linux/drivers/dma/cppi41.c
<<
>>
Prefs
   1#include <linux/dmaengine.h>
   2#include <linux/dma-mapping.h>
   3#include <linux/platform_device.h>
   4#include <linux/module.h>
   5#include <linux/of.h>
   6#include <linux/slab.h>
   7#include <linux/of_dma.h>
   8#include <linux/of_irq.h>
   9#include <linux/dmapool.h>
  10#include <linux/interrupt.h>
  11#include <linux/of_address.h>
  12#include <linux/pm_runtime.h>
  13#include "dmaengine.h"
  14
  15#define DESC_TYPE       27
  16#define DESC_TYPE_HOST  0x10
  17#define DESC_TYPE_TEARD 0x13
  18
  19#define TD_DESC_IS_RX   (1 << 16)
  20#define TD_DESC_DMA_NUM 10
  21
  22#define DESC_LENGTH_BITS_NUM    21
  23
  24#define DESC_TYPE_USB   (5 << 26)
  25#define DESC_PD_COMPLETE        (1 << 31)
  26
  27/* DMA engine */
  28#define DMA_TDFDQ       4
  29#define DMA_TXGCR(x)    (0x800 + (x) * 0x20)
  30#define DMA_RXGCR(x)    (0x808 + (x) * 0x20)
  31#define RXHPCRA0                4
  32
  33#define GCR_CHAN_ENABLE         (1 << 31)
  34#define GCR_TEARDOWN            (1 << 30)
  35#define GCR_STARV_RETRY         (1 << 24)
  36#define GCR_DESC_TYPE_HOST      (1 << 14)
  37
  38/* DMA scheduler */
  39#define DMA_SCHED_CTRL          0
  40#define DMA_SCHED_CTRL_EN       (1 << 31)
  41#define DMA_SCHED_WORD(x)       ((x) * 4 + 0x800)
  42
  43#define SCHED_ENTRY0_CHAN(x)    ((x) << 0)
  44#define SCHED_ENTRY0_IS_RX      (1 << 7)
  45
  46#define SCHED_ENTRY1_CHAN(x)    ((x) << 8)
  47#define SCHED_ENTRY1_IS_RX      (1 << 15)
  48
  49#define SCHED_ENTRY2_CHAN(x)    ((x) << 16)
  50#define SCHED_ENTRY2_IS_RX      (1 << 23)
  51
  52#define SCHED_ENTRY3_CHAN(x)    ((x) << 24)
  53#define SCHED_ENTRY3_IS_RX      (1 << 31)
  54
  55/* Queue manager */
  56/* 4 KiB of memory for descriptors, 2 for each endpoint */
  57#define ALLOC_DECS_NUM          128
  58#define DESCS_AREAS             1
  59#define TOTAL_DESCS_NUM         (ALLOC_DECS_NUM * DESCS_AREAS)
  60#define QMGR_SCRATCH_SIZE       (TOTAL_DESCS_NUM * 4)
  61
  62#define QMGR_LRAM0_BASE         0x80
  63#define QMGR_LRAM_SIZE          0x84
  64#define QMGR_LRAM1_BASE         0x88
  65#define QMGR_MEMBASE(x)         (0x1000 + (x) * 0x10)
  66#define QMGR_MEMCTRL(x)         (0x1004 + (x) * 0x10)
  67#define QMGR_MEMCTRL_IDX_SH     16
  68#define QMGR_MEMCTRL_DESC_SH    8
  69
  70#define QMGR_NUM_PEND   5
  71#define QMGR_PEND(x)    (0x90 + (x) * 4)
  72
  73#define QMGR_PENDING_SLOT_Q(x)  (x / 32)
  74#define QMGR_PENDING_BIT_Q(x)   (x % 32)
  75
  76#define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  77#define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  78#define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  79#define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  80
  81/* Glue layer specific */
  82/* USBSS  / USB AM335x */
  83#define USBSS_IRQ_STATUS        0x28
  84#define USBSS_IRQ_ENABLER       0x2c
  85#define USBSS_IRQ_CLEARR        0x30
  86
  87#define USBSS_IRQ_PD_COMP       (1 <<  2)
  88
  89struct cppi41_channel {
  90        struct dma_chan chan;
  91        struct dma_async_tx_descriptor txd;
  92        struct cppi41_dd *cdd;
  93        struct cppi41_desc *desc;
  94        dma_addr_t desc_phys;
  95        void __iomem *gcr_reg;
  96        int is_tx;
  97        u32 residue;
  98
  99        unsigned int q_num;
 100        unsigned int q_comp_num;
 101        unsigned int port_num;
 102
 103        unsigned td_retry;
 104        unsigned td_queued:1;
 105        unsigned td_seen:1;
 106        unsigned td_desc_seen:1;
 107};
 108
 109struct cppi41_desc {
 110        u32 pd0;
 111        u32 pd1;
 112        u32 pd2;
 113        u32 pd3;
 114        u32 pd4;
 115        u32 pd5;
 116        u32 pd6;
 117        u32 pd7;
 118} __aligned(32);
 119
 120struct chan_queues {
 121        u16 submit;
 122        u16 complete;
 123};
 124
 125struct cppi41_dd {
 126        struct dma_device ddev;
 127
 128        void *qmgr_scratch;
 129        dma_addr_t scratch_phys;
 130
 131        struct cppi41_desc *cd;
 132        dma_addr_t descs_phys;
 133        u32 first_td_desc;
 134        struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
 135
 136        void __iomem *usbss_mem;
 137        void __iomem *ctrl_mem;
 138        void __iomem *sched_mem;
 139        void __iomem *qmgr_mem;
 140        unsigned int irq;
 141        const struct chan_queues *queues_rx;
 142        const struct chan_queues *queues_tx;
 143        struct chan_queues td_queue;
 144
