linux/drivers/md/dm-thin.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/list.h>
  15#include <linux/rculist.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/rbtree.h>
  20
  21#define DM_MSG_PREFIX   "thin"
  22
  23/*
  24 * Tunable constants
  25 */
  26#define ENDIO_HOOK_POOL_SIZE 1024
  27#define MAPPING_POOL_SIZE 1024
  28#define PRISON_CELLS 1024
  29#define COMMIT_PERIOD HZ
  30#define NO_SPACE_TIMEOUT_SECS 60
  31
  32static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  33
  34DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  35                "A percentage of time allocated for copy on write");
  36
  37/*
  38 * The block size of the device holding pool data must be
  39 * between 64KB and 1GB.
  40 */
  41#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  42#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  43
  44/*
  45 * Device id is restricted to 24 bits.
  46 */
  47#define MAX_DEV_ID ((1 << 24) - 1)
  48
  49/*
  50 * How do we handle breaking sharing of data blocks?
  51 * =================================================
  52 *
  53 * We use a standard copy-on-write btree to store the mappings for the
  54 * devices (note I'm talking about copy-on-write of the metadata here, not
  55 * the data).  When you take an internal snapshot you clone the root node
  56 * of the origin btree.  After this there is no concept of an origin or a
  57 * snapshot.  They are just two device trees that happen to point to the
  58 * same data blocks.
  59 *
  60 * When we get a write in we decide if it's to a shared data block using
  61 * some timestamp magic.  If it is, we have to break sharing.
  62 *
  63 * Let's say we write to a shared block in what was the origin.  The
  64 * steps are:
  65 *
  66 * i) plug io further to this physical block. (see bio_prison code).
  67 *
  68 * ii) quiesce any read io to that shared data block.  Obviously
  69 * including all devices that share this block.  (see dm_deferred_set code)
  70 *
  71 * iii) copy the data block to a newly allocate block.  This step can be
  72 * missed out if the io covers the block. (schedule_copy).
  73 *
  74 * iv) insert the new mapping into the origin's btree
  75 * (process_prepared_mapping).  This act of inserting breaks some
  76 * sharing of btree nodes between the two devices.  Breaking sharing only
  77 * effects the btree of that specific device.  Btrees for the other
  78 * devices that share the block never change.  The btree for the origin
  79 * device as it was after the last commit is untouched, ie. we're using
  80 * persistent data structures in the functional programming sense.
  81 *
  82 * v) unplug io to this physical block, including the io that triggered
  83 * the breaking of sharing.
  84 *
  85 * Steps (ii) and (iii) occur in parallel.
  86 *
  87 * The metadata _doesn't_ need to be committed before the io continues.  We
  88 * get away with this because the io is always written to a _new_ block.
  89 * If there's a crash, then:
  90 *
  91 * - The origin mapping will point to the old origin block (the shared
  92 * one).  This will contain the data as it was before the io that triggered
  93 * the breaking of sharing came in.
  94 *
  95 * - The snap mapping still points to the old block.  As it would after
  96 * the commit.
  97 *
  98 * The downside of this scheme is the timestamp magic isn't perfect, and
  99 * will continue to think that data block in the snapshot device is shared
 100 * even after the write to the origin has broken sharing.  I suspect data
 101 * blocks will typically be shared by many different devices, so we're
 102 * breaking sharing n + 1 times, rather than n, where n is the number of
 103 * devices that reference this data block.  At the moment I think the
 104 * benefits far, far outweigh the disadvantages.
 105 */
 106
 107/*----------------------------------------------------------------*/
 108
 109/*
 110 * Key building.
 111 */
 112static void build_data_key(struct dm_thin_device *td,
 113                           dm_block_t b, struct dm_cell_key *key)
 114{
 115        key->virtual = 0;
 116        key->dev = dm_thin_dev_id(td);
 117        key->block = b;
 118}
 119
 120static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 121                              struct dm_cell_key *key)
 122{
 123        key->virtual = 1;
 124        key->dev = dm_thin_dev_id(td);
 125        key->block = b;
 126}
 127
 128/*----------------------------------------------------------------*/
 129
 130/*
 131 * A pool device ties together a metadata device and a data device.  It
 132 * also provides the interface for creating and destroying internal
 133 * devices.
 134 */
 135struct dm_thin_new_mapping;
 136
 137/*
 138 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 139 */
 140enum pool_mode {
 141        PM_WRITE,               /* metadata may be changed */
 142        PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
 143        PM_READ_ONLY,           /* metadata may not be changed */
 144        PM_FAIL,                /* all I/O fails */
 145};
 146
 147struct pool_features {
 148        enum pool_mode mode;
 149
 150        bool zero_new_blocks:1;
 151        bool discard_enabled:1;
 152        bool discard_passdown:1;
 153        bool error_if_no_space:1;
 154};
 155
 156struct thin_c;
 157typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 158typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 159
 160struct pool {
 161        struct list_head list;
 162        struct dm_target *ti;   /* Only set if a pool target is bound */
 163
 164        struct mapped_device *pool_md;
 165        struct block_device *md_dev;
 166        struct dm_pool_metadata *pmd;
 167
 168        dm_block_t low_water_blocks;
 169        uint32_t sectors_per_block;
 170        int sectors_per_block_shift;
 171
 172        struct pool_features pf;
 173        bool low_water_triggered:1;     /* A dm event has been sent */
 174
 175        struct dm_bio_prison *prison;
 176        struct dm_kcopyd_client *copier;
 177
 178        struct workqueue_struct *wq;
 179        struct work_struct worker;
 180        struct delayed_work waker;
 181        struct delayed_work no_space_timeout;
 182
 183        unsigned long last_commit_jiffies;
 184        unsigned ref_count;
 185
 186        spinlock_t lock;
 187        struct bio_list deferred_flush_bios;
 188        struct list_head prepared_mappings;
 189        struct list_head prepared_discards;
 190        struct list_head active_thins;
 191
 192        struct dm_deferred_set *shared_read_ds;
 193        struct dm_deferred_set *all_io_ds;
 194
 195        struct dm_thin_new_mapping *next_mapping;
 196        mempool_t *mapping_pool;
 197
 198        process_bio_fn process_bio;
 199        process_bio_fn process_discard;
 200
 201        process_mapping_fn process_prepared_mapping;
 202        process_mapping_fn process_prepared_discard;
 203};
 204
 205static enum pool_mode get_pool_mode(struct pool *pool);
 206static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 207
 208/*
 209 * Target context for a pool.
 210 */
 211struct pool_c {
 212        struct dm_target *ti;
 213        struct pool *pool;
 214        struct dm_dev *data_dev;
 215        struct dm_dev *metadata_dev;
 216        struct dm_target_callbacks callbacks;
 217
 218        dm_block_t low_water_blocks;
 219        struct pool_features requested_pf; /* Features requested during table load */
 220        struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 221};
 222
 223/*
 224 * Target context for a thin.
 225 */
 226struct thin_c {
 227        struct list_head list;
 228        struct dm_dev *pool_dev;
 229        struct dm_dev *origin_dev;
 230        dm_thin_id dev_id;
 231
 232        struct pool *pool;
 233        struct dm_thin_device *td;
 234        bool requeue_mode:1;
 235        spinlock_t lock;
 236        struct bio_list deferred_bio_list;
 237        struct bio_list retry_on_resume_list;
 238        struct rb_root sort_bio_list; /* sorted list of deferred bios */
 239
 240        /*
 241         * Ensures the thin is not destroyed until the worker has finished
 242         * iterating the active_thins list.
 243         */
 244        atomic_t refcount;
 245        struct completion can_destroy;
 246};
 247
 248/*----------------------------------------------------------------*/
 249
 250/*
 251 * wake_worker() is used when new work is queued and when pool_resume is
 252 * ready to continue deferred IO processing.
 253 */
 254static void wake_worker(struct pool *pool)
 255{
 256        queue_work(pool->wq, &pool->worker);
 257}
 258
 259/*----------------------------------------------------------------*/
 260
 261static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 262                      struct dm_bio_prison_cell **cell_result)
 263{
 264        int r;
 265        struct dm_bio_prison_cell *cell_prealloc;
 266
 267        /*
 268         * Allocate a cell from the prison's mempool.
 269         * This might block but it can't fail.
 270         */
 271        cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 272
 273        r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 274        if (r)
 275                /*
 276                 * We reused an old cell; we can get rid of
 277                 * the new one.
 278                 */
 279                dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 280
 281        return r;
 282}
 283
 284static void cell_release(struct pool *pool,
 285                         struct dm_bio_prison_cell *cell,
 286                         struct bio_list *bios)
 287{
 288        dm_cell_release(pool->prison, cell, bios);
 289        dm_bio_prison_free_cell(pool->prison, cell);
 290}
 291
 292static void cell_release_no_holder(struct pool *pool,
 293                                   struct dm_bio_prison_cell *cell,
 294                                   struct bio_list *bios)
 295{
 296        dm_cell_release_no_holder(pool->prison, cell, bios);
 297        dm_bio_prison_free_cell(pool->prison, cell);
 298}
 299
 300static void cell_defer_no_holder_no_free(struct thin_c *tc,
 301                                         struct dm_bio_prison_cell *cell)
 302{
 303        struct pool *pool = tc->pool;
 304        unsigned long flags;
 305
 306        spin_lock_irqsave(&tc->lock, flags);
 307        dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
 308        spin_unlock_irqrestore(&tc->lock, flags);
 309
 310        wake_worker(pool);
 311}
 312
 313static void cell_error(struct pool *pool,
 314                       struct dm_bio_prison_cell *cell)
 315{
 316        dm_cell_error(pool->prison, cell);
 317        dm_bio_prison_free_cell(pool->prison, cell);
 318}
 319
 320/*----------------------------------------------------------------*/
 321
 322/*
 323 * A global list of pools that uses a struct mapped_device as a key.
 324 */
 325static struct dm_thin_pool_table {
 326        struct mutex mutex;
 327        struct list_head pools;
 328} dm_thin_pool_table;
 329
 330static void pool_table_init(void)
 331{
 332        mutex_init(&dm_thin_pool_table.mutex);
 333        INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 334}
 335
 336static void __pool_table_insert(struct pool *pool)
 337{
 338        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 339        list_add(&pool->list, &dm_thin_pool_table.pools);
 340}
 341
 342static void __pool_table_remove(struct pool *pool)
 343{
 344        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 345        list_del(&pool->list);
 346}
 347
 348static struct pool *__pool_table_lookup(struct mapped_device *md)
 349{
 350        struct pool *pool = NULL, *tmp;
 351
 352        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 353
 354        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 355                if (tmp->pool_md == md) {
 356                        pool = tmp;
 357                        break;
 358                }
 359        }
 360
 361        return pool;
 362}
 363
 364static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 365{
 366        struct pool *pool = NULL, *tmp;
 367
 368        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 369
 370        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 371                if (tmp->md_dev == md_dev) {
 372                        pool = tmp;
 373                        break;
 374                }
 375        }
 376
 377        return pool;
 378}
 379
 380/*----------------------------------------------------------------*/
 381
 382struct dm_thin_endio_hook {
 383        struct thin_c *tc;
 384        struct dm_deferred_entry *shared_read_entry;
 385        struct dm_deferred_entry *all_io_entry;
 386        struct dm_thin_new_mapping *overwrite_mapping;
 387        struct rb_node rb_node;
 388};
 389
 390static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
 391{
 392        struct bio *bio;
 393        struct bio_list bios;
 394        unsigned long flags;
 395
 396        bio_list_init(&bios);
 397
 398        spin_lock_irqsave(&tc->lock, flags);
 399        bio_list_merge(&bios, master);
 400        bio_list_init(master);
 401        spin_unlock_irqrestore(&tc->lock, flags);
 402
 403        while ((bio = bio_list_pop(&bios)))
 404                bio_endio(bio, DM_ENDIO_REQUEUE);
 405}
 406
 407static void requeue_io(struct thin_c *tc)
 408{
 409        requeue_bio_list(tc, &tc->deferred_bio_list);
 410        requeue_bio_list(tc, &tc->retry_on_resume_list);
 411}
 412
 413static void error_thin_retry_list(struct thin_c *tc)
 414{
 415        struct bio *bio;
 416        unsigned long flags;
 417        struct bio_list bios;
 418
 419        bio_list_init(&bios);
 420
 421        spin_lock_irqsave(&tc->lock, flags);
 422        bio_list_merge(&bios, &tc->retry_on_resume_list);
 423        bio_list_init(&tc->retry_on_resume_list);
 424        spin_unlock_irqrestore(&tc->lock, flags);
 425
 426        while ((bio = bio_list_pop(&bios)))
 427                bio_io_error(bio);
 428}
 429
 430static void error_retry_list(struct pool *pool)
 431{
 432        struct thin_c *tc;
 433
 434        rcu_read_lock();
 435        list_for_each_entry_rcu(tc, &pool->active_thins, list)
 436                error_thin_retry_list(tc);
 437        rcu_read_unlock();
 438}
 439
 440/*
 441 * This section of code contains the logic for processing a thin device's IO.
