linux/drivers/edac/i7core_edac.c
<<
>>
Prefs
   1/* Intel i7 core/Nehalem Memory Controller kernel module
   2 *
   3 * This driver supports the memory controllers found on the Intel
   4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
   5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
   6 * and Westmere-EP.
   7 *
   8 * This file may be distributed under the terms of the
   9 * GNU General Public License version 2 only.
  10 *
  11 * Copyright (c) 2009-2010 by:
  12 *       Mauro Carvalho Chehab
  13 *
  14 * Red Hat Inc. http://www.redhat.com
  15 *
  16 * Forked and adapted from the i5400_edac driver
  17 *
  18 * Based on the following public Intel datasheets:
  19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
  20 * Datasheet, Volume 2:
  21 *      http://download.intel.com/design/processor/datashts/320835.pdf
  22 * Intel Xeon Processor 5500 Series Datasheet Volume 2
  23 *      http://www.intel.com/Assets/PDF/datasheet/321322.pdf
  24 * also available at:
  25 *      http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
  26 */
  27
  28#include <linux/module.h>
  29#include <linux/init.h>
  30#include <linux/pci.h>
  31#include <linux/pci_ids.h>
  32#include <linux/slab.h>
  33#include <linux/delay.h>
  34#include <linux/dmi.h>
  35#include <linux/edac.h>
  36#include <linux/mmzone.h>
  37#include <linux/smp.h>
  38#include <asm/mce.h>
  39#include <asm/processor.h>
  40#include <asm/div64.h>
  41
  42#include "edac_core.h"
  43
  44/* Static vars */
  45static LIST_HEAD(i7core_edac_list);
  46static DEFINE_MUTEX(i7core_edac_lock);
  47static int probed;
  48
  49static int use_pci_fixup;
  50module_param(use_pci_fixup, int, 0444);
  51MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
  52/*
  53 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
  54 * registers start at bus 255, and are not reported by BIOS.
  55 * We currently find devices with only 2 sockets. In order to support more QPI
  56 * Quick Path Interconnect, just increment this number.
  57 */
  58#define MAX_SOCKET_BUSES        2
  59
  60
  61/*
  62 * Alter this version for the module when modifications are made
  63 */
  64#define I7CORE_REVISION    " Ver: 1.0.0"
  65#define EDAC_MOD_STR      "i7core_edac"
  66
  67/*
  68 * Debug macros
  69 */
  70#define i7core_printk(level, fmt, arg...)                       \
  71        edac_printk(level, "i7core", fmt, ##arg)
  72
  73#define i7core_mc_printk(mci, level, fmt, arg...)               \
  74        edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
  75
  76/*
  77 * i7core Memory Controller Registers
  78 */
  79
  80        /* OFFSETS for Device 0 Function 0 */
  81
  82#define MC_CFG_CONTROL  0x90
  83  #define MC_CFG_UNLOCK         0x02
  84  #define MC_CFG_LOCK           0x00
  85
  86        /* OFFSETS for Device 3 Function 0 */
  87
  88#define MC_CONTROL      0x48
  89#define MC_STATUS       0x4c
  90#define MC_MAX_DOD      0x64
  91
  92/*
  93 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
  94 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
  95 */
  96
  97#define MC_TEST_ERR_RCV1        0x60
  98  #define DIMM2_COR_ERR(r)                      ((r) & 0x7fff)
  99
 100#define MC_TEST_ERR_RCV0        0x64
 101  #define DIMM1_COR_ERR(r)                      (((r) >> 16) & 0x7fff)
 102  #define DIMM0_COR_ERR(r)                      ((r) & 0x7fff)
 103
 104/* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
 105#define MC_SSRCONTROL           0x48
 106  #define SSR_MODE_DISABLE      0x00
 107  #define SSR_MODE_ENABLE       0x01
 108  #define SSR_MODE_MASK         0x03
 109
 110#define MC_SCRUB_CONTROL        0x4c
 111  #define STARTSCRUB            (1 << 24)
 112  #define SCRUBINTERVAL_MASK    0xffffff
 113
 114#define MC_COR_ECC_CNT_0        0x80
 115#define MC_COR_ECC_CNT_1        0x84
 116#define MC_COR_ECC_CNT_2        0x88
 117#define MC_COR_ECC_CNT_3        0x8c
 118#define MC_COR_ECC_CNT_4        0x90
 119#define MC_COR_ECC_CNT_5        0x94
 120
 121#define DIMM_TOP_COR_ERR(r)                     (((r) >> 16) & 0x7fff)
 122#define DIMM_BOT_COR_ERR(r)                     ((r) & 0x7fff)
 123
 124
 125        /* OFFSETS for Devices 4,5 and 6 Function 0 */
 126
 127#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
 128  #define THREE_DIMMS_PRESENT           (1 << 24)
 129  #define SINGLE_QUAD_RANK_PRESENT      (1 << 23)
 130  #define QUAD_RANK_PRESENT             (1 << 22)
 131  #define REGISTERED_DIMM               (1 << 15)
 132
 133#define MC_CHANNEL_MAPPER       0x60
 134  #define RDLCH(r, ch)          ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
 135  #define WRLCH(r, ch)          ((((r) >> (ch * 6)) & 0x07) - 1)
 136
 137#define MC_CHANNEL_RANK_PRESENT 0x7c
 138  #define RANK_PRESENT_MASK             0xffff
 139
 140#define MC_CHANNEL_ADDR_MATCH   0xf0
 141#define MC_CHANNEL_ERROR_MASK   0xf8
 142#define MC_CHANNEL_ERROR_INJECT 0xfc
 143  #define INJECT_ADDR_PARITY    0x10
 144  #define INJECT_ECC            0x08
 145  #define MASK_CACHELINE        0x06
 146  #define MASK_FULL_CACHELINE   0x06
 147  #define MASK_MSB32_CACHELINE  0x04
 148  #define MASK_LSB32_CACHELINE  0x02
 149  #define NO_MASK_CACHELINE     0x00
 150  #define REPEAT_EN             0x01
 151
 152        /* OFFSETS for Devices 4,5 and 6 Function 1 */
 153
 154#define MC_DOD_CH_DIMM0         0x48
 155#define MC_DOD_CH_DIMM1         0x4c
 156#define MC_DOD_CH_DIMM2         0x50
 157  #define RANKOFFSET_MASK       ((1 << 12) | (1 << 11) | (1 << 10))
 158  #define RANKOFFSET(x)         ((x & RANKOFFSET_MASK) >> 10)
 159  #define DIMM_PRESENT_MASK     (1 << 9)
 160  #define DIMM_PRESENT(x)       (((x) & DIMM_PRESENT_MASK) >> 9)
 161  #define MC_DOD_NUMBANK_MASK           ((1 << 8) | (1 << 7))
 162  #define MC_DOD_NUMBANK(x)             (((x) & MC_DOD_NUMBANK_MASK) >> 7)
 163  #define MC_DOD_NUMRANK_MASK           ((1 << 6) | (1 << 5))
 164  #define MC_DOD_NUMRANK(x)             (((x) & MC_DOD_NUMRANK_MASK) >> 5)
 165  #define MC_DOD_NUMROW_MASK            ((1 << 4) | (1 << 3) | (1 << 2))
 166  #define MC_DOD_NUMROW(x)              (((x) & MC_DOD_NUMROW_MASK) >> 2)
 167  #define MC_DOD_NUMCOL_MASK            3
 168  #define MC_DOD_NUMCOL(x)              ((x) & MC_DOD_NUMCOL_MASK)
 169
 170#define MC_RANK_PRESENT         0x7c
 171
 172#define MC_SAG_CH_0     0x80
 173#define MC_SAG_CH_1     0x84
 174#define MC_SAG_CH_2     0x88
 175#define MC_SAG_CH_3     0x8c
 176#define MC_SAG_CH_4     0x90
 177#define MC_SAG_CH_5     0x94
 178#define MC_SAG_CH_6     0x98
 179#define MC_SAG_CH_7     0x9c
 180
 181#define MC_RIR_LIMIT_CH_0       0x40
 182#define MC_RIR_LIMIT_CH_1       0x44
 183#define MC_RIR_LIMIT_CH_2       0x48
 184#define MC_RIR_LIMIT_CH_3       0x4C
 185#define MC_RIR_LIMIT_CH_4       0x50
 186#define MC_RIR_LIMIT_CH_5       0x54
 187#define MC_RIR_LIMIT_CH_6       0x58
 188#define MC_RIR_LIMIT_CH_7       0x5C
 189#define MC_RIR_LIMIT_MASK       ((1 << 10) - 1)
 190
 191#define MC_RIR_WAY_CH           0x80
 192  #define MC_RIR_WAY_OFFSET_MASK        (((1 << 14) - 1) & ~0x7)
 193  #define MC_RIR_WAY_RANK_MASK          0x7
 194
 195/*
 196 * i7core structs
 197 */
 198
 199#define NUM_CHANS 3
 200#define MAX_DIMMS 3             /* Max DIMMS per channel */
 201#define MAX_MCR_FUNC  4
 202#define MAX_CHAN_FUNC 3
 203
 204struct i7core_info {
 205        u32     mc_control;
 206        u32     mc_status;
 207        u32     max_dod;
 208        u32     ch_map;
 209};
 210
 211
 212struct i7core_inject {
 213        int     enable;
 214
 215        u32     section;
 216        u32     type;
 217        u32     eccmask;
 218
 219        /* Error address mask */
 220        int channel, dimm, rank, bank, page, col;
 221};
 222
 223struct i7core_channel {
 224        bool            is_3dimms_present;
 225        bool            is_single_4rank;
 226        bool            has_4rank;
 227        u32             dimms;
 228};
 229
 230struct pci_id_descr {
 231        int                     dev;
 232        int                     func;
 233        int                     dev_id;
 234        int                     optional;
 235};
 236
 237struct pci_id_table {
 238        const struct pci_id_descr       *descr;
 239        int                             n_devs;
 240};
 241
 242struct i7core_dev {
 243        struct list_head        list;
 244        u8                      socket;
 245        struct pci_dev          **pdev;
 246        int                     n_devs;
 247        struct mem_ctl_info     *mci;
 248};
 249
 250struct i7core_pvt {
 251        struct device *addrmatch_dev, *chancounts_dev;
 252
 253        struct pci_dev  *pci_noncore;
 254        struct pci_dev  *pci_mcr[MAX_MCR_FUNC + 1];
 255        struct pci_dev  *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
 256
 257        struct i7core_dev *i7core_dev;
 258
 259        struct i7core_info      info;
 260        struct i7core_inject    inject;
 261        struct i7core_channel   channel[NUM_CHANS];
 262
 263        int             ce_count_available;
 264
 265                        /* ECC corrected errors counts per udimm */
 266        unsigned long   udimm_ce_count[MAX_DIMMS];
 267        int             udimm_last_ce_count[MAX_DIMMS];
 268                        /* ECC corrected errors counts per rdimm */
 269        unsigned long   rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
 270        int             rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
 271
 272        bool            is_registered, enable_scrub;
 273
 274        /* Fifo double buffers */
 275        struct mce              mce_entry[MCE_LOG_LEN];
 276        struct mce              mce_outentry[MCE_LOG_LEN];
 277
 278        /* Fifo in/out counters */
 279        unsigned                mce_in, mce_out;
 280
 281        /* Count indicator to show errors not got */
 282        unsigned                mce_overrun;
 283
 284        /* DCLK Frequency used for computing scrub rate */
 285        int                     dclk_freq;
 286
 287        /* Struct to control EDAC polling */
 288        struct edac_pci_ctl_info *i7core_pci;
 289};
 290
 291#define PCI_DESCR(device, function, device_id)  \
 292        .dev = (device),                        \
 293        .func = (function),                     \
 294        .dev_id = (device_id)
 295
 296static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
 297                /* Memory controller */
 298        { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
 299        { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
 300                        /* Exists only for RDIMM */
 301        { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
 302        { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
 303
 304                /* Channel 0 */
 305        { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
 306        { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
 307        { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
 308        { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },
 309
 310                /* Channel 1 */
 311        { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
 312        { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
 313        { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
 314        { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },
 315
 316                /* Channel 2 */
 317        { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
 318        { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
 319        { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
 320        { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
 321
 322                /* Generic Non-core registers */
 323        /*
 324         * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
 325         * On Xeon 55xx, however, it has a different id (8086:2c40). So,
 326         * the probing code needs to test for the other address in case of
 327         * failure of this one
 328         */
 329        { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
 330
 331};
 332
 333static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
 334        { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
 335        { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
 336        { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },
 337
 338        { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
 339        { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
 340        { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
 341        { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },
 342
 343        { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
 344        { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
 345        { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
 346        { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
 347
 348        /*
 349         * This is the PCI device has an alternate address on some