 145        /* context for suspend/resume */
 146        unsigned int dma_tdfdq;
 147};
 148
 149#define FIST_COMPLETION_QUEUE   93
 150static struct chan_queues usb_queues_tx[] = {
 151        /* USB0 ENDP 1 */
 152        [ 0] = { .submit = 32, .complete =  93},
 153        [ 1] = { .submit = 34, .complete =  94},
 154        [ 2] = { .submit = 36, .complete =  95},
 155        [ 3] = { .submit = 38, .complete =  96},
 156        [ 4] = { .submit = 40, .complete =  97},
 157        [ 5] = { .submit = 42, .complete =  98},
 158        [ 6] = { .submit = 44, .complete =  99},
 159        [ 7] = { .submit = 46, .complete = 100},
 160        [ 8] = { .submit = 48, .complete = 101},
 161        [ 9] = { .submit = 50, .complete = 102},
 162        [10] = { .submit = 52, .complete = 103},
 163        [11] = { .submit = 54, .complete = 104},
 164        [12] = { .submit = 56, .complete = 105},
 165        [13] = { .submit = 58, .complete = 106},
 166        [14] = { .submit = 60, .complete = 107},
 167
 168        /* USB1 ENDP1 */
 169        [15] = { .submit = 62, .complete = 125},
 170        [16] = { .submit = 64, .complete = 126},
 171        [17] = { .submit = 66, .complete = 127},
 172        [18] = { .submit = 68, .complete = 128},
 173        [19] = { .submit = 70, .complete = 129},
 174        [20] = { .submit = 72, .complete = 130},
 175        [21] = { .submit = 74, .complete = 131},
 176        [22] = { .submit = 76, .complete = 132},
 177        [23] = { .submit = 78, .complete = 133},
 178        [24] = { .submit = 80, .complete = 134},
 179        [25] = { .submit = 82, .complete = 135},
 180        [26] = { .submit = 84, .complete = 136},
 181        [27] = { .submit = 86, .complete = 137},
 182        [28] = { .submit = 88, .complete = 138},
 183        [29] = { .submit = 90, .complete = 139},
 184};
 185
 186static const struct chan_queues usb_queues_rx[] = {
 187        /* USB0 ENDP 1 */
 188        [ 0] = { .submit =  1, .complete = 109},
 189        [ 1] = { .submit =  2, .complete = 110},
 190        [ 2] = { .submit =  3, .complete = 111},
 191        [ 3] = { .submit =  4, .complete = 112},
 192        [ 4] = { .submit =  5, .complete = 113},
 193        [ 5] = { .submit =  6, .complete = 114},
 194        [ 6] = { .submit =  7, .complete = 115},
 195        [ 7] = { .submit =  8, .complete = 116},
 196        [ 8] = { .submit =  9, .complete = 117},
 197        [ 9] = { .submit = 10, .complete = 118},
 198        [10] = { .submit = 11, .complete = 119},
 199        [11] = { .submit = 12, .complete = 120},
 200        [12] = { .submit = 13, .complete = 121},
 201        [13] = { .submit = 14, .complete = 122},
 202        [14] = { .submit = 15, .complete = 123},
 203
 204        /* USB1 ENDP 1 */
 205        [15] = { .submit = 16, .complete = 141},
 206        [16] = { .submit = 17, .complete = 142},
 207        [17] = { .submit = 18, .complete = 143},
 208        [18] = { .submit = 19, .complete = 144},
 209        [19] = { .submit = 20, .complete = 145},
 210        [20] = { .submit = 21, .complete = 146},
 211        [21] = { .submit = 22, .complete = 147},
 212        [22] = { .submit = 23, .complete = 148},
 213        [23] = { .submit = 24, .complete = 149},
 214        [24] = { .submit = 25, .complete = 150},
 215        [25] = { .submit = 26, .complete = 151},
 216        [26] = { .submit = 27, .complete = 152},
 217        [27] = { .submit = 28, .complete = 153},
 218        [28] = { .submit = 29, .complete = 154},
 219        [29] = { .submit = 30, .complete = 155},
 220};
 221
 222struct cppi_glue_infos {
 223        irqreturn_t (*isr)(int irq, void *data);
 224        const struct chan_queues *queues_rx;
 225        const struct chan_queues *queues_tx;
 226        struct chan_queues td_queue;
 227};
 228
 229static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
 230{
 231        return container_of(c, struct cppi41_channel, chan);
 232}
 233
 234static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
 235{
 236        struct cppi41_channel *c;
 237        u32 descs_size;
 238        u32 desc_num;
 239
 240        descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
 241
 242        if (!((desc >= cdd->descs_phys) &&
 243                        (desc < (cdd->descs_phys + descs_size)))) {
 244                return NULL;
 245        }
 246
 247        desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
 248        BUG_ON(desc_num >= ALLOC_DECS_NUM);
 249        c = cdd->chan_busy[desc_num];