 442 * Much of the code depends on pool object resources (lists, workqueues, etc)
 443 * but most is exclusively called from the thin target rather than the thin-pool
 444 * target.
 445 */
 446
 447static bool block_size_is_power_of_two(struct pool *pool)
 448{
 449        return pool->sectors_per_block_shift >= 0;
 450}
 451
 452static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 453{
 454        struct pool *pool = tc->pool;
 455        sector_t block_nr = bio->bi_iter.bi_sector;
 456
 457        if (block_size_is_power_of_two(pool))
 458                block_nr >>= pool->sectors_per_block_shift;
 459        else
 460                (void) sector_div(block_nr, pool->sectors_per_block);
 461
 462        return block_nr;
 463}
 464
 465static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 466{
 467        struct pool *pool = tc->pool;
 468        sector_t bi_sector = bio->bi_iter.bi_sector;
 469
 470        bio->bi_bdev = tc->pool_dev->bdev;
 471        if (block_size_is_power_of_two(pool))
 472                bio->bi_iter.bi_sector =
 473                        (block << pool->sectors_per_block_shift) |
 474                        (bi_sector & (pool->sectors_per_block - 1));
 475        else
 476                bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 477                                 sector_div(bi_sector, pool->sectors_per_block);
 478}
 479
 480static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 481{
 482        bio->bi_bdev = tc->origin_dev->bdev;
 483}
 484
 485static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 486{
 487        return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
 488                dm_thin_changed_this_transaction(tc->td);
 489}
 490
 491static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 492{
 493        struct dm_thin_endio_hook *h;
 494
 495        if (bio->bi_rw & REQ_DISCARD)
 496                return;
 497
 498        h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 499        h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 500}
 501
 502static void issue(struct thin_c *tc, struct bio *bio)
 503{
 504        struct pool *pool = tc->pool;
 505        unsigned long flags;
 506
 507        if (!bio_triggers_commit(tc, bio)) {
 508                generic_make_request(bio);
 509                return;
 510        }
 511
 512        /*
 513         * Complete bio with an error if earlier I/O caused changes to
 514         * the metadata that can't be committed e.g, due to I/O errors
 515         * on the metadata device.
 516         */
 517        if (dm_thin_aborted_changes(tc->td)) {
 518                bio_io_error(bio);
 519                return;
 520        }
 521
 522        /*
 523         * Batch together any bios that trigger commits and then issue a
 524         * single commit for them in process_deferred_bios().
 525         */
 526        spin_lock_irqsave(&pool->lock, flags);
 527        bio_list_add(&pool->deferred_flush_bios, bio);
 528        spin_unlock_irqrestore(&pool->lock, flags);
 529}
 530
 531static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 532{
 533        remap_to_origin(tc, bio);
 534        issue(tc, bio);
 535}
 536
 537static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 538                            dm_block_t block)
 539{
 540        remap(tc, bio, block);
 541        issue(tc, bio);
 542}
 543
 544/*----------------------------------------------------------------*/
 545
 546/*
 547 * Bio endio functions.
 548 */
 549struct dm_thin_new_mapping {
 550        struct list_head list;
 551
 552        bool quiesced:1;
 553        bool prepared:1;
 554        bool pass_discard:1;
 555        bool definitely_not_shared:1;
 556
 557        int err;
 558        struct thin_c *tc;
 559        dm_block_t virt_block;
 560        dm_block_t data_block;
 561        struct dm_bio_prison_cell *cell, *cell2;
 562
 563        /*
 564         * If the bio covers the whole area of a block then we can avoid
 565         * zeroing or copying.  Instead this bio is hooked.  The bio will
 566         * still be in the cell, so care has to be taken to avoid issuing
 567         * the bio twice.
 568         */
 569        struct bio *bio;
 570        bio_end_io_t *saved_bi_end_io;
 571};
 572
 573static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
 574{
 575        struct pool *pool = m->tc->pool;
 576
 577        if (m->quiesced && m->prepared) {
 578                list_add_tail(&m->list, &pool->prepared_mappings);
 579                wake_worker(pool);
 580        }
 581}
 582
 583static void copy_complete(int read_err, unsigned long write_err, void *context)
 584{
 585        unsigned long flags;
 586        struct dm_thin_new_mapping *m = context;
 587        struct pool *pool = m->tc->pool;
 588
 589        m->err = read_err || write_err ? -EIO : 0;
 590
 591        spin_lock_irqsave(&pool->lock, flags);
 592        m->prepared = true;
 593        __maybe_add_mapping(m);
 594        spin_unlock_irqrestore(&pool->lock, flags);
 595}
 596
 597static void overwrite_endio(struct bio *bio, int err)
 598{
 599        unsigned long flags;
 600        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 601        struct dm_thin_new_mapping *m = h->overwrite_mapping;
 602        struct pool *pool = m->tc->pool;
 603
 604        m->err = err;
 605
 606        spin_lock_irqsave(&pool->lock, flags);
 607        m->prepared = true;
 608        __maybe_add_mapping(m);
 609        spin_unlock_irqrestore(&pool->lock, flags);
 610}
 611
 612/*----------------------------------------------------------------*/
 613
 614/*
 615 * Workqueue.
 616 */
 617
 618/*
 619 * Prepared mapping jobs.
 620 */
 621
 622/*
 623 * This sends the bios in the cell back to the deferred_bios list.
 624 */
 625static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 626{
 627        struct pool *pool = tc->pool;
 628        unsigned long flags;
 629
 630        spin_lock_irqsave(&tc->lock, flags);
 631        cell_release(pool, cell, &tc->deferred_bio_list);
 632        spin_unlock_irqrestore(&tc->lock, flags);
 633
 634        wake_worker(pool);
 635}
 636
 637/*
 638 * Same as cell_defer above, except it omits the original holder of the cell.
 639 */
 640static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 641{
 642        struct pool *pool = tc->pool;
 643        unsigned long flags;
 644
 645        spin_lock_irqsave(&tc->lock, flags);
 646        cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 647        spin_unlock_irqrestore(&tc->lock, flags);
 648
 649        wake_worker(pool);
 650}
 651
 652static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 653{
 654        if (m->bio) {
 655                m->bio->bi_end_io = m->saved_bi_end_io;
 656                atomic_inc(&m->bio->bi_remaining);
 657        }
 658        cell_error(m->tc->pool, m->cell);
 659        list_del(&m->list);
 660        mempool_free(m, m->tc->pool->mapping_pool);
 661}
 662
 663static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 664{
 665        struct thin_c *tc = m->tc;
 666        struct pool *pool = tc->pool;
 667        struct bio *bio;
 668        int r;
 669
 670        bio = m->bio;
 671        if (bio) {
 672                bio->bi_end_io = m->saved_bi_end_io;
 673                atomic_inc(&bio->bi_remaining);
 674        }
 675
 676        if (m->err) {
 677                cell_error(pool, m->cell);
 678                goto out;
 679        }
 680
 681        /*
 682         * Commit the prepared block into the mapping btree.
 683         * Any I/O for this block arriving after this point will get
 684         * remapped to it directly.
 685         */
 686        r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
 687        if (r) {
 688                metadata_operation_failed(pool, "dm_thin_insert_block", r);
 689                cell_error(pool, m->cell);
 690                goto out;
 691        }
 692
 693        /*
 694         * Release any bios held while the block was being provisioned.
 695         * If we are processing a write bio that completely covers the block,
 696         * we already processed it so can ignore it now when processing
 697         * the bios in the cell.
 698         */
 699        if (bio) {
 700                cell_defer_no_holder(tc, m->cell);
 701                bio_endio(bio, 0);
 702        } else
 703                cell_defer(tc, m->cell);
 704
 705out:
 706        list_del(&m->list);
 707        mempool_free(m, pool->mapping_pool);
 708}
 709
 710static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 711{
 712        struct thin_c *tc = m->tc;
 713
 714        bio_io_error(m->bio);
 715        cell_defer_no_holder(tc, m->cell);
 716        cell_defer_no_holder(tc, m->cell2);
 717        mempool_free(m, tc->pool->mapping_pool);
 718}
 719
 720static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
 721{
 722        struct thin_c *tc = m->tc;
 723
 724        inc_all_io_entry(tc->pool, m->bio);
 725        cell_defer_no_holder(tc, m->cell);
 726        cell_defer_no_holder(tc, m->cell2);
 727
 728        if (m->pass_discard)
 729                if (m->definitely_not_shared)
 730                        remap_and_issue(tc, m->bio, m->data_block);
 731                else {
 732                        bool used = false;
 733                        if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
 734                                bio_endio(m->bio, 0);
 735                        else
 736                                remap_and_issue(tc, m->bio, m->data_block);
 737                }
 738        else
 739                bio_endio(m->bio, 0);
 740
 741        mempool_free(m, tc->pool->mapping_pool);
 742}
 743
 744static void process_prepared_discard(struct dm_thin_new_mapping *m)
 745{
 746        int r;
 747        struct thin_c *tc = m->tc;
 748
 749        r = dm_thin_remove_block(tc->td, m->virt_block);
 750        if (r)
 751                DMERR_LIMIT("dm_thin_remove_block() failed");
 752
 753        process_prepared_discard_passdown(m);
 754}
 755
 756static void process_prepared(struct pool *pool, struct list_head *head,
 757                             process_mapping_fn *fn)
 758{
 759        unsigned long flags;
 760        struct list_head maps;
 761        struct dm_thin_new_mapping *m, *tmp;
 762
 763        INIT_LIST_HEAD(&maps);
 764        spin_lock_irqsave(&pool->lock, flags);
 765        list_splice_init(head, &maps);
 766        spin_unlock_irqrestore(&pool->lock, flags);
 767
 768        list_for_each_entry_safe(m, tmp, &maps, list)
 769                (*fn)(m);
 770}
 771
 772/*
 773 * Deferred bio jobs.
 774 */
 775static int io_overlaps_block(struct pool *pool, struct bio *bio)
 776{
 777        return bio->bi_iter.bi_size ==
 778                (pool->sectors_per_block << SECTOR_SHIFT);
 779}
 780
 781static int io_overwrites_block(struct pool *pool, struct bio *bio)
 782{
 783        return (bio_data_dir(bio) == WRITE) &&
 784                io_overlaps_block(pool, bio);
 785}
 786
 787static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
 788                               bio_end_io_t *fn)
 789{
 790        *save = bio->bi_end_io;
 791        bio->bi_end_io = fn;
 792}
 793
 794static int ensure_next_mapping(struct pool *pool)
 795{
 796        if (pool->next_mapping)
 797                return 0;
 798
 799        pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
 800
 801        return pool->next_mapping ? 0 : -ENOMEM;
 802}
 803
 804static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
 805{
 806        struct dm_thin_new_mapping *m = pool->next_mapping;
 807
 808        BUG_ON(!pool->next_mapping);
 809
 810        memset(m, 0, sizeof(struct dm_thin_new_mapping));
 811        INIT_LIST_HEAD(&m->list);
 812        m->bio = NULL;
 813
 814        pool->next_mapping = NULL;
 815
 816        return m;
 817}
 818
 819static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
 820                          struct dm_dev *origin, dm_block_t data_origin,
 821                          dm_block_t data_dest,
 822                          struct dm_bio_prison_cell *cell, struct bio *bio)
 823{
 824        int r;
 825        struct pool *pool = tc->pool;
 826        struct dm_thin_new_mapping *m = get_next_mapping(pool);
 827
 828        m->tc = tc;
 829        m->virt_block = virt_block;
 830        m->data_block = data_dest;
 831        m->cell = cell;
 832
 833        if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
 834                m->quiesced = true;
 835
 836        /*
 837         * IO to pool_dev remaps to the pool target's data_dev.
 838         *
 839         * If the whole block of data is being overwritten, we can issue the
 840         * bio immediately. Otherwise we use kcopyd to clone the data first.
 841         */
 842        if (io_overwrites_block(pool, bio)) {
 843                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 844
 845                h->overwrite_mapping = m;
 846                m->bio = bio;
 847                save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
 848                inc_all_io_entry(pool, bio);
 849                remap_and_issue(tc, bio, data_dest);
 850        } else {
 851                struct dm_io_region from, to;
 852
 853                from.bdev = origin->bdev;
 854                from.sector = data_origin * pool->sectors_per_block;
 855                from.count = pool->sectors_per_block;
 856
 857                to.bdev = tc->pool_dev->bdev;
 858                to.sector = data_dest * pool->sectors_per_block;
 859                to.count = pool->sectors_per_block;
 860
 861                r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
 862                                   0, copy_complete, m);
 863                if (r < 0) {
 864                        mempool_free(m, pool->mapping_pool);
 865                        DMERR_LIMIT("dm_kcopyd_copy() failed");
 866                        cell_error(pool, cell);
 867                }
 868        }
 869}
 870
 871static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
 872                                   dm_block_t data_origin, dm_block_t data_dest,
 873                                   struct dm_bio_prison_cell *cell, struct bio *bio)
 874{
 875        schedule_copy(tc, virt_block, tc->pool_dev,
 876                      data_origin, data_dest, cell, bio);
 877}
 878
 879static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
 880                                   dm_block_t data_dest,
 881                                   struct dm_bio_prison_cell *cell, struct bio *bio)
 882{
 883        schedule_copy(tc, virt_block, tc->origin_dev,
 884                      virt_block, data_dest, cell, bio);
 885}
 886
 887static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
 888                          dm_block_t data_block, struct dm_bio_prison_cell *cell,
 889                          struct bio *bio)
 890{
 891        struct pool *pool = tc->pool;
 892        struct dm_thin_new_mapping *m = get_next_mapping(pool);
 893
 894        m->quiesced = true;
 895        m->prepared = false;
 896        m->tc = tc;
 897        m->virt_block = virt_block;
 898        m->data_block = data_block;
 899        m->cell = cell;
 900
 901        /*
 902         * If the whole block of data is being overwritten or we are not
 903         * zeroing pre-existing data, we can issue the bio immediately.
