linux/drivers/gpu/drm/nouveau/core/subdev/clock/nvc0.c
<<
>>
Prefs
   1/*
   2 * Copyright 2012 Red Hat Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: Ben Skeggs
  23 */
  24
  25#include <subdev/clock.h>
  26#include <subdev/bios.h>
  27#include <subdev/bios/pll.h>
  28#include <subdev/timer.h>
  29
  30#include "pll.h"
  31
  32struct nvc0_clock_info {
  33        u32 freq;
  34        u32 ssel;
  35        u32 mdiv;
  36        u32 dsrc;
  37        u32 ddiv;
  38        u32 coef;
  39};
  40
  41struct nvc0_clock_priv {
  42        struct nouveau_clock base;
  43        struct nvc0_clock_info eng[16];
  44};
  45
  46static u32 read_div(struct nvc0_clock_priv *, int, u32, u32);
  47
  48static u32
  49read_vco(struct nvc0_clock_priv *priv, u32 dsrc)
  50{
  51        struct nouveau_clock *clk = &priv->base;
  52        u32 ssrc = nv_rd32(priv, dsrc);
  53        if (!(ssrc & 0x00000100))
  54                return clk->read(clk, nv_clk_src_sppll0);
  55        return clk->read(clk, nv_clk_src_sppll1);
  56}
  57
  58static u32
  59read_pll(struct nvc0_clock_priv *priv, u32 pll)
  60{
  61        struct nouveau_clock *clk = &priv->base;
  62        u32 ctrl = nv_rd32(priv, pll + 0x00);
  63        u32 coef = nv_rd32(priv, pll + 0x04);
  64        u32 P = (coef & 0x003f0000) >> 16;
  65        u32 N = (coef & 0x0000ff00) >> 8;
  66        u32 M = (coef & 0x000000ff) >> 0;
  67        u32 sclk;
  68
  69        if (!(ctrl & 0x00000001))
  70                return 0;
  71
  72        switch (pll) {
  73        case 0x00e800:
  74        case 0x00e820:
  75                sclk = nv_device(priv)->crystal;
  76                P = 1;
  77                break;
  78        case 0x132000:
  79                sclk = clk->read(clk, nv_clk_src_mpllsrc);
  80                break;
  81        case 0x132020:
  82                sclk = clk->read(clk, nv_clk_src_mpllsrcref);
  83                break;
  84        case 0x137000:
  85        case 0x137020:
  86        case 0x137040:
  87        case 0x1370e0:
  88                sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140);
  89                break;
  90        default:
  91                return 0;
  92        }
  93
  94        return sclk * N / M / P;
  95}
  96
  97static u32
  98read_div(struct nvc0_clock_priv *priv, int doff, u32 dsrc, u32 dctl)
  99{
 100        u32 ssrc = nv_rd32(priv, dsrc + (doff * 4));
 101        u32 sctl = nv_rd32(priv, dctl + (doff * 4));
 102
 103        switch (ssrc & 0x00000003) {
 104        case 0:
 105                if ((ssrc & 0x00030000) != 0x00030000)
 106                        return nv_device(priv)->crystal;
 107                return 108000;
 108        case 2:
 109                return 100000;
 110        case 3:
 111                if (sctl & 0x80000000) {
 112                        u32 sclk = read_vco(priv, dsrc + (doff * 4));
 113                        u32 sdiv = (sctl & 0x0000003f) + 2;
 114                        return (sclk * 2) / sdiv;
 115                }
 116
 117                return read_vco(priv, dsrc + (doff * 4));
 118        default:
 119                return 0;
 120        }
 121}
 122
 123static u32
 124read_clk(struct nvc0_clock_priv *priv, int clk)
 125{
 126        u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4));
 127        u32 ssel = nv_rd32(priv, 0x137100);
 128        u32 sclk, sdiv;
 129
 130        if (ssel & (1 << clk)) {
 131                if (clk < 7)
 132                        sclk = read_pll(priv, 0x137000 + (clk * 0x20));
 133                else
 134                        sclk = read_pll(priv, 0x1370e0);
 135                sdiv = ((sctl & 0x00003f00) >> 8) + 2;
 136        } else {
 137                sclk = read_div(priv, clk, 0x137160, 0x1371d0);
 138                sdiv = ((sctl & 0x0000003f) >> 0) + 2;
 139        }
 140