 350         * processors like Core i7 860
 351         */
 352        { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
 353};
 354
 355static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
 356                /* Memory controller */
 357        { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
 358        { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
 359                        /* Exists only for RDIMM */
 360        { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
 361        { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
 362
 363                /* Channel 0 */
 364        { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
 365        { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
 366        { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
 367        { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },
 368
 369                /* Channel 1 */
 370        { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
 371        { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
 372        { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
 373        { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },
 374
 375                /* Channel 2 */
 376        { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
 377        { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
 378        { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
 379        { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
 380
 381                /* Generic Non-core registers */
 382        { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },
 383
 384};
 385
 386#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
 387static const struct pci_id_table pci_dev_table[] = {
 388        PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
 389        PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
 390        PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
 391        {0,}                    /* 0 terminated list. */
 392};
 393
 394/*
 395 *      pci_device_id   table for which devices we are looking for
 396 */
 397static const struct pci_device_id i7core_pci_tbl[] = {
 398        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
 399        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
 400        {0,}                    /* 0 terminated list. */
 401};
 402
 403/****************************************************************************
 404                        Ancillary status routines
 405 ****************************************************************************/
 406
 407        /* MC_CONTROL bits */
 408#define CH_ACTIVE(pvt, ch)      ((pvt)->info.mc_control & (1 << (8 + ch)))
 409#define ECCx8(pvt)              ((pvt)->info.mc_control & (1 << 1))
 410
 411        /* MC_STATUS bits */
 412#define ECC_ENABLED(pvt)        ((pvt)->info.mc_status & (1 << 4))
 413#define CH_DISABLED(pvt, ch)    ((pvt)->info.mc_status & (1 << ch))
 414
 415        /* MC_MAX_DOD read functions */
 416static inline int numdimms(u32 dimms)
 417{
 418        return (dimms & 0x3) + 1;
 419}
 420
 421static inline int numrank(u32 rank)
 422{
 423        static const int ranks[] = { 1, 2, 4, -EINVAL };
 424
 425        return ranks[rank & 0x3];
 426}
 427
 428static inline int numbank(u32 bank)
 429{
 430        static const int banks[] = { 4, 8, 16, -EINVAL };
 431
 432        return banks[bank & 0x3];
 433}
 434
 435static inline int numrow(u32 row)
 436{
 437        static const int rows[] = {
 438                1 << 12, 1 << 13, 1 << 14, 1 << 15,
 439                1 << 16, -EINVAL, -EINVAL, -EINVAL,
 440        };
 441
 442        return rows[row & 0x7];
 443}
 444
 445static inline int numcol(u32 col)
 446{
 447        static const int cols[] = {
 448                1 << 10, 1 << 11, 1 << 12, -EINVAL,
 449        };
 450        return cols[col & 0x3];
 451}
 452
 453static struct i7core_dev *get_i7core_dev(u8 socket)
 454{
 455        struct i7core_dev *i7core_dev;
 456
 457        list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
 458                if (i7core_dev->socket == socket)
 459                        return i7core_dev;
 460        }
 461
 462        return NULL;
 463}
 464
 465static struct i7core_dev *alloc_i7core_dev(u8 socket,
 466                                           const struct pci_id_table *table)
 467{
 468        struct i7core_dev *i7core_dev;
 469
 470        i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
 471        if (!i7core_dev)
 472                return NULL;
 473
 474        i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
 475                                   GFP_KERNEL);
 476        if (!i7core_dev->pdev) {
 477                kfree(i7core_dev);
 478                return NULL;
 479        }
 480
 481        i7core_dev->socket = socket;
 482        i7core_dev->n_devs = table->n_devs;
 483        list_add_tail(&i7core_dev->list, &i7core_edac_list);
 484
 485        return i7core_dev;
 486}
 487
 488static void free_i7core_dev(struct i7core_dev *i7core_dev)
 489{
 490        list_del(&i7core_dev->list);
 491        kfree(i7core_dev->pdev);
 492        kfree(i7core_dev);
 493}
 494
 495/****************************************************************************
 496                        Memory check routines
 497 ****************************************************************************/
 498
 499static int get_dimm_config(struct mem_ctl_info *mci)
 500{
 501        struct i7core_pvt *pvt = mci->pvt_info;
 502        struct pci_dev *pdev;
 503        int i, j;
 504        enum edac_type mode;
 505        enum mem_type mtype;
 506        struct dimm_info *dimm;
 507
 508        /* Get data from the MC register, function 0 */
 509        pdev = pvt->pci_mcr[0];
 510        if (!pdev)
 511                return -ENODEV;
 512
 513        /* Device 3 function 0 reads */
 514        pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
 515        pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
 516        pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
 517        pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
 518
 519        edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
 520                 pvt->i7core_dev->socket, pvt->info.mc_control,
 521                 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
 522
 523        if (ECC_ENABLED(pvt)) {
 524                edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
 525                if (ECCx8(pvt))
 526                        mode = EDAC_S8ECD8ED;
 527                else
 528                        mode = EDAC_S4ECD4ED;
 529        } else {
 530                edac_dbg(0, "ECC disabled\n");
 531                mode = EDAC_NONE;
 532        }
 533
 534        /* FIXME: need to handle the error codes */
 535        edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
 536                 numdimms(pvt->info.max_dod),
 537                 numrank(pvt->info.max_dod >> 2),
 538                 numbank(pvt->info.max_dod >> 4),
 539                 numrow(pvt->info.max_dod >> 6),
 540                 numcol(pvt->info.max_dod >> 9));
 541
 542        for (i = 0; i < NUM_CHANS; i++) {
 543                u32 data, dimm_dod[3], value[8];
 544
 545                if (!pvt->pci_ch[i][0])
 546                        continue;
 547
 548                if (!CH_ACTIVE(pvt, i)) {
 549                        edac_dbg(0, "Channel %i is not active\n", i);
 550                        continue;
 551                }
 552                if (CH_DISABLED(pvt, i)) {
 553                        edac_dbg(0, "Channel %i is disabled\n", i);
 554                        continue;
 555                }
 556
 557                /* Devices 4-6 function 0 */
 558                pci_read_config_dword(pvt->pci_ch[i][0],
 559                                MC_CHANNEL_DIMM_INIT_PARAMS, &data);
 560
 561
 562                if (data & THREE_DIMMS_PRESENT)
 563                        pvt->channel[i].is_3dimms_present = true;
 564
 565                if (data & SINGLE_QUAD_RANK_PRESENT)
 566                        pvt->channel[i].is_single_4rank = true;
 567
 568                if (data & QUAD_RANK_PRESENT)
 569                        pvt->channel[i].has_4rank = true;
 570
 571                if (data & REGISTERED_DIMM)
 572                        mtype = MEM_RDDR3;
 573                else
 574                        mtype = MEM_DDR3;
 575
 576                /* Devices 4-6 function 1 */
 577                pci_read_config_dword(pvt->pci_ch[i][1],
 578                                MC_DOD_CH_DIMM0, &dimm_dod[0]);
 579                pci_read_config_dword(pvt->pci_ch[i][1],
 580                                MC_DOD_CH_DIMM1, &dimm_dod[1]);
 581                pci_read_config_dword(pvt->pci_ch[i][1],
 582                                MC_DOD_CH_DIMM2, &dimm_dod[2]);
 583
 584                edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
 585                         i,
 586                         RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
 587                         data,
 588                         pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
 589                         pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
 590                         pvt->channel[i].has_4rank ? "HAS_4R " : "",
 591                         (data & REGISTERED_DIMM) ? 'R' : 'U');
 592
 593                for (j = 0; j < 3; j++) {
 594                        u32 banks, ranks, rows, cols;
 595                        u32 size, npages;
 596
 597                        if (!DIMM_PRESENT(dimm_dod[j]))
 598                                continue;
 599
 600                        dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
 601                                       i, j, 0);
 602                        banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
 603                        ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
 604                        rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
 605                        cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
 606
 607                        /* DDR3 has 8 I/O banks */
 608                        size = (rows * cols * banks * ranks) >> (20 - 3);
 609
 610                        edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
 611                                 j, size,
 612                                 RANKOFFSET(dimm_dod[j]),
 613                                 banks, ranks, rows, cols);
 614
 615                        npages = MiB_TO_PAGES(size);
 616
 617                        dimm->nr_pages = npages;
 618
 619                        switch (banks) {
 620                        case 4:
 621                                dimm->dtype = DEV_X4;
 622                                break;
 623                        case 8:
 624                                dimm->dtype = DEV_X8;
 625                                break;
 626                        case 16:
 627                                dimm->dtype = DEV_X16;
 628                                break;
 629                        default:
 630                                dimm->dtype = DEV_UNKNOWN;
 631                        }
 632
 633                        snprintf(dimm->label, sizeof(dimm->label),
 634                                 "CPU#%uChannel#%u_DIMM#%u",
 635                                 pvt->i7core_dev->socket, i, j);
 636                        dimm->grain = 8;
 637                        dimm->edac_mode = mode;
 638                        dimm->mtype = mtype;
 639                }
 640
 641                pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
 642                pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
 643                pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
 644                pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
 645                pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
 646                pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
 647                pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
 648                pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
 649                edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
 650                for (j = 0; j < 8; j++)
 651                        edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
 652                                 (value[j] >> 27) & 0x1,
 653                                 (value[j] >> 24) & 0x7,
 654                                 (value[j] & ((1 << 24) - 1)));
 655        }
 656
 657        return 0;
 658}
 659
 660/****************************************************************************
 661                        Error insertion routines
 662 ****************************************************************************/
 663
 664#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
 665
 666/* The i7core has independent error injection features per channel.