 904         * Otherwise we use kcopyd to zero the data first.
 905         */
 906        if (!pool->pf.zero_new_blocks)
 907                process_prepared_mapping(m);
 908
 909        else if (io_overwrites_block(pool, bio)) {
 910                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 911
 912                h->overwrite_mapping = m;
 913                m->bio = bio;
 914                save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
 915                inc_all_io_entry(pool, bio);
 916                remap_and_issue(tc, bio, data_block);
 917        } else {
 918                int r;
 919                struct dm_io_region to;
 920
 921                to.bdev = tc->pool_dev->bdev;
 922                to.sector = data_block * pool->sectors_per_block;
 923                to.count = pool->sectors_per_block;
 924
 925                r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
 926                if (r < 0) {
 927                        mempool_free(m, pool->mapping_pool);
 928                        DMERR_LIMIT("dm_kcopyd_zero() failed");
 929                        cell_error(pool, cell);
 930                }
 931        }
 932}
 933
 934/*
 935 * A non-zero return indicates read_only or fail_io mode.
 936 * Many callers don't care about the return value.
 937 */
 938static int commit(struct pool *pool)
 939{
 940        int r;
 941
 942        if (get_pool_mode(pool) >= PM_READ_ONLY)
 943                return -EINVAL;
 944
 945        r = dm_pool_commit_metadata(pool->pmd);
 946        if (r)
 947                metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
 948
 949        return r;
 950}
 951
 952static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
 953{
 954        unsigned long flags;
 955
 956        if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
 957                DMWARN("%s: reached low water mark for data device: sending event.",
 958                       dm_device_name(pool->pool_md));
 959                spin_lock_irqsave(&pool->lock, flags);
 960                pool->low_water_triggered = true;
 961                spin_unlock_irqrestore(&pool->lock, flags);
 962                dm_table_event(pool->ti->table);
 963        }
 964}
 965
 966static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
 967
 968static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
 969{
 970        int r;
 971        dm_block_t free_blocks;
 972        struct pool *pool = tc->pool;
 973
 974        if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
 975                return -EINVAL;
 976
 977        r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 978        if (r) {
 979                metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
 980                return r;
 981        }
 982
 983        check_low_water_mark(pool, free_blocks);
 984
 985        if (!free_blocks) {
 986                /*
 987                 * Try to commit to see if that will free up some
 988                 * more space.
 989                 */
 990                r = commit(pool);
 991                if (r)
 992                        return r;
 993
 994                r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 995                if (r) {
 996                        metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
 997                        return r;
 998                }
 999
1000                if (!free_blocks) {
1001                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1002                        return -ENOSPC;
1003                }
1004        }
1005
1006        r = dm_pool_alloc_data_block(pool->pmd, result);
1007        if (r) {
1008                metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1009                return r;
1010        }
1011
1012        return 0;
1013}
1014
1015/*
1016 * If we have run out of space, queue bios until the device is
1017 * resumed, presumably after having been reloaded with more space.
1018 */
1019static void retry_on_resume(struct bio *bio)
1020{
1021        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1022        struct thin_c *tc = h->tc;
1023        unsigned long flags;
1024
1025        spin_lock_irqsave(&tc->lock, flags);
1026        bio_list_add(&tc->retry_on_resume_list, bio);
1027        spin_unlock_irqrestore(&tc->lock, flags);
1028}
1029
1030static bool should_error_unserviceable_bio(struct pool *pool)
1031{
1032        enum pool_mode m = get_pool_mode(pool);
1033
1034        switch (m) {
1035        case PM_WRITE:
1036                /* Shouldn't get here */
1037                DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1038                return true;
1039
1040        case PM_OUT_OF_DATA_SPACE:
1041                return pool->pf.error_if_no_space;
1042
1043        case PM_READ_ONLY:
1044        case PM_FAIL:
1045                return true;
1046        default:
1047                /* Shouldn't get here */
1048                DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1049                return true;
1050        }
1051}
1052
1053static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1054{
1055        if (should_error_unserviceable_bio(pool))
1056                bio_io_error(bio);
1057        else
1058                retry_on_resume(bio);
1059}
1060
1061static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1062{
1063        struct bio *bio;
1064        struct bio_list bios;
1065
1066        if (should_error_unserviceable_bio(pool)) {
1067                cell_error(pool, cell);
1068                return;
1069        }
1070
1071        bio_list_init(&bios);
1072        cell_release(pool, cell, &bios);
1073
1074        if (should_error_unserviceable_bio(pool))
1075                while ((bio = bio_list_pop(&bios)))
1076                        bio_io_error(bio);
1077        else
1078                while ((bio = bio_list_pop(&bios)))
1079                        retry_on_resume(bio);
1080}
1081
1082static void process_discard(struct thin_c *tc, struct bio *bio)
1083{
1084        int r;
1085        unsigned long flags;
1086        struct pool *pool = tc->pool;
1087        struct dm_bio_prison_cell *cell, *cell2;
1088        struct dm_cell_key key, key2;
1089        dm_block_t block = get_bio_block(tc, bio);
1090        struct dm_thin_lookup_result lookup_result;
1091        struct dm_thin_new_mapping *m;
1092
1093        build_virtual_key(tc->td, block, &key);
1094        if (bio_detain(tc->pool, &key, bio, &cell))
1095                return;
1096
1097        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1098        switch (r) {
1099        case 0:
1100                /*
1101                 * Check nobody is fiddling with this pool block.  This can
1102                 * happen if someone's in the process of breaking sharing
1103                 * on this block.
1104                 */
1105                build_data_key(tc->td, lookup_result.block, &key2);
1106                if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1107                        cell_defer_no_holder(tc, cell);
1108                        break;
1109                }
1110
1111                if (io_overlaps_block(pool, bio)) {
1112                        /*
1113                         * IO may still be going to the destination block.  We must
1114                         * quiesce before we can do the removal.
1115                         */
1116                        m = get_next_mapping(pool);
1117                        m->tc = tc;
1118                        m->pass_discard = pool->pf.discard_passdown;
1119                        m->definitely_not_shared = !lookup_result.shared;
1120                        m->virt_block = block;
1121                        m->data_block = lookup_result.block;
1122                        m->cell = cell;
1123                        m->cell2 = cell2;
1124                        m->bio = bio;
1125
1126                        if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1127                                spin_lock_irqsave(&pool->lock, flags);
1128                                list_add_tail(&m->list, &pool->prepared_discards);
1129                                spin_unlock_irqrestore(&pool->lock, flags);
1130                                wake_worker(pool);
1131                        }
1132                } else {
1133                        inc_all_io_entry(pool, bio);
1134                        cell_defer_no_holder(tc, cell);
1135                        cell_defer_no_holder(tc, cell2);
1136
1137                        /*
1138                         * The DM core makes sure that the discard doesn't span
1139                         * a block boundary.  So we submit the discard of a
1140                         * partial block appropriately.
1141                         */
1142                        if ((!lookup_result.shared) && pool->pf.discard_passdown)
1143                                remap_and_issue(tc, bio, lookup_result.block);
1144                        else
1145                                bio_endio(bio, 0);
1146                }
1147                break;
1148
1149        case -ENODATA:
1150                /*
1151                 * It isn't provisioned, just forget it.
1152                 */
1153                cell_defer_no_holder(tc, cell);
1154                bio_endio(bio, 0);
1155                break;
1156
1157        default:
1158                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1159                            __func__, r);
1160                cell_defer_no_holder(tc, cell);
1161                bio_io_error(bio);
1162                break;
1163        }
1164}
1165
1166static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1167                          struct dm_cell_key *key,
1168                          struct dm_thin_lookup_result *lookup_result,
1169                          struct dm_bio_prison_cell *cell)
1170{
1171        int r;
1172        dm_block_t data_block;
1173        struct pool *pool = tc->pool;
1174
1175        r = alloc_data_block(tc, &data_block);
1176        switch (r) {
1177        case 0:
1178                schedule_internal_copy(tc, block, lookup_result->block,
1179                                       data_block, cell, bio);
1180                break;
1181
1182        case -ENOSPC:
1183                retry_bios_on_resume(pool, cell);
1184                break;
1185
1186        default:
1187                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1188                            __func__, r);
1189                cell_error(pool, cell);
1190                break;
1191        }
1192}
1193
1194static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1195                               dm_block_t block,
1196                               struct dm_thin_lookup_result *lookup_result)
1197{
1198        struct dm_bio_prison_cell *cell;
1199        struct pool *pool = tc->pool;
1200        struct dm_cell_key key;
1201
1202        /*
1203         * If cell is already occupied, then sharing is already in the process
1204         * of being broken so we have nothing further to do here.
1205         */
1206        build_data_key(tc->td, lookup_result->block, &key);
1207        if (bio_detain(pool, &key, bio, &cell))
1208                return;
1209
1210        if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1211                break_sharing(tc, bio, block, &key, lookup_result, cell);
1212        else {
1213                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1214
1215                h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1216                inc_all_io_entry(pool, bio);
1217                cell_defer_no_holder(tc, cell);
1218
1219                remap_and_issue(tc, bio, lookup_result->block);
1220        }
1221}
1222
1223static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1224                            struct dm_bio_prison_cell *cell)
1225{
1226        int r;
1227        dm_block_t data_block;
1228        struct pool *pool = tc->pool;
1229
1230        /*
1231         * Remap empty bios (flushes) immediately, without provisioning.
1232         */
1233        if (!bio->bi_iter.bi_size) {
1234                inc_all_io_entry(pool, bio);
1235                cell_defer_no_holder(tc, cell);
1236
1237                remap_and_issue(tc, bio, 0);
1238                return;
1239        }
1240
1241        /*
1242         * Fill read bios with zeroes and complete them immediately.
1243         */
1244        if (bio_data_dir(bio) == READ) {
1245                zero_fill_bio(bio);
1246                cell_defer_no_holder(tc, cell);
1247                bio_endio(bio, 0);
1248                return;
1249        }
1250
1251        r = alloc_data_block(tc, &data_block);
1252        switch (r) {
1253        case 0:
1254                if (tc->origin_dev)
1255                        schedule_external_copy(tc, block, data_block, cell, bio);
1256                else
1257                        schedule_zero(tc, block, data_block, cell, bio);
1258                break;
1259
1260        case -ENOSPC:
1261                retry_bios_on_resume(pool, cell);
1262                break;
1263
1264        default:
1265                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1266                            __func__, r);
1267                cell_error(pool, cell);
1268                break;
1269        }
1270}
1271
1272static void process_bio(struct thin_c *tc, struct bio *bio)
1273{
1274        int r;
1275        struct pool *pool = tc->pool;
1276        dm_block_t block = get_bio_block(tc, bio);
1277        struct dm_bio_prison_cell *cell;
1278        struct dm_cell_key key;
1279        struct dm_thin_lookup_result lookup_result;
1280
1281        /*
1282         * If cell is already occupied, then the block is already
1283         * being provisioned so we have nothing further to do here.
1284         */
1285        build_virtual_key(tc->td, block, &key);
1286        if (bio_detain(pool, &key, bio, &cell))
1287                return;
1288
1289        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1290        switch (r) {
1291        case 0:
1292                if (lookup_result.shared) {
1293                        process_shared_bio(tc, bio, block, &lookup_result);
1294                        cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1295                } else {
1296                        inc_all_io_entry(pool, bio);
1297                        cell_defer_no_holder(tc, cell);
1298
1299                        remap_and_issue(tc, bio, lookup_result.block);
1300                }
1301                break;
1302
1303        case -ENODATA:
1304                if (bio_data_dir(bio) == READ && tc->origin_dev) {
1305                        inc_all_io_entry(pool, bio);
1306                        cell_defer_no_holder(tc, cell);
1307
1308                        remap_to_origin_and_issue(tc, bio);
1309                } else
1310                        provision_block(tc, bio, block, cell);
1311                break;
1312
1313        default:
1314                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1315                            __func__, r);
1316                cell_defer_no_holder(tc, cell);
1317                bio_io_error(bio);
1318                break;
1319        }
1320}
1321
1322static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1323{
1324        int r;
1325        int rw = bio_data_dir(bio);
1326        dm_block_t block = get_bio_block(tc, bio);
1327        struct dm_thin_lookup_result lookup_result;
1328
1329        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1330        switch (r) {
1331        case 0:
1332                if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1333                        handle_unserviceable_bio(tc->pool, bio);
1334                else {
1335                        inc_all_io_entry(tc->pool, bio);
1336                        remap_and_issue(tc, bio, lookup_result.block);
1337                }
1338                break;
1339
1340        case -ENODATA:
1341                if (rw != READ) {
1342                        handle_unserviceable_bio(tc->pool, bio);
1343                        break;
1344                }
1345
1346                if (tc->origin_dev) {
1347                        inc_all_io_entry(tc->pool, bio);
1348                        remap_to_origin_and_issue(tc, bio);
1349                        break;
1350                }
1351
1352                zero_fill_bio(bio);
1353                bio_endio(bio, 0);
1354                break;
1355
1356        default:
1357                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1358                            __func__, r);
1359                bio_io_error(bio);
1360                break;
1361        }
1362}
1363
1364static void process_bio_success(struct thin_c *tc, struct bio *bio)
1365{
1366        bio_endio(bio, 0);
1367}
1368
1369static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1370{
1371        bio_io_error(bio);
1372}
1373
1374/*
1375 * FIXME: should we also commit due to size of transaction, measured in
1376 * metadata blocks?