 250        cdd->chan_busy[desc_num] = NULL;
 251        return c;
 252}
 253
 254static void cppi_writel(u32 val, void *__iomem *mem)
 255{
 256        __raw_writel(val, mem);
 257}
 258
 259static u32 cppi_readl(void *__iomem *mem)
 260{
 261        return __raw_readl(mem);
 262}
 263
 264static u32 pd_trans_len(u32 val)
 265{
 266        return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
 267}
 268
 269static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
 270{
 271        u32 desc;
 272
 273        desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
 274        desc &= ~0x1f;
 275        return desc;
 276}
 277
 278static irqreturn_t cppi41_irq(int irq, void *data)
 279{
 280        struct cppi41_dd *cdd = data;
 281        struct cppi41_channel *c;
 282        u32 status;
 283        int i;
 284
 285        status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
 286        if (!(status & USBSS_IRQ_PD_COMP))
 287                return IRQ_NONE;
 288        cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
 289
 290        for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
 291                        i++) {
 292                u32 val;
 293                u32 q_num;
 294
 295                val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
 296                if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
 297                        u32 mask;
 298                        /* set corresponding bit for completetion Q 93 */
 299                        mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
 300                        /* not set all bits for queues less than Q 93 */
 301                        mask--;
 302                        /* now invert and keep only Q 93+ set */
 303                        val &= ~mask;
 304                }
 305
 306                if (val)
 307                        __iormb();
 308
 309                while (val) {
 310                        u32 desc;
 311
 312                        q_num = __fls(val);
 313                        val &= ~(1 << q_num);
 314                        q_num += 32 * i;
 315                        desc = cppi41_pop_desc(cdd, q_num);
 316                        c = desc_to_chan(cdd, desc);
 317                        if (WARN_ON(!c)) {
 318                                pr_err("%s() q %d desc %08x\n", __func__,
 319                                                q_num, desc);
 320                                continue;
 321                        }
 322                        c->residue = pd_trans_len(c->desc->pd6) -
 323                                pd_trans_len(c->desc->pd0);
 324
 325                        dma_cookie_complete(&c->txd);
 326                        c->txd.callback(c->txd.callback_param);
 327                }
 328        }
 329        return IRQ_HANDLED;
 330}
 331
 332static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
 333{
 334        dma_cookie_t cookie;
 335
 336        cookie = dma_cookie_assign(tx);
 337
 338        return cookie;
 339}
 340
 341static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
 342{
 343        struct cppi41_channel *c = to_cpp41_chan(chan);
 344
 345        dma_cookie_init(chan);
 346        dma_async_tx_descriptor_init(&c->txd, chan);
 347        c->txd.tx_submit = cppi41_tx_submit;
 348
 349        if (!c->is_tx)
 350                cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
 351
 352        return 0;
 353}
 354
 355static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
 356{
 357}
 358
 359static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
 360        dma_cookie_t cookie, struct dma_tx_state *txstate)
 361{
 362        struct cppi41_channel *c = to_cpp41_chan(chan);
 363        enum dma_status ret;
 364
 365        /* lock */
 366        ret = dma_cookie_status(chan, cookie, txstate);
 367        if (txstate && ret == DMA_COMPLETE)
 368                txstate->residue = c->residue;
 369        /* unlock */
 370
 371        return ret;
 372}
 373
 374static void push_desc_queue(struct cppi41_channel *c)
 375{
 376        struct cppi41_dd *cdd = c->cdd;
 377        u32 desc_num;
 378        u32 desc_phys;
 379        u32 reg;
 380
 381        desc_phys = lower_32_bits(c->desc_phys);
 382        desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 383        WARN_ON(cdd->chan_busy[desc_num]);
 384        cdd->chan_busy[desc_num] = c;
 385
 386        reg = (sizeof(struct cppi41_desc) - 24) / 4;
 387        reg |= desc_phys;
