linux/drivers/md/bcache/util.h
<<
>>
Prefs
   1
   2#ifndef _BCACHE_UTIL_H
   3#define _BCACHE_UTIL_H
   4
   5#include <linux/blkdev.h>
   6#include <linux/errno.h>
   7#include <linux/kernel.h>
   8#include <linux/llist.h>
   9#include <linux/ratelimit.h>
  10#include <linux/vmalloc.h>
  11#include <linux/workqueue.h>
  12
  13#include "closure.h"
  14
  15#define PAGE_SECTORS            (PAGE_SIZE / 512)
  16
  17struct closure;
  18
  19#ifdef CONFIG_BCACHE_DEBUG
  20
  21#define EBUG_ON(cond)                   BUG_ON(cond)
  22#define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
  23#define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
  24
  25#else /* DEBUG */
  26
  27#define EBUG_ON(cond)                   do { if (cond); } while (0)
  28#define atomic_dec_bug(v)       atomic_dec(v)
  29#define atomic_inc_bug(v, i)    atomic_inc(v)
  30
  31#endif
  32
  33#define DECLARE_HEAP(type, name)                                        \
  34        struct {                                                        \
  35                size_t size, used;                                      \
  36                type *data;                                             \
  37        } name
  38
  39#define init_heap(heap, _size, gfp)                                     \
  40({                                                                      \
  41        size_t _bytes;                                                  \
  42        (heap)->used = 0;                                               \
  43        (heap)->size = (_size);                                         \
  44        _bytes = (heap)->size * sizeof(*(heap)->data);                  \
  45        (heap)->data = NULL;                                            \
  46        if (_bytes < KMALLOC_MAX_SIZE)                                  \
  47                (heap)->data = kmalloc(_bytes, (gfp));                  \
  48        if ((!(heap)->data) && ((gfp) & GFP_KERNEL))                    \
  49                (heap)->data = vmalloc(_bytes);                         \
  50        (heap)->data;                                                   \
  51})
  52
  53#define free_heap(heap)                                                 \
  54do {                                                                    \
  55        if (is_vmalloc_addr((heap)->data))                              \
  56                vfree((heap)->data);                                    \
  57        else                                                            \
  58                kfree((heap)->data);                                    \
  59        (heap)->data = NULL;                                            \
  60} while (0)
  61
  62#define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
  63
  64#define heap_sift(h, i, cmp)                                            \
  65do {                                                                    \
  66        size_t _r, _j = i;                                              \
  67                                                                        \
  68        for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
  69                _r = _j * 2 + 1;                                        \
  70                if (_r + 1 < (h)->used &&                               \
  71                    cmp((h)->data[_r], (h)->data[_r + 1]))              \
  72                        _r++;                                           \
  73                                                                        \
  74                if (cmp((h)->data[_r], (h)->data[_j]))                  \
  75                        break;                                          \
  76                heap_swap(h, _r, _j);                                   \
  77        }                                                               \
  78} while (0)
  79
  80#define heap_sift_down(h, i, cmp)                                       \
  81do {                                                                    \
  82        while (i) {                                                     \
  83                size_t p = (i - 1) / 2;                                 \
  84                if (cmp((h)->data[i], (h)->data[p]))                    \
  85                        break;                                          \
  86                heap_swap(h, i, p);                                     \
  87                i = p;                                                  \
  88        }                                                               \
  89} while (0)
  90
  91#define heap_add(h, d, cmp)                                             \
  92({                                                                      \
  93        bool _r = !heap_full(h);                                        \
  94        if (_r) {                                                       \
  95                size_t _i = (h)->used++;                                \
  96                (h)->data[_i] = d;                                      \
  97                                                                        \
  98                heap_sift_down(h, _i, cmp);                             \
  99                heap_sift(h, _i, cmp);                                  \
 100        }                                                               \
 101        _r;                                                             \
 102})
 103
 104#define heap_pop(h, d, cmp)                                             \
 105({                                                                      \
 106        bool _r = (h)->used;                                            \
 107        if (_r) {                                                       \
 108                (d) = (h)->data[0];                                     \
 109                (h)->used--;                                            \
 110                heap_swap(h, 0, (h)->used);                             \
 111                heap_sift(h, 0, cmp);                                   \
 112        }                                                               \
 113        _r;                                                             \
 114})
 115
 116#define heap_peek(h)    ((h)->used ? (h)->data[0] : NULL)
 117
 118#define heap_full(h)    ((h)->used == (h)->size)
 119
 120#define DECLARE_FIFO(type, name)                                        \
 121        struct {                                                        \
 122                size_t front, back, size, mask;                         \
 123                type *data;                                             \
 124        } name
 125
 126#define fifo_for_each(c, fifo, iter)                                    \
 127        for (iter = (fifo)->front;                                      \
 128             c = (fifo)->data[iter], iter != (fifo)->back;              \
 129             iter = (iter + 1) & (fifo)->mask)
 130
 131#define __init_fifo(fifo, gfp)                                          \