1377 */
1378static int need_commit_due_to_time(struct pool *pool)
1379{
1380        return jiffies < pool->last_commit_jiffies ||
1381               jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1382}
1383
1384#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1385#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1386
1387static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1388{
1389        struct rb_node **rbp, *parent;
1390        struct dm_thin_endio_hook *pbd;
1391        sector_t bi_sector = bio->bi_iter.bi_sector;
1392
1393        rbp = &tc->sort_bio_list.rb_node;
1394        parent = NULL;
1395        while (*rbp) {
1396                parent = *rbp;
1397                pbd = thin_pbd(parent);
1398
1399                if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1400                        rbp = &(*rbp)->rb_left;
1401                else
1402                        rbp = &(*rbp)->rb_right;
1403        }
1404
1405        pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1406        rb_link_node(&pbd->rb_node, parent, rbp);
1407        rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1408}
1409
1410static void __extract_sorted_bios(struct thin_c *tc)
1411{
1412        struct rb_node *node;
1413        struct dm_thin_endio_hook *pbd;
1414        struct bio *bio;
1415
1416        for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1417                pbd = thin_pbd(node);
1418                bio = thin_bio(pbd);
1419
1420                bio_list_add(&tc->deferred_bio_list, bio);
1421                rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1422        }
1423
1424        WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1425}
1426
1427static void __sort_thin_deferred_bios(struct thin_c *tc)
1428{
1429        struct bio *bio;
1430        struct bio_list bios;
1431
1432        bio_list_init(&bios);
1433        bio_list_merge(&bios, &tc->deferred_bio_list);
1434        bio_list_init(&tc->deferred_bio_list);
1435
1436        /* Sort deferred_bio_list using rb-tree */
1437        while ((bio = bio_list_pop(&bios)))
1438                __thin_bio_rb_add(tc, bio);
1439
1440        /*
1441         * Transfer the sorted bios in sort_bio_list back to
1442         * deferred_bio_list to allow lockless submission of
1443         * all bios.
1444         */
1445        __extract_sorted_bios(tc);
1446}
1447
1448static void process_thin_deferred_bios(struct thin_c *tc)
1449{
1450        struct pool *pool = tc->pool;
1451        unsigned long flags;
1452        struct bio *bio;
1453        struct bio_list bios;
1454        struct blk_plug plug;
1455
1456        if (tc->requeue_mode) {
1457                requeue_bio_list(tc, &tc->deferred_bio_list);
1458                return;
1459        }
1460
1461        bio_list_init(&bios);
1462
1463        spin_lock_irqsave(&tc->lock, flags);
1464
1465        if (bio_list_empty(&tc->deferred_bio_list)) {
1466                spin_unlock_irqrestore(&tc->lock, flags);
1467                return;
1468        }
1469
1470        __sort_thin_deferred_bios(tc);
1471
1472        bio_list_merge(&bios, &tc->deferred_bio_list);
1473        bio_list_init(&tc->deferred_bio_list);
1474
1475        spin_unlock_irqrestore(&tc->lock, flags);
1476
1477        blk_start_plug(&plug);
1478        while ((bio = bio_list_pop(&bios))) {
1479                /*
1480                 * If we've got no free new_mapping structs, and processing
1481                 * this bio might require one, we pause until there are some
1482                 * prepared mappings to process.
1483                 */
1484                if (ensure_next_mapping(pool)) {
1485                        spin_lock_irqsave(&tc->lock, flags);
1486                        bio_list_add(&tc->deferred_bio_list, bio);
1487                        bio_list_merge(&tc->deferred_bio_list, &bios);
1488                        spin_unlock_irqrestore(&tc->lock, flags);
1489                        break;
1490                }
1491
1492                if (bio->bi_rw & REQ_DISCARD)
1493                        pool->process_discard(tc, bio);
1494                else
1495                        pool->process_bio(tc, bio);
1496        }
1497        blk_finish_plug(&plug);
1498}
1499
1500static void thin_get(struct thin_c *tc);
1501static void thin_put(struct thin_c *tc);
1502
1503/*
1504 * We can't hold rcu_read_lock() around code that can block.  So we
1505 * find a thin with the rcu lock held; bump a refcount; then drop
1506 * the lock.
1507 */
1508static struct thin_c *get_first_thin(struct pool *pool)
1509{
1510        struct thin_c *tc = NULL;
1511
1512        rcu_read_lock();
1513        if (!list_empty(&pool->active_thins)) {
1514                tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1515                thin_get(tc);
1516        }
1517        rcu_read_unlock();
1518
1519        return tc;
1520}
1521
1522static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1523{
1524        struct thin_c *old_tc = tc;
1525
1526        rcu_read_lock();
1527        list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1528                thin_get(tc);
1529                thin_put(old_tc);
1530                rcu_read_unlock();
1531                return tc;
1532        }
1533        thin_put(old_tc);
1534        rcu_read_unlock();
1535
1536        return NULL;
1537}
1538
1539static void process_deferred_bios(struct pool *pool)
1540{
1541        unsigned long flags;
1542        struct bio *bio;
1543        struct bio_list bios;
1544        struct thin_c *tc;
1545
1546        tc = get_first_thin(pool);
1547        while (tc) {
1548                process_thin_deferred_bios(tc);
1549                tc = get_next_thin(pool, tc);
1550        }
1551
1552        /*
1553         * If there are any deferred flush bios, we must commit
1554         * the metadata before issuing them.
1555         */
1556        bio_list_init(&bios);
1557        spin_lock_irqsave(&pool->lock, flags);
1558        bio_list_merge(&bios, &pool->deferred_flush_bios);
1559        bio_list_init(&pool->deferred_flush_bios);
1560        spin_unlock_irqrestore(&pool->lock, flags);
1561
1562        if (bio_list_empty(&bios) &&
1563            !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1564                return;
1565
1566        if (commit(pool)) {
1567                while ((bio = bio_list_pop(&bios)))
1568                        bio_io_error(bio);
1569                return;
1570        }
1571        pool->last_commit_jiffies = jiffies;
1572
1573        while ((bio = bio_list_pop(&bios)))
1574                generic_make_request(bio);
1575}
1576
1577static void do_worker(struct work_struct *ws)
1578{
1579        struct pool *pool = container_of(ws, struct pool, worker);
1580
1581        process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1582        process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1583        process_deferred_bios(pool);
1584}
1585
1586/*
1587 * We want to commit periodically so that not too much
1588 * unwritten data builds up.
1589 */
1590static void do_waker(struct work_struct *ws)
1591{
1592        struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1593        wake_worker(pool);
1594        queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1595}
1596
1597/*
1598 * We're holding onto IO to allow userland time to react.  After the
1599 * timeout either the pool will have been resized (and thus back in
1600 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1601 */
1602static void do_no_space_timeout(struct work_struct *ws)
1603{
1604        struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1605                                         no_space_timeout);
1606
1607        if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1608                set_pool_mode(pool, PM_READ_ONLY);
1609}
1610
1611/*----------------------------------------------------------------*/
1612
1613struct noflush_work {
1614        struct work_struct worker;
1615        struct thin_c *tc;
1616
1617        atomic_t complete;
1618        wait_queue_head_t wait;
1619};
1620
1621static void complete_noflush_work(struct noflush_work *w)
1622{
1623        atomic_set(&w->complete, 1);
1624        wake_up(&w->wait);
1625}
1626
1627static void do_noflush_start(struct work_struct *ws)
1628{
1629        struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1630        w->tc->requeue_mode = true;
1631        requeue_io(w->tc);
1632        complete_noflush_work(w);
1633}
1634
1635static void do_noflush_stop(struct work_struct *ws)
1636{
1637        struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1638        w->tc->requeue_mode = false;
1639        complete_noflush_work(w);
1640}
1641
1642static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1643{
1644        struct noflush_work w;
1645
1646        INIT_WORK_ONSTACK(&w.worker, fn);
1647        w.tc = tc;
1648        atomic_set(&w.complete, 0);
1649        init_waitqueue_head(&w.wait);
1650
1651        queue_work(tc->pool->wq, &w.worker);
1652
1653        wait_event(w.wait, atomic_read(&w.complete));
1654}
1655
1656/*----------------------------------------------------------------*/
1657
1658static enum pool_mode get_pool_mode(struct pool *pool)
1659{
1660        return pool->pf.mode;
1661}
1662
1663static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1664{
1665        dm_table_event(pool->ti->table);
1666        DMINFO("%s: switching pool to %s mode",
1667               dm_device_name(pool->pool_md), new_mode);
1668}
1669
1670static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1671{
1672        struct pool_c *pt = pool->ti->private;
1673        bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1674        enum pool_mode old_mode = get_pool_mode(pool);
1675        unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1676
1677        /*
1678         * Never allow the pool to transition to PM_WRITE mode if user
1679         * intervention is required to verify metadata and data consistency.
1680         */
1681        if (new_mode == PM_WRITE && needs_check) {
1682                DMERR("%s: unable to switch pool to write mode until repaired.",
1683                      dm_device_name(pool->pool_md));
1684                if (old_mode != new_mode)
1685                        new_mode = old_mode;
1686                else
1687                        new_mode = PM_READ_ONLY;
1688        }
1689        /*
1690         * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1691         * not going to recover without a thin_repair.  So we never let the
1692         * pool move out of the old mode.
1693         */
1694        if (old_mode == PM_FAIL)
1695                new_mode = old_mode;
1696
1697        switch (new_mode) {
1698        case PM_FAIL:
1699                if (old_mode != new_mode)
1700                        notify_of_pool_mode_change(pool, "failure");
1701                dm_pool_metadata_read_only(pool->pmd);
1702                pool->process_bio = process_bio_fail;
1703                pool->process_discard = process_bio_fail;
1704                pool->process_prepared_mapping = process_prepared_mapping_fail;
1705                pool->process_prepared_discard = process_prepared_discard_fail;
1706
1707                error_retry_list(pool);
1708                break;
1709
1710        case PM_READ_ONLY:
1711                if (old_mode != new_mode)
1712                        notify_of_pool_mode_change(pool, "read-only");
1713                dm_pool_metadata_read_only(pool->pmd);
1714                pool->process_bio = process_bio_read_only;
1715                pool->process_discard = process_bio_success;
1716                pool->process_prepared_mapping = process_prepared_mapping_fail;
1717                pool->process_prepared_discard = process_prepared_discard_passdown;
1718
1719                error_retry_list(pool);
1720                break;
1721
1722        case PM_OUT_OF_DATA_SPACE:
1723                /*
1724                 * Ideally we'd never hit this state; the low water mark
1725                 * would trigger userland to extend the pool before we
1726                 * completely run out of data space.  However, many small
1727                 * IOs to unprovisioned space can consume data space at an
1728                 * alarming rate.  Adjust your low water mark if you're
1729                 * frequently seeing this mode.
1730                 */
1731                if (old_mode != new_mode)
1732                        notify_of_pool_mode_change(pool, "out-of-data-space");
1733                pool->process_bio = process_bio_read_only;
1734                pool->process_discard = process_discard;
1735                pool->process_prepared_mapping = process_prepared_mapping;
1736                pool->process_prepared_discard = process_prepared_discard_passdown;
1737
1738                if (!pool->pf.error_if_no_space && no_space_timeout)
1739                        queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1740                break;
1741
1742        case PM_WRITE:
1743                if (old_mode != new_mode)
1744                        notify_of_pool_mode_change(pool, "write");
1745                dm_pool_metadata_read_write(pool->pmd);
1746                pool->process_bio = process_bio;
1747                pool->process_discard = process_discard;
1748                pool->process_prepared_mapping = process_prepared_mapping;
1749                pool->process_prepared_discard = process_prepared_discard;
1750                break;
1751        }
1752
1753        pool->pf.mode = new_mode;
1754        /*
1755         * The pool mode may have changed, sync it so bind_control_target()
1756         * doesn't cause an unexpected mode transition on resume.