 667   However, to have a simpler code, we don't allow enabling error injection
 668   on more than one channel.
 669   Also, since a change at an inject parameter will be applied only at enable,
 670   we're disabling error injection on all write calls to the sysfs nodes that
 671   controls the error code injection.
 672 */
 673static int disable_inject(const struct mem_ctl_info *mci)
 674{
 675        struct i7core_pvt *pvt = mci->pvt_info;
 676
 677        pvt->inject.enable = 0;
 678
 679        if (!pvt->pci_ch[pvt->inject.channel][0])
 680                return -ENODEV;
 681
 682        pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
 683                                MC_CHANNEL_ERROR_INJECT, 0);
 684
 685        return 0;
 686}
 687
 688/*
 689 * i7core inject inject.section
 690 *
 691 *      accept and store error injection inject.section value
 692 *      bit 0 - refers to the lower 32-byte half cacheline
 693 *      bit 1 - refers to the upper 32-byte half cacheline
 694 */
 695static ssize_t i7core_inject_section_store(struct device *dev,
 696                                           struct device_attribute *mattr,
 697                                           const char *data, size_t count)
 698{
 699        struct mem_ctl_info *mci = to_mci(dev);
 700        struct i7core_pvt *pvt = mci->pvt_info;
 701        unsigned long value;
 702        int rc;
 703
 704        if (pvt->inject.enable)
 705                disable_inject(mci);
 706
 707        rc = kstrtoul(data, 10, &value);
 708        if ((rc < 0) || (value > 3))
 709                return -EIO;
 710
 711        pvt->inject.section = (u32) value;
 712        return count;
 713}
 714
 715static ssize_t i7core_inject_section_show(struct device *dev,
 716                                          struct device_attribute *mattr,
 717                                          char *data)
 718{
 719        struct mem_ctl_info *mci = to_mci(dev);
 720        struct i7core_pvt *pvt = mci->pvt_info;
 721        return sprintf(data, "0x%08x\n", pvt->inject.section);
 722}
 723
 724/*
 725 * i7core inject.type
 726 *
 727 *      accept and store error injection inject.section value
 728 *      bit 0 - repeat enable - Enable error repetition
 729 *      bit 1 - inject ECC error
 730 *      bit 2 - inject parity error
 731 */
 732static ssize_t i7core_inject_type_store(struct device *dev,
 733                                        struct device_attribute *mattr,
 734                                        const char *data, size_t count)
 735{
 736        struct mem_ctl_info *mci = to_mci(dev);
 737struct i7core_pvt *pvt = mci->pvt_info;
 738        unsigned long value;
 739        int rc;
 740
 741        if (pvt->inject.enable)
 742                disable_inject(mci);
 743
 744        rc = kstrtoul(data, 10, &value);
 745        if ((rc < 0) || (value > 7))
 746                return -EIO;
 747
 748        pvt->inject.type = (u32) value;
 749        return count;
 750}
 751
 752static ssize_t i7core_inject_type_show(struct device *dev,
 753                                       struct device_attribute *mattr,
 754                                       char *data)
 755{
 756        struct mem_ctl_info *mci = to_mci(dev);
 757        struct i7core_pvt *pvt = mci->pvt_info;
 758
 759        return sprintf(data, "0x%08x\n", pvt->inject.type);
 760}
 761
 762/*
 763 * i7core_inject_inject.eccmask_store
 764 *
 765 * The type of error (UE/CE) will depend on the inject.eccmask value:
 766 *   Any bits set to a 1 will flip the corresponding ECC bit
 767 *   Correctable errors can be injected by flipping 1 bit or the bits within
 768 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 769 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 770 *   uncorrectable error to be injected.
 771 */
 772static ssize_t i7core_inject_eccmask_store(struct device *dev,
 773                                           struct device_attribute *mattr,
 774                                           const char *data, size_t count)
 775{
 776        struct mem_ctl_info *mci = to_mci(dev);
 777        struct i7core_pvt *pvt = mci->pvt_info;
 778        unsigned long value;
 779        int rc;
 780
 781        if (pvt->inject.enable)
 782                disable_inject(mci);
 783
 784        rc = kstrtoul(data, 10, &value);
 785        if (rc < 0)
 786                return -EIO;
 787
 788        pvt->inject.eccmask = (u32) value;
 789        return count;
 790}
 791
 792static ssize_t i7core_inject_eccmask_show(struct device *dev,
 793                                          struct device_attribute *mattr,
 794                                          char *data)
 795{
 796        struct mem_ctl_info *mci = to_mci(dev);
 797        struct i7core_pvt *pvt = mci->pvt_info;
 798
 799        return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
 800}
 801
 802/*
 803 * i7core_addrmatch
 804 *
 805 * The type of error (UE/CE) will depend on the inject.eccmask value:
 806 *   Any bits set to a 1 will flip the corresponding ECC bit
 807 *   Correctable errors can be injected by flipping 1 bit or the bits within
 808 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 809 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 810 *   uncorrectable error to be injected.
 811 */
 812
 813#define DECLARE_ADDR_MATCH(param, limit)                        \
 814static ssize_t i7core_inject_store_##param(                     \
 815        struct device *dev,                                     \
 816        struct device_attribute *mattr,                         \
 817        const char *data, size_t count)                         \
 818{                                                               \
 819        struct mem_ctl_info *mci = dev_get_drvdata(dev);        \
 820        struct i7core_pvt *pvt;                                 \
 821        long value;                                             \
 822        int rc;                                                 \
 823                                                                \
 824        edac_dbg(1, "\n");                                      \
 825        pvt = mci->pvt_info;                                    \
 826                                                                \
 827        if (pvt->inject.enable)                                 \
 828                disable_inject(mci);                            \
 829                                                                \
 830        if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
 831                value = -1;                                     \
 832        else {                                                  \
 833                rc = kstrtoul(data, 10, &value);                \
 834                if ((rc < 0) || (value >= limit))               \
 835                        return -EIO;                            \
 836        }                                                       \
 837                                                                \
 838        pvt->inject.param = value;                              \
 839                                                                \
 840        return count;                                           \
 841}                                                               \
 842                                                                \
 843static ssize_t i7core_inject_show_##param(                      \
 844        struct device *dev,                                     \
 845        struct device_attribute *mattr,                         \
 846        char *data)                                             \
 847{                                                               \
 848        struct mem_ctl_info *mci = dev_get_drvdata(dev);        \
 849        struct i7core_pvt *pvt;                                 \
 850                                                                \
 851        pvt = mci->pvt_info;                                    \
 852        edac_dbg(1, "pvt=%p\n", pvt);                           \
 853        if (pvt->inject.param < 0)                              \
 854                return sprintf(data, "any\n");                  \
 855        else                                                    \
 856                return sprintf(data, "%d\n", pvt->inject.param);\
 857}
 858
 859#define ATTR_ADDR_MATCH(param)                                  \
 860        static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,            \
 861                    i7core_inject_show_##param,                 \
 862                    i7core_inject_store_##param)
 863
 864DECLARE_ADDR_MATCH(channel, 3);
 865DECLARE_ADDR_MATCH(dimm, 3);
 866DECLARE_ADDR_MATCH(rank, 4);
 867DECLARE_ADDR_MATCH(bank, 32);
 868DECLARE_ADDR_MATCH(page, 0x10000);
 869DECLARE_ADDR_MATCH(col, 0x4000);
 870
 871ATTR_ADDR_MATCH(channel);
 872ATTR_ADDR_MATCH(dimm);
 873ATTR_ADDR_MATCH(rank);
 874ATTR_ADDR_MATCH(bank);
 875ATTR_ADDR_MATCH(page);
 876ATTR_ADDR_MATCH(col);
 877
 878static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
 879{
 880        u32 read;
 881        int count;
 882
 883        edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
 884                 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
 885                 where, val);
 886
 887        for (count = 0; count < 10; count++) {
 888                if (count)
 889                        msleep(100);
 890                pci_write_config_dword(dev, where, val);
 891                pci_read_config_dword(dev, where, &read);
 892
 893                if (read == val)
 894                        return 0;
 895        }
 896
 897        i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
 898                "write=%08x. Read=%08x\n",
 899                dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
 900                where, val, read);
 901
 902        return -EINVAL;
 903}
 904
 905/*
 906 * This routine prepares the Memory Controller for error injection.
