
 780        spin_unlock(&hmaster->disable_lock);
 781}
 782
 783static void count_max_concurr(int stat, struct bau_control *bcp,
 784                                struct bau_control *hmaster)
 785{
 786        bcp->plugged_tries = 0;
 787        bcp->timeout_tries = 0;
 788        if (stat != FLUSH_COMPLETE)
 789                return;
 790        if (bcp->conseccompletes <= bcp->complete_threshold)
 791                return;
 792        if (hmaster->max_concurr >= hmaster->max_concurr_const)
 793                return;
 794        hmaster->max_concurr++;
 795}
 796
 797static void record_send_stats(cycles_t time1, cycles_t time2,
 798                struct bau_control *bcp, struct ptc_stats *stat,
 799                int completion_status, int try)
 800{
 801        cycles_t elapsed;
 802
 803        if (time2 > time1) {
 804                elapsed = time2 - time1;
 805                stat->s_time += elapsed;
 806
 807                if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
 808                        bcp->period_requests++;
 809                        bcp->period_time += elapsed;
 810                        if ((elapsed > congested_cycles) &&
 811                            (bcp->period_requests > bcp->cong_reps) &&
 812                            ((bcp->period_time / bcp->period_requests) >
 813                                                        congested_cycles)) {
 814                                stat->s_congested++;
 815                                disable_for_period(bcp, stat);
 816                        }
 817                }
 818        } else
 819                stat->s_requestor--;
 820
 821        if (completion_status == FLUSH_COMPLETE && try > 1)
 822                stat->s_retriesok++;
 823        else if (completion_status == FLUSH_GIVEUP) {
 824                stat->s_giveup++;
 825                if (get_cycles() > bcp->period_end)
 826                        bcp->period_giveups = 0;
 827                bcp->period_giveups++;
 828                if (bcp->period_giveups == 1)
 829                        bcp->period_end = get_cycles() + bcp->disabled_period;
 830                if (bcp->period_giveups > bcp->giveup_limit) {
 831                        disable_for_period(bcp, stat);
 832                        stat->s_giveuplimit++;
 833                }
 834        }
 835}
 836
 837/*
 838 * Because of a uv1 hardware bug only a limited number of concurrent
 839 * requests can be made.
 840 */
 841static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
 842{
 843        spinlock_t *lock = &hmaster->uvhub_lock;
 844        atomic_t *v;
 845
 846        v = &hmaster->active_descriptor_count;
 847        if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
 848                stat->s_throttles++;
 849                do {
 850                        cpu_relax();
 851                } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
 852        }
 853}
 854
 855/*
 856 * Handle the completion status of a message send.
 857 */
 858static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
 859                        struct bau_control *bcp, struct bau_control *hmaster,
 860                        struct ptc_stats *stat)
 861{
 862        if (completion_status == FLUSH_RETRY_PLUGGED)
 863                destination_plugged(bau_desc, bcp, hmaster, stat);
 864        else if (completion_status == FLUSH_RETRY_TIMEOUT)
 865                destination_timeout(bau_desc, bcp, hmaster, stat);
 866}
 867
 868/*
 869 * Send a broadcast and wait for it to complete.
 870 *
 871 * The flush_mask contains the cpus the broadcast is to be sent to including
 872 * cpus that are on the local uvhub.
 873 *
 874 * Returns 0 if all flushing represented in the mask was done.
 875 * Returns 1 if it gives up entirely and the original cpu mask is to be
 876 * returned to the kernel.
 877 */
 878int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp,
 879        struct bau_desc *bau_desc)
 880{
 881        int seq_number = 0;
 882        int completion_stat = 0;
 883        int uv1 = 0;
 884        long try = 0;
 885        unsigned long index;
 886        cycles_t time1;
 887        cycles_t time2;
 888        struct ptc_stats *stat = bcp->statp;
 889        struct bau_control *hmaster = bcp->uvhub_master;
 890        struct uv1_bau_msg_header *uv1_hdr = NULL;
 891        struct uv2_bau_msg_header *uv2_hdr = NULL;
 892
 893        if (bcp->uvhub_version == 1) {
 894                uv1 = 1;
 895                uv1_throttle(hmaster, stat);
 896        }
 897
 898        while (hmaster->uvhub_quiesce)
 899                cpu_relax();
 900
 901        time1 = get_cycles();
 902        if (uv1)
 903                uv1_hdr = &bau_desc->header.uv1_hdr;
 904        else
 905                uv2_hdr = &bau_desc->header.uv2_hdr;
 906
 907        do {
 908                if (try == 0) {
 909                        if (uv1)
 910                                uv1_hdr->msg_type = MSG_REGULAR;
 911                        else
 912                                uv2_hdr->msg_type = MSG_REGULAR;
 913                        seq_number = bcp->message_number++;
 914                } else {
 915                        if (uv1)
 916                                uv1_hdr->msg_type = MSG_RETRY;
 917                        else
 918                                uv2_hdr->msg_type = MSG_RETRY;
 919                        stat->s_retry_messages++;
 920                }
 921
 922                if (uv1)
 923                        uv1_hdr->sequence = seq_number;
 924                else
 925                        uv2_hdr->sequence = seq_number;
 926                index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
 927                bcp->send_message = get_cycles();
 928
 929                write_mmr_activation(index);
 930
 931                try++;
 932                completion_stat = wait_completion(bau_desc, bcp, try);
 933
 934                handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
 935
 936                if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
 937                        bcp->ipi_attempts = 0;
 938                        stat->s_overipilimit++;
 939                        completion_stat = FLUSH_GIVEUP;
 940                        break;
 941                }
 942                cpu_relax();
 943        } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
 944                 (completion_stat == FLUSH_RETRY_TIMEOUT));
 945
 946        time2 = get_cycles();
 947
 948        count_max_concurr(completion_stat, bcp, hmaster);
 949
 950        while (hmaster->uvhub_quiesce)
 951                cpu_relax();
 952
 953        atomic_dec(&hmaster->active_descriptor_count);
 954
 955        record_send_stats(time1, time2, bcp, stat, completion_stat, try);
 956
 957        if (completion_stat == FLUSH_GIVEUP)
 958                /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
 959                return 1;
 960        return 0;
 961}
 962
 963/*
 964 * The BAU is disabled for this uvhub. When the disabled time period has
 965 * expired re-enable it.
