linux/drivers/md/raid10.c
<<
>>
Prefs
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include "md.h"
  29#include "raid10.h"
  30#include "raid0.h"
  31#include "bitmap.h"
  32
  33/*
  34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  35 * The layout of data is defined by
  36 *    chunk_size
  37 *    raid_disks
  38 *    near_copies (stored in low byte of layout)
  39 *    far_copies (stored in second byte of layout)
  40 *    far_offset (stored in bit 16 of layout )
  41 *    use_far_sets (stored in bit 17 of layout )
  42 *
  43 * The data to be stored is divided into chunks using chunksize.  Each device
  44 * is divided into far_copies sections.   In each section, chunks are laid out
  45 * in a style similar to raid0, but near_copies copies of each chunk is stored
  46 * (each on a different drive).  The starting device for each section is offset
  47 * near_copies from the starting device of the previous section.  Thus there
  48 * are (near_copies * far_copies) of each chunk, and each is on a different
  49 * drive.  near_copies and far_copies must be at least one, and their product
  50 * is at most raid_disks.
  51 *
  52 * If far_offset is true, then the far_copies are handled a bit differently.
  53 * The copies are still in different stripes, but instead of being very far
  54 * apart on disk, there are adjacent stripes.
  55 *
  56 * The far and offset algorithms are handled slightly differently if
  57 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  58 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  59 * are still shifted by 'near_copies' devices, but this shifting stays confined
  60 * to the set rather than the entire array.  This is done to improve the number
  61 * of device combinations that can fail without causing the array to fail.
  62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  63 * on a device):
  64 *    A B C D    A B C D E
  65 *      ...         ...
  66 *    D A B C    E A B C D
  67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  68 *    [A B] [C D]    [A B] [C D E]
  69 *    |...| |...|    |...| | ... |
  70 *    [B A] [D C]    [B A] [E C D]
  71 */
  72
  73/*
  74 * Number of guaranteed r10bios in case of extreme VM load:
  75 */
  76#define NR_RAID10_BIOS 256
  77
  78/* when we get a read error on a read-only array, we redirect to another
  79 * device without failing the first device, or trying to over-write to
  80 * correct the read error.  To keep track of bad blocks on a per-bio
  81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  82 */
  83#define IO_BLOCKED ((struct bio *)1)
  84/* When we successfully write to a known bad-block, we need to remove the
  85 * bad-block marking which must be done from process context.  So we record
  86 * the success by setting devs[n].bio to IO_MADE_GOOD
  87 */
  88#define IO_MADE_GOOD ((struct bio *)2)
  89
  90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  91
  92/* When there are this many requests queued to be written by
  93 * the raid10 thread, we become 'congested' to provide back-pressure
  94 * for writeback.
  95 */
  96static int max_queued_requests = 1024;
  97
  98static void allow_barrier(struct r10conf *conf);
  99static void lower_barrier(struct r10conf *conf);
 100static int _enough(struct r10conf *conf, int previous, int ignore);
 101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 102                                int *skipped);
 103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 104static void end_reshape_write(struct bio *bio, int error);
 105static void end_reshape(struct r10conf *conf);
 106
 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 108{
 109        struct r10conf *conf = data;
 110        int size = offsetof(struct r10bio, devs[conf->copies]);
 111
 112        /* allocate a r10bio with room for raid_disks entries in the
 113         * bios array */
 114        return kzalloc(size, gfp_flags);
 115}
 116
 117static void r10bio_pool_free(void *r10_bio, void *data)
 118{
 119        kfree(r10_bio);
 120}
 121
 122/* Maximum size of each resync request */
 123#define RESYNC_BLOCK_SIZE (64*1024)
 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 125/* amount of memory to reserve for resync requests */
 126#define RESYNC_WINDOW (1024*1024)
 127/* maximum number of concurrent requests, memory permitting */
 128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 129
 130/*
 131 * When performing a resync, we need to read and compare, so
 132 * we need as many pages are there are copies.
 133 * When performing a recovery, we need 2 bios, one for read,
 134 * one for write (we recover only one drive per r10buf)
 135 *
 136 */
 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 138{
 139        struct r10conf *conf = data;
 140        struct page *page;
 141        struct r10bio *r10_bio;
 142        struct bio *bio;
 143        int i, j;
 144        int nalloc;
 145
 146        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 147        if (!r10_bio)
 148                return NULL;
 149
 150        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 151            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 152                nalloc = conf->copies; /* resync */
 153        else
 154                nalloc = 2; /* recovery */
 155
 156        /*
 157         * Allocate bios.