 132({                                                                      \
 133        size_t _allocated_size, _bytes;                                 \
 134        BUG_ON(!(fifo)->size);                                          \
 135                                                                        \
 136        _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
 137        _bytes = _allocated_size * sizeof(*(fifo)->data);               \
 138                                                                        \
 139        (fifo)->mask = _allocated_size - 1;                             \
 140        (fifo)->front = (fifo)->back = 0;                               \
 141        (fifo)->data = NULL;                                            \
 142                                                                        \
 143        if (_bytes < KMALLOC_MAX_SIZE)                                  \
 144                (fifo)->data = kmalloc(_bytes, (gfp));                  \
 145        if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))                    \
 146                (fifo)->data = vmalloc(_bytes);                         \
 147        (fifo)->data;                                                   \
 148})
 149
 150#define init_fifo_exact(fifo, _size, gfp)                               \
 151({                                                                      \
 152        (fifo)->size = (_size);                                         \
 153        __init_fifo(fifo, gfp);                                         \
 154})
 155
 156#define init_fifo(fifo, _size, gfp)                                     \
 157({                                                                      \
 158        (fifo)->size = (_size);                                         \
 159        if ((fifo)->size > 4)                                           \
 160                (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
 161        __init_fifo(fifo, gfp);                                         \
 162})
 163
 164#define free_fifo(fifo)                                                 \
 165do {                                                                    \
 166        if (is_vmalloc_addr((fifo)->data))                              \
 167                vfree((fifo)->data);                                    \
 168        else                                                            \
 169                kfree((fifo)->data);                                    \
 170        (fifo)->data = NULL;                                            \
 171} while (0)
 172
 173#define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
 174#define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
 175
 176#define fifo_empty(fifo)        (!fifo_used(fifo))
 177#define fifo_full(fifo)         (!fifo_free(fifo))
 178
 179#define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
 180#define fifo_back(fifo)                                                 \
 181        ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
 182
 183#define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
 184
 185#define fifo_push_back(fifo, i)                                         \
 186({                                                                      \
 187        bool _r = !fifo_full((fifo));                                   \
 188        if (_r) {                                                       \
 189                (fifo)->data[(fifo)->back++] = (i);                     \
 190                (fifo)->back &= (fifo)->mask;                           \
 191        }                                                               \
 192        _r;                                                             \
 193})
 194
 195#define fifo_pop_front(fifo, i)                                         \
 196({                                                                      \
 197        bool _r = !fifo_empty((fifo));                                  \
 198        if (_r) {                                                       \
 199                (i) = (fifo)->data[(fifo)->front++];                    \
 200                (fifo)->front &= (fifo)->mask;                          \
 201        }                                                               \
 202        _r;                                                             \
 203})
 204
 205#define fifo_push_front(fifo, i)                                        \
 206({                                                                      \
 207        bool _r = !fifo_full((fifo));                                   \
 208        if (_r) {                                                       \
 209                --(fifo)->front;                                        \
 210                (fifo)->front &= (fifo)->mask;                          \
 211                (fifo)->data[(fifo)->front] = (i);                      \
 212        }                                                               \
 213        _r;                                                             \
 214})
 215
 216#define fifo_pop_back(fifo, i)                                          \
 217({                                                                      \
 218        bool _r = !fifo_empty((fifo));                                  \
 219        if (_r) {                                                       \
 220                --(fifo)->back;                                         \
 221                (fifo)->back &= (fifo)->mask;                           \
 222                (i) = (fifo)->data[(fifo)->back]                        \
 223        }                                                               \
 224        _r;                                                             \
 225})
 226
 227#define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
 228#define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
 229
 230#define fifo_swap(l, r)                                                 \
 231do {                                                                    \
 232        swap((l)->front, (r)->front);                                   \
 233        swap((l)->back, (r)->back);                                     \
 234        swap((l)->size, (r)->size);                                     \
 235        swap((l)->mask, (r)->mask);                                     \
 236        swap((l)->data, (r)->data);                                     \
 237} while (0)
 238
 239#define fifo_move(dest, src)                                            \
 240do {                                                                    \
 241        typeof(*((dest)->data)) _t;                                     \
 242        while (!fifo_full(dest) &&                                      \
 243               fifo_pop(src, _t))                                       \
 244                fifo_push(dest, _t);                                    \
 245} while (0)
 246
 247/*
 248 * Simple array based allocator - preallocates a number of elements and you can
 249 * never allocate more than that, also has no locking.