 966 * Return 0 if it is re-enabled for all cpus on this uvhub.
 967 */
 968static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
 969{
 970        int tcpu;
 971        struct bau_control *tbcp;
 972        struct bau_control *hmaster;
 973
 974        hmaster = bcp->uvhub_master;
 975        spin_lock(&hmaster->disable_lock);
 976        if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
 977                stat->s_bau_reenabled++;
 978                for_each_present_cpu(tcpu) {
 979                        tbcp = &per_cpu(bau_control, tcpu);
 980                        if (tbcp->uvhub_master == hmaster) {
 981                                tbcp->baudisabled = 0;
 982                                tbcp->period_requests = 0;
 983                                tbcp->period_time = 0;
 984                                tbcp->period_giveups = 0;
 985                        }
 986                }
 987                spin_unlock(&hmaster->disable_lock);
 988                return 0;
 989        }
 990        spin_unlock(&hmaster->disable_lock);
 991        return -1;
 992}
 993
 994static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
 995                                int remotes, struct bau_desc *bau_desc)
 996{
 997        stat->s_requestor++;
 998        stat->s_ntargcpu += remotes + locals;
 999        stat->s_ntargremotes += remotes;
1000        stat->s_ntarglocals += locals;
1001
1002        /* uvhub statistics */
1003        hubs = bau_uvhub_weight(&bau_desc->distribution);
1004        if (locals) {
1005                stat->s_ntarglocaluvhub++;
1006                stat->s_ntargremoteuvhub += (hubs - 1);
1007        } else
1008                stat->s_ntargremoteuvhub += hubs;
1009
1010        stat->s_ntarguvhub += hubs;
1011
1012        if (hubs >= 16)
1013                stat->s_ntarguvhub16++;
1014        else if (hubs >= 8)
1015                stat->s_ntarguvhub8++;
1016        else if (hubs >= 4)
1017                stat->s_ntarguvhub4++;
1018        else if (hubs >= 2)
1019                stat->s_ntarguvhub2++;
1020        else
1021                stat->s_ntarguvhub1++;
1022}
1023
1024/*
1025 * Translate a cpu mask to the uvhub distribution mask in the BAU
1026 * activation descriptor.
1027 */
1028static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1029                        struct bau_desc *bau_desc, int *localsp, int *remotesp)
1030{
1031        int cpu;
1032        int pnode;
1033        int cnt = 0;
1034        struct hub_and_pnode *hpp;
1035
1036        for_each_cpu(cpu, flush_mask) {
1037                /*
1038                 * The distribution vector is a bit map of pnodes, relative
1039                 * to the partition base pnode (and the partition base nasid
1040                 * in the header).
1041                 * Translate cpu to pnode and hub using a local memory array.
1042                 */
1043                hpp = &bcp->socket_master->thp[cpu];
1044                pnode = hpp->pnode - bcp->partition_base_pnode;
1045                bau_uvhub_set(pnode, &bau_desc->distribution);
1046                cnt++;
1047                if (hpp->uvhub == bcp->uvhub)
1048                        (*localsp)++;
1049                else
1050                        (*remotesp)++;
1051        }
1052        if (!cnt)
1053                return 1;
1054        return 0;
1055}
1056
1057/*
1058 * globally purge translation cache of a virtual address or all TLB's
1059 * @cpumask: mask of all cpu's in which the address is to be removed
1060 * @mm: mm_struct containing virtual address range
1061 * @start: start virtual address to be removed from TLB
1062 * @end: end virtual address to be remove from TLB
1063 * @cpu: the current cpu
1064 *
1065 * This is the entry point for initiating any UV global TLB shootdown.
1066 *
1067 * Purges the translation caches of all specified processors of the given
1068 * virtual address, or purges all TLB's on specified processors.
1069 *
1070 * The caller has derived the cpumask from the mm_struct.  This function
1071 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1072 *
1073 * The cpumask is converted into a uvhubmask of the uvhubs containing
1074 * those cpus.
1075 *
1076 * Note that this function should be called with preemption disabled.
1077 *
1078 * Returns NULL if all remote flushing was done.
1079 * Returns pointer to cpumask if some remote flushing remains to be
1080 * done.  The returned pointer is valid till preemption is re-enabled.
1081 */
1082const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1083                                struct mm_struct *mm, unsigned long start,
1084                                unsigned long end, unsigned int cpu)
1085{
1086        int locals = 0;
1087        int remotes = 0;
1088        int hubs = 0;
1089        struct bau_desc *bau_desc;
1090        struct cpumask *flush_mask;
1091        struct ptc_stats *stat;
1092        struct bau_control *bcp;
1093        unsigned long descriptor_status;
1094        unsigned long status;
1095
1096        bcp = &per_cpu(bau_control, cpu);
1097
1098        if (bcp->nobau)
1099                return cpumask;
1100
1101        stat = bcp->statp;
1102        stat->s_enters++;
1103
1104        if (bcp->busy) {
1105                descriptor_status =
1106                        read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
1107                status = ((descriptor_status >> (bcp->uvhub_cpu *
1108                        UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
1109                if (status == UV2H_DESC_BUSY)
1110                        return cpumask;
1111                bcp->busy = 0;
1112        }
1113
1114        /* bau was disabled due to slow response */
1115        if (bcp->baudisabled) {
1116                if (check_enable(bcp, stat)) {
1117                        stat->s_ipifordisabled++;
1118                        return cpumask;
1119                }
1120        }
1121
1122        /*
1123         * Each sending cpu has a per-cpu mask which it fills from the caller's
1124         * cpu mask.  All cpus are converted to uvhubs and copied to the
1125         * activation descriptor.