 907 * The error will be injected when some process tries to write to the
 908 * memory that matches the given criteria.
 909 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 910 * and col can be specified.
 911 * A -1 value for any of the mask items will make the MCU to ignore
 912 * that matching criteria for error injection.
 913 *
 914 * It should be noticed that the error will only happen after a write operation
 915 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 916 * inject mask, then it will produce just one error. Otherwise, it will repeat
 917 * until the injectmask would be cleaned.
 918 *
 919 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 920 *    is reliable enough to check if the MC is using the
 921 *    three channels. However, this is not clear at the datasheet.
 922 */
 923static ssize_t i7core_inject_enable_store(struct device *dev,
 924                                          struct device_attribute *mattr,
 925                                          const char *data, size_t count)
 926{
 927        struct mem_ctl_info *mci = to_mci(dev);
 928        struct i7core_pvt *pvt = mci->pvt_info;
 929        u32 injectmask;
 930        u64 mask = 0;
 931        int  rc;
 932        long enable;
 933
 934        if (!pvt->pci_ch[pvt->inject.channel][0])
 935                return 0;
 936
 937        rc = kstrtoul(data, 10, &enable);
 938        if ((rc < 0))
 939                return 0;
 940
 941        if (enable) {
 942                pvt->inject.enable = 1;
 943        } else {
 944                disable_inject(mci);
 945                return count;
 946        }
 947
 948        /* Sets pvt->inject.dimm mask */
 949        if (pvt->inject.dimm < 0)
 950                mask |= 1LL << 41;
 951        else {
 952                if (pvt->channel[pvt->inject.channel].dimms > 2)
 953                        mask |= (pvt->inject.dimm & 0x3LL) << 35;
 954                else
 955                        mask |= (pvt->inject.dimm & 0x1LL) << 36;
 956        }
 957
 958        /* Sets pvt->inject.rank mask */
 959        if (pvt->inject.rank < 0)
 960                mask |= 1LL << 40;
 961        else {
 962                if (pvt->channel[pvt->inject.channel].dimms > 2)
 963                        mask |= (pvt->inject.rank & 0x1LL) << 34;
 964                else
 965                        mask |= (pvt->inject.rank & 0x3LL) << 34;
 966        }
 967
 968        /* Sets pvt->inject.bank mask */
 969        if (pvt->inject.bank < 0)
 970                mask |= 1LL << 39;
 971        else
 972                mask |= (pvt->inject.bank & 0x15LL) << 30;
 973
 974        /* Sets pvt->inject.page mask */
 975        if (pvt->inject.page < 0)
 976                mask |= 1LL << 38;
 977        else
 978                mask |= (pvt->inject.page & 0xffff) << 14;
 979
 980        /* Sets pvt->inject.column mask */
 981        if (pvt->inject.col < 0)
 982                mask |= 1LL << 37;
 983        else
 984                mask |= (pvt->inject.col & 0x3fff);
 985
 986        /*
 987         * bit    0: REPEAT_EN
 988         * bits 1-2: MASK_HALF_CACHELINE
 989         * bit    3: INJECT_ECC
 990         * bit    4: INJECT_ADDR_PARITY
 991         */
 992
 993        injectmask = (pvt->inject.type & 1) |
 994                     (pvt->inject.section & 0x3) << 1 |
 995                     (pvt->inject.type & 0x6) << (3 - 1);
 996
 997        /* Unlock writes to registers - this register is write only */
 998        pci_write_config_dword(pvt->pci_noncore,
 999                               MC_CFG_CONTROL, 0x2);
1000
1001        write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1002                               MC_CHANNEL_ADDR_MATCH, mask);
1003        write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1004                               MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
1005
1006        write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1007                               MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1008
1009        write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1010                               MC_CHANNEL_ERROR_INJECT, injectmask);
1011
1012        /*
1013         * This is something undocumented, based on my tests
1014         * Without writing 8 to this register, errors aren't injected. Not sure
1015         * why.
1016         */
1017        pci_write_config_dword(pvt->pci_noncore,
1018                               MC_CFG_CONTROL, 8);
1019
1020        edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
1021                 mask, pvt->inject.eccmask, injectmask);
1022
1023
1024        return count;
1025}
1026
1027static ssize_t i7core_inject_enable_show(struct device *dev,
1028                                         struct device_attribute *mattr,
1029                                         char *data)
1030{
1031        struct mem_ctl_info *mci = to_mci(dev);
1032        struct i7core_pvt *pvt = mci->pvt_info;
1033        u32 injectmask;
1034
1035        if (!pvt->pci_ch[pvt->inject.channel][0])
1036                return 0;
1037
1038        pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1039                               MC_CHANNEL_ERROR_INJECT, &injectmask);
1040
1041        edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
1042
1043        if (injectmask & 0x0c)
1044                pvt->inject.enable = 1;
1045
1046        return sprintf(data, "%d\n", pvt->inject.enable);
1047}
1048
1049#define DECLARE_COUNTER(param)                                  \
1050static ssize_t i7core_show_counter_##param(                     \
1051        struct device *dev,                                     \
1052        struct device_attribute *mattr,                         \
1053        char *data)                                             \
1054{                                                               \
1055        struct mem_ctl_info *mci = dev_get_drvdata(dev);        \
1056        struct i7core_pvt *pvt = mci->pvt_info;                 \
1057                                                                \
1058        edac_dbg(1, "\n");                                      \
1059        if (!pvt->ce_count_available || (pvt->is_registered))   \
1060                return sprintf(data, "data unavailable\n");     \
1061        return sprintf(data, "%lu\n",                           \
1062                        pvt->udimm_ce_count[param]);            \
1063}
1064
1065#define ATTR_COUNTER(param)                                     \
1066        static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,     \
1067                    i7core_show_counter_##param,                \
1068                    NULL)
1069
1070DECLARE_COUNTER(0);
1071DECLARE_COUNTER(1);
1072DECLARE_COUNTER(2);
1073
1074ATTR_COUNTER(0);
1075ATTR_COUNTER(1);
1076ATTR_COUNTER(2);
1077
1078/*
1079 * inject_addrmatch device sysfs struct
1080 */
1081
1082static struct attribute *i7core_addrmatch_attrs[] = {
1083        &dev_attr_channel.attr,
1084        &dev_attr_dimm.attr,
1085        &dev_attr_rank.attr,
1086        &dev_attr_bank.attr,
1087        &dev_attr_page.attr,
1088        &dev_attr_col.attr,
1089        NULL
1090};
1091
1092static struct attribute_group addrmatch_grp = {
1093        .attrs  = i7core_addrmatch_attrs,
1094};
1095
1096static const struct attribute_group *addrmatch_groups[] = {
1097        &addrmatch_grp,
1098        NULL
1099};
1100
1101static void addrmatch_release(struct device *device)
1102{
1103        edac_dbg(1, "Releasing device %s\n", dev_name(device));
1104        kfree(device);
1105}
1106
1107static struct device_type addrmatch_type = {
1108        .groups         = addrmatch_groups,
1109        .release        = addrmatch_release,
1110};
1111
1112/*
1113 * all_channel_counts sysfs struct
1114 */
1115
1116static struct attribute *i7core_udimm_counters_attrs[] = {
1117        &dev_attr_udimm0.attr,
1118        &dev_attr_udimm1.attr,
1119        &dev_attr_udimm2.attr,
1120        NULL
1121};
1122
1123static struct attribute_group all_channel_counts_grp = {
1124        .attrs  = i7core_udimm_counters_attrs,
1125};
1126
1127static const struct attribute_group *all_channel_counts_groups[] = {
1128        &all_channel_counts_grp,
1129        NULL
1130};
1131
1132static void all_channel_counts_release(struct device *device)
1133{
1134        edac_dbg(1, "Releasing device %s\n", dev_name(device));
1135        kfree(device);
1136}
1137
1138static struct device_type all_channel_counts_type = {
1139        .groups         = all_channel_counts_groups,
1140        .release        = all_channel_counts_release,
1141};
1142
1143/*
1144 * inject sysfs attributes
1145 */
1146
1147static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
1148                   i7core_inject_section_show, i7core_inject_section_store);
1149
1150static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
1151                   i7core_inject_type_show, i7core_inject_type_store);
1152
1153
1154static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
1155                   i7core_inject_eccmask_show, i7core_inject_eccmask_store);
1156
1157static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
1158                   i7core_inject_enable_show, i7core_inject_enable_store);
1159
1160static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
1161{
1162        struct i7core_pvt *pvt = mci->pvt_info;
1163        int rc;
1164
1165        rc = device_create_file(&mci->dev, &dev_attr_inject_section);
1166        if (rc < 0)
1167                return rc;
1168        rc = device_create_file(&mci->dev, &dev_attr_inject_type);
1169        if (rc < 0)
1170                return rc;
1171        rc = device_create_file(&mci->dev, &dev_attr_inject_eccmask);
1172        if (rc < 0)
1173                return rc;
1174        rc = device_create_file(&mci->dev, &dev_attr_inject_enable);
1175        if (rc < 0)
1176                return rc;
1177
1178        pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
1179        if (!pvt->addrmatch_dev)
1180                return rc;
1181
1182        pvt->addrmatch_dev->type = &addrmatch_type;
1183        pvt->addrmatch_dev->bus = mci->dev.bus;
1184        device_initialize(pvt->addrmatch_dev);
1185        pvt->addrmatch_dev->parent = &mci->dev;
1186        dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
1187        dev_set_drvdata(pvt->addrmatch_dev, mci);
1188
1189        edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
1190
1191        rc = device_add(pvt->addrmatch_dev);
1192        if (rc < 0)
1193                return rc;
1194
1195        if (!pvt->is_registered) {
1196                pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
1197                                              GFP_KERNEL);
1198                if (!pvt->chancounts_dev) {
1199                        put_device(pvt->addrmatch_dev);
1200                        device_del(pvt->addrmatch_dev);
1201                        return rc;
1202                }
1203
1204                pvt->chancounts_dev->type = &all_channel_counts_type;
1205                pvt->chancounts_dev->bus = mci->dev.bus;
1206                device_initialize(pvt->chancounts_dev);
1207                pvt->chancounts_dev->parent = &mci->dev;
1208                dev_set_name(pvt->chancounts_dev, "all_channel_counts");
1209                dev_set_drvdata(pvt->chancounts_dev, mci);
1210
1211                edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
1212
1213                rc = device_add(pvt->chancounts_dev);
1214                if (rc < 0)
1215                        return rc;
1216        }
1217        return 0;
1218}
1219
1220static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
1221{
1222        struct i7core_pvt *pvt = mci->pvt_info;
1223
1224        edac_dbg(1, "\n");
1225
1226        device_remove_file(&mci->dev, &dev_attr_inject_section);
1227        device_remove_file(&mci->dev, &dev_attr_inject_type);