 388        cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
 389}
 390
 391static void cppi41_dma_issue_pending(struct dma_chan *chan)
 392{
 393        struct cppi41_channel *c = to_cpp41_chan(chan);
 394        u32 reg;
 395
 396        c->residue = 0;
 397
 398        reg = GCR_CHAN_ENABLE;
 399        if (!c->is_tx) {
 400                reg |= GCR_STARV_RETRY;
 401                reg |= GCR_DESC_TYPE_HOST;
 402                reg |= c->q_comp_num;
 403        }
 404
 405        cppi_writel(reg, c->gcr_reg);
 406
 407        /*
 408         * We don't use writel() but __raw_writel() so we have to make sure
 409         * that the DMA descriptor in coherent memory made to the main memory
 410         * before starting the dma engine.
 411         */
 412        __iowmb();
 413        push_desc_queue(c);
 414}
 415
 416static u32 get_host_pd0(u32 length)
 417{
 418        u32 reg;
 419
 420        reg = DESC_TYPE_HOST << DESC_TYPE;
 421        reg |= length;
 422
 423        return reg;
 424}
 425
 426static u32 get_host_pd1(struct cppi41_channel *c)
 427{
 428        u32 reg;
 429
 430        reg = 0;
 431
 432        return reg;
 433}
 434
 435static u32 get_host_pd2(struct cppi41_channel *c)
 436{
 437        u32 reg;
 438
 439        reg = DESC_TYPE_USB;
 440        reg |= c->q_comp_num;
 441
 442        return reg;
 443}
 444
 445static u32 get_host_pd3(u32 length)
 446{
 447        u32 reg;
 448
 449        /* PD3 = packet size */
 450        reg = length;
 451
 452        return reg;
 453}
 454
 455static u32 get_host_pd6(u32 length)
 456{
 457        u32 reg;
 458
 459        /* PD6 buffer size */
 460        reg = DESC_PD_COMPLETE;
 461        reg |= length;
 462
 463        return reg;
 464}
 465
 466static u32 get_host_pd4_or_7(u32 addr)
 467{
 468        u32 reg;
 469
 470        reg = addr;
 471
 472        return reg;
 473}
 474
 475static u32 get_host_pd5(void)
 476{
 477        u32 reg;
 478
 479        reg = 0;
 480
 481        return reg;
 482}
 483
 484static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
 485        struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
 486        enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
 487{
 488        struct cppi41_channel *c = to_cpp41_chan(chan);
 489        struct cppi41_desc *d;
 490        struct scatterlist *sg;
 491        unsigned int i;
 492        unsigned int num;
 493
 494        num = 0;
 495        d = c->desc;
 496        for_each_sg(sgl, sg, sg_len, i) {
 497                u32 addr;
 498                u32 len;
 499
 500                /* We need to use more than one desc once musb supports sg */
 501                BUG_ON(num > 0);
 502                addr = lower_32_bits(sg_dma_address(sg));
 503                len = sg_dma_len(sg);
 504
 505                d->pd0 = get_host_pd0(len);
 506                d->pd1 = get_host_pd1(c);
 507                d->pd2 = get_host_pd2(c);
 508                d->pd3 = get_host_pd3(len);
 509                d->pd4 = get_host_pd4_or_7(addr);
 510                d->pd5 = get_host_pd5();
 511                d->pd6 = get_host_pd6(len);
 512                d->pd7 = get_host_pd4_or_7(addr);
 513
 514                d++;
 515        }
 516
 517        return &c->txd;
 518}
 519
 520static int cpp41_cfg_chan(struct cppi41_channel *c,
 521                struct dma_slave_config *cfg)
 522{
 523        return 0;
 524}
 525
 526static void cppi41_compute_td_desc(struct cppi41_desc *d)
 527{
 528        d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
 529}
 530
 531static int cppi41_tear_down_chan(struct cppi41_channel *c)
 532{
 533        struct cppi41_dd *cdd = c->cdd;
 534        struct cppi41_desc *td;
 535        u32 reg;
 536        u32 desc_phys;
 537        u32 td_desc_phys;
 538
 539        td = cdd->cd;
 540        td += cdd->first_td_desc;
 541
 542        td_desc_phys = cdd->descs_phys;
 543        td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
 544
 545        if (!c->td_queued) {
 546                cppi41_compute_td_desc(td);
 547                __iowmb();
 548
 549                reg = (sizeof(struct cppi41_desc) - 24) / 4;
 550                reg |= td_desc_phys;
 551                cppi_writel(reg, cdd->qmgr_mem +
 552                                QMGR_QUEUE_D(cdd->td_queue.submit));
 553
 554                reg = GCR_CHAN_ENABLE;
 555                if (!c->is_tx) {
 556                        reg |= GCR_STARV_RETRY;
 557                        reg |= GCR_DESC_TYPE_HOST;