1126         */
1127        flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1128        /* don't actually do a shootdown of the local cpu */
1129        cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1130
1131        if (cpu_isset(cpu, *cpumask))
1132                stat->s_ntargself++;
1133
1134        bau_desc = bcp->descriptor_base;
1135        bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
1136        bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1137        if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1138                return NULL;
1139
1140        record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1141
1142        if (!end || (end - start) <= PAGE_SIZE)
1143                bau_desc->payload.address = start;
1144        else
1145                bau_desc->payload.address = TLB_FLUSH_ALL;
1146        bau_desc->payload.sending_cpu = cpu;
1147        /*
1148         * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1149         * or 1 if it gave up and the original cpumask should be returned.
1150         */
1151        if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
1152                return NULL;
1153        else
1154                return cpumask;
1155}
1156
1157/*
1158 * Search the message queue for any 'other' unprocessed message with the
1159 * same software acknowledge resource bit vector as the 'msg' message.
1160 */
1161struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1162                                           struct bau_control *bcp)
1163{
1164        struct bau_pq_entry *msg_next = msg + 1;
1165        unsigned char swack_vec = msg->swack_vec;
1166
1167        if (msg_next > bcp->queue_last)
1168                msg_next = bcp->queue_first;
1169        while (msg_next != msg) {
1170                if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
1171                                (msg_next->swack_vec == swack_vec))
1172                        return msg_next;
1173                msg_next++;
1174                if (msg_next > bcp->queue_last)
1175                        msg_next = bcp->queue_first;
1176        }
1177        return NULL;
1178}
1179
1180/*
1181 * UV2 needs to work around a bug in which an arriving message has not
1182 * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1183 * Such a message must be ignored.
1184 */
1185void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1186{
1187        unsigned long mmr_image;
1188        unsigned char swack_vec;
1189        struct bau_pq_entry *msg = mdp->msg;
1190        struct bau_pq_entry *other_msg;
1191
1192        mmr_image = read_mmr_sw_ack();
1193        swack_vec = msg->swack_vec;
1194
1195        if ((swack_vec & mmr_image) == 0) {
1196                /*
1197                 * This message was assigned a swack resource, but no
1198                 * reserved acknowlegment is pending.
1199                 * The bug has prevented this message from setting the MMR.
1200                 */
1201                /*
1202                 * Some message has set the MMR 'pending' bit; it might have
1203                 * been another message.  Look for that message.
1204                 */
1205                other_msg = find_another_by_swack(msg, bcp);
1206                if (other_msg) {
1207                        /*
1208                         * There is another. Process this one but do not
1209                         * ack it.
1210                         */
1211                        bau_process_message(mdp, bcp, 0);
1212                        /*
1213                         * Let the natural processing of that other message
1214                         * acknowledge it. Don't get the processing of sw_ack's
1215                         * out of order.
1216                         */
1217                        return;
1218                }
1219        }
1220
1221        /*
1222         * Either the MMR shows this one pending a reply or there is no
1223         * other message using this sw_ack, so it is safe to acknowledge it.
1224         */
1225        bau_process_message(mdp, bcp, 1);
1226
1227        return;
1228}
1229
1230/*
1231 * The BAU message interrupt comes here. (registered by set_intr_gate)
1232 * See entry_64.S
1233 *
1234 * We received a broadcast assist message.
1235 *
1236 * Interrupts are disabled; this interrupt could represent
1237 * the receipt of several messages.
1238 *
1239 * All cores/threads on this hub get this interrupt.
1240 * The last one to see it does the software ack.
1241 * (the resource will not be freed until noninterruptable cpus see this
1242 *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1243 */
1244void uv_bau_message_interrupt(struct pt_regs *regs)
1245{
1246        int count = 0;
1247        cycles_t time_start;
1248        struct bau_pq_entry *msg;
1249        struct bau_control *bcp;
1250        struct ptc_stats *stat;
1251        struct msg_desc msgdesc;
1252
1253        ack_APIC_irq();
1254        time_start = get_cycles();
1255
1256        bcp = &per_cpu(bau_control, smp_processor_id());
1257        stat = bcp->statp;
1258
1259        msgdesc.queue_first = bcp->queue_first;
1260        msgdesc.queue_last = bcp->queue_last;
1261
1262        msg = bcp->bau_msg_head;
1263        while (msg->swack_vec) {
1264                count++;
1265
1266                msgdesc.msg_slot = msg - msgdesc.queue_first;
1267                msgdesc.msg = msg;
1268                if (bcp->uvhub_version == 2)
1269                        process_uv2_message(&msgdesc, bcp);
1270                else
1271                        bau_process_message(&msgdesc, bcp, 1);
1272
1273                msg++;
1274                if (msg > msgdesc.queue_last)
1275                        msg = msgdesc.queue_first;
1276                bcp->bau_msg_head = msg;
1277        }
1278        stat->d_time += (get_cycles() - time_start);
1279        if (!count)
1280                stat->d_nomsg++;
1281        else if (count > 1)
1282                stat->d_multmsg++;
1283}
1284
1285/*
1286 * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1287 * shootdown message timeouts enabled.  The timeout does not cause
1288 * an interrupt, but causes an error message to be returned to
1289 * the sender.