 250 *
 251 * Handy because if you know you only need a fixed number of elements you don't
 252 * have to worry about memory allocation failure, and sometimes a mempool isn't
 253 * what you want.
 254 *
 255 * We treat the free elements as entries in a singly linked list, and the
 256 * freelist as a stack - allocating and freeing push and pop off the freelist.
 257 */
 258
 259#define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
 260        struct {                                                        \
 261                type    *freelist;                                      \
 262                type    data[size];                                     \
 263        } name
 264
 265#define array_alloc(array)                                              \
 266({                                                                      \
 267        typeof((array)->freelist) _ret = (array)->freelist;             \
 268                                                                        \
 269        if (_ret)                                                       \
 270                (array)->freelist = *((typeof((array)->freelist) *) _ret);\
 271                                                                        \
 272        _ret;                                                           \
 273})
 274
 275#define array_free(array, ptr)                                          \
 276do {                                                                    \
 277        typeof((array)->freelist) _ptr = ptr;                           \
 278                                                                        \
 279        *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
 280        (array)->freelist = _ptr;                                       \
 281} while (0)
 282
 283#define array_allocator_init(array)                                     \
 284do {                                                                    \
 285        typeof((array)->freelist) _i;                                   \
 286                                                                        \
 287        BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
 288        (array)->freelist = NULL;                                       \
 289                                                                        \
 290        for (_i = (array)->data;                                        \
 291             _i < (array)->data + ARRAY_SIZE((array)->data);            \
 292             _i++)                                                      \
 293                array_free(array, _i);                                  \
 294} while (0)
 295
 296#define array_freelist_empty(array)     ((array)->freelist == NULL)
 297
 298#define ANYSINT_MAX(t)                                                  \
 299        ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
 300
 301int bch_strtoint_h(const char *, int *);
 302int bch_strtouint_h(const char *, unsigned int *);
 303int bch_strtoll_h(const char *, long long *);
 304int bch_strtoull_h(const char *, unsigned long long *);
 305
 306static inline int bch_strtol_h(const char *cp, long *res)
 307{
 308#if BITS_PER_LONG == 32
 309        return bch_strtoint_h(cp, (int *) res);
 310#else
 311        return bch_strtoll_h(cp, (long long *) res);
 312#endif
 313}
 314
 315static inline int bch_strtoul_h(const char *cp, long *res)
 316{
 317#if BITS_PER_LONG == 32
 318        return bch_strtouint_h(cp, (unsigned int *) res);
 319#else
 320        return bch_strtoull_h(cp, (unsigned long long *) res);
 321#endif
 322}
 323
 324#define strtoi_h(cp, res)                                               \
 325        (__builtin_types_compatible_p(typeof(*res), int)                \
 326        ? bch_strtoint_h(cp, (void *) res)                              \
 327        : __builtin_types_compatible_p(typeof(*res), long)              \
 328        ? bch_strtol_h(cp, (void *) res)                                \
 329        : __builtin_types_compatible_p(typeof(*res), long long)         \
 330        ? bch_strtoll_h(cp, (void *) res)                               \
 331        : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
 332        ? bch_strtouint_h(cp, (void *) res)                             \
 333        : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
 334        ? bch_strtoul_h(cp, (void *) res)                               \
 335        : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
 336        ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
 337
 338#define strtoul_safe(cp, var)                                           \
 339({                                                                      \
 340        unsigned long _v;                                               \
 341        int _r = kstrtoul(cp, 10, &_v);                                 \
 342        if (!_r)                                                        \
 343                var = _v;                                               \
 344        _r;                                                             \
 345})
 346
 347#define strtoul_safe_clamp(cp, var, min, max)                           \
 348({                                                                      \
 349        unsigned long _v;                                               \
 350        int _r = kstrtoul(cp, 10, &_v);                                 \
 351        if (!_r)                                                        \
 352                var = clamp_t(typeof(var), _v, min, max);               \
 353        _r;                                                             \
 354})
 355
 356#define snprint(buf, size, var)                                         \
 357        snprintf(buf, size,                                             \
 358                __builtin_types_compatible_p(typeof(var), int)          \
 359                     ? "%i\n" :                                         \
 360                __builtin_types_compatible_p(typeof(var), unsigned)     \
 361                     ? "%u\n" :                                         \