 558                        reg |= c->q_comp_num;
 559                }
 560                reg |= GCR_TEARDOWN;
 561                cppi_writel(reg, c->gcr_reg);
 562                c->td_queued = 1;
 563                c->td_retry = 100;
 564        }
 565
 566        if (!c->td_seen || !c->td_desc_seen) {
 567
 568                desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
 569                if (!desc_phys)
 570                        desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
 571
 572                if (desc_phys == c->desc_phys) {
 573                        c->td_desc_seen = 1;
 574
 575                } else if (desc_phys == td_desc_phys) {
 576                        u32 pd0;
 577
 578                        __iormb();
 579                        pd0 = td->pd0;
 580                        WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
 581                        WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
 582                        WARN_ON((pd0 & 0x1f) != c->port_num);
 583                        c->td_seen = 1;
 584                } else if (desc_phys) {
 585                        WARN_ON_ONCE(1);
 586                }
 587        }
 588        c->td_retry--;
 589        /*
 590         * If the TX descriptor / channel is in use, the caller needs to poke
 591         * his TD bit multiple times. After that he hardware releases the
 592         * transfer descriptor followed by TD descriptor. Waiting seems not to
 593         * cause any difference.
 594         * RX seems to be thrown out right away. However once the TearDown
 595         * descriptor gets through we are done. If we have seens the transfer
 596         * descriptor before the TD we fetch it from enqueue, it has to be
 597         * there waiting for us.
 598         */
 599        if (!c->td_seen && c->td_retry)
 600                return -EAGAIN;
 601
 602        WARN_ON(!c->td_retry);
 603        if (!c->td_desc_seen) {
 604                desc_phys = cppi41_pop_desc(cdd, c->q_num);
 605                WARN_ON(!desc_phys);
 606        }
 607
 608        c->td_queued = 0;
 609        c->td_seen = 0;
 610        c->td_desc_seen = 0;
 611        cppi_writel(0, c->gcr_reg);
 612        return 0;
 613}
 614
 615static int cppi41_stop_chan(struct dma_chan *chan)
 616{
 617        struct cppi41_channel *c = to_cpp41_chan(chan);
 618        struct cppi41_dd *cdd = c->cdd;
 619        u32 desc_num;
 620        u32 desc_phys;
 621        int ret;
 622
 623        desc_phys = lower_32_bits(c->desc_phys);
 624        desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 625        if (!cdd->chan_busy[desc_num])
 626                return 0;
 627
 628        ret = cppi41_tear_down_chan(c);
 629        if (ret)
 630                return ret;
 631
 632        WARN_ON(!cdd->chan_busy[desc_num]);
 633        cdd->chan_busy[desc_num] = NULL;
 634
 635        return 0;
 636}
 637
 638static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
 639        unsigned long arg)
 640{
 641        struct cppi41_channel *c = to_cpp41_chan(chan);
 642        int ret;
 643
 644        switch (cmd) {
 645        case DMA_SLAVE_CONFIG:
 646                ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
 647                break;
 648
 649        case DMA_TERMINATE_ALL:
 650                ret = cppi41_stop_chan(chan);
 651                break;
 652
 653        default:
 654                ret = -ENXIO;
 655                break;
 656        }
 657        return ret;
 658}
 659
 660static void cleanup_chans(struct cppi41_dd *cdd)
 661{
 662        while (!list_empty(&cdd->ddev.channels)) {
 663                struct cppi41_channel *cchan;
 664
 665                cchan = list_first_entry(&cdd->ddev.channels,
 666                                struct cppi41_channel, chan.device_node);
 667                list_del(&cchan->chan.device_node);
 668                kfree(cchan);
 669        }
 670}
 671
 672static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
 673{
 674        struct cppi41_channel *cchan;
 675        int i;
 676        int ret;
 677        u32 n_chans;
 678
 679        ret = of_property_read_u32(dev->of_node, "#dma-channels",
 680                        &n_chans);
 681        if (ret)
 682                return ret;
 683        /*
 684         * The channels can only be used as TX or as RX. So we add twice
 685         * that much dma channels because USB can only do RX or TX.