1228        device_remove_file(&mci->dev, &dev_attr_inject_eccmask);
1229        device_remove_file(&mci->dev, &dev_attr_inject_enable);
1230
1231        if (!pvt->is_registered) {
1232                put_device(pvt->chancounts_dev);
1233                device_del(pvt->chancounts_dev);
1234        }
1235        put_device(pvt->addrmatch_dev);
1236        device_del(pvt->addrmatch_dev);
1237}
1238
1239/****************************************************************************
1240        Device initialization routines: put/get, init/exit
1241 ****************************************************************************/
1242
1243/*
1244 *      i7core_put_all_devices  'put' all the devices that we have
1245 *                              reserved via 'get'
1246 */
1247static void i7core_put_devices(struct i7core_dev *i7core_dev)
1248{
1249        int i;
1250
1251        edac_dbg(0, "\n");
1252        for (i = 0; i < i7core_dev->n_devs; i++) {
1253                struct pci_dev *pdev = i7core_dev->pdev[i];
1254                if (!pdev)
1255                        continue;
1256                edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1257                         pdev->bus->number,
1258                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1259                pci_dev_put(pdev);
1260        }
1261}
1262
1263static void i7core_put_all_devices(void)
1264{
1265        struct i7core_dev *i7core_dev, *tmp;
1266
1267        list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1268                i7core_put_devices(i7core_dev);
1269                free_i7core_dev(i7core_dev);
1270        }
1271}
1272
1273static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1274{
1275        struct pci_dev *pdev = NULL;
1276        int i;
1277
1278        /*
1279         * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1280         * aren't announced by acpi. So, we need to use a legacy scan probing
1281         * to detect them
1282         */
1283        while (table && table->descr) {
1284                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1285                if (unlikely(!pdev)) {
1286                        for (i = 0; i < MAX_SOCKET_BUSES; i++)
1287                                pcibios_scan_specific_bus(255-i);
1288                }
1289                pci_dev_put(pdev);
1290                table++;
1291        }
1292}
1293
1294static unsigned i7core_pci_lastbus(void)
1295{
1296        int last_bus = 0, bus;
1297        struct pci_bus *b = NULL;
1298
1299        while ((b = pci_find_next_bus(b)) != NULL) {
1300                bus = b->number;
1301                edac_dbg(0, "Found bus %d\n", bus);
1302                if (bus > last_bus)
1303                        last_bus = bus;
1304        }
1305
1306        edac_dbg(0, "Last bus %d\n", last_bus);
1307
1308        return last_bus;
1309}
1310
1311/*
1312 *      i7core_get_all_devices  Find and perform 'get' operation on the MCH's
1313 *                      device/functions we want to reference for this driver
1314 *
1315 *                      Need to 'get' device 16 func 1 and func 2
1316 */
1317static int i7core_get_onedevice(struct pci_dev **prev,
1318                                const struct pci_id_table *table,
1319                                const unsigned devno,
1320                                const unsigned last_bus)
1321{
1322        struct i7core_dev *i7core_dev;
1323        const struct pci_id_descr *dev_descr = &table->descr[devno];
1324
1325        struct pci_dev *pdev = NULL;
1326        u8 bus = 0;
1327        u8 socket = 0;
1328
1329        pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1330                              dev_descr->dev_id, *prev);
1331
1332        /*
1333         * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
1334         * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1335         * to probe for the alternate address in case of failure
1336         */
1337        if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
1338                pci_dev_get(*prev);     /* pci_get_device will put it */
1339                pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1340                                      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1341        }
1342
1343        if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
1344            !pdev) {
1345                pci_dev_get(*prev);     /* pci_get_device will put it */
1346                pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1347                                      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1348                                      *prev);
1349        }
1350
1351        if (!pdev) {
1352                if (*prev) {
1353                        *prev = pdev;
1354                        return 0;
1355                }
1356
1357                if (dev_descr->optional)
1358                        return 0;
1359
1360                if (devno == 0)
1361                        return -ENODEV;
1362
1363                i7core_printk(KERN_INFO,
1364                        "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1365                        dev_descr->dev, dev_descr->func,
1366                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1367
1368                /* End of list, leave */
1369                return -ENODEV;
1370        }
1371        bus = pdev->bus->number;
1372
1373        socket = last_bus - bus;
1374
1375        i7core_dev = get_i7core_dev(socket);
1376        if (!i7core_dev) {
1377                i7core_dev = alloc_i7core_dev(socket, table);
1378                if (!i7core_dev) {
1379                        pci_dev_put(pdev);
1380                        return -ENOMEM;
1381                }
1382        }
1383
1384        if (i7core_dev->pdev[devno]) {
1385                i7core_printk(KERN_ERR,
1386                        "Duplicated device for "
1387                        "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1388                        bus, dev_descr->dev, dev_descr->func,
1389                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1390                pci_dev_put(pdev);
1391                return -ENODEV;
1392        }
1393
1394        i7core_dev->pdev[devno] = pdev;
1395
1396        /* Sanity check */
1397        if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1398                        PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1399                i7core_printk(KERN_ERR,
1400                        "Device PCI ID %04x:%04x "
1401                        "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1402                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1403                        bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1404                        bus, dev_descr->dev, dev_descr->func);
1405                return -ENODEV;
1406        }
1407
1408        /* Be sure that the device is enabled */
1409        if (unlikely(pci_enable_device(pdev) < 0)) {
1410                i7core_printk(KERN_ERR,
1411                        "Couldn't enable "
1412                        "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1413                        bus, dev_descr->dev, dev_descr->func,
1414                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1415                return -ENODEV;
1416        }
1417
1418        edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1419                 socket, bus, dev_descr->dev,
1420                 dev_descr->func,
1421                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1422
1423        /*
1424         * As stated on drivers/pci/search.c, the reference count for
1425         * @from is always decremented if it is not %NULL. So, as we need
1426         * to get all devices up to null, we need to do a get for the device
1427         */
1428        pci_dev_get(pdev);
1429
1430        *prev = pdev;
1431
1432        return 0;
1433}
1434
1435static int i7core_get_all_devices(void)
1436{
1437        int i, rc, last_bus;
1438        struct pci_dev *pdev = NULL;
1439        const struct pci_id_table *table = pci_dev_table;
1440
1441        last_bus = i7core_pci_lastbus();
1442
1443        while (table && table->descr) {
1444                for (i = 0; i < table->n_devs; i++) {
1445                        pdev = NULL;
1446                        do {
1447                                rc = i7core_get_onedevice(&pdev, table, i,
1448                                                          last_bus);
1449                                if (rc < 0) {
1450                                        if (i == 0) {
1451                                                i = table->n_devs;
1452                                                break;
1453                                        }
1454                                        i7core_put_all_devices();
1455                                        return -ENODEV;
1456                                }
1457                        } while (pdev);
1458                }
1459                table++;
1460        }
1461
1462        return 0;
1463}
1464
1465static int mci_bind_devs(struct mem_ctl_info *mci,
1466                         struct i7core_dev *i7core_dev)
1467{
1468        struct i7core_pvt *pvt = mci->pvt_info;
1469        struct pci_dev *pdev;
1470        int i, func, slot;
1471        char *family;
1472
1473        pvt->is_registered = false;
1474        pvt->enable_scrub  = false;
1475        for (i = 0; i < i7core_dev->n_devs; i++) {
1476                pdev = i7core_dev->pdev[i];
1477                if (!pdev)
1478                        continue;
1479
1480                func = PCI_FUNC(pdev->devfn);
1481                slot = PCI_SLOT(pdev->devfn);
1482                if (slot == 3) {
1483                        if (unlikely(func > MAX_MCR_FUNC))
1484                                goto error;
1485                        pvt->pci_mcr[func] = pdev;
1486                } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1487                        if (unlikely(func > MAX_CHAN_FUNC))
1488                                goto error;
1489                        pvt->pci_ch[slot - 4][func] = pdev;
1490                } else if (!slot && !func) {
1491                        pvt->pci_noncore = pdev;
1492
1493                        /* Detect the processor family */
1494                        switch (pdev->device) {
1495                        case PCI_DEVICE_ID_INTEL_I7_NONCORE:
1496                                family = "Xeon 35xx/ i7core";
1497                                pvt->enable_scrub = false;
1498                                break;
1499                        case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
1500                                family = "i7-800/i5-700";
1501                                pvt->enable_scrub = false;
1502                                break;
1503                        case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
1504                                family = "Xeon 34xx";
1505                                pvt->enable_scrub = false;
1506                                break;
1507                        case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
1508                                family = "Xeon 55xx";
1509                                pvt->enable_scrub = true;
1510                                break;
1511                        case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
1512                                family = "Xeon 56xx / i7-900";
1513                                pvt->enable_scrub = true;
1514                                break;
1515                        default:
1516                                family = "unknown";
1517                                pvt->enable_scrub = false;
1518                        }
1519                        edac_dbg(0, "Detected a processor type %s\n", family);