 362                __builtin_types_compatible_p(typeof(var), long)         \
 363                     ? "%li\n" :                                        \
 364                __builtin_types_compatible_p(typeof(var), unsigned long)\
 365                     ? "%lu\n" :                                        \
 366                __builtin_types_compatible_p(typeof(var), int64_t)      \
 367                     ? "%lli\n" :                                       \
 368                __builtin_types_compatible_p(typeof(var), uint64_t)     \
 369                     ? "%llu\n" :                                       \
 370                __builtin_types_compatible_p(typeof(var), const char *) \
 371                     ? "%s\n" : "%i\n", var)
 372
 373ssize_t bch_hprint(char *buf, int64_t v);
 374
 375bool bch_is_zero(const char *p, size_t n);
 376int bch_parse_uuid(const char *s, char *uuid);
 377
 378ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
 379                            size_t selected);
 380
 381ssize_t bch_read_string_list(const char *buf, const char * const list[]);
 382
 383struct time_stats {
 384        spinlock_t      lock;
 385        /*
 386         * all fields are in nanoseconds, averages are ewmas stored left shifted
 387         * by 8
 388         */
 389        uint64_t        max_duration;
 390        uint64_t        average_duration;
 391        uint64_t        average_frequency;
 392        uint64_t        last;
 393};
 394
 395void bch_time_stats_update(struct time_stats *stats, uint64_t time);
 396
 397static inline unsigned local_clock_us(void)
 398{
 399        return local_clock() >> 10;
 400}
 401
 402#define NSEC_PER_ns                     1L
 403#define NSEC_PER_us                     NSEC_PER_USEC
 404#define NSEC_PER_ms                     NSEC_PER_MSEC
 405#define NSEC_PER_sec                    NSEC_PER_SEC
 406
 407#define __print_time_stat(stats, name, stat, units)                     \
 408        sysfs_print(name ## _ ## stat ## _ ## units,                    \
 409                    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
 410
 411#define sysfs_print_time_stats(stats, name,                             \
 412                               frequency_units,                         \
 413                               duration_units)                          \
 414do {                                                                    \
 415        __print_time_stat(stats, name,                                  \
 416                          average_frequency,    frequency_units);       \
 417        __print_time_stat(stats, name,                                  \
 418                          average_duration,     duration_units);        \
 419        __print_time_stat(stats, name,                                  \
 420                          max_duration,         duration_units);        \
 421                                                                        \
 422        sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
 423                    ? div_s64(local_clock() - (stats)->last,            \
 424                              NSEC_PER_ ## frequency_units)             \
 425                    : -1LL);                                            \
 426} while (0)
 427
 428#define sysfs_time_stats_attribute(name,                                \
 429                                   frequency_units,                     \
 430                                   duration_units)                      \
 431read_attribute(name ## _average_frequency_ ## frequency_units);         \
 432read_attribute(name ## _average_duration_ ## duration_units);           \
 433read_attribute(name ## _max_duration_ ## duration_units);               \
 434read_attribute(name ## _last_ ## frequency_units)
 435
 436#define sysfs_time_stats_attribute_list(name,                           \
 437                                        frequency_units,                \
 438                                        duration_units)                 \
 439&sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
 440&sysfs_ ## name ## _average_duration_ ## duration_units,                \
 441&sysfs_ ## name ## _max_duration_ ## duration_units,                    \
 442&sysfs_ ## name ## _last_ ## frequency_units,
 443
 444#define ewma_add(ewma, val, weight, factor)                             \
 445({                                                                      \
 446        (ewma) *= (weight) - 1;                                         \
 447        (ewma) += (val) << factor;                                      \
 448        (ewma) /= (weight);                                             \
 449        (ewma) >> factor;                                               \
 450})
 451
 452struct bch_ratelimit {
 453        /* Next time we want to do some work, in nanoseconds */
 454        uint64_t                next;
 455
 456        /*
 457         * Rate at which we want to do work, in units per nanosecond
 458         * The units here correspond to the units passed to bch_next_delay()
 459         */
 460        unsigned                rate;
 461};
 462
 463static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
 464{
 465        d->next = local_clock();
 466}
 467
 468uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
 469
 470#define __DIV_SAFE(n, d, zero)                                          \
 471({                                                                      \
 472        typeof(n) _n = (n);                                             \
 473        typeof(d) _d = (d);                                             \
 474        _d ? _n / _d : zero;                                            \
 475})
 476
 477#define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
 478
 479#define container_of_or_null(ptr, type, member)                         \
 480({                                                                      \
 481        typeof(ptr) _ptr = ptr;                                         \