 686         */
 687        n_chans *= 2;
 688
 689        for (i = 0; i < n_chans; i++) {
 690                cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
 691                if (!cchan)
 692                        goto err;
 693
 694                cchan->cdd = cdd;
 695                if (i & 1) {
 696                        cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
 697                        cchan->is_tx = 1;
 698                } else {
 699                        cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
 700                        cchan->is_tx = 0;
 701                }
 702                cchan->port_num = i >> 1;
 703                cchan->desc = &cdd->cd[i];
 704                cchan->desc_phys = cdd->descs_phys;
 705                cchan->desc_phys += i * sizeof(struct cppi41_desc);
 706                cchan->chan.device = &cdd->ddev;
 707                list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
 708        }
 709        cdd->first_td_desc = n_chans;
 710
 711        return 0;
 712err:
 713        cleanup_chans(cdd);
 714        return -ENOMEM;
 715}
 716
 717static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
 718{
 719        unsigned int mem_decs;
 720        int i;
 721
 722        mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
 723
 724        for (i = 0; i < DESCS_AREAS; i++) {
 725
 726                cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
 727                cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 728
 729                dma_free_coherent(dev, mem_decs, cdd->cd,
 730                                cdd->descs_phys);
 731        }
 732}
 733
 734static void disable_sched(struct cppi41_dd *cdd)
 735{
 736        cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 737}
 738
 739static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
 740{
 741        disable_sched(cdd);
 742
 743        purge_descs(dev, cdd);
 744
 745        cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 746        cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 747        dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
 748                        cdd->scratch_phys);
 749}
 750
 751static int init_descs(struct device *dev, struct cppi41_dd *cdd)
 752{
 753        unsigned int desc_size;
 754        unsigned int mem_decs;
 755        int i;
 756        u32 reg;
 757        u32 idx;
 758
 759        BUILD_BUG_ON(sizeof(struct cppi41_desc) &
 760                        (sizeof(struct cppi41_desc) - 1));
 761        BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
 762        BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
 763
 764        desc_size = sizeof(struct cppi41_desc);
 765        mem_decs = ALLOC_DECS_NUM * desc_size;
 766
 767        idx = 0;
 768        for (i = 0; i < DESCS_AREAS; i++) {
 769
 770                reg = idx << QMGR_MEMCTRL_IDX_SH;
 771                reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
 772                reg |= ilog2(ALLOC_DECS_NUM) - 5;
 773
 774                BUILD_BUG_ON(DESCS_AREAS != 1);
 775                cdd->cd = dma_alloc_coherent(dev, mem_decs,
 776                                &cdd->descs_phys, GFP_KERNEL);
 777                if (!cdd->cd)
 778                        return -ENOMEM;
 779
 780                cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
 781                cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 782
 783                idx += ALLOC_DECS_NUM;
 784        }
 785        return 0;
 786}
 787
 788static void init_sched(struct cppi41_dd *cdd)
 789{
 790        unsigned ch;
 791        unsigned word;
 792        u32 reg;
 793
 794        word = 0;
 795        cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 796        for (ch = 0; ch < 15 * 2; ch += 2) {
 797
 798                reg = SCHED_ENTRY0_CHAN(ch);
 799                reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
 800
 801                reg |= SCHED_ENTRY2_CHAN(ch + 1);
 802                reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
 803                cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
 804                word++;
 805        }
 806        reg = 15 * 2 * 2 - 1;
 807        reg |= DMA_SCHED_CTRL_EN;
 808        cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
 809}
 810
 811static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
 812{
 813        int ret;
 814
 815        BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
 816        cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
 817                        &cdd->scratch_phys, GFP_KERNEL);