1757         */
1758        pt->adjusted_pf.mode = new_mode;
1759}
1760
1761static void abort_transaction(struct pool *pool)
1762{
1763        const char *dev_name = dm_device_name(pool->pool_md);
1764
1765        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1766        if (dm_pool_abort_metadata(pool->pmd)) {
1767                DMERR("%s: failed to abort metadata transaction", dev_name);
1768                set_pool_mode(pool, PM_FAIL);
1769        }
1770
1771        if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1772                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1773                set_pool_mode(pool, PM_FAIL);
1774        }
1775}
1776
1777static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1778{
1779        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1780                    dm_device_name(pool->pool_md), op, r);
1781
1782        abort_transaction(pool);
1783        set_pool_mode(pool, PM_READ_ONLY);
1784}
1785
1786/*----------------------------------------------------------------*/
1787
1788/*
1789 * Mapping functions.
1790 */
1791
1792/*
1793 * Called only while mapping a thin bio to hand it over to the workqueue.
1794 */
1795static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1796{
1797        unsigned long flags;
1798        struct pool *pool = tc->pool;
1799
1800        spin_lock_irqsave(&tc->lock, flags);
1801        bio_list_add(&tc->deferred_bio_list, bio);
1802        spin_unlock_irqrestore(&tc->lock, flags);
1803
1804        wake_worker(pool);
1805}
1806
1807static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1808{
1809        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1810
1811        h->tc = tc;
1812        h->shared_read_entry = NULL;
1813        h->all_io_entry = NULL;
1814        h->overwrite_mapping = NULL;
1815}
1816
1817/*
1818 * Non-blocking function called from the thin target's map function.
1819 */
1820static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1821{
1822        int r;
1823        struct thin_c *tc = ti->private;
1824        dm_block_t block = get_bio_block(tc, bio);
1825        struct dm_thin_device *td = tc->td;
1826        struct dm_thin_lookup_result result;
1827        struct dm_bio_prison_cell cell1, cell2;
1828        struct dm_bio_prison_cell *cell_result;
1829        struct dm_cell_key key;
1830
1831        thin_hook_bio(tc, bio);
1832
1833        if (tc->requeue_mode) {
1834                bio_endio(bio, DM_ENDIO_REQUEUE);
1835                return DM_MAPIO_SUBMITTED;
1836        }
1837
1838        if (get_pool_mode(tc->pool) == PM_FAIL) {
1839                bio_io_error(bio);
1840                return DM_MAPIO_SUBMITTED;
1841        }
1842
1843        if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1844                thin_defer_bio(tc, bio);
1845                return DM_MAPIO_SUBMITTED;
1846        }
1847
1848        r = dm_thin_find_block(td, block, 0, &result);
1849
1850        /*
1851         * Note that we defer readahead too.
1852         */
1853        switch (r) {
1854        case 0:
1855                if (unlikely(result.shared)) {
1856                        /*
1857                         * We have a race condition here between the
1858                         * result.shared value returned by the lookup and
1859                         * snapshot creation, which may cause new
1860                         * sharing.
1861                         *
1862                         * To avoid this always quiesce the origin before
1863                         * taking the snap.  You want to do this anyway to
1864                         * ensure a consistent application view
1865                         * (i.e. lockfs).
1866                         *
1867                         * More distant ancestors are irrelevant. The
1868                         * shared flag will be set in their case.
1869                         */
1870                        thin_defer_bio(tc, bio);
1871                        return DM_MAPIO_SUBMITTED;
1872                }
1873
1874                build_virtual_key(tc->td, block, &key);
1875                if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1876                        return DM_MAPIO_SUBMITTED;
1877
1878                build_data_key(tc->td, result.block, &key);
1879                if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1880                        cell_defer_no_holder_no_free(tc, &cell1);
1881                        return DM_MAPIO_SUBMITTED;
1882                }
1883
1884                inc_all_io_entry(tc->pool, bio);
1885                cell_defer_no_holder_no_free(tc, &cell2);
1886                cell_defer_no_holder_no_free(tc, &cell1);
1887
1888                remap(tc, bio, result.block);
1889                return DM_MAPIO_REMAPPED;
1890
1891        case -ENODATA:
1892                if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1893                        /*
1894                         * This block isn't provisioned, and we have no way
1895                         * of doing so.
1896                         */
1897                        handle_unserviceable_bio(tc->pool, bio);
1898                        return DM_MAPIO_SUBMITTED;
1899                }
1900                /* fall through */
1901
1902        case -EWOULDBLOCK:
1903                /*
1904                 * In future, the failed dm_thin_find_block above could
1905                 * provide the hint to load the metadata into cache.
1906                 */
1907                thin_defer_bio(tc, bio);
1908                return DM_MAPIO_SUBMITTED;
1909
1910        default:
1911                /*
1912                 * Must always call bio_io_error on failure.
1913                 * dm_thin_find_block can fail with -EINVAL if the
1914                 * pool is switched to fail-io mode.
1915                 */
1916                bio_io_error(bio);
1917                return DM_MAPIO_SUBMITTED;
1918        }
1919}
1920
1921static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1922{
1923        struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1924        struct request_queue *q;
1925
1926        if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1927                return 1;
1928
1929        q = bdev_get_queue(pt->data_dev->bdev);
1930        return bdi_congested(&q->backing_dev_info, bdi_bits);
1931}
1932
1933static void requeue_bios(struct pool *pool)
1934{
1935        unsigned long flags;
1936        struct thin_c *tc;
1937
1938        rcu_read_lock();
1939        list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1940                spin_lock_irqsave(&tc->lock, flags);
1941                bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1942                bio_list_init(&tc->retry_on_resume_list);
1943                spin_unlock_irqrestore(&tc->lock, flags);
1944        }
1945        rcu_read_unlock();
1946}
1947
1948/*----------------------------------------------------------------
1949 * Binding of control targets to a pool object
1950 *--------------------------------------------------------------*/
1951static bool data_dev_supports_discard(struct pool_c *pt)
1952{
1953        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1954
1955        return q && blk_queue_discard(q);
1956}
1957
1958static bool is_factor(sector_t block_size, uint32_t n)
1959{
1960        return !sector_div(block_size, n);
1961}
1962
1963/*
1964 * If discard_passdown was enabled verify that the data device
1965 * supports discards.  Disable discard_passdown if not.
1966 */
1967static void disable_passdown_if_not_supported(struct pool_c *pt)
1968{
1969        struct pool *pool = pt->pool;
1970        struct block_device *data_bdev = pt->data_dev->bdev;
1971        struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1972        sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1973        const char *reason = NULL;
1974        char buf[BDEVNAME_SIZE];
1975
1976        if (!pt->adjusted_pf.discard_passdown)
1977                return;
1978
1979        if (!data_dev_supports_discard(pt))
1980                reason = "discard unsupported";
1981
1982        else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1983                reason = "max discard sectors smaller than a block";
1984
1985        else if (data_limits->discard_granularity > block_size)
1986                reason = "discard granularity larger than a block";
1987
1988        else if (!is_factor(block_size, data_limits->discard_granularity))
1989                reason = "discard granularity not a factor of block size";
1990
1991        if (reason) {
1992                DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1993                pt->adjusted_pf.discard_passdown = false;
1994        }
1995}
1996
1997static int bind_control_target(struct pool *pool, struct dm_target *ti)
1998{
1999        struct pool_c *pt = ti->private;
2000
2001        /*
2002         * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2003         */
2004        enum pool_mode old_mode = get_pool_mode(pool);
2005        enum pool_mode new_mode = pt->adjusted_pf.mode;
2006
2007        /*
2008         * Don't change the pool's mode until set_pool_mode() below.
2009         * Otherwise the pool's process_* function pointers may
2010         * not match the desired pool mode.
2011         */
2012        pt->adjusted_pf.mode = old_mode;
2013
2014        pool->ti = ti;
2015        pool->pf = pt->adjusted_pf;
2016        pool->low_water_blocks = pt->low_water_blocks;
2017
2018        set_pool_mode(pool, new_mode);
2019
2020        return 0;
2021}
2022
2023static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2024{
2025        if (pool->ti == ti)
2026                pool->ti = NULL;
2027}
2028
2029/*----------------------------------------------------------------
2030 * Pool creation
2031 *--------------------------------------------------------------*/
2032/* Initialize pool features. */
2033static void pool_features_init(struct pool_features *pf)
2034{
2035        pf->mode = PM_WRITE;
2036        pf->zero_new_blocks = true;
2037        pf->discard_enabled = true;
2038        pf->discard_passdown = true;
2039        pf->error_if_no_space = false;
2040}
2041
2042static void __pool_destroy(struct pool *pool)
2043{
2044        __pool_table_remove(pool);
2045
2046        if (dm_pool_metadata_close(pool->pmd) < 0)
2047                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2048
2049        dm_bio_prison_destroy(pool->prison);
2050        dm_kcopyd_client_destroy(pool->copier);
2051
2052        if (pool->wq)
2053                destroy_workqueue(pool->wq);
2054
2055        if (pool->next_mapping)
2056                mempool_free(pool->next_mapping, pool->mapping_pool);
2057        mempool_destroy(pool->mapping_pool);
2058        dm_deferred_set_destroy(pool->shared_read_ds);
2059        dm_deferred_set_destroy(pool->all_io_ds);
2060        kfree(pool);
2061}
2062
2063static struct kmem_cache *_new_mapping_cache;
2064
2065static struct pool *pool_create(struct mapped_device *pool_md,
2066                                struct block_device *metadata_dev,
2067                                unsigned long block_size,
2068                                int read_only, char **error)
2069{
2070        int r;
2071        void *err_p;
2072        struct pool *pool;
2073        struct dm_pool_metadata *pmd;
2074        bool format_device = read_only ? false : true;
2075
2076        pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2077        if (IS_ERR(pmd)) {
2078                *error = "Error creating metadata object";
2079                return (struct pool *)pmd;
2080        }
2081
2082        pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2083        if (!pool) {
2084                *error = "Error allocating memory for pool";
2085                err_p = ERR_PTR(-ENOMEM);
2086                goto bad_pool;
2087        }
2088
2089        pool->pmd = pmd;
2090        pool->sectors_per_block = block_size;
2091        if (block_size & (block_size - 1))
2092                pool->sectors_per_block_shift = -1;
2093        else
2094                pool->sectors_per_block_shift = __ffs(block_size);
2095        pool->low_water_blocks = 0;
2096        pool_features_init(&pool->pf);
2097        pool->prison = dm_bio_prison_create(PRISON_CELLS);
2098        if (!pool->prison) {
2099                *error = "Error creating pool's bio prison";
2100                err_p = ERR_PTR(-ENOMEM);
2101                goto bad_prison;
2102        }
2103
2104        pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2105        if (IS_ERR(pool->copier)) {
2106                r = PTR_ERR(pool->copier);
2107                *error = "Error creating pool's kcopyd client";
2108                err_p = ERR_PTR(r);
2109                goto bad_kcopyd_client;
2110        }
2111
2112        /*
2113         * Create singlethreaded workqueue that will service all devices
2114         * that use this metadata.
