linux/drivers/clk/bcm/clk-kona.h
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2013 Broadcom Corporation
   3 * Copyright 2013 Linaro Limited
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation version 2.
   8 *
   9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  10 * kind, whether express or implied; without even the implied warranty
  11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14
  15#ifndef _CLK_KONA_H
  16#define _CLK_KONA_H
  17
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20#include <linux/spinlock.h>
  21#include <linux/slab.h>
  22#include <linux/device.h>
  23#include <linux/of.h>
  24#include <linux/clk-provider.h>
  25
  26#define BILLION         1000000000
  27
  28/* The common clock framework uses u8 to represent a parent index */
  29#define PARENT_COUNT_MAX        ((u32)U8_MAX)
  30
  31#define BAD_CLK_INDEX           U8_MAX  /* Can't ever be valid */
  32#define BAD_CLK_NAME            ((const char *)-1)
  33
  34#define BAD_SCALED_DIV_VALUE    U64_MAX
  35
  36/*
  37 * Utility macros for object flag management.  If possible, flags
  38 * should be defined such that 0 is the desired default value.
  39 */
  40#define FLAG(type, flag)                BCM_CLK_ ## type ## _FLAGS_ ## flag
  41#define FLAG_SET(obj, type, flag)       ((obj)->flags |= FLAG(type, flag))
  42#define FLAG_CLEAR(obj, type, flag)     ((obj)->flags &= ~(FLAG(type, flag)))
  43#define FLAG_FLIP(obj, type, flag)      ((obj)->flags ^= FLAG(type, flag))
  44#define FLAG_TEST(obj, type, flag)      (!!((obj)->flags & FLAG(type, flag)))
  45
  46/* Clock field state tests */
  47
  48#define gate_exists(gate)               FLAG_TEST(gate, GATE, EXISTS)
  49#define gate_is_enabled(gate)           FLAG_TEST(gate, GATE, ENABLED)
  50#define gate_is_hw_controllable(gate)   FLAG_TEST(gate, GATE, HW)
  51#define gate_is_sw_controllable(gate)   FLAG_TEST(gate, GATE, SW)
  52#define gate_is_sw_managed(gate)        FLAG_TEST(gate, GATE, SW_MANAGED)
  53#define gate_is_no_disable(gate)        FLAG_TEST(gate, GATE, NO_DISABLE)
  54
  55#define gate_flip_enabled(gate)         FLAG_FLIP(gate, GATE, ENABLED)
  56
  57#define divider_exists(div)             FLAG_TEST(div, DIV, EXISTS)
  58#define divider_is_fixed(div)           FLAG_TEST(div, DIV, FIXED)
  59#define divider_has_fraction(div)       (!divider_is_fixed(div) && \
  60                                                (div)->u.s.frac_width > 0)
  61
  62#define selector_exists(sel)            ((sel)->width != 0)
  63#define trigger_exists(trig)            FLAG_TEST(trig, TRIG, EXISTS)
  64
  65/* Clock type, used to tell common block what it's part of */
  66enum bcm_clk_type {
  67        bcm_clk_none,           /* undefined clock type */
  68        bcm_clk_bus,
  69        bcm_clk_core,
  70        bcm_clk_peri
  71};
  72
  73/*
  74 * Each CCU defines a mapped area of memory containing registers
  75 * used to manage clocks implemented by the CCU.  Access to memory
  76 * within the CCU's space is serialized by a spinlock.  Before any
  77 * (other) address can be written, a special access "password" value
  78 * must be written to its WR_ACCESS register (located at the base
  79 * address of the range).  We keep track of the name of each CCU as
  80 * it is set up, and maintain them in a list.
  81 */
  82struct ccu_data {
  83        void __iomem *base;     /* base of mapped address space */
  84        spinlock_t lock;        /* serialization lock */
  85        bool write_enabled;     /* write access is currently enabled */
  86        struct list_head links; /* for ccu_list */
  87        struct device_node *node;
  88        struct clk_onecell_data data;
  89        const char *name;
  90        u32 range;              /* byte range of address space */
  91};
  92
  93/*
  94 * Gating control and status is managed by a 32-bit gate register.
  95 *
  96 * There are several types of gating available:
  97 * - (no gate)
  98 *     A clock with no gate is assumed to be always enabled.
  99 * - hardware-only gating (auto-gating)
 100 *     Enabling or disabling clocks with this type of gate is
 101 *     managed automatically by the hardware.  Such clocks can be
 102 *     considered by the software to be enabled.  The current status
 103 *     of auto-gated clocks can be read from the gate status bit.