 818        if (!cdd->qmgr_scratch)
 819                return -ENOMEM;
 820
 821        cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 822        cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
 823        cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
 824
 825        ret = init_descs(dev, cdd);
 826        if (ret)
 827                goto err_td;
 828
 829        cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
 830        init_sched(cdd);
 831        return 0;
 832err_td:
 833        deinit_cppi41(dev, cdd);
 834        return ret;
 835}
 836
 837static struct platform_driver cpp41_dma_driver;
 838/*
 839 * The param format is:
 840 * X Y
 841 * X: Port
 842 * Y: 0 = RX else TX
 843 */
 844#define INFO_PORT       0
 845#define INFO_IS_TX      1
 846
 847static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
 848{
 849        struct cppi41_channel *cchan;
 850        struct cppi41_dd *cdd;
 851        const struct chan_queues *queues;
 852        u32 *num = param;
 853
 854        if (chan->device->dev->driver != &cpp41_dma_driver.driver)
 855                return false;
 856
 857        cchan = to_cpp41_chan(chan);
 858
 859        if (cchan->port_num != num[INFO_PORT])
 860                return false;
 861
 862        if (cchan->is_tx && !num[INFO_IS_TX])
 863                return false;
 864        cdd = cchan->cdd;
 865        if (cchan->is_tx)
 866                queues = cdd->queues_tx;
 867        else
 868                queues = cdd->queues_rx;
 869
 870        BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
 871        if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
 872                return false;
 873
 874        cchan->q_num = queues[cchan->port_num].submit;
 875        cchan->q_comp_num = queues[cchan->port_num].complete;
 876        return true;
 877}
 878
 879static struct of_dma_filter_info cpp41_dma_info = {
 880        .filter_fn = cpp41_dma_filter_fn,
 881};
 882
 883static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
 884                struct of_dma *ofdma)
 885{
 886        int count = dma_spec->args_count;
 887        struct of_dma_filter_info *info = ofdma->of_dma_data;
 888
 889        if (!info || !info->filter_fn)
 890                return NULL;
 891
 892        if (count != 2)
 893                return NULL;
 894
 895        return dma_request_channel(info->dma_cap, info->filter_fn,
 896                        &dma_spec->args[0]);
 897}
 898
 899static const struct cppi_glue_infos usb_infos = {
 900        .isr = cppi41_irq,
 901        .queues_rx = usb_queues_rx,
 902        .queues_tx = usb_queues_tx,
 903        .td_queue = { .submit = 31, .complete = 0 },
 904};
 905
 906static const struct of_device_id cppi41_dma_ids[] = {
 907        { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
 908        {},
 909};
 910MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
 911
 912static const struct cppi_glue_infos *get_glue_info(struct device *dev)
 913{
 914        const struct of_device_id *of_id;
 915
 916        of_id = of_match_node(cppi41_dma_ids, dev->of_node);
 917        if (!of_id)
 918                return NULL;
 919        return of_id->data;
 920}
 921
 922static int cppi41_dma_probe(struct platform_device *pdev)
 923{
 924        struct cppi41_dd *cdd;
 925        struct device *dev = &pdev->dev;
 926        const struct cppi_glue_infos *glue_info;
 927        int irq;
 928        int ret;
 929
 930        glue_info = get_glue_info(dev);
 931        if (!glue_info)
 932                return -EINVAL;
 933
 934        cdd = kzalloc(sizeof(*cdd), GFP_KERNEL);
 935        if (!cdd)
 936                return -ENOMEM;
 937
 938        dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
 939        cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
 940        cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
 941        cdd->ddev.device_tx_status = cppi41_dma_tx_status;
 942        cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
 943        cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
 944        cdd->ddev.device_control = cppi41_dma_control;
 945        cdd->ddev.dev = dev;
 946        INIT_LIST_HEAD(&cdd->ddev.channels);
 947        cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
 948
 949        cdd->usbss_mem = of_iomap(dev->of_node, 0);
 950        cdd->ctrl_mem = of_iomap(dev->of_node, 1);
 951        cdd->sched_mem = of_iomap(dev->of_node, 2);
 952        cdd->qmgr_mem = of_iomap(dev->of_node, 3);
 953
 954        if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