1520                } else
1521                        goto error;
1522
1523                edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
1524                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1525                         pdev, i7core_dev->socket);
1526
1527                if (PCI_SLOT(pdev->devfn) == 3 &&
1528                        PCI_FUNC(pdev->devfn) == 2)
1529                        pvt->is_registered = true;
1530        }
1531
1532        return 0;
1533
1534error:
1535        i7core_printk(KERN_ERR, "Device %d, function %d "
1536                      "is out of the expected range\n",
1537                      slot, func);
1538        return -EINVAL;
1539}
1540
1541/****************************************************************************
1542                        Error check routines
1543 ****************************************************************************/
1544
1545static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1546                                         const int chan,
1547                                         const int new0,
1548                                         const int new1,
1549                                         const int new2)
1550{
1551        struct i7core_pvt *pvt = mci->pvt_info;
1552        int add0 = 0, add1 = 0, add2 = 0;
1553        /* Updates CE counters if it is not the first time here */
1554        if (pvt->ce_count_available) {
1555                /* Updates CE counters */
1556
1557                add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1558                add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1559                add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1560
1561                if (add2 < 0)
1562                        add2 += 0x7fff;
1563                pvt->rdimm_ce_count[chan][2] += add2;
1564
1565                if (add1 < 0)
1566                        add1 += 0x7fff;
1567                pvt->rdimm_ce_count[chan][1] += add1;
1568
1569                if (add0 < 0)
1570                        add0 += 0x7fff;
1571                pvt->rdimm_ce_count[chan][0] += add0;
1572        } else
1573                pvt->ce_count_available = 1;
1574
1575        /* Store the new values */
1576        pvt->rdimm_last_ce_count[chan][2] = new2;
1577        pvt->rdimm_last_ce_count[chan][1] = new1;
1578        pvt->rdimm_last_ce_count[chan][0] = new0;
1579
1580        /*updated the edac core */
1581        if (add0 != 0)
1582                edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
1583                                     0, 0, 0,
1584                                     chan, 0, -1, "error", "");
1585        if (add1 != 0)
1586                edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
1587                                     0, 0, 0,
1588                                     chan, 1, -1, "error", "");
1589        if (add2 != 0)
1590                edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
1591                                     0, 0, 0,
1592                                     chan, 2, -1, "error", "");
1593}
1594
1595static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1596{
1597        struct i7core_pvt *pvt = mci->pvt_info;
1598        u32 rcv[3][2];
1599        int i, new0, new1, new2;
1600
1601        /*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1602        pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1603                                                                &rcv[0][0]);
1604        pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1605                                                                &rcv[0][1]);
1606        pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1607                                                                &rcv[1][0]);
1608        pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1609                                                                &rcv[1][1]);
1610        pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1611                                                                &rcv[2][0]);
1612        pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1613                                                                &rcv[2][1]);
1614        for (i = 0 ; i < 3; i++) {
1615                edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1616                         (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1617                /*if the channel has 3 dimms*/
1618                if (pvt->channel[i].dimms > 2) {
1619                        new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1620                        new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1621                        new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1622                } else {
1623                        new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1624                                        DIMM_BOT_COR_ERR(rcv[i][0]);
1625                        new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1626                                        DIMM_BOT_COR_ERR(rcv[i][1]);
1627                        new2 = 0;
1628                }
1629
1630                i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1631        }
1632}
1633
1634/* This function is based on the device 3 function 4 registers as described on:
1635 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1636 *      http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1637 * also available at:
1638 *      http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1639 */
1640static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1641{
1642        struct i7core_pvt *pvt = mci->pvt_info;
1643        u32 rcv1, rcv0;
1644        int new0, new1, new2;
1645
1646        if (!pvt->pci_mcr[4]) {
1647                edac_dbg(0, "MCR registers not found\n");
1648                return;
1649        }
1650
1651        /* Corrected test errors */
1652        pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1653        pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1654
1655        /* Store the new values */
1656        new2 = DIMM2_COR_ERR(rcv1);
1657        new1 = DIMM1_COR_ERR(rcv0);
1658        new0 = DIMM0_COR_ERR(rcv0);
1659
1660        /* Updates CE counters if it is not the first time here */
1661        if (pvt->ce_count_available) {
1662                /* Updates CE counters */
1663                int add0, add1, add2;
1664
1665                add2 = new2 - pvt->udimm_last_ce_count[2];
1666                add1 = new1 - pvt->udimm_last_ce_count[1];
1667                add0 = new0 - pvt->udimm_last_ce_count[0];
1668
1669                if (add2 < 0)
1670                        add2 += 0x7fff;
1671                pvt->udimm_ce_count[2] += add2;
1672
1673                if (add1 < 0)
1674                        add1 += 0x7fff;
1675                pvt->udimm_ce_count[1] += add1;
1676
1677                if (add0 < 0)
1678                        add0 += 0x7fff;
1679                pvt->udimm_ce_count[0] += add0;
1680
1681                if (add0 | add1 | add2)
1682                        i7core_printk(KERN_ERR, "New Corrected error(s): "
1683                                      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1684                                      add0, add1, add2);
1685        } else
1686                pvt->ce_count_available = 1;
1687
1688        /* Store the new values */
1689        pvt->udimm_last_ce_count[2] = new2;
1690        pvt->udimm_last_ce_count[1] = new1;
1691        pvt->udimm_last_ce_count[0] = new0;
1692}
1693
1694/*
1695 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1696 * Architectures Software Developer’s Manual Volume 3B.
1697 * Nehalem are defined as family 0x06, model 0x1a
1698 *
1699 * The MCA registers used here are the following ones:
1700 *     struct mce field MCA Register
1701 *     m->status        MSR_IA32_MC8_STATUS
1702 *     m->addr          MSR_IA32_MC8_ADDR
1703 *     m->misc          MSR_IA32_MC8_MISC
1704 * In the case of Nehalem, the error information is masked at .status and .misc
1705 * fields
1706 */
1707static void i7core_mce_output_error(struct mem_ctl_info *mci,
1708                                    const struct mce *m)
1709{
1710        struct i7core_pvt *pvt = mci->pvt_info;
1711        char *optype, *err;
1712        enum hw_event_mc_err_type tp_event;
1713        unsigned long error = m->status & 0x1ff0000l;
1714        bool uncorrected_error = m->mcgstatus & 1ll << 61;
1715        bool ripv = m->mcgstatus & 1;
1716        u32 optypenum = (m->status >> 4) & 0x07;
1717        u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1718        u32 dimm = (m->misc >> 16) & 0x3;
1719        u32 channel = (m->misc >> 18) & 0x3;
1720        u32 syndrome = m->misc >> 32;
1721        u32 errnum = find_first_bit(&error, 32);
1722
1723        if (uncorrected_error) {
1724                if (ripv)
1725                        tp_event = HW_EVENT_ERR_FATAL;
1726                else
1727                        tp_event = HW_EVENT_ERR_UNCORRECTED;
1728        } else {
1729                tp_event = HW_EVENT_ERR_CORRECTED;
1730        }
1731
1732        switch (optypenum) {
1733        case 0:
1734                optype = "generic undef request";
1735                break;
1736        case 1:
1737                optype = "read error";
1738                break;
1739        case 2:
1740                optype = "write error";
1741                break;
1742        case 3:
1743                optype = "addr/cmd error";
1744                break;
1745        case 4:
1746                optype = "scrubbing error";
1747                break;
1748        default:
1749                optype = "reserved";
1750                break;
1751        }
1752
1753        switch (errnum) {
1754        case 16:
1755                err = "read ECC error";
1756                break;
1757        case 17:
1758                err = "RAS ECC error";
1759                break;
1760        case 18:
1761                err = "write parity error";
1762                break;
1763        case 19:
1764                err = "redundacy loss";
1765                break;
1766        case 20:
1767                err = "reserved";
1768                break;
1769        case 21:
1770                err = "memory range error";
1771                break;
1772        case 22:
1773                err = "RTID out of range";
1774                break;
1775        case 23:
1776                err = "address parity error";
1777                break;
1778        case 24:
1779                err = "byte enable parity error";
1780                break;
1781        default:
1782                err = "unknown";
1783        }
1784
1785        /*
1786         * Call the helper to output message
1787         * FIXME: what to do if core_err_cnt > 1? Currently, it generates
1788         * only one event
1789         */
1790        if (uncorrected_error || !pvt->is_registered)
1791                edac_mc_handle_error(tp_event, mci, core_err_cnt,
1792                                     m->addr >> PAGE_SHIFT,
1793                                     m->addr & ~PAGE_MASK,
1794                                     syndrome,
1795                                     channel, dimm, -1,
1796                                     err, optype);
1797}
1798
1799/*
1800 *      i7core_check_error      Retrieve and process errors reported by the
1801 *                              hardware. Called by the Core module.
1802 */
1803static void i7core_check_error(struct mem_ctl_info *mci)
1804{
1805        struct i7core_pvt *pvt = mci->pvt_info;
1806        int i;
1807        unsigned count = 0;
1808        struct mce *m;
1809
1810        /*
1811         * MCE first step: Copy all mce errors into a temporary buffer
1812         * We use a double buffering here, to reduce the risk of
1813         * losing an error.