1290 */
1291static void __init enable_timeouts(void)
1292{
1293        int uvhub;
1294        int nuvhubs;
1295        int pnode;
1296        unsigned long mmr_image;
1297
1298        nuvhubs = uv_num_possible_blades();
1299
1300        for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1301                if (!uv_blade_nr_possible_cpus(uvhub))
1302                        continue;
1303
1304                pnode = uv_blade_to_pnode(uvhub);
1305                mmr_image = read_mmr_misc_control(pnode);
1306                /*
1307                 * Set the timeout period and then lock it in, in three
1308                 * steps; captures and locks in the period.
1309                 *
1310                 * To program the period, the SOFT_ACK_MODE must be off.
1311                 */
1312                mmr_image &= ~(1L << SOFTACK_MSHIFT);
1313                write_mmr_misc_control(pnode, mmr_image);
1314                /*
1315                 * Set the 4-bit period.
1316                 */
1317                mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1318                mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1319                write_mmr_misc_control(pnode, mmr_image);
1320                /*
1321                 * UV1:
1322                 * Subsequent reversals of the timebase bit (3) cause an
1323                 * immediate timeout of one or all INTD resources as
1324                 * indicated in bits 2:0 (7 causes all of them to timeout).
1325                 */
1326                mmr_image |= (1L << SOFTACK_MSHIFT);
1327                if (is_uv2_hub()) {
1328                        /* hw bug workaround; do not use extended status */
1329                        mmr_image &= ~(1L << UV2_EXT_SHFT);
1330                }
1331                write_mmr_misc_control(pnode, mmr_image);
1332        }
1333}
1334
1335static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1336{
1337        if (*offset < num_possible_cpus())
1338                return offset;
1339        return NULL;
1340}
1341
1342static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1343{
1344        (*offset)++;
1345        if (*offset < num_possible_cpus())
1346                return offset;
1347        return NULL;
1348}
1349
1350static void ptc_seq_stop(struct seq_file *file, void *data)
1351{
1352}
1353
1354/*
1355 * Display the statistics thru /proc/sgi_uv/ptc_statistics
1356 * 'data' points to the cpu number
1357 * Note: see the descriptions in stat_description[].
1358 */
1359static int ptc_seq_show(struct seq_file *file, void *data)
1360{
1361        struct ptc_stats *stat;
1362        struct bau_control *bcp;
1363        int cpu;
1364
1365        cpu = *(loff_t *)data;
1366        if (!cpu) {
1367                seq_printf(file,
1368                 "# cpu bauoff sent stime self locals remotes ncpus localhub ");
1369                seq_printf(file,
1370                        "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1371                seq_printf(file,
1372                        "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
1373                seq_printf(file,
1374                        "rok resetp resett giveup sto bz throt disable ");
1375                seq_printf(file,
1376                        "enable wars warshw warwaits enters ipidis plugged ");
1377                seq_printf(file,
1378                        "ipiover glim cong swack recv rtime all one mult ");
1379                seq_printf(file,
1380                        "none retry canc nocan reset rcan\n");
1381        }
1382        if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1383                bcp = &per_cpu(bau_control, cpu);
1384                stat = bcp->statp;
1385                /* source side statistics */
1386                seq_printf(file,
1387                        "cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1388                           cpu, bcp->nobau, stat->s_requestor,
1389                           cycles_2_us(stat->s_time),
1390                           stat->s_ntargself, stat->s_ntarglocals,
1391                           stat->s_ntargremotes, stat->s_ntargcpu,
1392                           stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1393                           stat->s_ntarguvhub, stat->s_ntarguvhub16);
1394                seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1395                           stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1396                           stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1397                           stat->s_dtimeout, stat->s_strongnacks);
1398                seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1399                           stat->s_retry_messages, stat->s_retriesok,
1400                           stat->s_resets_plug, stat->s_resets_timeout,
1401                           stat->s_giveup, stat->s_stimeout,
1402                           stat->s_busy, stat->s_throttles);
1403                seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1404                           stat->s_bau_disabled, stat->s_bau_reenabled,
1405                           stat->s_uv2_wars, stat->s_uv2_wars_hw,
1406                           stat->s_uv2_war_waits, stat->s_enters,
1407                           stat->s_ipifordisabled, stat->s_plugged,
1408                           stat->s_overipilimit, stat->s_giveuplimit,
1409                           stat->s_congested);
1410
1411                /* destination side statistics */
1412                seq_printf(file,
1413                        "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
1414                           read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)),
1415                           stat->d_requestee, cycles_2_us(stat->d_time),
1416                           stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1417                           stat->d_nomsg, stat->d_retries, stat->d_canceled,
1418                           stat->d_nocanceled, stat->d_resets,
1419                           stat->d_rcanceled);
1420        }
1421        return 0;
1422}
1423
1424/*
1425 * Display the tunables thru debugfs
1426 */
1427static ssize_t tunables_read(struct file *file, char __user *userbuf,
1428                                size_t count, loff_t *ppos)
1429{
1430        char *buf;
1431        int ret;
1432
1433        buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
1434                "max_concur plugged_delay plugsb4reset timeoutsb4reset",
1435                "ipi_reset_limit complete_threshold congested_response_us",
1436                "congested_reps disabled_period giveup_limit",
1437                max_concurr, plugged_delay, plugsb4reset,
1438                timeoutsb4reset, ipi_reset_limit, complete_threshold,
1439                congested_respns_us, congested_reps, disabled_period,
1440                giveup_limit);
1441
1442        if (!buf)
1443                return -ENOMEM;
1444
1445        ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1446        kfree(buf);
1447        return ret;
1448}
1449
1450/*
1451 * handle a write to /proc/sgi_uv/ptc_statistics
1452 * -1: reset the statistics
1453 *  0: display meaning of the statistics
1454 */
1455static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1456                                size_t count, loff_t *data)
1457{
1458        int cpu;
1459        int i;
1460        int elements;
1461        long input_arg;
1462        char optstr[64];
1463        struct ptc_stats *stat;
1464
1465        if (count == 0 || count > sizeof(optstr))
1466                return -EINVAL;
1467        if (copy_from_user(optstr, user, count))
1468                return -EFAULT;
1469        optstr[count - 1] = '\0';
1470
1471        if (!strcmp(optstr, "on")) {
1472                set_bau_on();
1473                return count;
1474        } else if (!strcmp(optstr, "off")) {
1475                set_bau_off();
1476                return count;
1477        }
1478
1479        if (strict_strtol(optstr, 10, &input_arg) < 0) {
1480                printk(KERN_DEBUG "%s is invalid\n", optstr);
1481                return -EINVAL;
1482        }
1483
1484        if (input_arg == 0) {
1485                elements = ARRAY_SIZE(stat_description);
1486                printk(KERN_DEBUG "# cpu:      cpu number\n");
1487                printk(KERN_DEBUG "Sender statistics:\n");
1488                for (i = 0; i < elements; i++)
1489                        printk(KERN_DEBUG "%s\n", stat_description[i]);
1490        } else if (input_arg == -1) {
1491                for_each_present_cpu(cpu) {
1492                        stat = &per_cpu(ptcstats, cpu);
1493                        memset(stat, 0, sizeof(struct ptc_stats));
1494                }
1495        }
1496
1497        return count;
1498}
1499
1500static int local_atoi(const char *name)
1501{
1502        int val = 0;
1503
1504        for (;; name++) {
1505                switch (*name) {
1506                case '0' ... '9':
1507                        val = 10*val+(*name-'0');
1508                        break;
1509                default:
1510                        return val;
1511                }
1512        }
1513}
1514
1515/*
1516 * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1517 * Zero values reset them to defaults.