 955                        !cdd->qmgr_mem) {
 956                ret = -ENXIO;
 957                goto err_remap;
 958        }
 959
 960        pm_runtime_enable(dev);
 961        ret = pm_runtime_get_sync(dev);
 962        if (ret < 0)
 963                goto err_get_sync;
 964
 965        cdd->queues_rx = glue_info->queues_rx;
 966        cdd->queues_tx = glue_info->queues_tx;
 967        cdd->td_queue = glue_info->td_queue;
 968
 969        ret = init_cppi41(dev, cdd);
 970        if (ret)
 971                goto err_init_cppi;
 972
 973        ret = cppi41_add_chans(dev, cdd);
 974        if (ret)
 975                goto err_chans;
 976
 977        irq = irq_of_parse_and_map(dev->of_node, 0);
 978        if (!irq) {
 979                ret = -EINVAL;
 980                goto err_irq;
 981        }
 982
 983        cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
 984
 985        ret = request_irq(irq, glue_info->isr, IRQF_SHARED,
 986                        dev_name(dev), cdd);
 987        if (ret)
 988                goto err_irq;
 989        cdd->irq = irq;
 990
 991        ret = dma_async_device_register(&cdd->ddev);
 992        if (ret)
 993                goto err_dma_reg;
 994
 995        ret = of_dma_controller_register(dev->of_node,
 996                        cppi41_dma_xlate, &cpp41_dma_info);
 997        if (ret)
 998                goto err_of;
 999
1000        platform_set_drvdata(pdev, cdd);
1001        return 0;
1002err_of:
1003        dma_async_device_unregister(&cdd->ddev);
1004err_dma_reg:
1005        free_irq(irq, cdd);
1006err_irq:
1007        cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1008        cleanup_chans(cdd);
1009err_chans:
1010        deinit_cppi41(dev, cdd);
1011err_init_cppi:
1012        pm_runtime_put(dev);
1013err_get_sync:
1014        pm_runtime_disable(dev);
1015        iounmap(cdd->usbss_mem);
1016        iounmap(cdd->ctrl_mem);
1017        iounmap(cdd->sched_mem);
1018        iounmap(cdd->qmgr_mem);
1019err_remap:
1020        kfree(cdd);
1021        return ret;
1022}
1023
1024static int cppi41_dma_remove(struct platform_device *pdev)
1025{
1026        struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1027
1028        of_dma_controller_free(pdev->dev.of_node);
1029        dma_async_device_unregister(&cdd->ddev);
1030
1031        cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1032        free_irq(cdd->irq, cdd);
1033        cleanup_chans(cdd);
1034        deinit_cppi41(&pdev->dev, cdd);
1035        iounmap(cdd->usbss_mem);
1036        iounmap(cdd->ctrl_mem);
1037        iounmap(cdd->sched_mem);
1038        iounmap(cdd->qmgr_mem);
1039        pm_runtime_put(&pdev->dev);
1040        pm_runtime_disable(&pdev->dev);
1041        kfree(cdd);
1042        return 0;
1043}
1044
1045#ifdef CONFIG_PM_SLEEP
1046static int cppi41_suspend(struct device *dev)
1047{
1048        struct cppi41_dd *cdd = dev_get_drvdata(dev);
1049
1050        cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1051        cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1052        disable_sched(cdd);
1053
1054        return 0;
1055}
1056
1057static int cppi41_resume(struct device *dev)
1058{
1059        struct cppi41_dd *cdd = dev_get_drvdata(dev);
1060        struct cppi41_channel *c;
1061        int i;
1062
1063        for (i = 0; i < DESCS_AREAS; i++)
1064                cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1065
1066        list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1067                if (!c->is_tx)
1068                        cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1069
1070        init_sched(cdd);
1071
1072        cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1073        cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1074        cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1075        cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1076
1077        cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1078
1079        return 0;
1080}
1081#endif
1082
1083static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
1084
1085static struct platform_driver cpp41_dma_driver = {
1086        .probe  = cppi41_dma_probe,
1087        .remove = cppi41_dma_remove,
1088        .driver = {
1089                .name = "cppi41-dma-engine",
1090                .owner = THIS_MODULE,
1091                .pm = &cppi41_pm_ops,
1092                .of_match_table = of_match_ptr(cppi41_dma_ids),
1093        },
1094};
1095
1096module_platform_driver(cpp41_dma_driver);
1097MODULE_LICENSE("GPL");
1098MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");
1099