 141        if (sctl & 0x80000000)
 142                return (sclk * 2) / sdiv;
 143
 144        return sclk;
 145}
 146
 147static int
 148nvc0_clock_read(struct nouveau_clock *clk, enum nv_clk_src src)
 149{
 150        struct nouveau_device *device = nv_device(clk);
 151        struct nvc0_clock_priv *priv = (void *)clk;
 152
 153        switch (src) {
 154        case nv_clk_src_crystal:
 155                return device->crystal;
 156        case nv_clk_src_href:
 157                return 100000;
 158        case nv_clk_src_sppll0:
 159                return read_pll(priv, 0x00e800);
 160        case nv_clk_src_sppll1:
 161                return read_pll(priv, 0x00e820);
 162
 163        case nv_clk_src_mpllsrcref:
 164                return read_div(priv, 0, 0x137320, 0x137330);
 165        case nv_clk_src_mpllsrc:
 166                return read_pll(priv, 0x132020);
 167        case nv_clk_src_mpll:
 168                return read_pll(priv, 0x132000);
 169        case nv_clk_src_mdiv:
 170                return read_div(priv, 0, 0x137300, 0x137310);
 171        case nv_clk_src_mem:
 172                if (nv_rd32(priv, 0x1373f0) & 0x00000002)
 173                        return clk->read(clk, nv_clk_src_mpll);
 174                return clk->read(clk, nv_clk_src_mdiv);
 175
 176        case nv_clk_src_gpc:
 177                return read_clk(priv, 0x00);
 178        case nv_clk_src_rop:
 179                return read_clk(priv, 0x01);
 180        case nv_clk_src_hubk07:
 181                return read_clk(priv, 0x02);
 182        case nv_clk_src_hubk06:
 183                return read_clk(priv, 0x07);
 184        case nv_clk_src_hubk01:
 185                return read_clk(priv, 0x08);
 186        case nv_clk_src_copy:
 187                return read_clk(priv, 0x09);
 188        case nv_clk_src_daemon:
 189                return read_clk(priv, 0x0c);
 190        case nv_clk_src_vdec:
 191                return read_clk(priv, 0x0e);
 192        default:
 193                nv_error(clk, "invalid clock source %d\n", src);
 194                return -EINVAL;
 195        }
 196}
 197
 198static u32
 199calc_div(struct nvc0_clock_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
 200{
 201        u32 div = min((ref * 2) / freq, (u32)65);
 202        if (div < 2)
 203                div = 2;
 204
 205        *ddiv = div - 2;
 206        return (ref * 2) / div;
 207}
 208
 209static u32
 210calc_src(struct nvc0_clock_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
 211{
 212        u32 sclk;
 213
 214        /* use one of the fixed frequencies if possible */
 215        *ddiv = 0x00000000;
 216        switch (freq) {
 217        case  27000:
 218        case 108000:
 219                *dsrc = 0x00000000;
 220                if (freq == 108000)
 221                        *dsrc |= 0x00030000;
 222                return freq;
 223        case 100000:
 224                *dsrc = 0x00000002;
 225                return freq;
 226        default:
 227                *dsrc = 0x00000003;
 228                break;
 229        }
 230
 231        /* otherwise, calculate the closest divider */
 232        sclk = read_vco(priv, 0x137160 + (clk * 4));
 233        if (clk < 7)
 234                sclk = calc_div(priv, clk, sclk, freq, ddiv);
 235        return sclk;
 236}
 237
 238static u32
 239calc_pll(struct nvc0_clock_priv *priv, int clk, u32 freq, u32 *coef)
 240{
 241        struct nouveau_bios *bios = nouveau_bios(priv);
 242        struct nvbios_pll limits;
 243        int N, M, P, ret;
 244
 245        ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
 246        if (ret)
 247                return 0;
 248
 249        limits.refclk = read_div(priv, clk, 0x137120, 0x137140);
 250        if (!limits.refclk)
 251                return 0;
 252