1518 */
1519static int parse_tunables_write(struct bau_control *bcp, char *instr,
1520                                int count)
1521{
1522        char *p;
1523        char *q;
1524        int cnt = 0;
1525        int val;
1526        int e = ARRAY_SIZE(tunables);
1527
1528        p = instr + strspn(instr, WHITESPACE);
1529        q = p;
1530        for (; *p; p = q + strspn(q, WHITESPACE)) {
1531                q = p + strcspn(p, WHITESPACE);
1532                cnt++;
1533                if (q == p)
1534                        break;
1535        }
1536        if (cnt != e) {
1537                printk(KERN_INFO "bau tunable error: should be %d values\n", e);
1538                return -EINVAL;
1539        }
1540
1541        p = instr + strspn(instr, WHITESPACE);
1542        q = p;
1543        for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1544                q = p + strcspn(p, WHITESPACE);
1545                val = local_atoi(p);
1546                switch (cnt) {
1547                case 0:
1548                        if (val == 0) {
1549                                max_concurr = MAX_BAU_CONCURRENT;
1550                                max_concurr_const = MAX_BAU_CONCURRENT;
1551                                continue;
1552                        }
1553                        if (val < 1 || val > bcp->cpus_in_uvhub) {
1554                                printk(KERN_DEBUG
1555                                "Error: BAU max concurrent %d is invalid\n",
1556                                val);
1557                                return -EINVAL;
1558                        }
1559                        max_concurr = val;
1560                        max_concurr_const = val;
1561                        continue;
1562                default:
1563                        if (val == 0)
1564                                *tunables[cnt].tunp = tunables[cnt].deflt;
1565                        else
1566                                *tunables[cnt].tunp = val;
1567                        continue;
1568                }
1569                if (q == p)
1570                        break;
1571        }
1572        return 0;
1573}
1574
1575/*
1576 * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1577 */
1578static ssize_t tunables_write(struct file *file, const char __user *user,
1579                                size_t count, loff_t *data)
1580{
1581        int cpu;
1582        int ret;
1583        char instr[100];
1584        struct bau_control *bcp;
1585
1586        if (count == 0 || count > sizeof(instr)-1)
1587                return -EINVAL;
1588        if (copy_from_user(instr, user, count))
1589                return -EFAULT;
1590
1591        instr[count] = '\0';
1592
1593        cpu = get_cpu();
1594        bcp = &per_cpu(bau_control, cpu);
1595        ret = parse_tunables_write(bcp, instr, count);
1596        put_cpu();
1597        if (ret)
1598                return ret;
1599
1600        for_each_present_cpu(cpu) {
1601                bcp = &per_cpu(bau_control, cpu);
1602                bcp->max_concurr =              max_concurr;
1603                bcp->max_concurr_const =        max_concurr;
1604                bcp->plugged_delay =            plugged_delay;
1605                bcp->plugsb4reset =             plugsb4reset;
1606                bcp->timeoutsb4reset =          timeoutsb4reset;
1607                bcp->ipi_reset_limit =          ipi_reset_limit;
1608                bcp->complete_threshold =       complete_threshold;
1609                bcp->cong_response_us =         congested_respns_us;
1610                bcp->cong_reps =                congested_reps;
1611                bcp->disabled_period =          sec_2_cycles(disabled_period);
1612                bcp->giveup_limit =             giveup_limit;
1613        }
1614        return count;
1615}
1616
1617static const struct seq_operations uv_ptc_seq_ops = {
1618        .start          = ptc_seq_start,
1619        .next           = ptc_seq_next,
1620        .stop           = ptc_seq_stop,
1621        .show           = ptc_seq_show
1622};
1623
1624static int ptc_proc_open(struct inode *inode, struct file *file)
1625{
1626        return seq_open(file, &uv_ptc_seq_ops);
1627}
1628
1629static int tunables_open(struct inode *inode, struct file *file)
1630{
1631        return 0;
1632}
1633
1634static const struct file_operations proc_uv_ptc_operations = {
1635        .open           = ptc_proc_open,
1636        .read           = seq_read,
1637        .write          = ptc_proc_write,
1638        .llseek         = seq_lseek,
1639        .release        = seq_release,
1640};
1641
1642static const struct file_operations tunables_fops = {
1643        .open           = tunables_open,
1644        .read           = tunables_read,
1645        .write          = tunables_write,
1646        .llseek         = default_llseek,
1647};
1648
1649static int __init uv_ptc_init(void)
1650{
1651        struct proc_dir_entry *proc_uv_ptc;
1652
1653        if (!is_uv_system())
1654                return 0;
1655
1656        proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1657                                  &proc_uv_ptc_operations);
1658        if (!proc_uv_ptc) {
1659                printk(KERN_ERR "unable to create %s proc entry\n",
1660                       UV_PTC_BASENAME);
1661                return -EINVAL;
1662        }
1663
1664        tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1665        if (!tunables_dir) {
1666                printk(KERN_ERR "unable to create debugfs directory %s\n",
1667                       UV_BAU_TUNABLES_DIR);
1668                return -EINVAL;
1669        }
1670        tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1671                                        tunables_dir, NULL, &tunables_fops);
1672        if (!tunables_file) {
1673                printk(KERN_ERR "unable to create debugfs file %s\n",
1674                       UV_BAU_TUNABLES_FILE);
1675                return -EINVAL;
1676        }
1677        return 0;
1678}
1679
1680/*
1681 * Initialize the sending side's sending buffers.