 158         */
 159        for (j = nalloc ; j-- ; ) {
 160                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 161                if (!bio)
 162                        goto out_free_bio;
 163                r10_bio->devs[j].bio = bio;
 164                if (!conf->have_replacement)
 165                        continue;
 166                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 167                if (!bio)
 168                        goto out_free_bio;
 169                r10_bio->devs[j].repl_bio = bio;
 170        }
 171        /*
 172         * Allocate RESYNC_PAGES data pages and attach them
 173         * where needed.
 174         */
 175        for (j = 0 ; j < nalloc; j++) {
 176                struct bio *rbio = r10_bio->devs[j].repl_bio;
 177                bio = r10_bio->devs[j].bio;
 178                for (i = 0; i < RESYNC_PAGES; i++) {
 179                        if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 180                                               &conf->mddev->recovery)) {
 181                                /* we can share bv_page's during recovery
 182                                 * and reshape */
 183                                struct bio *rbio = r10_bio->devs[0].bio;
 184                                page = rbio->bi_io_vec[i].bv_page;
 185                                get_page(page);
 186                        } else
 187                                page = alloc_page(gfp_flags);
 188                        if (unlikely(!page))
 189                                goto out_free_pages;
 190
 191                        bio->bi_io_vec[i].bv_page = page;
 192                        if (rbio)
 193                                rbio->bi_io_vec[i].bv_page = page;
 194                }
 195        }
 196
 197        return r10_bio;
 198
 199out_free_pages:
 200        for ( ; i > 0 ; i--)
 201                safe_put_page(bio->bi_io_vec[i-1].bv_page);
 202        while (j--)
 203                for (i = 0; i < RESYNC_PAGES ; i++)
 204                        safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 205        j = 0;
 206out_free_bio:
 207        for ( ; j < nalloc; j++) {
 208                if (r10_bio->devs[j].bio)
 209                        bio_put(r10_bio->devs[j].bio);
 210                if (r10_bio->devs[j].repl_bio)
 211                        bio_put(r10_bio->devs[j].repl_bio);
 212        }
 213        r10bio_pool_free(r10_bio, conf);
 214        return NULL;
 215}
 216
 217static void r10buf_pool_free(void *__r10_bio, void *data)
 218{
 219        int i;
 220        struct r10conf *conf = data;
 221        struct r10bio *r10bio = __r10_bio;
 222        int j;
 223
 224        for (j=0; j < conf->copies; j++) {
 225                struct bio *bio = r10bio->devs[j].bio;
 226                if (bio) {
 227                        for (i = 0; i < RESYNC_PAGES; i++) {
 228                                safe_put_page(bio->bi_io_vec[i].bv_page);
 229                                bio->bi_io_vec[i].bv_page = NULL;
 230                        }
 231                        bio_put(bio);
 232                }
 233                bio = r10bio->devs[j].repl_bio;
 234                if (bio)
 235                        bio_put(bio);
 236        }
 237        r10bio_pool_free(r10bio, conf);
 238}
 239
 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 241{
 242        int i;
 243
 244        for (i = 0; i < conf->copies; i++) {
 245                struct bio **bio = & r10_bio->devs[i].bio;
 246                if (!BIO_SPECIAL(*bio))
 247                        bio_put(*bio);
 248                *bio = NULL;
 249                bio = &r10_bio->devs[i].repl_bio;
 250                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 251                        bio_put(*bio);
 252                *bio = NULL;
 253        }
 254}
 255
 256static void free_r10bio(struct r10bio *r10_bio)
 257{
 258        struct r10conf *conf = r10_bio->mddev->private;
 259
 260        put_all_bios(conf, r10_bio);
 261        mempool_free(r10_bio, conf->r10bio_pool);
 262}
 263
 264static void put_buf(struct r10bio *r10_bio)
 265{
 266        struct r10conf *conf = r10_bio->mddev->private;
 267
 268        mempool_free(r10_bio, conf->r10buf_pool);
 269
 270        lower_barrier(conf);
 271}
 272
 273static void reschedule_retry(struct r10bio *r10_bio)
 274{
 275        unsigned long flags;
 276        struct mddev *mddev = r10_bio->mddev;
 277        struct r10conf *conf = mddev->private;
 278
 279        spin_lock_irqsave(&conf->device_lock, flags);
 280        list_add(&r10_bio->retry_list, &conf->retry_list);
 281        conf->nr_queued ++;
 282        spin_unlock_irqrestore(&conf->device_lock, flags);
 283
 284        /* wake up frozen array... */
 285        wake_up(&conf->wait_barrier);
 286
 287        md_wakeup_thread(mddev->thread);
 288}
 289
 290/*
 291 * raid_end_bio_io() is called when we have finished servicing a mirrored
 292 * operation and are ready to return a success/failure code to the buffer
 293 * cache layer.