2115         */
2116        pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2117        if (!pool->wq) {
2118                *error = "Error creating pool's workqueue";
2119                err_p = ERR_PTR(-ENOMEM);
2120                goto bad_wq;
2121        }
2122
2123        INIT_WORK(&pool->worker, do_worker);
2124        INIT_DELAYED_WORK(&pool->waker, do_waker);
2125        INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2126        spin_lock_init(&pool->lock);
2127        bio_list_init(&pool->deferred_flush_bios);
2128        INIT_LIST_HEAD(&pool->prepared_mappings);
2129        INIT_LIST_HEAD(&pool->prepared_discards);
2130        INIT_LIST_HEAD(&pool->active_thins);
2131        pool->low_water_triggered = false;
2132
2133        pool->shared_read_ds = dm_deferred_set_create();
2134        if (!pool->shared_read_ds) {
2135                *error = "Error creating pool's shared read deferred set";
2136                err_p = ERR_PTR(-ENOMEM);
2137                goto bad_shared_read_ds;
2138        }
2139
2140        pool->all_io_ds = dm_deferred_set_create();
2141        if (!pool->all_io_ds) {
2142                *error = "Error creating pool's all io deferred set";
2143                err_p = ERR_PTR(-ENOMEM);
2144                goto bad_all_io_ds;
2145        }
2146
2147        pool->next_mapping = NULL;
2148        pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2149                                                      _new_mapping_cache);
2150        if (!pool->mapping_pool) {
2151                *error = "Error creating pool's mapping mempool";
2152                err_p = ERR_PTR(-ENOMEM);
2153                goto bad_mapping_pool;
2154        }
2155
2156        pool->ref_count = 1;
2157        pool->last_commit_jiffies = jiffies;
2158        pool->pool_md = pool_md;
2159        pool->md_dev = metadata_dev;
2160        __pool_table_insert(pool);
2161
2162        return pool;
2163
2164bad_mapping_pool:
2165        dm_deferred_set_destroy(pool->all_io_ds);
2166bad_all_io_ds:
2167        dm_deferred_set_destroy(pool->shared_read_ds);
2168bad_shared_read_ds:
2169        destroy_workqueue(pool->wq);
2170bad_wq:
2171        dm_kcopyd_client_destroy(pool->copier);
2172bad_kcopyd_client:
2173        dm_bio_prison_destroy(pool->prison);
2174bad_prison:
2175        kfree(pool);
2176bad_pool:
2177        if (dm_pool_metadata_close(pmd))
2178                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2179
2180        return err_p;
2181}
2182
2183static void __pool_inc(struct pool *pool)
2184{
2185        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2186        pool->ref_count++;
2187}
2188
2189static void __pool_dec(struct pool *pool)
2190{
2191        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2192        BUG_ON(!pool->ref_count);
2193        if (!--pool->ref_count)
2194                __pool_destroy(pool);
2195}
2196
2197static struct pool *__pool_find(struct mapped_device *pool_md,
2198                                struct block_device *metadata_dev,
2199                                unsigned long block_size, int read_only,
2200                                char **error, int *created)
2201{
2202        struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2203
2204        if (pool) {
2205                if (pool->pool_md != pool_md) {
2206                        *error = "metadata device already in use by a pool";
2207                        return ERR_PTR(-EBUSY);
2208                }
2209                __pool_inc(pool);
2210
2211        } else {
2212                pool = __pool_table_lookup(pool_md);
2213                if (pool) {
2214                        if (pool->md_dev != metadata_dev) {
2215                                *error = "different pool cannot replace a pool";
2216                                return ERR_PTR(-EINVAL);
2217                        }
2218                        __pool_inc(pool);
2219
2220                } else {
2221                        pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2222                        *created = 1;
2223                }
2224        }
2225
2226        return pool;
2227}
2228
2229/*----------------------------------------------------------------
2230 * Pool target methods
2231 *--------------------------------------------------------------*/
2232static void pool_dtr(struct dm_target *ti)
2233{
2234        struct pool_c *pt = ti->private;
2235
2236        mutex_lock(&dm_thin_pool_table.mutex);
2237
2238        unbind_control_target(pt->pool, ti);
2239        __pool_dec(pt->pool);
2240        dm_put_device(ti, pt->metadata_dev);
2241        dm_put_device(ti, pt->data_dev);
2242        kfree(pt);
2243
2244        mutex_unlock(&dm_thin_pool_table.mutex);
2245}
2246
2247static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2248                               struct dm_target *ti)
2249{
2250        int r;
2251        unsigned argc;
2252        const char *arg_name;
2253
2254        static struct dm_arg _args[] = {
2255                {0, 4, "Invalid number of pool feature arguments"},
2256        };
2257
2258        /*
2259         * No feature arguments supplied.
2260         */
2261        if (!as->argc)
2262                return 0;
2263
2264        r = dm_read_arg_group(_args, as, &argc, &ti->error);
2265        if (r)
2266                return -EINVAL;
2267
2268        while (argc && !r) {
2269                arg_name = dm_shift_arg(as);
2270                argc--;
2271
2272                if (!strcasecmp(arg_name, "skip_block_zeroing"))
2273                        pf->zero_new_blocks = false;
2274
2275                else if (!strcasecmp(arg_name, "ignore_discard"))
2276                        pf->discard_enabled = false;
2277
2278                else if (!strcasecmp(arg_name, "no_discard_passdown"))
2279                        pf->discard_passdown = false;
2280
2281                else if (!strcasecmp(arg_name, "read_only"))
2282                        pf->mode = PM_READ_ONLY;
2283
2284                else if (!strcasecmp(arg_name, "error_if_no_space"))
2285                        pf->error_if_no_space = true;
2286
2287                else {
2288                        ti->error = "Unrecognised pool feature requested";
2289                        r = -EINVAL;
2290                        break;
2291                }
2292        }
2293
2294        return r;
2295}
2296
2297static void metadata_low_callback(void *context)
2298{
2299        struct pool *pool = context;
2300
2301        DMWARN("%s: reached low water mark for metadata device: sending event.",
2302               dm_device_name(pool->pool_md));
2303
2304        dm_table_event(pool->ti->table);
2305}
2306
2307static sector_t get_dev_size(struct block_device *bdev)
2308{
2309        return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2310}
2311
2312static void warn_if_metadata_device_too_big(struct block_device *bdev)
2313{
2314        sector_t metadata_dev_size = get_dev_size(bdev);
2315        char buffer[BDEVNAME_SIZE];
2316
2317        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2318                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2319                       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2320}
2321
2322static sector_t get_metadata_dev_size(struct block_device *bdev)
2323{
2324        sector_t metadata_dev_size = get_dev_size(bdev);
2325
2326        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2327                metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2328
2329        return metadata_dev_size;
2330}
2331
2332static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2333{
2334        sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2335
2336        sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2337
2338        return metadata_dev_size;
2339}
2340
2341/*
2342 * When a metadata threshold is crossed a dm event is triggered, and
2343 * userland should respond by growing the metadata device.  We could let
2344 * userland set the threshold, like we do with the data threshold, but I'm
2345 * not sure they know enough to do this well.
2346 */
2347static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2348{
2349        /*
2350         * 4M is ample for all ops with the possible exception of thin
2351         * device deletion which is harmless if it fails (just retry the
2352         * delete after you've grown the device).
2353         */
2354        dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2355        return min((dm_block_t)1024ULL /* 4M */, quarter);
2356}
2357
2358/*
2359 * thin-pool <metadata dev> <data dev>
2360 *           <data block size (sectors)>
2361 *           <low water mark (blocks)>
2362 *           [<#feature args> [<arg>]*]
2363 *
2364 * Optional feature arguments are:
2365 *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2366 *           ignore_discard: disable discard
2367 *           no_discard_passdown: don't pass discards down to the data device
2368 *           read_only: Don't allow any changes to be made to the pool metadata.
2369 *           error_if_no_space: error IOs, instead of queueing, if no space.
2370 */
2371static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2372{
2373        int r, pool_created = 0;
2374        struct pool_c *pt;
2375        struct pool *pool;
2376        struct pool_features pf;
2377        struct dm_arg_set as;
2378        struct dm_dev *data_dev;
2379        unsigned long block_size;
2380        dm_block_t low_water_blocks;
2381        struct dm_dev *metadata_dev;
2382        fmode_t metadata_mode;
2383
2384        /*
2385         * FIXME Remove validation from scope of lock.
2386         */
2387        mutex_lock(&dm_thin_pool_table.mutex);
2388
2389        if (argc < 4) {
2390                ti->error = "Invalid argument count";
2391                r = -EINVAL;
2392                goto out_unlock;
2393        }
2394
2395        as.argc = argc;
2396        as.argv = argv;
2397
2398        /*
2399         * Set default pool features.
2400         */
2401        pool_features_init(&pf);
2402
2403        dm_consume_args(&as, 4);
2404        r = parse_pool_features(&as, &pf, ti);
2405        if (r)
2406                goto out_unlock;
2407
2408        metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2409        r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2410        if (r) {
2411                ti->error = "Error opening metadata block device";
2412                goto out_unlock;
2413        }
2414        warn_if_metadata_device_too_big(metadata_dev->bdev);
2415
2416        r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2417        if (r) {
2418                ti->error = "Error getting data device";
2419                goto out_metadata;
2420        }
2421
2422        if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2423            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2424            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2425            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2426                ti->error = "Invalid block size";
2427                r = -EINVAL;
2428                goto out;
2429        }
2430
2431        if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2432                ti->error = "Invalid low water mark";
2433                r = -EINVAL;
2434                goto out;
2435        }
2436
2437        pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2438        if (!pt) {
2439                r = -ENOMEM;
2440                goto out;
2441        }
2442
2443        pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2444                           block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2445        if (IS_ERR(pool)) {
2446                r = PTR_ERR(pool);
2447                goto out_free_pt;
2448        }
2449
2450        /*
2451         * 'pool_created' reflects whether this is the first table load.
2452         * Top level discard support is not allowed to be changed after
2453         * initial load.  This would require a pool reload to trigger thin
2454         * device changes.
2455         */
2456        if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2457                ti->error = "Discard support cannot be disabled once enabled";
2458                r = -EINVAL;
2459                goto out_flags_changed;
2460        }
2461
2462        pt->pool = pool;
2463        pt->ti = ti;
2464        pt->metadata_dev = metadata_dev;
2465        pt->data_dev = data_dev;
2466        pt->low_water_blocks = low_water_blocks;
2467        pt->adjusted_pf = pt->requested_pf = pf;
2468        ti->num_flush_bios = 1;
2469
2470        /*
2471         * Only need to enable discards if the pool should pass
2472         * them down to the data device.  The thin device's discard
2473         * processing will cause mappings to be removed from the btree.
2474         */
2475        ti->discard_zeroes_data_unsupported = true;
2476        if (pf.discard_enabled && pf.discard_passdown) {
2477                ti->num_discard_bios = 1;
2478
2479                /*
2480                 * Setting 'discards_supported' circumvents the normal
2481                 * stacking of discard limits (this keeps the pool and
2482                 * thin devices' discard limits consistent).
2483                 */
2484                ti->discards_supported = true;
2485        }
2486        ti->private = pt;
2487
2488        r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2489                                                calc_metadata_threshold(pt),
2490                                                metadata_low_callback,
2491                                                pool);
2492        if (r)
2493                goto out_free_pt;
2494
2495        pt->callbacks.congested_fn = pool_is_congested;
2496        dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2497
2498        mutex_unlock(&dm_thin_pool_table.mutex);
2499
2500        return 0;
2501
2502out_flags_changed:
2503        __pool_dec(pool);
2504out_free_pt:
2505        kfree(pt);
2506out:
2507        dm_put_device(ti, data_dev);
2508out_metadata:
2509        dm_put_device(ti, metadata_dev);
2510out_unlock:
2511        mutex_unlock(&dm_thin_pool_table.mutex);
2512
2513        return r;
2514}
2515
2516static int pool_map(struct dm_target *ti, struct bio *bio)
2517{
2518        int r;
2519        struct pool_c *pt = ti->private;
2520        struct pool *pool = pt->pool;
2521        unsigned long flags;
2522
2523        /*
2524         * As this is a singleton target, ti->begin is always zero.
2525         */
2526        spin_lock_irqsave(&pool->lock, flags);
2527        bio->bi_bdev = pt->data_dev->bdev;
2528        r = DM_MAPIO_REMAPPED;
2529        spin_unlock_irqrestore(&pool->lock, flags);
2530
2531        return r;
2532}
2533
2534static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2535{
2536        int r;
2537        struct pool_c *pt = ti->private;
2538        struct pool *pool = pt->pool;
2539        sector_t data_size = ti->len;
2540        dm_block_t sb_data_size;
2541
2542        *need_commit = false;
2543
2544        (void) sector_div(data_size, pool->sectors_per_block);
2545
2546        r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2547        if (r) {
2548                DMERR("%s: failed to retrieve data device size",
2549                      dm_device_name(pool->pool_md));
2550                return r;
2551        }
2552
2553        if (data_size < sb_data_size) {
2554                DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2555                      dm_device_name(pool->pool_md),
2556                      (unsigned long long)data_size, sb_data_size);
2557                return -EINVAL;
2558
2559        } else if (data_size > sb_data_size) {
2560                if (dm_pool_metadata_needs_check(pool->pmd)) {
2561                        DMERR("%s: unable to grow the data device until repaired.",
2562                              dm_device_name(pool->pool_md));
2563                        return 0;
2564                }
2565
2566                if (sb_data_size)
2567                        DMINFO("%s: growing the data device from %llu to %llu blocks",
2568                               dm_device_name(pool->pool_md),
2569                               sb_data_size, (unsigned long long)data_size);
2570                r = dm_pool_resize_data_dev(pool->pmd, data_size);
2571                if (r) {
2572                        metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2573                        return r;
2574                }
2575
2576                *need_commit = true;
2577        }
2578
2579        return 0;
2580}
2581
2582static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2583{
2584        int r;
2585        struct pool_c *pt = ti->private;
2586        struct pool *pool = pt->pool;
2587        dm_block_t metadata_dev_size, sb_metadata_dev_size;
2588
2589        *need_commit = false;
2590
2591        metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2592
2593        r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2594        if (r) {
2595                DMERR("%s: failed to retrieve metadata device size",
2596                      dm_device_name(pool->pool_md));
2597                return r;
2598        }
2599
2600        if (metadata_dev_size < sb_metadata_dev_size) {
2601                DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2602                      dm_device_name(pool->pool_md),
2603                      metadata_dev_size, sb_metadata_dev_size);
2604                return -EINVAL;
2605
2606        } else if (metadata_dev_size > sb_metadata_dev_size) {
2607                if (dm_pool_metadata_needs_check(pool->pmd)) {
2608                        DMERR("%s: unable to grow the metadata device until repaired.",
2609                              dm_device_name(pool->pool_md));
2610                        return 0;
2611                }
2612
2613                warn_if_metadata_device_too_big(pool->md_dev);
2614                DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2615                       dm_device_name(pool->pool_md),
2616                       sb_metadata_dev_size, metadata_dev_size);
2617                r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2618                if (r) {
2619                        metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2620                        return r;
2621                }
2622
2623                *need_commit = true;
2624        }
2625
2626        return 0;
2627}
2628
2629/*
2630 * Retrieves the number of blocks of the data device from
2631 * the superblock and compares it to the actual device size,
2632 * thus resizing the data device in case it has grown.