 253        ret = nva3_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P);
 254        if (ret <= 0)
 255                return 0;
 256
 257        *coef = (P << 16) | (N << 8) | M;
 258        return ret;
 259}
 260
 261static int
 262calc_clk(struct nvc0_clock_priv *priv,
 263         struct nouveau_cstate *cstate, int clk, int dom)
 264{
 265        struct nvc0_clock_info *info = &priv->eng[clk];
 266        u32 freq = cstate->domain[dom];
 267        u32 src0, div0, div1D, div1P = 0;
 268        u32 clk0, clk1 = 0;
 269
 270        /* invalid clock domain */
 271        if (!freq)
 272                return 0;
 273
 274        /* first possible path, using only dividers */
 275        clk0 = calc_src(priv, clk, freq, &src0, &div0);
 276        clk0 = calc_div(priv, clk, clk0, freq, &div1D);
 277
 278        /* see if we can get any closer using PLLs */
 279        if (clk0 != freq && (0x00004387 & (1 << clk))) {
 280                if (clk <= 7)
 281                        clk1 = calc_pll(priv, clk, freq, &info->coef);
 282                else
 283                        clk1 = cstate->domain[nv_clk_src_hubk06];
 284                clk1 = calc_div(priv, clk, clk1, freq, &div1P);
 285        }
 286
 287        /* select the method which gets closest to target freq */
 288        if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
 289                info->dsrc = src0;
 290                if (div0) {
 291                        info->ddiv |= 0x80000000;
 292                        info->ddiv |= div0 << 8;
 293                        info->ddiv |= div0;
 294                }
 295                if (div1D) {
 296                        info->mdiv |= 0x80000000;
 297                        info->mdiv |= div1D;
 298                }
 299                info->ssel = info->coef = 0;
 300                info->freq = clk0;
 301        } else {
 302                if (div1P) {
 303                        info->mdiv |= 0x80000000;
 304                        info->mdiv |= div1P << 8;
 305                }
 306                info->ssel = (1 << clk);
 307                info->freq = clk1;
 308        }
 309
 310        return 0;
 311}
 312
 313static int
 314nvc0_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate)
 315{
 316        struct nvc0_clock_priv *priv = (void *)clk;
 317        int ret;
 318
 319        if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) ||
 320            (ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) ||
 321            (ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) ||
 322            (ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) ||
 323            (ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) ||
 324            (ret = calc_clk(priv, cstate, 0x09, nv_clk_src_copy)) ||
 325            (ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) ||
 326            (ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec)))
 327                return ret;
 328
 329        return 0;
 330}
 331
 332static void
 333nvc0_clock_prog_0(struct nvc0_clock_priv *priv, int clk)
 334{
 335        struct nvc0_clock_info *info = &priv->eng[clk];
 336        if (clk < 7 && !info->ssel) {
 337                nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
 338                nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc);
 339        }
 340}
 341
 342static void
 343nvc0_clock_prog_1(struct nvc0_clock_priv *priv, int clk)
 344{
 345        nv_mask(priv, 0x137100, (1 << clk), 0x00000000);
 346        nv_wait(priv, 0x137100, (1 << clk), 0x00000000);
 347}
 348
 349static void
 350nvc0_clock_prog_2(struct nvc0_clock_priv *priv, int clk)
 351{
 352        struct nvc0_clock_info *info = &priv->eng[clk];
 353        const u32 addr = 0x137000 + (clk * 0x20);
 354        if (clk <= 7) {
 355                nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000);