 104 * - software-only gating
 105 *     Auto-gating is not available for this type of clock.
 106 *     Instead, software manages whether it's enabled by setting or
 107 *     clearing the enable bit.  The current gate status of a gate
 108 *     under software control can be read from the gate status bit.
 109 *     To ensure a change to the gating status is complete, the
 110 *     status bit can be polled to verify that the gate has entered
 111 *     the desired state.
 112 * - selectable hardware or software gating
 113 *     Gating for this type of clock can be configured to be either
 114 *     under software or hardware control.  Which type is in use is
 115 *     determined by the hw_sw_sel bit of the gate register.
 116 */
 117struct bcm_clk_gate {
 118        u32 offset;             /* gate register offset */
 119        u32 status_bit;         /* 0: gate is disabled; 0: gatge is enabled */
 120        u32 en_bit;             /* 0: disable; 1: enable */
 121        u32 hw_sw_sel_bit;      /* 0: hardware gating; 1: software gating */
 122        u32 flags;              /* BCM_CLK_GATE_FLAGS_* below */
 123};
 124
 125/*
 126 * Gate flags:
 127 *   HW         means this gate can be auto-gated
 128 *   SW         means the state of this gate can be software controlled
 129 *   NO_DISABLE means this gate is (only) enabled if under software control
 130 *   SW_MANAGED means the status of this gate is under software control
 131 *   ENABLED    means this software-managed gate is *supposed* to be enabled
 132 */
 133#define BCM_CLK_GATE_FLAGS_EXISTS       ((u32)1 << 0)   /* Gate is valid */
 134#define BCM_CLK_GATE_FLAGS_HW           ((u32)1 << 1)   /* Can auto-gate */
 135#define BCM_CLK_GATE_FLAGS_SW           ((u32)1 << 2)   /* Software control */
 136#define BCM_CLK_GATE_FLAGS_NO_DISABLE   ((u32)1 << 3)   /* HW or enabled */
 137#define BCM_CLK_GATE_FLAGS_SW_MANAGED   ((u32)1 << 4)   /* SW now in control */
 138#define BCM_CLK_GATE_FLAGS_ENABLED      ((u32)1 << 5)   /* If SW_MANAGED */
 139
 140/*
 141 * Gate initialization macros.
 142 *
 143 * Any gate initially under software control will be enabled.
 144 */
 145
 146/* A hardware/software gate initially under software control */
 147#define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)       \
 148        {                                                               \
 149                .offset = (_offset),                                    \
 150                .status_bit = (_status_bit),                            \
 151                .en_bit = (_en_bit),                                    \
 152                .hw_sw_sel_bit = (_hw_sw_sel_bit),                      \
 153                .flags = FLAG(GATE, HW)|FLAG(GATE, SW)|                 \
 154                        FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|     \
 155                        FLAG(GATE, EXISTS),                             \
 156        }
 157
 158/* A hardware/software gate initially under hardware control */
 159#define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)  \
 160        {                                                               \
 161                .offset = (_offset),                                    \
 162                .status_bit = (_status_bit),                            \
 163                .en_bit = (_en_bit),                                    \
 164                .hw_sw_sel_bit = (_hw_sw_sel_bit),                      \
 165                .flags = FLAG(GATE, HW)|FLAG(GATE, SW)|                 \
 166                        FLAG(GATE, EXISTS),                             \
 167        }
 168
 169/* A hardware-or-enabled gate (enabled if not under hardware control) */
 170#define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)   \
 171        {                                                               \
 172                .offset = (_offset),                                    \
 173                .status_bit = (_status_bit),                            \
 174                .en_bit = (_en_bit),                                    \
 175                .hw_sw_sel_bit = (_hw_sw_sel_bit),                      \
 176                .flags = FLAG(GATE, HW)|FLAG(GATE, SW)|                 \
 177                        FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),      \
 178        }
 179
 180/* A software-only gate */
 181#define SW_ONLY_GATE(_offset, _status_bit, _en_bit)                     \
 182        {                                                               \
 183                .offset = (_offset),                                    \
 184                .status_bit = (_status_bit),                            \
 185                .en_bit = (_en_bit),                                    \
 186                .flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|         \
 187                        FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),         \
 188        }
 189
 190/* A hardware-only gate */
 191#define HW_ONLY_GATE(_offset, _status_bit)                              \
 192        {                                                               \
 193                .offset = (_offset),                                    \
 194                .status_bit = (_status_bit),                            \
 195                .flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),             \
 196        }
 197
 198/*
 199 * Each clock can have zero, one, or two dividers which change the
 200 * output rate of the clock.  Each divider can be either fixed or
 201 * variable.  If there are two dividers, they are the "pre-divider"
 202 * and the "regular" or "downstream" divider.  If there is only one,
 203 * there is no pre-divider.