2633 *
2634 * This both copes with opening preallocated data devices in the ctr
2635 * being followed by a resume
2636 * -and-
2637 * calling the resume method individually after userspace has
2638 * grown the data device in reaction to a table event.
2639 */
2640static int pool_preresume(struct dm_target *ti)
2641{
2642        int r;
2643        bool need_commit1, need_commit2;
2644        struct pool_c *pt = ti->private;
2645        struct pool *pool = pt->pool;
2646
2647        /*
2648         * Take control of the pool object.
2649         */
2650        r = bind_control_target(pool, ti);
2651        if (r)
2652                return r;
2653
2654        r = maybe_resize_data_dev(ti, &need_commit1);
2655        if (r)
2656                return r;
2657
2658        r = maybe_resize_metadata_dev(ti, &need_commit2);
2659        if (r)
2660                return r;
2661
2662        if (need_commit1 || need_commit2)
2663                (void) commit(pool);
2664
2665        return 0;
2666}
2667
2668static void pool_resume(struct dm_target *ti)
2669{
2670        struct pool_c *pt = ti->private;
2671        struct pool *pool = pt->pool;
2672        unsigned long flags;
2673
2674        spin_lock_irqsave(&pool->lock, flags);
2675        pool->low_water_triggered = false;
2676        spin_unlock_irqrestore(&pool->lock, flags);
2677        requeue_bios(pool);
2678
2679        do_waker(&pool->waker.work);
2680}
2681
2682static void pool_postsuspend(struct dm_target *ti)
2683{
2684        struct pool_c *pt = ti->private;
2685        struct pool *pool = pt->pool;
2686
2687        cancel_delayed_work(&pool->waker);
2688        cancel_delayed_work(&pool->no_space_timeout);
2689        flush_workqueue(pool->wq);
2690        (void) commit(pool);
2691}
2692
2693static int check_arg_count(unsigned argc, unsigned args_required)
2694{
2695        if (argc != args_required) {
2696                DMWARN("Message received with %u arguments instead of %u.",
2697                       argc, args_required);
2698                return -EINVAL;
2699        }
2700
2701        return 0;
2702}
2703
2704static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2705{
2706        if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2707            *dev_id <= MAX_DEV_ID)
2708                return 0;
2709
2710        if (warning)
2711                DMWARN("Message received with invalid device id: %s", arg);
2712
2713        return -EINVAL;
2714}
2715
2716static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2717{
2718        dm_thin_id dev_id;
2719        int r;
2720
2721        r = check_arg_count(argc, 2);
2722        if (r)
2723                return r;
2724
2725        r = read_dev_id(argv[1], &dev_id, 1);
2726        if (r)
2727                return r;
2728
2729        r = dm_pool_create_thin(pool->pmd, dev_id);
2730        if (r) {
2731                DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2732                       argv[1]);
2733                return r;
2734        }
2735
2736        return 0;
2737}
2738
2739static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2740{
2741        dm_thin_id dev_id;
2742        dm_thin_id origin_dev_id;
2743        int r;
2744
2745        r = check_arg_count(argc, 3);
2746        if (r)
2747                return r;
2748
2749        r = read_dev_id(argv[1], &dev_id, 1);
2750        if (r)
2751                return r;
2752
2753        r = read_dev_id(argv[2], &origin_dev_id, 1);
2754        if (r)
2755                return r;
2756
2757        r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2758        if (r) {
2759                DMWARN("Creation of new snapshot %s of device %s failed.",
2760                       argv[1], argv[2]);
2761                return r;
2762        }
2763
2764        return 0;
2765}
2766
2767static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2768{
2769        dm_thin_id dev_id;
2770        int r;
2771
2772        r = check_arg_count(argc, 2);
2773        if (r)
2774                return r;
2775
2776        r = read_dev_id(argv[1], &dev_id, 1);
2777        if (r)
2778                return r;
2779
2780        r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2781        if (r)
2782                DMWARN("Deletion of thin device %s failed.", argv[1]);
2783
2784        return r;
2785}
2786
2787static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2788{
2789        dm_thin_id old_id, new_id;
2790        int r;
2791
2792        r = check_arg_count(argc, 3);
2793        if (r)
2794                return r;
2795
2796        if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2797                DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2798                return -EINVAL;
2799        }
2800
2801        if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2802                DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2803                return -EINVAL;
2804        }
2805
2806        r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2807        if (r) {
2808                DMWARN("Failed to change transaction id from %s to %s.",
2809                       argv[1], argv[2]);
2810                return r;
2811        }
2812
2813        return 0;
2814}
2815
2816static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2817{
2818        int r;
2819
2820        r = check_arg_count(argc, 1);
2821        if (r)
2822                return r;
2823
2824        (void) commit(pool);
2825
2826        r = dm_pool_reserve_metadata_snap(pool->pmd);
2827        if (r)
2828                DMWARN("reserve_metadata_snap message failed.");
2829
2830        return r;
2831}
2832
2833static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2834{
2835        int r;
2836
2837        r = check_arg_count(argc, 1);
2838        if (r)
2839                return r;
2840
2841        r = dm_pool_release_metadata_snap(pool->pmd);
2842        if (r)
2843                DMWARN("release_metadata_snap message failed.");
2844
2845        return r;
2846}
2847
2848/*
2849 * Messages supported:
2850 *   create_thin        <dev_id>
2851 *   create_snap        <dev_id> <origin_id>
2852 *   delete             <dev_id>
2853 *   trim               <dev_id> <new_size_in_sectors>
2854 *   set_transaction_id <current_trans_id> <new_trans_id>
2855 *   reserve_metadata_snap
2856 *   release_metadata_snap
2857 */
2858static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2859{
2860        int r = -EINVAL;
2861        struct pool_c *pt = ti->private;
2862        struct pool *pool = pt->pool;
2863
2864        if (!strcasecmp(argv[0], "create_thin"))
2865                r = process_create_thin_mesg(argc, argv, pool);
2866
2867        else if (!strcasecmp(argv[0], "create_snap"))
2868                r = process_create_snap_mesg(argc, argv, pool);
2869
2870        else if (!strcasecmp(argv[0], "delete"))
2871                r = process_delete_mesg(argc, argv, pool);
2872
2873        else if (!strcasecmp(argv[0], "set_transaction_id"))
2874                r = process_set_transaction_id_mesg(argc, argv, pool);
2875
2876        else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2877                r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2878
2879        else if (!strcasecmp(argv[0], "release_metadata_snap"))
2880                r = process_release_metadata_snap_mesg(argc, argv, pool);
2881
2882        else
2883                DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2884
2885        if (!r)
2886                (void) commit(pool);
2887
2888        return r;
2889}
2890
2891static void emit_flags(struct pool_features *pf, char *result,
2892                       unsigned sz, unsigned maxlen)
2893{
2894        unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2895                !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2896                pf->error_if_no_space;
2897        DMEMIT("%u ", count);
2898
2899        if (!pf->zero_new_blocks)
2900                DMEMIT("skip_block_zeroing ");
2901
2902        if (!pf->discard_enabled)
2903                DMEMIT("ignore_discard ");
2904
2905        if (!pf->discard_passdown)
2906                DMEMIT("no_discard_passdown ");
2907
2908        if (pf->mode == PM_READ_ONLY)
2909                DMEMIT("read_only ");
2910
2911        if (pf->error_if_no_space)
2912                DMEMIT("error_if_no_space ");
2913}
2914
2915/*
2916 * Status line is:
2917 *    <transaction id> <used metadata sectors>/<total metadata sectors>
2918 *    <used data sectors>/<total data sectors> <held metadata root>
2919 */
2920static void pool_status(struct dm_target *ti, status_type_t type,
2921                        unsigned status_flags, char *result, unsigned maxlen)
2922{
2923        int r;
2924        unsigned sz = 0;
2925        uint64_t transaction_id;
2926        dm_block_t nr_free_blocks_data;
2927        dm_block_t nr_free_blocks_metadata;
2928        dm_block_t nr_blocks_data;
2929        dm_block_t nr_blocks_metadata;
2930        dm_block_t held_root;
2931        char buf[BDEVNAME_SIZE];
2932        char buf2[BDEVNAME_SIZE];
2933        struct pool_c *pt = ti->private;
2934        struct pool *pool = pt->pool;
2935
2936        switch (type) {
2937        case STATUSTYPE_INFO:
2938                if (get_pool_mode(pool) == PM_FAIL) {
2939                        DMEMIT("Fail");
2940                        break;
2941                }
2942
2943                /* Commit to ensure statistics aren't out-of-date */
2944                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2945                        (void) commit(pool);
2946
2947                r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2948                if (r) {
2949                        DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2950                              dm_device_name(pool->pool_md), r);
2951                        goto err;
2952                }
2953
2954                r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2955                if (r) {
2956                        DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2957                              dm_device_name(pool->pool_md), r);
2958                        goto err;
2959                }
2960
2961                r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2962                if (r) {
2963                        DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2964                              dm_device_name(pool->pool_md), r);
2965                        goto err;
2966                }
2967
2968                r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2969                if (r) {
2970                        DMERR("%s: dm_pool_get_free_block_count returned %d",
2971                              dm_device_name(pool->pool_md), r);
2972                        goto err;
2973                }
2974
2975                r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2976                if (r) {
2977                        DMERR("%s: dm_pool_get_data_dev_size returned %d",
2978                              dm_device_name(pool->pool_md), r);
2979                        goto err;
2980                }
2981
2982                r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2983                if (r) {
2984                        DMERR("%s: dm_pool_get_metadata_snap returned %d",
2985                              dm_device_name(pool->pool_md), r);
2986                        goto err;
2987                }
2988
2989                DMEMIT("%llu %llu/%llu %llu/%llu ",
2990                       (unsigned long long)transaction_id,
2991                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2992                       (unsigned long long)nr_blocks_metadata,
2993                       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2994                       (unsigned long long)nr_blocks_data);
2995
2996                if (held_root)
2997                        DMEMIT("%llu ", held_root);
2998                else
2999                        DMEMIT("- ");
3000
3001                if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3002                        DMEMIT("out_of_data_space ");
3003                else if (pool->pf.mode == PM_READ_ONLY)
3004                        DMEMIT("ro ");
3005                else
3006                        DMEMIT("rw ");
3007
3008                if (!pool->pf.discard_enabled)
3009                        DMEMIT("ignore_discard ");
3010                else if (pool->pf.discard_passdown)
3011                        DMEMIT("discard_passdown ");
3012                else
3013                        DMEMIT("no_discard_passdown ");
3014
3015                if (pool->pf.error_if_no_space)
3016                        DMEMIT("error_if_no_space ");
3017                else
3018                        DMEMIT("queue_if_no_space ");
3019
3020                break;
3021
3022        case STATUSTYPE_TABLE:
3023                DMEMIT("%s %s %lu %llu ",
3024                       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3025                       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3026                       (unsigned long)pool->sectors_per_block,
3027                       (unsigned long long)pt->low_water_blocks);
3028                emit_flags(&pt->requested_pf, result, sz, maxlen);
3029                break;
3030        }
3031        return;
3032
3033err:
3034        DMEMIT("Error");
3035}
3036
3037static int pool_iterate_devices(struct dm_target *ti,
3038                                iterate_devices_callout_fn fn, void *data)
3039{
3040        struct pool_c *pt = ti->private;
3041
3042        return fn(ti, pt->data_dev, 0, ti->len, data);
3043}
3044
3045static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3046                      struct bio_vec *biovec, int max_size)
3047{
3048        struct pool_c *pt = ti->private;
3049        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3050
3051        if (!q->merge_bvec_fn)
3052                return max_size;
3053
3054        bvm->bi_bdev = pt->data_dev->bdev;
3055
3056        return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3057}
3058
3059static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3060{
3061        struct pool *pool = pt->pool;
3062        struct queue_limits *data_limits;
3063
3064        limits->max_discard_sectors = pool->sectors_per_block;
3065
3066        /*
3067         * discard_granularity is just a hint, and not enforced.
3068         */
3069        if (pt->adjusted_pf.discard_passdown) {
3070                data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3071                limits->discard_granularity = data_limits->discard_granularity;
3072        } else
3073                limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3074}
3075
3076static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3077{
3078        struct pool_c *pt = ti->private;
3079        struct pool *pool = pt->pool;
3080        uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3081
3082        /*
3083         * If the system-determined stacked limits are compatible with the
3084         * pool's blocksize (io_opt is a factor) do not override them.
3085         */
3086        if (io_opt_sectors < pool->sectors_per_block ||
3087            do_div(io_opt_sectors, pool->sectors_per_block)) {
3088                blk_limits_io_min(limits, 0);
3089                blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3090        }
3091
3092        /*
3093         * pt->adjusted_pf is a staging area for the actual features to use.