1682 */
1683static void activation_descriptor_init(int node, int pnode, int base_pnode)
1684{
1685        int i;
1686        int cpu;
1687        int uv1 = 0;
1688        unsigned long gpa;
1689        unsigned long m;
1690        unsigned long n;
1691        size_t dsize;
1692        struct bau_desc *bau_desc;
1693        struct bau_desc *bd2;
1694        struct uv1_bau_msg_header *uv1_hdr;
1695        struct uv2_bau_msg_header *uv2_hdr;
1696        struct bau_control *bcp;
1697
1698        /*
1699         * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1700         * per cpu; and one per cpu on the uvhub (ADP_SZ)
1701         */
1702        dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1703        bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1704        BUG_ON(!bau_desc);
1705
1706        gpa = uv_gpa(bau_desc);
1707        n = uv_gpa_to_gnode(gpa);
1708        m = uv_gpa_to_offset(gpa);
1709        if (is_uv1_hub())
1710                uv1 = 1;
1711
1712        /* the 14-bit pnode */
1713        write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
1714        /*
1715         * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1716         * cpu even though we only use the first one; one descriptor can
1717         * describe a broadcast to 256 uv hubs.
1718         */
1719        for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1720                memset(bd2, 0, sizeof(struct bau_desc));
1721                if (uv1) {
1722                        uv1_hdr = &bd2->header.uv1_hdr;
1723                        uv1_hdr->swack_flag =   1;
1724                        /*
1725                         * The base_dest_nasid set in the message header
1726                         * is the nasid of the first uvhub in the partition.
1727                         * The bit map will indicate destination pnode numbers
1728                         * relative to that base. They may not be consecutive
1729                         * if nasid striding is being used.
1730                         */
1731                        uv1_hdr->base_dest_nasid =
1732                                                UV_PNODE_TO_NASID(base_pnode);
1733                        uv1_hdr->dest_subnodeid =       UV_LB_SUBNODEID;
1734                        uv1_hdr->command =              UV_NET_ENDPOINT_INTD;
1735                        uv1_hdr->int_both =             1;
1736                        /*
1737                         * all others need to be set to zero:
1738                         *   fairness chaining multilevel count replied_to
1739                         */
1740                } else {
1741                        /*
1742                         * BIOS uses legacy mode, but UV2 hardware always
1743                         * uses native mode for selective broadcasts.
1744                         */
1745                        uv2_hdr = &bd2->header.uv2_hdr;
1746                        uv2_hdr->swack_flag =   1;
1747                        uv2_hdr->base_dest_nasid =
1748                                                UV_PNODE_TO_NASID(base_pnode);
1749                        uv2_hdr->dest_subnodeid =       UV_LB_SUBNODEID;
1750                        uv2_hdr->command =              UV_NET_ENDPOINT_INTD;
1751                }
1752        }
1753        for_each_present_cpu(cpu) {
1754                if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1755                        continue;
1756                bcp = &per_cpu(bau_control, cpu);
1757                bcp->descriptor_base = bau_desc;
1758        }
1759}
1760
1761/*
1762 * initialize the destination side's receiving buffers
1763 * entered for each uvhub in the partition
1764 * - node is first node (kernel memory notion) on the uvhub
1765 * - pnode is the uvhub's physical identifier
1766 */
1767static void pq_init(int node, int pnode)
1768{
1769        int cpu;
1770        size_t plsize;
1771        char *cp;
1772        void *vp;
1773        unsigned long pn;
1774        unsigned long first;
1775        unsigned long pn_first;
1776        unsigned long last;
1777        struct bau_pq_entry *pqp;
1778        struct bau_control *bcp;
1779
1780        plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1781        vp = kmalloc_node(plsize, GFP_KERNEL, node);
1782        pqp = (struct bau_pq_entry *)vp;
1783        BUG_ON(!pqp);
1784
1785        cp = (char *)pqp + 31;
1786        pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1787
1788        for_each_present_cpu(cpu) {
1789                if (pnode != uv_cpu_to_pnode(cpu))
1790                        continue;
1791                /* for every cpu on this pnode: */
1792                bcp = &per_cpu(bau_control, cpu);
1793                bcp->queue_first        = pqp;
1794                bcp->bau_msg_head       = pqp;
1795                bcp->queue_last         = pqp + (DEST_Q_SIZE - 1);
1796        }
1797        /*
1798         * need the gnode of where the memory was really allocated
1799         */
1800        pn = uv_gpa_to_gnode(uv_gpa(pqp));
1801        first = uv_physnodeaddr(pqp);
1802        pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first;
1803        last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1));
1804        write_mmr_payload_first(pnode, pn_first);
1805        write_mmr_payload_tail(pnode, first);
1806        write_mmr_payload_last(pnode, last);
1807        write_gmmr_sw_ack(pnode, 0xffffUL);
1808
1809        /* in effect, all msg_type's are set to MSG_NOOP */
1810        memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1811}
1812
1813/*
1814 * Initialization of each UV hub's structures
1815 */
1816static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1817{
1818        int node;
1819        int pnode;
1820        unsigned long apicid;
1821
1822        node = uvhub_to_first_node(uvhub);
1823        pnode = uv_blade_to_pnode(uvhub);
1824
1825        activation_descriptor_init(node, pnode, base_pnode);
1826
1827        pq_init(node, pnode);
1828        /*
1829         * The below initialization can't be in firmware because the
1830         * messaging IRQ will be determined by the OS.