 294 */
 295static void raid_end_bio_io(struct r10bio *r10_bio)
 296{
 297        struct bio *bio = r10_bio->master_bio;
 298        int done;
 299        struct r10conf *conf = r10_bio->mddev->private;
 300
 301        if (bio->bi_phys_segments) {
 302                unsigned long flags;
 303                spin_lock_irqsave(&conf->device_lock, flags);
 304                bio->bi_phys_segments--;
 305                done = (bio->bi_phys_segments == 0);
 306                spin_unlock_irqrestore(&conf->device_lock, flags);
 307        } else
 308                done = 1;
 309        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 310                clear_bit(BIO_UPTODATE, &bio->bi_flags);
 311        if (done) {
 312                bio_endio(bio, 0);
 313                /*
 314                 * Wake up any possible resync thread that waits for the device
 315                 * to go idle.
 316                 */
 317                allow_barrier(conf);
 318        }
 319        free_r10bio(r10_bio);
 320}
 321
 322/*
 323 * Update disk head position estimator based on IRQ completion info.
 324 */
 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 326{
 327        struct r10conf *conf = r10_bio->mddev->private;
 328
 329        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 330                r10_bio->devs[slot].addr + (r10_bio->sectors);
 331}
 332
 333/*
 334 * Find the disk number which triggered given bio
 335 */
 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 337                         struct bio *bio, int *slotp, int *replp)
 338{
 339        int slot;
 340        int repl = 0;
 341
 342        for (slot = 0; slot < conf->copies; slot++) {
 343                if (r10_bio->devs[slot].bio == bio)
 344                        break;
 345                if (r10_bio->devs[slot].repl_bio == bio) {
 346                        repl = 1;
 347                        break;
 348                }
 349        }
 350
 351        BUG_ON(slot == conf->copies);
 352        update_head_pos(slot, r10_bio);
 353
 354        if (slotp)
 355                *slotp = slot;
 356        if (replp)
 357                *replp = repl;
 358        return r10_bio->devs[slot].devnum;
 359}
 360
 361static void raid10_end_read_request(struct bio *bio, int error)
 362{
 363        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 364        struct r10bio *r10_bio = bio->bi_private;
 365        int slot, dev;
 366        struct md_rdev *rdev;
 367        struct r10conf *conf = r10_bio->mddev->private;
 368
 369
 370        slot = r10_bio->read_slot;
 371        dev = r10_bio->devs[slot].devnum;
 372        rdev = r10_bio->devs[slot].rdev;
 373        /*
 374         * this branch is our 'one mirror IO has finished' event handler:
 375         */
 376        update_head_pos(slot, r10_bio);
 377
 378        if (uptodate) {
 379                /*
 380                 * Set R10BIO_Uptodate in our master bio, so that
 381                 * we will return a good error code to the higher
 382                 * levels even if IO on some other mirrored buffer fails.
 383                 *
 384                 * The 'master' represents the composite IO operation to
 385                 * user-side. So if something waits for IO, then it will
 386                 * wait for the 'master' bio.
 387                 */
 388                set_bit(R10BIO_Uptodate, &r10_bio->state);
 389        } else {
 390                /* If all other devices that store this block have
 391                 * failed, we want to return the error upwards rather
 392                 * than fail the last device.  Here we redefine
 393                 * "uptodate" to mean "Don't want to retry"
 394                 */
 395                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 396                             rdev->raid_disk))
 397                        uptodate = 1;
 398        }
 399        if (uptodate) {
 400                raid_end_bio_io(r10_bio);
 401                rdev_dec_pending(rdev, conf->mddev);
 402        } else {
 403                /*
 404                 * oops, read error - keep the refcount on the rdev
 405                 */
 406                char b[BDEVNAME_SIZE];
 407                printk_ratelimited(KERN_ERR
 408                                   "md/raid10:%s: %s: rescheduling sector %llu\n",
 409                                   mdname(conf->mddev),
 410                                   bdevname(rdev->bdev, b),
 411                                   (unsigned long long)r10_bio->sector);
 412                set_bit(R10BIO_ReadError, &r10_bio->state);
 413                reschedule_retry(r10_bio);
 414        }
 415}
 416
 417static void close_write(struct r10bio *r10_bio)
 418{
 419        /* clear the bitmap if all writes complete successfully */
 420        bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 421                        r10_bio->sectors,
 422                        !test_bit(R10BIO_Degraded, &r10_bio->state),
 423                        0);
 424        md_write_end(r10_bio->mddev);
 425}
 426
 427static void one_write_done(struct r10bio *r10_bio)
 428{
 429        if (atomic_dec_and_test(&r10_bio->remaining)) {
 430                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 431                        reschedule_retry(r10_bio);
 432                else {
 433                        close_write(r10_bio);
 434                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 435                                reschedule_retry(r10_bio);
 436                        else
 437                                raid_end_bio_io(r10_bio);
 438                }
 439        }
 440}
 441
 442static void raid10_end_write_request(struct bio *bio, int error)
 443{
 444        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 445        struct r10bio *r10_bio = bio->bi_private;
 446        int dev;
 447        int dec_rdev = 1;
 448        struct r10conf *conf = r10_bio->mddev->private;
 449        int slot, repl;
 450        struct md_rdev *rdev = NULL;
 451
 452        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 453
 454        if (repl)
 455                rdev = conf->mirrors[dev].replacement;
 456        if (!rdev) {
 457                smp_rmb();
 458                repl = 0;
 459                rdev = conf->mirrors[dev].rdev;
 460        }
 461        /*
 462         * this branch is our 'one mirror IO has finished' event handler:
 463         */
 464        if (!uptodate) {
 465                if (repl)
 466                        /* Never record new bad blocks to replacement,
 467                         * just fail it.