3094         * They get transferred to the live pool in bind_control_target()
3095         * called from pool_preresume().
3096         */
3097        if (!pt->adjusted_pf.discard_enabled) {
3098                /*
3099                 * Must explicitly disallow stacking discard limits otherwise the
3100                 * block layer will stack them if pool's data device has support.
3101                 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3102                 * user to see that, so make sure to set all discard limits to 0.
3103                 */
3104                limits->discard_granularity = 0;
3105                return;
3106        }
3107
3108        disable_passdown_if_not_supported(pt);
3109
3110        set_discard_limits(pt, limits);
3111}
3112
3113static struct target_type pool_target = {
3114        .name = "thin-pool",
3115        .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3116                    DM_TARGET_IMMUTABLE,
3117        .version = {1, 12, 0},
3118        .module = THIS_MODULE,
3119        .ctr = pool_ctr,
3120        .dtr = pool_dtr,
3121        .map = pool_map,
3122        .postsuspend = pool_postsuspend,
3123        .preresume = pool_preresume,
3124        .resume = pool_resume,
3125        .message = pool_message,
3126        .status = pool_status,
3127        .merge = pool_merge,
3128        .iterate_devices = pool_iterate_devices,
3129        .io_hints = pool_io_hints,
3130};
3131
3132/*----------------------------------------------------------------
3133 * Thin target methods
3134 *--------------------------------------------------------------*/
3135static void thin_get(struct thin_c *tc)
3136{
3137        atomic_inc(&tc->refcount);
3138}
3139
3140static void thin_put(struct thin_c *tc)
3141{
3142        if (atomic_dec_and_test(&tc->refcount))
3143                complete(&tc->can_destroy);
3144}
3145
3146static void thin_dtr(struct dm_target *ti)
3147{
3148        struct thin_c *tc = ti->private;
3149        unsigned long flags;
3150
3151        thin_put(tc);
3152        wait_for_completion(&tc->can_destroy);
3153
3154        spin_lock_irqsave(&tc->pool->lock, flags);
3155        list_del_rcu(&tc->list);
3156        spin_unlock_irqrestore(&tc->pool->lock, flags);
3157        synchronize_rcu();
3158
3159        mutex_lock(&dm_thin_pool_table.mutex);
3160
3161        __pool_dec(tc->pool);
3162        dm_pool_close_thin_device(tc->td);
3163        dm_put_device(ti, tc->pool_dev);
3164        if (tc->origin_dev)
3165                dm_put_device(ti, tc->origin_dev);
3166        kfree(tc);
3167
3168        mutex_unlock(&dm_thin_pool_table.mutex);
3169}
3170
3171/*
3172 * Thin target parameters:
3173 *
3174 * <pool_dev> <dev_id> [origin_dev]
3175 *
3176 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3177 * dev_id: the internal device identifier
3178 * origin_dev: a device external to the pool that should act as the origin
3179 *
3180 * If the pool device has discards disabled, they get disabled for the thin
3181 * device as well.
3182 */
3183static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3184{
3185        int r;
3186        struct thin_c *tc;
3187        struct dm_dev *pool_dev, *origin_dev;
3188        struct mapped_device *pool_md;
3189        unsigned long flags;
3190
3191        mutex_lock(&dm_thin_pool_table.mutex);
3192
3193        if (argc != 2 && argc != 3) {
3194                ti->error = "Invalid argument count";
3195                r = -EINVAL;
3196                goto out_unlock;
3197        }
3198
3199        tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3200        if (!tc) {
3201                ti->error = "Out of memory";
3202                r = -ENOMEM;
3203                goto out_unlock;
3204        }
3205        spin_lock_init(&tc->lock);
3206        bio_list_init(&tc->deferred_bio_list);
3207        bio_list_init(&tc->retry_on_resume_list);
3208        tc->sort_bio_list = RB_ROOT;
3209
3210        if (argc == 3) {
3211                r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3212                if (r) {
3213                        ti->error = "Error opening origin device";
3214                        goto bad_origin_dev;
3215                }
3216                tc->origin_dev = origin_dev;
3217        }
3218
3219        r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3220        if (r) {
3221                ti->error = "Error opening pool device";
3222                goto bad_pool_dev;
3223        }
3224        tc->pool_dev = pool_dev;
3225
3226        if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3227                ti->error = "Invalid device id";
3228                r = -EINVAL;
3229                goto bad_common;
3230        }
3231
3232        pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3233        if (!pool_md) {
3234                ti->error = "Couldn't get pool mapped device";
3235                r = -EINVAL;
3236                goto bad_common;
3237        }
3238
3239        tc->pool = __pool_table_lookup(pool_md);
3240        if (!tc->pool) {
3241                ti->error = "Couldn't find pool object";
3242                r = -EINVAL;
3243                goto bad_pool_lookup;
3244        }
3245        __pool_inc(tc->pool);
3246
3247        if (get_pool_mode(tc->pool) == PM_FAIL) {
3248                ti->error = "Couldn't open thin device, Pool is in fail mode";
3249                r = -EINVAL;
3250                goto bad_thin_open;
3251        }
3252
3253        r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3254        if (r) {
3255                ti->error = "Couldn't open thin internal device";
3256                goto bad_thin_open;
3257        }
3258
3259        r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3260        if (r)
3261                goto bad_target_max_io_len;
3262
3263        ti->num_flush_bios = 1;
3264        ti->flush_supported = true;
3265        ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3266
3267        /* In case the pool supports discards, pass them on. */
3268        ti->discard_zeroes_data_unsupported = true;
3269        if (tc->pool->pf.discard_enabled) {
3270                ti->discards_supported = true;
3271                ti->num_discard_bios = 1;
3272                /* Discard bios must be split on a block boundary */
3273                ti->split_discard_bios = true;
3274        }
3275
3276        dm_put(pool_md);
3277
3278        mutex_unlock(&dm_thin_pool_table.mutex);
3279
3280        atomic_set(&tc->refcount, 1);
3281        init_completion(&tc->can_destroy);
3282
3283        spin_lock_irqsave(&tc->pool->lock, flags);
3284        list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3285        spin_unlock_irqrestore(&tc->pool->lock, flags);
3286        /*
3287         * This synchronize_rcu() call is needed here otherwise we risk a
3288         * wake_worker() call finding no bios to process (because the newly
3289         * added tc isn't yet visible).  So this reduces latency since we
3290         * aren't then dependent on the periodic commit to wake_worker().
3291         */
3292        synchronize_rcu();
3293
3294        return 0;
3295
3296bad_target_max_io_len:
3297        dm_pool_close_thin_device(tc->td);
3298bad_thin_open:
3299        __pool_dec(tc->pool);
3300bad_pool_lookup:
3301        dm_put(pool_md);
3302bad_common:
3303        dm_put_device(ti, tc->pool_dev);
3304bad_pool_dev:
3305        if (tc->origin_dev)
3306                dm_put_device(ti, tc->origin_dev);
3307bad_origin_dev:
3308        kfree(tc);
3309out_unlock:
3310        mutex_unlock(&dm_thin_pool_table.mutex);
3311
3312        return r;
3313}
3314
3315static int thin_map(struct dm_target *ti, struct bio *bio)
3316{
3317        bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3318
3319        return thin_bio_map(ti, bio);
3320}
3321
3322static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3323{
3324        unsigned long flags;
3325        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3326        struct list_head work;
3327        struct dm_thin_new_mapping *m, *tmp;
3328        struct pool *pool = h->tc->pool;
3329
3330        if (h->shared_read_entry) {
3331                INIT_LIST_HEAD(&work);
3332                dm_deferred_entry_dec(h->shared_read_entry, &work);
3333
3334                spin_lock_irqsave(&pool->lock, flags);
3335                list_for_each_entry_safe(m, tmp, &work, list) {
3336                        list_del(&m->list);
3337                        m->quiesced = true;
3338                        __maybe_add_mapping(m);
3339                }
3340                spin_unlock_irqrestore(&pool->lock, flags);
3341        }
3342
3343        if (h->all_io_entry) {
3344                INIT_LIST_HEAD(&work);
3345                dm_deferred_entry_dec(h->all_io_entry, &work);
3346                if (!list_empty(&work)) {
3347                        spin_lock_irqsave(&pool->lock, flags);
3348                        list_for_each_entry_safe(m, tmp, &work, list)
3349                                list_add_tail(&m->list, &pool->prepared_discards);
3350                        spin_unlock_irqrestore(&pool->lock, flags);
3351                        wake_worker(pool);
3352                }
3353        }
3354
3355        return 0;
3356}
3357
3358static void thin_presuspend(struct dm_target *ti)
3359{
3360        struct thin_c *tc = ti->private;
3361
3362        if (dm_noflush_suspending(ti))
3363                noflush_work(tc, do_noflush_start);
3364}
3365
3366static void thin_postsuspend(struct dm_target *ti)
3367{
3368        struct thin_c *tc = ti->private;
3369
3370        /*
3371         * The dm_noflush_suspending flag has been cleared by now, so
3372         * unfortunately we must always run this.
3373         */
3374        noflush_work(tc, do_noflush_stop);
3375}
3376
3377/*
3378 * <nr mapped sectors> <highest mapped sector>
3379 */
3380static void thin_status(struct dm_target *ti, status_type_t type,
3381                        unsigned status_flags, char *result, unsigned maxlen)
3382{
3383        int r;
3384        ssize_t sz = 0;
3385        dm_block_t mapped, highest;
3386        char buf[BDEVNAME_SIZE];
3387        struct thin_c *tc = ti->private;
3388
3389        if (get_pool_mode(tc->pool) == PM_FAIL) {
3390                DMEMIT("Fail");
3391                return;
3392        }
3393
3394        if (!tc->td)
3395                DMEMIT("-");
3396        else {
3397                switch (type) {
3398                case STATUSTYPE_INFO:
3399                        r = dm_thin_get_mapped_count(tc->td, &mapped);
3400                        if (r) {
3401                                DMERR("dm_thin_get_mapped_count returned %d", r);
3402                                goto err;
3403                        }
3404
3405                        r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3406                        if (r < 0) {
3407                                DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3408                                goto err;
3409                        }
3410
3411                        DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3412                        if (r)
3413                                DMEMIT("%llu", ((highest + 1) *
3414                                                tc->pool->sectors_per_block) - 1);
3415                        else
3416                                DMEMIT("-");
3417                        break;
3418
3419                case STATUSTYPE_TABLE:
3420                        DMEMIT("%s %lu",
3421                               format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3422                               (unsigned long) tc->dev_id);
3423                        if (tc->origin_dev)
3424                                DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3425                        break;
3426                }
3427        }
3428
3429        return;
3430
3431err:
3432        DMEMIT("Error");
3433}
3434
3435static int thin_iterate_devices(struct dm_target *ti,
3436                                iterate_devices_callout_fn fn, void *data)
3437{
3438        sector_t blocks;
3439        struct thin_c *tc = ti->private;
3440        struct pool *pool = tc->pool;
3441
3442        /*
3443         * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3444         * we follow a more convoluted path through to the pool's target.
3445         */
3446        if (!pool->ti)
3447                return 0;       /* nothing is bound */
3448
3449        blocks = pool->ti->len;
3450        (void) sector_div(blocks, pool->sectors_per_block);
3451        if (blocks)
3452                return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3453
3454        return 0;
3455}
3456
3457static struct target_type thin_target = {
3458        .name = "thin",
3459        .version = {1, 12, 0},
3460        .module = THIS_MODULE,
3461        .ctr = thin_ctr,
3462        .dtr = thin_dtr,
3463        .map = thin_map,
3464        .end_io = thin_endio,
3465        .presuspend = thin_presuspend,
3466        .postsuspend = thin_postsuspend,
3467        .status = thin_status,
3468        .iterate_devices = thin_iterate_devices,
3469};
3470
3471/*----------------------------------------------------------------*/
3472
3473static int __init dm_thin_init(void)
3474{
3475        int r;
3476
3477        pool_table_init();
3478
3479        r = dm_register_target(&thin_target);
3480        if (r)
3481                return r;
3482
3483        r = dm_register_target(&pool_target);
3484        if (r)
3485                goto bad_pool_target;
3486
3487        r = -ENOMEM;
3488
3489        _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3490        if (!_new_mapping_cache)
3491                goto bad_new_mapping_cache;
3492
3493        return 0;
3494
3495bad_new_mapping_cache:
3496        dm_unregister_target(&pool_target);
3497bad_pool_target:
3498        dm_unregister_target(&thin_target);
3499
3500        return r;
3501}
3502
3503static void dm_thin_exit(void)
3504{
3505        dm_unregister_target(&thin_target);
3506        dm_unregister_target(&pool_target);
3507
3508        kmem_cache_destroy(_new_mapping_cache);
3509}
3510
3511module_init(dm_thin_init);
3512module_exit(dm_thin_exit);
3513
3514module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3515MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3516
3517MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3518MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3519MODULE_LICENSE("GPL");
3520