 482        _ptr ? container_of(_ptr, type, member) : NULL;                 \
 483})
 484
 485#define RB_INSERT(root, new, member, cmp)                               \
 486({                                                                      \
 487        __label__ dup;                                                  \
 488        struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
 489        typeof(new) this;                                               \
 490        int res, ret = -1;                                              \
 491                                                                        \
 492        while (*n) {                                                    \
 493                parent = *n;                                            \
 494                this = container_of(*n, typeof(*(new)), member);        \
 495                res = cmp(new, this);                                   \
 496                if (!res)                                               \
 497                        goto dup;                                       \
 498                n = res < 0                                             \
 499                        ? &(*n)->rb_left                                \
 500                        : &(*n)->rb_right;                              \
 501        }                                                               \
 502                                                                        \
 503        rb_link_node(&(new)->member, parent, n);                        \
 504        rb_insert_color(&(new)->member, root);                          \
 505        ret = 0;                                                        \
 506dup:                                                                    \
 507        ret;                                                            \
 508})
 509
 510#define RB_SEARCH(root, search, member, cmp)                            \
 511({                                                                      \
 512        struct rb_node *n = (root)->rb_node;                            \
 513        typeof(&(search)) this, ret = NULL;                             \
 514        int res;                                                        \
 515                                                                        \
 516        while (n) {                                                     \
 517                this = container_of(n, typeof(search), member);         \
 518                res = cmp(&(search), this);                             \
 519                if (!res) {                                             \
 520                        ret = this;                                     \
 521                        break;                                          \
 522                }                                                       \
 523                n = res < 0                                             \
 524                        ? n->rb_left                                    \
 525                        : n->rb_right;                                  \
 526        }                                                               \
 527        ret;                                                            \
 528})
 529
 530#define RB_GREATER(root, search, member, cmp)                           \
 531({                                                                      \
 532        struct rb_node *n = (root)->rb_node;                            \
 533        typeof(&(search)) this, ret = NULL;                             \
 534        int res;                                                        \
 535                                                                        \
 536        while (n) {                                                     \
 537                this = container_of(n, typeof(search), member);         \
 538                res = cmp(&(search), this);                             \
 539                if (res < 0) {                                          \
 540                        ret = this;                                     \
 541                        n = n->rb_left;                                 \
 542                } else                                                  \
 543                        n = n->rb_right;                                \
 544        }                                                               \
 545        ret;                                                            \
 546})
 547
 548#define RB_FIRST(root, type, member)                                    \
 549        container_of_or_null(rb_first(root), type, member)
 550
 551#define RB_LAST(root, type, member)                                     \
 552        container_of_or_null(rb_last(root), type, member)
 553
 554#define RB_NEXT(ptr, member)                                            \
 555        container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
 556
 557#define RB_PREV(ptr, member)                                            \
 558        container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
 559
 560/* Does linear interpolation between powers of two */
 561static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
 562{
 563        unsigned fract = x & ~(~0 << fract_bits);
 564
 565        x >>= fract_bits;
 566        x   = 1 << x;
 567        x  += (x * fract) >> fract_bits;
 568
 569        return x;
 570}
 571
 572void bch_bio_map(struct bio *bio, void *base);
 573
 574static inline sector_t bdev_sectors(struct block_device *bdev)
 575{
 576        return bdev->bd_inode->i_size >> 9;
 577}
 578
 579#define closure_bio_submit(bio, cl, dev)                                \
 580do {                                                                    \
 581        closure_get(cl);                                                \
 582        bch_generic_make_request(bio, &(dev)->bio_split_hook);          \
 583} while (0)
 584
 585uint64_t bch_crc64_update(uint64_t, const void *, size_t);
 586uint64_t bch_crc64(const void *, size_t);
 587
 588#endif /* _BCACHE_UTIL_H */
 589