 468                         */
 469                        md_error(rdev->mddev, rdev);
 470                else {
 471                        set_bit(WriteErrorSeen, &rdev->flags);
 472                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 473                                set_bit(MD_RECOVERY_NEEDED,
 474                                        &rdev->mddev->recovery);
 475                        set_bit(R10BIO_WriteError, &r10_bio->state);
 476                        dec_rdev = 0;
 477                }
 478        } else {
 479                /*
 480                 * Set R10BIO_Uptodate in our master bio, so that
 481                 * we will return a good error code for to the higher
 482                 * levels even if IO on some other mirrored buffer fails.
 483                 *
 484                 * The 'master' represents the composite IO operation to
 485                 * user-side. So if something waits for IO, then it will
 486                 * wait for the 'master' bio.
 487                 */
 488                sector_t first_bad;
 489                int bad_sectors;
 490
 491                /*
 492                 * Do not set R10BIO_Uptodate if the current device is
 493                 * rebuilding or Faulty. This is because we cannot use
 494                 * such device for properly reading the data back (we could
 495                 * potentially use it, if the current write would have felt
 496                 * before rdev->recovery_offset, but for simplicity we don't
 497                 * check this here.
 498                 */
 499                if (test_bit(In_sync, &rdev->flags) &&
 500                    !test_bit(Faulty, &rdev->flags))
 501                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 502
 503                /* Maybe we can clear some bad blocks. */
 504                if (is_badblock(rdev,
 505                                r10_bio->devs[slot].addr,
 506                                r10_bio->sectors,
 507                                &first_bad, &bad_sectors)) {
 508                        bio_put(bio);
 509                        if (repl)
 510                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 511                        else
 512                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 513                        dec_rdev = 0;
 514                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 515                }
 516        }
 517
 518        /*
 519         *
 520         * Let's see if all mirrored write operations have finished
 521         * already.
 522         */
 523        one_write_done(r10_bio);
 524        if (dec_rdev)
 525                rdev_dec_pending(rdev, conf->mddev);
 526}
 527
 528/*
 529 * RAID10 layout manager
 530 * As well as the chunksize and raid_disks count, there are two
 531 * parameters: near_copies and far_copies.
 532 * near_copies * far_copies must be <= raid_disks.
 533 * Normally one of these will be 1.
 534 * If both are 1, we get raid0.
 535 * If near_copies == raid_disks, we get raid1.
 536 *
 537 * Chunks are laid out in raid0 style with near_copies copies of the
 538 * first chunk, followed by near_copies copies of the next chunk and
 539 * so on.
 540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 541 * as described above, we start again with a device offset of near_copies.
 542 * So we effectively have another copy of the whole array further down all
 543 * the drives, but with blocks on different drives.
 544 * With this layout, and block is never stored twice on the one device.
 545 *
 546 * raid10_find_phys finds the sector offset of a given virtual sector
 547 * on each device that it is on.