 204 *
 205 * A fixed divider is any non-zero (positive) value, and it
 206 * indicates how the input rate is affected by the divider.
 207 *
 208 * The value of a variable divider is maintained in a sub-field of a
 209 * 32-bit divider register.  The position of the field in the
 210 * register is defined by its offset and width.  The value recorded
 211 * in this field is always 1 less than the value it represents.
 212 *
 213 * In addition, a variable divider can indicate that some subset
 214 * of its bits represent a "fractional" part of the divider.  Such
 215 * bits comprise the low-order portion of the divider field, and can
 216 * be viewed as representing the portion of the divider that lies to
 217 * the right of the decimal point.  Most variable dividers have zero
 218 * fractional bits.  Variable dividers with non-zero fraction width
 219 * still record a value 1 less than the value they represent; the
 220 * added 1 does *not* affect the low-order bit in this case, it
 221 * affects the bits above the fractional part only.  (Often in this
 222 * code a divider field value is distinguished from the value it
 223 * represents by referring to the latter as a "divisor".)
 224 *
 225 * In order to avoid dealing with fractions, divider arithmetic is
 226 * performed using "scaled" values.  A scaled value is one that's
 227 * been left-shifted by the fractional width of a divider.  Dividing
 228 * a scaled value by a scaled divisor produces the desired quotient
 229 * without loss of precision and without any other special handling
 230 * for fractions.
 231 *
 232 * The recorded value of a variable divider can be modified.  To
 233 * modify either divider (or both), a clock must be enabled (i.e.,
 234 * using its gate).  In addition, a trigger register (described
 235 * below) must be used to commit the change, and polled to verify
 236 * the change is complete.
 237 */
 238struct bcm_clk_div {
 239        union {
 240                struct {        /* variable divider */
 241                        u32 offset;     /* divider register offset */
 242                        u32 shift;      /* field shift */
 243                        u32 width;      /* field width */
 244                        u32 frac_width; /* field fraction width */
 245
 246                        u64 scaled_div; /* scaled divider value */
 247                } s;
 248                u32 fixed;      /* non-zero fixed divider value */
 249        } u;
 250        u32 flags;              /* BCM_CLK_DIV_FLAGS_* below */
 251};
 252
 253/*
 254 * Divider flags:
 255 *   EXISTS means this divider exists
 256 *   FIXED means it is a fixed-rate divider
 257 */
 258#define BCM_CLK_DIV_FLAGS_EXISTS        ((u32)1 << 0)   /* Divider is valid */
 259#define BCM_CLK_DIV_FLAGS_FIXED         ((u32)1 << 1)   /* Fixed-value */
 260
 261/* Divider initialization macros */
 262
 263/* A fixed (non-zero) divider */
 264#define FIXED_DIVIDER(_value)                                           \
 265        {                                                               \
 266                .u.fixed = (_value),                                    \
 267                .flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),            \
 268        }
 269
 270/* A divider with an integral divisor */
 271#define DIVIDER(_offset, _shift, _width)                                \
 272        {                                                               \
 273                .u.s.offset = (_offset),                                \
 274                .u.s.shift = (_shift),                                  \
 275                .u.s.width = (_width),                                  \
 276                .u.s.scaled_div = BAD_SCALED_DIV_VALUE,                 \
 277                .flags = FLAG(DIV, EXISTS),                             \
 278        }
 279
 280/* A divider whose divisor has an integer and fractional part */
 281#define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)              \
 282        {                                                               \
 283                .u.s.offset = (_offset),                                \
 284                .u.s.shift = (_shift),                                  \
 285                .u.s.width = (_width),                                  \
 286                .u.s.frac_width = (_frac_width),                        \
 287                .u.s.scaled_div = BAD_SCALED_DIV_VALUE,                 \
 288                .flags = FLAG(DIV, EXISTS),                             \
 289        }
 290
 291/*
 292 * Clocks may have multiple "parent" clocks.  If there is more than
 293 * one, a selector must be specified to define which of the parent
 294 * clocks is currently in use.  The selected clock is indicated in a
 295 * sub-field of a 32-bit selector register.  The range of
 296 * representable selector values typically exceeds the number of
 297 * available parent clocks.  Occasionally the reset value of a
 298 * selector field is explicitly set to a (specific) value that does
 299 * not correspond to a defined input clock.