1814         */
1815        smp_rmb();
1816        count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1817                % MCE_LOG_LEN;
1818        if (!count)
1819                goto check_ce_error;
1820
1821        m = pvt->mce_outentry;
1822        if (pvt->mce_in + count > MCE_LOG_LEN) {
1823                unsigned l = MCE_LOG_LEN - pvt->mce_in;
1824
1825                memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1826                smp_wmb();
1827                pvt->mce_in = 0;
1828                count -= l;
1829                m += l;
1830        }
1831        memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1832        smp_wmb();
1833        pvt->mce_in += count;
1834
1835        smp_rmb();
1836        if (pvt->mce_overrun) {
1837                i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1838                              pvt->mce_overrun);
1839                smp_wmb();
1840                pvt->mce_overrun = 0;
1841        }
1842
1843        /*
1844         * MCE second step: parse errors and display
1845         */
1846        for (i = 0; i < count; i++)
1847                i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1848
1849        /*
1850         * Now, let's increment CE error counts
1851         */
1852check_ce_error:
1853        if (!pvt->is_registered)
1854                i7core_udimm_check_mc_ecc_err(mci);
1855        else
1856                i7core_rdimm_check_mc_ecc_err(mci);
1857}
1858
1859/*
1860 * i7core_mce_check_error       Replicates mcelog routine to get errors
1861 *                              This routine simply queues mcelog errors, and
1862 *                              return. The error itself should be handled later
1863 *                              by i7core_check_error.
1864 * WARNING: As this routine should be called at NMI time, extra care should
1865 * be taken to avoid deadlocks, and to be as fast as possible.
1866 */
1867static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
1868                                  void *data)
1869{
1870        struct mce *mce = (struct mce *)data;
1871        struct i7core_dev *i7_dev;
1872        struct mem_ctl_info *mci;
1873        struct i7core_pvt *pvt;
1874
1875        i7_dev = get_i7core_dev(mce->socketid);
1876        if (!i7_dev)
1877                return NOTIFY_BAD;
1878
1879        mci = i7_dev->mci;
1880        pvt = mci->pvt_info;
1881
1882        /*
1883         * Just let mcelog handle it if the error is
1884         * outside the memory controller
1885         */
1886        if (((mce->status & 0xffff) >> 7) != 1)
1887                return NOTIFY_DONE;
1888
1889        /* Bank 8 registers are the only ones that we know how to handle */
1890        if (mce->bank != 8)
1891                return NOTIFY_DONE;
1892
1893        smp_rmb();
1894        if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1895                smp_wmb();
1896                pvt->mce_overrun++;
1897                return NOTIFY_DONE;
1898        }
1899
1900        /* Copy memory error at the ringbuffer */
1901        memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1902        smp_wmb();
1903        pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1904
1905        /* Handle fatal errors immediately */
1906        if (mce->mcgstatus & 1)
1907                i7core_check_error(mci);
1908
1909        /* Advise mcelog that the errors were handled */
1910        return NOTIFY_STOP;
1911}
1912
1913static struct notifier_block i7_mce_dec = {
1914        .notifier_call  = i7core_mce_check_error,
1915};
1916
1917struct memdev_dmi_entry {
1918        u8 type;
1919        u8 length;
1920        u16 handle;
1921        u16 phys_mem_array_handle;
1922        u16 mem_err_info_handle;
1923        u16 total_width;
1924        u16 data_width;
1925        u16 size;
1926        u8 form;
1927        u8 device_set;
1928        u8 device_locator;
1929        u8 bank_locator;
1930        u8 memory_type;
1931        u16 type_detail;
1932        u16 speed;
1933        u8 manufacturer;
1934        u8 serial_number;
1935        u8 asset_tag;
1936        u8 part_number;
1937        u8 attributes;
1938        u32 extended_size;
1939        u16 conf_mem_clk_speed;
1940} __attribute__((__packed__));
1941
1942
1943/*
1944 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
1945 * memory devices show the same speed, and if they don't then consider
1946 * all speeds to be invalid.
1947 */
1948static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
1949{
1950        int *dclk_freq = _dclk_freq;
1951        u16 dmi_mem_clk_speed;
1952
1953        if (*dclk_freq == -1)
1954                return;
1955
1956        if (dh->type == DMI_ENTRY_MEM_DEVICE) {
1957                struct memdev_dmi_entry *memdev_dmi_entry =
1958                        (struct memdev_dmi_entry *)dh;
1959                unsigned long conf_mem_clk_speed_offset =
1960                        (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
1961                        (unsigned long)&memdev_dmi_entry->type;
1962                unsigned long speed_offset =
1963                        (unsigned long)&memdev_dmi_entry->speed -
1964                        (unsigned long)&memdev_dmi_entry->type;
1965
1966                /* Check that a DIMM is present */
1967                if (memdev_dmi_entry->size == 0)
1968                        return;
1969
1970                /*
1971                 * Pick the configured speed if it's available, otherwise
1972                 * pick the DIMM speed, or we don't have a speed.
1973                 */
1974                if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
1975                        dmi_mem_clk_speed =
1976                                memdev_dmi_entry->conf_mem_clk_speed;
1977                } else if (memdev_dmi_entry->length > speed_offset) {
1978                        dmi_mem_clk_speed = memdev_dmi_entry->speed;
1979                } else {
1980                        *dclk_freq = -1;
1981                        return;
1982                }
1983
1984                if (*dclk_freq == 0) {
1985                        /* First pass, speed was 0 */
1986                        if (dmi_mem_clk_speed > 0) {
1987                                /* Set speed if a valid speed is read */
1988                                *dclk_freq = dmi_mem_clk_speed;
1989                        } else {
1990                                /* Otherwise we don't have a valid speed */
1991                                *dclk_freq = -1;
1992                        }
1993                } else if (*dclk_freq > 0 &&
1994                           *dclk_freq != dmi_mem_clk_speed) {
1995                        /*
1996                         * If we have a speed, check that all DIMMS are the same
1997                         * speed, otherwise set the speed as invalid.
1998                         */
1999                        *dclk_freq = -1;
2000                }
2001        }
2002}
2003
2004/*
2005 * The default DCLK frequency is used as a fallback if we
2006 * fail to find anything reliable in the DMI. The value
2007 * is taken straight from the datasheet.
2008 */
2009#define DEFAULT_DCLK_FREQ 800
2010
2011static int get_dclk_freq(void)
2012{
2013        int dclk_freq = 0;
2014
2015        dmi_walk(decode_dclk, (void *)&dclk_freq);
2016
2017        if (dclk_freq < 1)
2018                return DEFAULT_DCLK_FREQ;
2019
2020        return dclk_freq;
2021}
2022
2023/*
2024 * set_sdram_scrub_rate         This routine sets byte/sec bandwidth scrub rate
2025 *                              to hardware according to SCRUBINTERVAL formula
2026 *                              found in datasheet.
2027 */
2028static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
2029{
2030        struct i7core_pvt *pvt = mci->pvt_info;
2031        struct pci_dev *pdev;
2032        u32 dw_scrub;
2033        u32 dw_ssr;
2034
2035        /* Get data from the MC register, function 2 */
2036        pdev = pvt->pci_mcr[2];
2037        if (!pdev)
2038                return -ENODEV;
2039
2040        pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);
2041
2042        if (new_bw == 0) {
2043                /* Prepare to disable petrol scrub */
2044                dw_scrub &= ~STARTSCRUB;
2045                /* Stop the patrol scrub engine */
2046                write_and_test(pdev, MC_SCRUB_CONTROL,
2047                               dw_scrub & ~SCRUBINTERVAL_MASK);
2048
2049                /* Get current status of scrub rate and set bit to disable */
2050                pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2051                dw_ssr &= ~SSR_MODE_MASK;
2052                dw_ssr |= SSR_MODE_DISABLE;
2053        } else {
2054                const int cache_line_size = 64;
2055                const u32 freq_dclk_mhz = pvt->dclk_freq;
2056                unsigned long long scrub_interval;
2057                /*
2058                 * Translate the desired scrub rate to a register value and
2059                 * program the corresponding register value.
2060                 */
2061                scrub_interval = (unsigned long long)freq_dclk_mhz *
2062                        cache_line_size * 1000000;
2063                do_div(scrub_interval, new_bw);
2064
2065                if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
2066                        return -EINVAL;
2067
2068                dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2069
2070                /* Start the patrol scrub engine */
2071                pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
2072                                       STARTSCRUB | dw_scrub);
2073
2074                /* Get current status of scrub rate and set bit to enable */
2075                pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2076                dw_ssr &= ~SSR_MODE_MASK;
2077                dw_ssr |= SSR_MODE_ENABLE;
2078        }
2079        /* Disable or enable scrubbing */
2080        pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);
2081
2082        return new_bw;
2083}
2084
2085/*
2086 * get_sdram_scrub_rate         This routine convert current scrub rate value
2087 *                              into byte/sec bandwidth according to
2088 *                              SCRUBINTERVAL formula found in datasheet.