 548 *
 549 * raid10_find_virt does the reverse mapping, from a device and a
 550 * sector offset to a virtual address
 551 */
 552
 553static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 554{
 555        int n,f;
 556        sector_t sector;
 557        sector_t chunk;
 558        sector_t stripe;
 559        int dev;
 560        int slot = 0;
 561        int last_far_set_start, last_far_set_size;
 562
 563        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 564        last_far_set_start *= geo->far_set_size;
 565
 566        last_far_set_size = geo->far_set_size;
 567        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 568
 569        /* now calculate first sector/dev */
 570        chunk = r10bio->sector >> geo->chunk_shift;
 571        sector = r10bio->sector & geo->chunk_mask;
 572
 573        chunk *= geo->near_copies;
 574        stripe = chunk;
 575        dev = sector_div(stripe, geo->raid_disks);
 576        if (geo->far_offset)
 577                stripe *= geo->far_copies;
 578
 579        sector += stripe << geo->chunk_shift;
 580
 581        /* and calculate all the others */
 582        for (n = 0; n < geo->near_copies; n++) {
 583                int d = dev;
 584                int set;
 585                sector_t s = sector;
 586                r10bio->devs[slot].devnum = d;
 587                r10bio->devs[slot].addr = s;
 588                slot++;
 589
 590                for (f = 1; f < geo->far_copies; f++) {
 591                        set = d / geo->far_set_size;
 592                        d += geo->near_copies;
 593
 594                        if ((geo->raid_disks % geo->far_set_size) &&
 595                            (d > last_far_set_start)) {
 596                                d -= last_far_set_start;
 597                                d %= last_far_set_size;
 598                                d += last_far_set_start;
 599                        } else {
 600                                d %= geo->far_set_size;
 601                                d += geo->far_set_size * set;
 602                        }
 603                        s += geo->stride;
 604                        r10bio->devs[slot].devnum = d;
 605                        r10bio->devs[slot].addr = s;
 606                        slot++;
 607                }
 608                dev++;
 609                if (dev >= geo->raid_disks) {
 610                        dev = 0;
 611                        sector += (geo->chunk_mask + 1);
 612                }
 613        }
 614}
 615
 616static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 617{
 618        struct geom *geo = &conf->geo;
 619
 620        if (conf->reshape_progress != MaxSector &&
 621            ((r10bio->sector >= conf->reshape_progress) !=
 622             conf->mddev->reshape_backwards)) {
 623                set_bit(R10BIO_Previous, &r10bio->state);
 624                geo = &conf->prev;
 625        } else
 626                clear_bit(R10BIO_Previous, &r10bio->state);
 627
 628        __raid10_find_phys(geo, r10bio);
 629}
 630
 631static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 632{
 633        sector_t offset, chunk, vchunk;
 634        /* Never use conf->prev as this is only called during resync
 635         * or recovery, so reshape isn't happening
 636         */
 637        struct geom *geo = &conf->geo;
 638        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 639        int far_set_size = geo->far_set_size;
 640        int last_far_set_start;
 641
 642        if (geo->raid_disks % geo->far_set_size) {
 643                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 644                last_far_set_start *= geo->far_set_size;
 645
 646                if (dev >= last_far_set_start) {
 647                        far_set_size = geo->far_set_size;
 648                        far_set_size += (geo->raid_disks % geo->far_set_size);
 649                        far_set_start = last_far_set_start;
 650                }
 651        }
 652
 653        offset = sector & geo->chunk_mask;
 654        if (geo->far_offset) {
 655                int fc;
 656                chunk = sector >> geo->chunk_shift;
 657                fc = sector_div(chunk, geo->far_copies);
 658                dev -= fc * geo->near_copies;
 659                if (dev < far_set_start)
 660                        dev += far_set_size;
 661        } else {
 662                while (sector >= geo->stride) {
 663                        sector -= geo->stride;
 664                        if (dev < (geo->near_copies + far_set_start))
 665                                dev += far_set_size - geo->near_copies;
 666                        else
 667                                dev -= geo->near_copies;
 668                }
 669                chunk = sector >> geo->chunk_shift;
 670        }
 671        vchunk = chunk * geo->raid_disks + dev;
 672        sector_div(vchunk, geo->near_copies);
 673        return (vchunk << geo->chunk_shift) + offset;
 674}
 675
 676/**
 677 *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 678 *      @q: request queue
 679 *      @bvm: properties of new bio
 680 *      @biovec: the request that could be merged to it.
 681 *
 682 *      Return amount of bytes we can accept at this offset
 683 *      This requires checking for end-of-chunk if near_copies != raid_disks,
 684 *      and for subordinate merge_bvec_fns if merge_check_needed.