1831         */
1832        apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1833        write_mmr_data_config(pnode, ((apicid << 32) | vector));
1834}
1835
1836/*
1837 * We will set BAU_MISC_CONTROL with a timeout period.
1838 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1839 * So the destination timeout period has to be calculated from them.
1840 */
1841static int calculate_destination_timeout(void)
1842{
1843        unsigned long mmr_image;
1844        int mult1;
1845        int mult2;
1846        int index;
1847        int base;
1848        int ret;
1849        unsigned long ts_ns;
1850
1851        if (is_uv1_hub()) {
1852                mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1853                mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1854                index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1855                mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1856                mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1857                ts_ns = timeout_base_ns[index];
1858                ts_ns *= (mult1 * mult2);
1859                ret = ts_ns / 1000;
1860        } else {
1861                /* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1862                mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1863                mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1864                if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1865                        base = 80;
1866                else
1867                        base = 10;
1868                mult1 = mmr_image & UV2_ACK_MASK;
1869                ret = mult1 * base;
1870        }
1871        return ret;
1872}
1873
1874static void __init init_per_cpu_tunables(void)
1875{
1876        int cpu;
1877        struct bau_control *bcp;
1878
1879        for_each_present_cpu(cpu) {
1880                bcp = &per_cpu(bau_control, cpu);
1881                bcp->baudisabled                = 0;
1882                if (nobau)
1883                        bcp->nobau              = 1;
1884                bcp->statp                      = &per_cpu(ptcstats, cpu);
1885                /* time interval to catch a hardware stay-busy bug */
1886                bcp->timeout_interval           = usec_2_cycles(2*timeout_us);
1887                bcp->max_concurr                = max_concurr;
1888                bcp->max_concurr_const          = max_concurr;
1889                bcp->plugged_delay              = plugged_delay;
1890                bcp->plugsb4reset               = plugsb4reset;
1891                bcp->timeoutsb4reset            = timeoutsb4reset;
1892                bcp->ipi_reset_limit            = ipi_reset_limit;
1893                bcp->complete_threshold         = complete_threshold;
1894                bcp->cong_response_us           = congested_respns_us;
1895                bcp->cong_reps                  = congested_reps;
1896                bcp->disabled_period =          sec_2_cycles(disabled_period);
1897                bcp->giveup_limit =             giveup_limit;
1898                spin_lock_init(&bcp->queue_lock);
1899                spin_lock_init(&bcp->uvhub_lock);
1900                spin_lock_init(&bcp->disable_lock);
1901        }
1902}
1903
1904/*
1905 * Scan all cpus to collect blade and socket summaries.
1906 */
1907static int __init get_cpu_topology(int base_pnode,
1908                                        struct uvhub_desc *uvhub_descs,
1909                                        unsigned char *uvhub_mask)
1910{
1911        int cpu;
1912        int pnode;
1913        int uvhub;
1914        int socket;
1915        struct bau_control *bcp;
1916        struct uvhub_desc *bdp;
1917        struct socket_desc *sdp;
1918
1919        for_each_present_cpu(cpu) {
1920                bcp = &per_cpu(bau_control, cpu);
1921
1922                memset(bcp, 0, sizeof(struct bau_control));
1923
1924                pnode = uv_cpu_hub_info(cpu)->pnode;
1925                if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1926                        printk(KERN_EMERG
1927                                "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1928                                cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1929                        return 1;
1930                }
1931
1932                bcp->osnode = cpu_to_node(cpu);
1933                bcp->partition_base_pnode = base_pnode;
1934
1935                uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1936                *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1937                bdp = &uvhub_descs[uvhub];
1938
1939                bdp->num_cpus++;
1940                bdp->uvhub = uvhub;
1941                bdp->pnode = pnode;
1942
1943                /* kludge: 'assuming' one node per socket, and assuming that
1944                   disabling a socket just leaves a gap in node numbers */
1945                socket = bcp->osnode & 1;
1946                bdp->socket_mask |= (1 << socket);
1947                sdp = &bdp->socket[socket];
1948                sdp->cpu_number[sdp->num_cpus] = cpu;
1949                sdp->num_cpus++;
1950                if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1951                        printk(KERN_EMERG "%d cpus per socket invalid\n",
1952                                sdp->num_cpus);
1953                        return 1;
1954                }
1955        }
1956        return 0;
1957}
1958
1959/*
1960 * Each socket is to get a local array of pnodes/hubs.
1961 */
1962static void make_per_cpu_thp(struct bau_control *smaster)
1963{
1964        int cpu;
1965        size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1966
1967        smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
1968        memset(smaster->thp, 0, hpsz);
1969        for_each_present_cpu(cpu) {
1970                smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
1971                smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1972        }
1973}
1974
1975/*
1976 * Each uvhub is to get a local cpumask.