 356                nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000);
 357                if (info->coef) {
 358                        nv_wr32(priv, addr + 0x04, info->coef);
 359                        nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001);
 360                        nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000);
 361                        nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004);
 362                }
 363        }
 364}
 365
 366static void
 367nvc0_clock_prog_3(struct nvc0_clock_priv *priv, int clk)
 368{
 369        struct nvc0_clock_info *info = &priv->eng[clk];
 370        if (info->ssel) {
 371                nv_mask(priv, 0x137100, (1 << clk), info->ssel);
 372                nv_wait(priv, 0x137100, (1 << clk), info->ssel);
 373        }
 374}
 375
 376static void
 377nvc0_clock_prog_4(struct nvc0_clock_priv *priv, int clk)
 378{
 379        struct nvc0_clock_info *info = &priv->eng[clk];
 380        nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
 381}
 382
 383static int
 384nvc0_clock_prog(struct nouveau_clock *clk)
 385{
 386        struct nvc0_clock_priv *priv = (void *)clk;
 387        struct {
 388                void (*exec)(struct nvc0_clock_priv *, int);
 389        } stage[] = {
 390                { nvc0_clock_prog_0 }, /* div programming */
 391                { nvc0_clock_prog_1 }, /* select div mode */
 392                { nvc0_clock_prog_2 }, /* (maybe) program pll */
 393                { nvc0_clock_prog_3 }, /* (maybe) select pll mode */
 394                { nvc0_clock_prog_4 }, /* final divider */
 395        };
 396        int i, j;
 397
 398        for (i = 0; i < ARRAY_SIZE(stage); i++) {
 399                for (j = 0; j < ARRAY_SIZE(priv->eng); j++) {
 400                        if (!priv->eng[j].freq)
 401                                continue;
 402                        stage[i].exec(priv, j);
 403                }
 404        }
 405
 406        return 0;
 407}
 408
 409static void
 410nvc0_clock_tidy(struct nouveau_clock *clk)
 411{
 412        struct nvc0_clock_priv *priv = (void *)clk;
 413        memset(priv->eng, 0x00, sizeof(priv->eng));
 414}
 415
 416static struct nouveau_clocks
 417nvc0_domain[] = {
 418        { nv_clk_src_crystal, 0xff },
 419        { nv_clk_src_href   , 0xff },
 420        { nv_clk_src_hubk06 , 0x00 },
 421        { nv_clk_src_hubk01 , 0x01 },
 422        { nv_clk_src_copy   , 0x02 },
 423        { nv_clk_src_gpc    , 0x03, 0, "core", 2000 },
 424        { nv_clk_src_rop    , 0x04 },
 425        { nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
 426        { nv_clk_src_vdec   , 0x06 },
 427        { nv_clk_src_daemon , 0x0a },
 428        { nv_clk_src_hubk07 , 0x0b },
 429        { nv_clk_src_max }
 430};
 431
 432static int
 433nvc0_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
 434                struct nouveau_oclass *oclass, void *data, u32 size,
 435                struct nouveau_object **pobject)
 436{
 437        struct nvc0_clock_priv *priv;
 438        int ret;
 439
 440        ret = nouveau_clock_create(parent, engine, oclass, nvc0_domain, &priv);
 441        *pobject = nv_object(priv);
 442        if (ret)
 443                return ret;
 444
 445        priv->base.read = nvc0_clock_read;
 446        priv->base.calc = nvc0_clock_calc;
 447        priv->base.prog = nvc0_clock_prog;
 448        priv->base.tidy = nvc0_clock_tidy;
 449        return 0;
 450}
 451
 452struct nouveau_oclass
 453nvc0_clock_oclass = {
 454        .handle = NV_SUBDEV(CLOCK, 0xc0),
 455        .ofuncs = &(struct nouveau_ofuncs) {
 456                .ctor = nvc0_clock_ctor,
 457                .dtor = _nouveau_clock_dtor,
 458                .init = _nouveau_clock_init,
 459                .fini = _nouveau_clock_fini,
 460        },
 461};
 462