 685 */
 686static int raid10_mergeable_bvec(struct request_queue *q,
 687                                 struct bvec_merge_data *bvm,
 688                                 struct bio_vec *biovec)
 689{
 690        struct mddev *mddev = q->queuedata;
 691        struct r10conf *conf = mddev->private;
 692        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 693        int max;
 694        unsigned int chunk_sectors;
 695        unsigned int bio_sectors = bvm->bi_size >> 9;
 696        struct geom *geo = &conf->geo;
 697
 698        chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
 699        if (conf->reshape_progress != MaxSector &&
 700            ((sector >= conf->reshape_progress) !=
 701             conf->mddev->reshape_backwards))
 702                geo = &conf->prev;
 703
 704        if (geo->near_copies < geo->raid_disks) {
 705                max = (chunk_sectors - ((sector & (chunk_sectors - 1))
 706                                        + bio_sectors)) << 9;
 707                if (max < 0)
 708                        /* bio_add cannot handle a negative return */
 709                        max = 0;
 710                if (max <= biovec->bv_len && bio_sectors == 0)
 711                        return biovec->bv_len;
 712        } else
 713                max = biovec->bv_len;
 714
 715        if (mddev->merge_check_needed) {
 716                struct {
 717                        struct r10bio r10_bio;
 718                        struct r10dev devs[conf->copies];
 719                } on_stack;
 720                struct r10bio *r10_bio = &on_stack.r10_bio;
 721                int s;
 722                if (conf->reshape_progress != MaxSector) {
 723                        /* Cannot give any guidance during reshape */
 724                        if (max <= biovec->bv_len && bio_sectors == 0)
 725                                return biovec->bv_len;
 726                        return 0;
 727                }
 728                r10_bio->sector = sector;
 729                raid10_find_phys(conf, r10_bio);
 730                rcu_read_lock();
 731                for (s = 0; s < conf->copies; s++) {
 732                        int disk = r10_bio->devs[s].devnum;
 733                        struct md_rdev *rdev = rcu_dereference(
 734                                conf->mirrors[disk].rdev);
 735                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 736                                struct request_queue *q =
 737                                        bdev_get_queue(rdev->bdev);
 738                                if (q->merge_bvec_fn) {
 739                                        bvm->bi_sector = r10_bio->devs[s].addr
 740                                                + rdev->data_offset;
 741                                        bvm->bi_bdev = rdev->bdev;
 742                                        max = min(max, q->merge_bvec_fn(
 743                                                          q, bvm, biovec));
 744                                }
 745                        }
 746                        rdev = rcu_dereference(conf->mirrors[disk].replacement);
 747                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 748                                struct request_queue *q =
 749                                        bdev_get_queue(rdev->bdev);
 750                                if (q->merge_bvec_fn) {
 751                                        bvm->bi_sector = r10_bio->devs[s].addr
 752                                                + rdev->data_offset;
 753                                        bvm->bi_bdev = rdev->bdev;
 754                                        max = min(max, q->merge_bvec_fn(
 755                                                          q, bvm, biovec));
 756                                }
 757                        }
 758                }
 759                rcu_read_unlock();
 760        }
 761        return max;
 762}
 763
 764/*
 765 * This routine returns the disk from which the requested read should
 766 * be done. There is a per-array 'next expected sequential IO' sector
 767 * number - if this matches on the next IO then we use the last disk.
 768 * There is also a per-disk 'last know head position' sector that is
 769 * maintained from IRQ contexts, both the normal and the resync IO
 770 * completion handlers update this position correctly. If there is no
 771 * perfect sequential match then we pick the disk whose head is closest.
 772 *
 773 * If there are 2 mirrors in the same 2 devices, performance degrades
 774 * because position is mirror, not device based.
 775 *
 776 * The rdev for the device selected will have nr_pending incremented.
 777 */
 778
 779/*
 780 * FIXME: possibly should rethink readbalancing and do it differently
 781 * depending on near_copies / far_copies geometry.
 782 */
 783static struct md_rdev *read_balance(struct r10conf *conf,
 784                                    struct r10bio *r10_bio,
 785                                    int *max_sectors)
 786{
 787        const sector_t this_sector = r10_bio->sector;
 788        int disk, slot;
 789        int sectors = r10_bio->sectors;
 790        int best_good_sectors;
 791        sector_t new_distance, best_dist;
 792        struct md_rdev *best_rdev, *rdev = NULL;
 793        int do_balance;
 794        int best_slot;
 795        struct geom *geo = &conf->geo;
 796
 797        raid10_find_phys(conf, r10_bio);
 798        rcu_read_lock();
 799retry:
 800        sectors = r10_bio->sectors;
 801        best_slot = -1;
 802        best_rdev = NULL;
 803        best_dist = MaxSector;
 804        best_good_sectors = 0;
 805        do_balance = 1;
 806        /*
 807         * Check if we can balance. We can balance on the whole
 808         * device if no resync is going on (recovery is ok), or below
 809         * the resync window. We take the first readable disk when
 810         * above the resync window.