1977 */
1978static void make_per_hub_cpumask(struct bau_control *hmaster)
1979{
1980        int sz = sizeof(cpumask_t);
1981
1982        hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
1983}
1984
1985/*
1986 * Initialize all the per_cpu information for the cpu's on a given socket,
1987 * given what has been gathered into the socket_desc struct.
1988 * And reports the chosen hub and socket masters back to the caller.
1989 */
1990static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
1991                        struct bau_control **smasterp,
1992                        struct bau_control **hmasterp)
1993{
1994        int i;
1995        int cpu;
1996        struct bau_control *bcp;
1997
1998        for (i = 0; i < sdp->num_cpus; i++) {
1999                cpu = sdp->cpu_number[i];
2000                bcp = &per_cpu(bau_control, cpu);
2001                bcp->cpu = cpu;
2002                if (i == 0) {
2003                        *smasterp = bcp;
2004                        if (!(*hmasterp))
2005                                *hmasterp = bcp;
2006                }
2007                bcp->cpus_in_uvhub = bdp->num_cpus;
2008                bcp->cpus_in_socket = sdp->num_cpus;
2009                bcp->socket_master = *smasterp;
2010                bcp->uvhub = bdp->uvhub;
2011                if (is_uv1_hub())
2012                        bcp->uvhub_version = 1;
2013                else if (is_uv2_hub())
2014                        bcp->uvhub_version = 2;
2015                else {
2016                        printk(KERN_EMERG "uvhub version not 1 or 2\n");
2017                        return 1;
2018                }
2019                bcp->uvhub_master = *hmasterp;
2020                bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id;
2021                if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
2022                        printk(KERN_EMERG "%d cpus per uvhub invalid\n",
2023                                bcp->uvhub_cpu);
2024                        return 1;
2025                }
2026        }
2027        return 0;
2028}
2029
2030/*
2031 * Summarize the blade and socket topology into the per_cpu structures.
2032 */
2033static int __init summarize_uvhub_sockets(int nuvhubs,
2034                        struct uvhub_desc *uvhub_descs,
2035                        unsigned char *uvhub_mask)
2036{
2037        int socket;
2038        int uvhub;
2039        unsigned short socket_mask;
2040
2041        for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2042                struct uvhub_desc *bdp;
2043                struct bau_control *smaster = NULL;
2044                struct bau_control *hmaster = NULL;
2045
2046                if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2047                        continue;
2048
2049                bdp = &uvhub_descs[uvhub];
2050                socket_mask = bdp->socket_mask;
2051                socket = 0;
2052                while (socket_mask) {
2053                        struct socket_desc *sdp;
2054                        if ((socket_mask & 1)) {
2055                                sdp = &bdp->socket[socket];
2056                                if (scan_sock(sdp, bdp, &smaster, &hmaster))
2057                                        return 1;
2058                                make_per_cpu_thp(smaster);
2059                        }
2060                        socket++;
2061                        socket_mask = (socket_mask >> 1);
2062                }
2063                make_per_hub_cpumask(hmaster);
2064        }
2065        return 0;
2066}
2067
2068/*
2069 * initialize the bau_control structure for each cpu
2070 */
2071static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2072{
2073        unsigned char *uvhub_mask;
2074        void *vp;
2075        struct uvhub_desc *uvhub_descs;
2076
2077        timeout_us = calculate_destination_timeout();
2078
2079        vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
2080        uvhub_descs = (struct uvhub_desc *)vp;
2081        memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
2082        uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2083
2084        if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2085                goto fail;
2086
2087        if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2088                goto fail;
2089
2090        kfree(uvhub_descs);
2091        kfree(uvhub_mask);
2092        init_per_cpu_tunables();
2093        return 0;
2094
2095fail:
2096        kfree(uvhub_descs);
2097        kfree(uvhub_mask);
2098        return 1;
2099}
2100
2101/*
2102 * Initialization of BAU-related structures
2103 */
2104static int __init uv_bau_init(void)
2105{
2106        int uvhub;
2107        int pnode;
2108        int nuvhubs;
2109        int cur_cpu;
2110        int cpus;
2111        int vector;
2112        cpumask_var_t *mask;
2113
2114        if (!is_uv_system())
2115                return 0;
2116
2117        for_each_possible_cpu(cur_cpu) {
2118                mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2119                zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2120        }
2121
2122        nuvhubs = uv_num_possible_blades();
2123        congested_cycles = usec_2_cycles(congested_respns_us);
2124
2125        uv_base_pnode = 0x7fffffff;
2126        for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2127                cpus = uv_blade_nr_possible_cpus(uvhub);
2128                if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2129                        uv_base_pnode = uv_blade_to_pnode(uvhub);
2130        }
2131
2132        enable_timeouts();
2133
2134        if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2135                set_bau_off();
2136                nobau_perm = 1;
2137                return 0;
2138        }
2139
2140        vector = UV_BAU_MESSAGE;
2141        for_each_possible_blade(uvhub)
2142                if (uv_blade_nr_possible_cpus(uvhub))
2143                        init_uvhub(uvhub, vector, uv_base_pnode);
2144
2145        alloc_intr_gate(vector, uv_bau_message_intr1);
2146
2147        for_each_possible_blade(uvhub) {
2148                if (uv_blade_nr_possible_cpus(uvhub)) {
2149                        unsigned long val;
2150                        unsigned long mmr;
2151                        pnode = uv_blade_to_pnode(uvhub);
2152                        /* INIT the bau */
2153                        val = 1L << 63;
2154                        write_gmmr_activation(pnode, val);
2155                        mmr = 1; /* should be 1 to broadcast to both sockets */
2156                        if (!is_uv1_hub())
2157                                write_mmr_data_broadcast(pnode, mmr);
2158                }
2159        }
2160
2161        return 0;
2162}
2163core_initcall(uv_bau_init);
2164fs_initcall(uv_ptc_init);
2165