2089 */
2090static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
2091{
2092        struct i7core_pvt *pvt = mci->pvt_info;
2093        struct pci_dev *pdev;
2094        const u32 cache_line_size = 64;
2095        const u32 freq_dclk_mhz = pvt->dclk_freq;
2096        unsigned long long scrub_rate;
2097        u32 scrubval;
2098
2099        /* Get data from the MC register, function 2 */
2100        pdev = pvt->pci_mcr[2];
2101        if (!pdev)
2102                return -ENODEV;
2103
2104        /* Get current scrub control data */
2105        pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);
2106
2107        /* Mask highest 8-bits to 0 */
2108        scrubval &=  SCRUBINTERVAL_MASK;
2109        if (!scrubval)
2110                return 0;
2111
2112        /* Calculate scrub rate value into byte/sec bandwidth */
2113        scrub_rate =  (unsigned long long)freq_dclk_mhz *
2114                1000000 * cache_line_size;
2115        do_div(scrub_rate, scrubval);
2116        return (int)scrub_rate;
2117}
2118
2119static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
2120{
2121        struct i7core_pvt *pvt = mci->pvt_info;
2122        u32 pci_lock;
2123
2124        /* Unlock writes to pci registers */
2125        pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2126        pci_lock &= ~0x3;
2127        pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2128                               pci_lock | MC_CFG_UNLOCK);
2129
2130        mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
2131        mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
2132}
2133
2134static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
2135{
2136        struct i7core_pvt *pvt = mci->pvt_info;
2137        u32 pci_lock;
2138
2139        /* Lock writes to pci registers */
2140        pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2141        pci_lock &= ~0x3;
2142        pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2143                               pci_lock | MC_CFG_LOCK);
2144}
2145
2146static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
2147{
2148        pvt->i7core_pci = edac_pci_create_generic_ctl(
2149                                                &pvt->i7core_dev->pdev[0]->dev,
2150                                                EDAC_MOD_STR);
2151        if (unlikely(!pvt->i7core_pci))
2152                i7core_printk(KERN_WARNING,
2153                              "Unable to setup PCI error report via EDAC\n");
2154}
2155
2156static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
2157{
2158        if (likely(pvt->i7core_pci))
2159                edac_pci_release_generic_ctl(pvt->i7core_pci);
2160        else
2161                i7core_printk(KERN_ERR,
2162                                "Couldn't find mem_ctl_info for socket %d\n",
2163                                pvt->i7core_dev->socket);
2164        pvt->i7core_pci = NULL;
2165}
2166
2167static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
2168{
2169        struct mem_ctl_info *mci = i7core_dev->mci;
2170        struct i7core_pvt *pvt;
2171
2172        if (unlikely(!mci || !mci->pvt_info)) {
2173                edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
2174
2175                i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
2176                return;
2177        }
2178
2179        pvt = mci->pvt_info;
2180
2181        edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2182
2183        /* Disable scrubrate setting */
2184        if (pvt->enable_scrub)
2185                disable_sdram_scrub_setting(mci);
2186
2187        /* Disable EDAC polling */
2188        i7core_pci_ctl_release(pvt);
2189
2190        /* Remove MC sysfs nodes */
2191        i7core_delete_sysfs_devices(mci);
2192        edac_mc_del_mc(mci->pdev);
2193
2194        edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2195        kfree(mci->ctl_name);
2196        edac_mc_free(mci);
2197        i7core_dev->mci = NULL;
2198}
2199
2200static int i7core_register_mci(struct i7core_dev *i7core_dev)
2201{
2202        struct mem_ctl_info *mci;
2203        struct i7core_pvt *pvt;
2204        int rc;
2205        struct edac_mc_layer layers[2];
2206
2207        /* allocate a new MC control structure */
2208
2209        layers[0].type = EDAC_MC_LAYER_CHANNEL;
2210        layers[0].size = NUM_CHANS;
2211        layers[0].is_virt_csrow = false;
2212        layers[1].type = EDAC_MC_LAYER_SLOT;
2213        layers[1].size = MAX_DIMMS;
2214        layers[1].is_virt_csrow = true;
2215        mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2216                            sizeof(*pvt));
2217        if (unlikely(!mci))
2218                return -ENOMEM;
2219
2220        edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2221
2222        pvt = mci->pvt_info;
2223        memset(pvt, 0, sizeof(*pvt));
2224
2225        /* Associates i7core_dev and mci for future usage */
2226        pvt->i7core_dev = i7core_dev;
2227        i7core_dev->mci = mci;
2228
2229        /*
2230         * FIXME: how to handle RDDR3 at MCI level? It is possible to have
2231         * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
2232         * memory channels
2233         */
2234        mci->mtype_cap = MEM_FLAG_DDR3;
2235        mci->edac_ctl_cap = EDAC_FLAG_NONE;
2236        mci->edac_cap = EDAC_FLAG_NONE;
2237        mci->mod_name = "i7core_edac.c";
2238        mci->mod_ver = I7CORE_REVISION;
2239        mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
2240                                  i7core_dev->socket);
2241        mci->dev_name = pci_name(i7core_dev->pdev[0]);
2242        mci->ctl_page_to_phys = NULL;
2243
2244        /* Store pci devices at mci for faster access */
2245        rc = mci_bind_devs(mci, i7core_dev);
2246        if (unlikely(rc < 0))
2247                goto fail0;
2248
2249
2250        /* Get dimm basic config */
2251        get_dimm_config(mci);
2252        /* record ptr to the generic device */
2253        mci->pdev = &i7core_dev->pdev[0]->dev;
2254        /* Set the function pointer to an actual operation function */
2255        mci->edac_check = i7core_check_error;
2256
2257        /* Enable scrubrate setting */
2258        if (pvt->enable_scrub)
2259                enable_sdram_scrub_setting(mci);
2260
2261        /* add this new MC control structure to EDAC's list of MCs */
2262        if (unlikely(edac_mc_add_mc(mci))) {
2263                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2264                /* FIXME: perhaps some code should go here that disables error
2265                 * reporting if we just enabled it
2266                 */
2267
2268                rc = -EINVAL;
2269                goto fail0;
2270        }
2271        if (i7core_create_sysfs_devices(mci)) {
2272                edac_dbg(0, "MC: failed to create sysfs nodes\n");
2273                edac_mc_del_mc(mci->pdev);
2274                rc = -EINVAL;
2275                goto fail0;
2276        }
2277
2278        /* Default error mask is any memory */
2279        pvt->inject.channel = 0;
2280        pvt->inject.dimm = -1;
2281        pvt->inject.rank = -1;
2282        pvt->inject.bank = -1;
2283        pvt->inject.page = -1;
2284        pvt->inject.col = -1;
2285
2286        /* allocating generic PCI control info */
2287        i7core_pci_ctl_create(pvt);
2288
2289        /* DCLK for scrub rate setting */
2290        pvt->dclk_freq = get_dclk_freq();
2291
2292        return 0;
2293
2294fail0:
2295        kfree(mci->ctl_name);
2296        edac_mc_free(mci);
2297        i7core_dev->mci = NULL;
2298        return rc;
2299}
2300
2301/*
2302 *      i7core_probe    Probe for ONE instance of device to see if it is
2303 *                      present.
2304 *      return:
2305 *              0 for FOUND a device
2306 *              < 0 for error code
2307 */
2308
2309static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2310{
2311        int rc, count = 0;
2312        struct i7core_dev *i7core_dev;
2313
2314        /* get the pci devices we want to reserve for our use */
2315        mutex_lock(&i7core_edac_lock);
2316
2317        /*
2318         * All memory controllers are allocated at the first pass.
2319         */
2320        if (unlikely(probed >= 1)) {
2321                mutex_unlock(&i7core_edac_lock);
2322                return -ENODEV;
2323        }
2324        probed++;
2325
2326        rc = i7core_get_all_devices();
2327        if (unlikely(rc < 0))
2328                goto fail0;
2329
2330        list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2331                count++;
2332                rc = i7core_register_mci(i7core_dev);
2333                if (unlikely(rc < 0))
2334                        goto fail1;
2335        }
2336
2337        /*
2338         * Nehalem-EX uses a different memory controller. However, as the
2339         * memory controller is not visible on some Nehalem/Nehalem-EP, we
2340         * need to indirectly probe via a X58 PCI device. The same devices
2341         * are found on (some) Nehalem-EX. So, on those machines, the
2342         * probe routine needs to return -ENODEV, as the actual Memory
2343         * Controller registers won't be detected.
2344         */
2345        if (!count) {
2346                rc = -ENODEV;
2347                goto fail1;
2348        }
2349
2350        i7core_printk(KERN_INFO,
2351                      "Driver loaded, %d memory controller(s) found.\n",
2352                      count);
2353
2354        mutex_unlock(&i7core_edac_lock);
2355        return 0;
2356
2357fail1:
2358        list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2359                i7core_unregister_mci(i7core_dev);
2360
2361        i7core_put_all_devices();
2362fail0:
2363        mutex_unlock(&i7core_edac_lock);
2364        return rc;
2365}
2366
2367/*
2368 *      i7core_remove   destructor for one instance of device
2369 *
2370 */
2371static void i7core_remove(struct pci_dev *pdev)
2372{
2373        struct i7core_dev *i7core_dev;
2374
2375        edac_dbg(0, "\n");
2376
2377        /*
2378         * we have a trouble here: pdev value for removal will be wrong, since
2379         * it will point to the X58 register used to detect that the machine
2380         * is a Nehalem or upper design. However, due to the way several PCI
2381         * devices are grouped together to provide MC functionality, we need
2382         * to use a different method for releasing the devices
2383         */
2384
2385        mutex_lock(&i7core_edac_lock);
2386
2387        if (unlikely(!probed)) {
2388                mutex_unlock(&i7core_edac_lock);
2389                return;
2390        }
2391
2392        list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2393                i7core_unregister_mci(i7core_dev);
2394
2395        /* Release PCI resources */
2396        i7core_put_all_devices();
2397
2398        probed--;
2399
2400        mutex_unlock(&i7core_edac_lock);
2401}
2402
2403MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2404
2405/*
2406 *      i7core_driver   pci_driver structure for this module
2407 *
2408 */
2409static struct pci_driver i7core_driver = {
2410        .name     = "i7core_edac",
2411        .probe    = i7core_probe,
2412        .remove   = i7core_remove,
2413        .id_table = i7core_pci_tbl,
2414};
2415
2416/*
2417 *      i7core_init             Module entry function
2418 *                      Try to initialize this module for its devices
2419 */
2420static int __init i7core_init(void)
2421{
2422        int pci_rc;
2423
2424        edac_dbg(2, "\n");
2425
2426        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2427        opstate_init();
2428
2429        if (use_pci_fixup)
2430                i7core_xeon_pci_fixup(pci_dev_table);
2431
2432        pci_rc = pci_register_driver(&i7core_driver);
2433
2434        if (pci_rc >= 0) {
2435                mce_register_decode_chain(&i7_mce_dec);
2436                return 0;
2437        }
2438
2439        i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2440                      pci_rc);
2441
2442        return pci_rc;
2443}
2444
2445/*
2446 *      i7core_exit()   Module exit function
2447 *                      Unregister the driver
2448 */
2449static void __exit i7core_exit(void)
2450{
2451        edac_dbg(2, "\n");
2452        pci_unregister_driver(&i7core_driver);
2453        mce_unregister_decode_chain(&i7_mce_dec);
2454}
2455
2456module_init(i7core_init);
2457module_exit(i7core_exit);
2458
2459MODULE_LICENSE("GPL");
2460MODULE_AUTHOR("Mauro Carvalho Chehab");
2461MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2462MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2463                   I7CORE_REVISION);
2464
2465module_param(edac_op_state, int, 0444);
2466MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2467