 811         */
 812        if (conf->mddev->recovery_cp < MaxSector
 813            && (this_sector + sectors >= conf->next_resync))
 814                do_balance = 0;
 815
 816        for (slot = 0; slot < conf->copies ; slot++) {
 817                sector_t first_bad;
 818                int bad_sectors;
 819                sector_t dev_sector;
 820
 821                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 822                        continue;
 823                disk = r10_bio->devs[slot].devnum;
 824                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 825                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 826                    test_bit(Unmerged, &rdev->flags) ||
 827                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 828                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 829                if (rdev == NULL ||
 830                    test_bit(Faulty, &rdev->flags) ||
 831                    test_bit(Unmerged, &rdev->flags))
 832                        continue;
 833                if (!test_bit(In_sync, &rdev->flags) &&
 834                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 835                        continue;
 836
 837                dev_sector = r10_bio->devs[slot].addr;
 838                if (is_badblock(rdev, dev_sector, sectors,
 839                                &first_bad, &bad_sectors)) {
 840                        if (best_dist < MaxSector)
 841                                /* Already have a better slot */
 842                                continue;
 843                        if (first_bad <= dev_sector) {
 844                                /* Cannot read here.  If this is the
 845                                 * 'primary' device, then we must not read
 846                                 * beyond 'bad_sectors' from another device.
 847                                 */
 848                                bad_sectors -= (dev_sector - first_bad);
 849                                if (!do_balance && sectors > bad_sectors)
 850                                        sectors = bad_sectors;
 851                                if (best_good_sectors > sectors)
 852                                        best_good_sectors = sectors;
 853                        } else {
 854                                sector_t good_sectors =
 855                                        first_bad - dev_sector;
 856                                if (good_sectors > best_good_sectors) {
 857                                        best_good_sectors = good_sectors;
 858                                        best_slot = slot;
 859                                        best_rdev = rdev;
 860                                }
 861                                if (!do_balance)
 862                                        /* Must read from here */
 863                                        break;
 864                        }
 865                        continue;
 866                } else
 867                        best_good_sectors = sectors;
 868
 869                if (!do_balance)
 870                        break;
 871
 872                /* This optimisation is debatable, and completely destroys
 873                 * sequential read speed for 'far copies' arrays.  So only
 874                 * keep it for 'near' arrays, and review those later.
 875                 */
 876                if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 877                        break;
 878
 879                /* for far > 1 always use the lowest address */
 880                if (geo->far_copies > 1)
 881                        new_distance = r10_bio->devs[slot].addr;
 882                else
 883                        new_distance = abs(r10_bio->devs[slot].addr -
 884                                           conf->mirrors[disk].head_position);
 885                if (new_distance < best_dist) {
 886                        best_dist = new_distance;
 887                        best_slot = slot;
 888                        best_rdev = rdev;
 889                }
 890        }
 891        if (slot >= conf->copies) {
 892                slot = best_slot;
 893                rdev = best_rdev;
 894        }
 895
 896        if (slot >= 0) {
 897                atomic_inc(&rdev->nr_pending);
 898                if (test_bit(Faulty, &rdev->flags)) {
 899                        /* Cannot risk returning a device that failed
 900                         * before we inc'ed nr_pending
 901                         */
 902                        rdev_dec_pending(rdev, conf->mddev);
 903                        goto retry;
 904                }
 905                r10_bio->read_slot = slot;
 906        } else
 907                rdev = NULL;
 908        rcu_read_unlock();
 909        *max_sectors = best_good_sectors;
 910
 911        return rdev;
 912}
 913
 914int md_raid10_congested(struct mddev *mddev, int bits)
 915{
 916        struct r10conf *conf = mddev->private;
 917        int i, ret = 0;
 918
 919        if ((bits & (1 << BDI_async_congested)) &&
 920            conf->pending_count >= max_queued_requests)
 921                return 1;
 922
 923        rcu_read_lock();
 924        for (i = 0;
 925             (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 926                     && ret == 0;
 927             i++) {
 928                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 929                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 930                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 931
 932                        ret |= bdi_congested(&q->backing_dev_info, bits);
 933                }
 934        }
 935        rcu_read_unlock();
 936        return ret;
 937}
 938EXPORT_SYMBOL_GPL(md_raid10_congested);
 939
 940static int raid10_congested(void *data, int bits)
 941{
 942        struct mddev *mddev = data;
 943
 944        return mddev_congested(mddev, bits) ||
 945                md_raid10_congested(mddev, bits);
 946}
 947
 948static void flush_pending_writes(struct r10conf *conf)
 949{
 950        /* Any writes that have been queued but are awaiting
 951         * bitmap updates get flushed here.