 300 *
 301 * We register all known parent clocks with the common clock code
 302 * using a packed array (i.e., no empty slots) of (parent) clock
 303 * names, and refer to them later using indexes into that array.
 304 * We maintain an array of selector values indexed by common clock
 305 * index values in order to map between these common clock indexes
 306 * and the selector values used by the hardware.
 307 *
 308 * Like dividers, a selector can be modified, but to do so a clock
 309 * must be enabled, and a trigger must be used to commit the change.
 310 */
 311struct bcm_clk_sel {
 312        u32 offset;             /* selector register offset */
 313        u32 shift;              /* field shift */
 314        u32 width;              /* field width */
 315
 316        u32 parent_count;       /* number of entries in parent_sel[] */
 317        u32 *parent_sel;        /* array of parent selector values */
 318        u8 clk_index;           /* current selected index in parent_sel[] */
 319};
 320
 321/* Selector initialization macro */
 322#define SELECTOR(_offset, _shift, _width)                               \
 323        {                                                               \
 324                .offset = (_offset),                                    \
 325                .shift = (_shift),                                      \
 326                .width = (_width),                                      \
 327                .clk_index = BAD_CLK_INDEX,                             \
 328        }
 329
 330/*
 331 * Making changes to a variable divider or a selector for a clock
 332 * requires the use of a trigger.  A trigger is defined by a single
 333 * bit within a register.  To signal a change, a 1 is written into
 334 * that bit.  To determine when the change has been completed, that
 335 * trigger bit is polled; the read value will be 1 while the change
 336 * is in progress, and 0 when it is complete.
 337 *
 338 * Occasionally a clock will have more than one trigger.  In this
 339 * case, the "pre-trigger" will be used when changing a clock's
 340 * selector and/or its pre-divider.
 341 */
 342struct bcm_clk_trig {
 343        u32 offset;             /* trigger register offset */
 344        u32 bit;                /* trigger bit */
 345        u32 flags;              /* BCM_CLK_TRIG_FLAGS_* below */
 346};
 347
 348/*
 349 * Trigger flags:
 350 *   EXISTS means this trigger exists
 351 */
 352#define BCM_CLK_TRIG_FLAGS_EXISTS       ((u32)1 << 0)   /* Trigger is valid */
 353
 354/* Trigger initialization macro */
 355#define TRIGGER(_offset, _bit)                                          \
 356        {                                                               \
 357                .offset = (_offset),                                    \
 358                .bit = (_bit),                                          \
 359                .flags = FLAG(TRIG, EXISTS),                            \
 360        }
 361
 362struct peri_clk_data {
 363        struct bcm_clk_gate gate;
 364        struct bcm_clk_trig pre_trig;
 365        struct bcm_clk_div pre_div;
 366        struct bcm_clk_trig trig;
 367        struct bcm_clk_div div;
 368        struct bcm_clk_sel sel;
 369        const char *clocks[];   /* must be last; use CLOCKS() to declare */
 370};
 371#define CLOCKS(...)     { __VA_ARGS__, NULL, }
 372#define NO_CLOCKS       { NULL, }       /* Must use of no parent clocks */
 373
 374struct kona_clk {
 375        struct clk_hw hw;
 376        struct clk_init_data init_data;
 377        const char *name;       /* name of this clock */
 378        struct ccu_data *ccu;   /* ccu this clock is associated with */
 379        enum bcm_clk_type type;
 380        union {
 381                void *data;
 382                struct peri_clk_data *peri;
 383        } u;
 384};
 385#define to_kona_clk(_hw) \
 386        container_of(_hw, struct kona_clk, hw)
 387
 388/* Exported globals */
 389
 390extern struct clk_ops kona_peri_clk_ops;
 391
 392/* Help functions */
 393
 394#define PERI_CLK_SETUP(clks, ccu, id, name) \
 395        clks[id] = kona_clk_setup(ccu, #name, bcm_clk_peri, &name ## _data)
 396
 397/* Externally visible functions */
 398
 399extern u64 do_div_round_closest(u64 dividend, unsigned long divisor);
 400extern u64 scaled_div_max(struct bcm_clk_div *div);
 401extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value,
 402                                u32 billionths);
 403
 404extern struct clk *kona_clk_setup(struct ccu_data *ccu, const char *name,
 405                        enum bcm_clk_type type, void *data);
 406extern void __init kona_dt_ccu_setup(struct device_node *node,
 407                        int (*ccu_clks_setup)(struct ccu_data *));
 408extern bool __init kona_ccu_init(struct ccu_data *ccu);
 409
 410#endif /* _CLK_KONA_H */
 411