 952         */
 953        spin_lock_irq(&conf->device_lock);
 954
 955        if (conf->pending_bio_list.head) {
 956                struct bio *bio;
 957                bio = bio_list_get(&conf->pending_bio_list);
 958                conf->pending_count = 0;
 959                spin_unlock_irq(&conf->device_lock);
 960                /* flush any pending bitmap writes to disk
 961                 * before proceeding w/ I/O */
 962                bitmap_unplug(conf->mddev->bitmap);
 963                wake_up(&conf->wait_barrier);
 964
 965                while (bio) { /* submit pending writes */
 966                        struct bio *next = bio->bi_next;
 967                        bio->bi_next = NULL;
 968                        if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 969                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 970                                /* Just ignore it */
 971                                bio_endio(bio, 0);
 972                        else
 973                                generic_make_request(bio);
 974                        bio = next;
 975                }
 976        } else
 977                spin_unlock_irq(&conf->device_lock);
 978}
 979
 980/* Barriers....
 981 * Sometimes we need to suspend IO while we do something else,
 982 * either some resync/recovery, or reconfigure the array.
 983 * To do this we raise a 'barrier'.
 984 * The 'barrier' is a counter that can be raised multiple times
 985 * to count how many activities are happening which preclude
 986 * normal IO.
 987 * We can only raise the barrier if there is no pending IO.
 988 * i.e. if nr_pending == 0.
 989 * We choose only to raise the barrier if no-one is waiting for the
 990 * barrier to go down.  This means that as soon as an IO request
 991 * is ready, no other operations which require a barrier will start
 992 * until the IO request has had a chance.
 993 *
 994 * So: regular IO calls 'wait_barrier'.  When that returns there
 995 *    is no backgroup IO happening,  It must arrange to call
 996 *    allow_barrier when it has finished its IO.
 997 * backgroup IO calls must call raise_barrier.  Once that returns
 998 *    there is no normal IO happeing.  It must arrange to call
 999 *    lower_barrier when the particular background IO completes.
1000 */
1001
1002static void raise_barrier(struct r10conf *conf, int force)
1003{
1004        BUG_ON(force && !conf->barrier);
1005        spin_lock_irq(&conf->resync_lock);
1006
1007        /* Wait until no block IO is waiting (unless 'force') */
1008        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009                            conf->resync_lock);
1010
1011        /* block any new IO from starting */
1012        conf->barrier++;
1013
1014        /* Now wait for all pending IO to complete */
1015        wait_event_lock_irq(conf->wait_barrier,
1016                            !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017                            conf->resync_lock);
1018
1019        spin_unlock_irq(&conf->resync_lock);
1020}
1021
1022static void lower_barrier(struct r10conf *conf)
1023{
1024        unsigned long flags;
1025        spin_lock_irqsave(&conf->resync_lock, flags);
1026        conf->barrier--;
1027        spin_unlock_irqrestore(&conf->resync_lock, flags);
1028        wake_up(&conf->wait_barrier);
1029}
1030
1031static void wait_barrier(struct r10conf *conf)
1032{
1033        spin_lock_irq(&conf->resync_lock);
1034        if (conf->barrier) {
1035                conf->nr_waiting++;
1036                /* Wait for the barrier to drop.
1037                 * However if there are already pending
1038                 * requests (preventing the barrier from
1039                 * rising completely), and the
1040                 * pre-process bio queue isn't empty,
1041                 * then don't wait, as we need to empty
1042                 * that queue to get the nr_pending
1043                 * count down.
1044                 */
1045                wait_event_lock_irq(conf->wait_barrier,
1046                                    !conf->barrier ||
1047                                    (conf->nr_pending &&
1048                                     current->bio_list &&
1049                                     !bio_list_empty(current->bio_list)),
1050                                    conf->resync_lock);
1051                conf->nr_waiting--;
1052        }
1053        conf->nr_pending++;
1054        spin_unlock_irq(&conf->resync_lock);
1055}
1056
1057static void allow_barrier(struct r10conf *conf)
1058{
1059        unsigned long flags;
1060        spin_lock_irqsave(&conf->resync_lock, flags);
1061        conf->nr_pending--;
1062        spin_unlock_irqrestore(&conf->resync_lock, flags);
1063        wake_up(&conf->wait_barrier);
1064}
1065
1066static void freeze_array(struct r10conf *conf, int extra)
1067{
1068        /* stop syncio and normal IO and wait for everything to
1069         * go quiet.
1070         * We increment barrier and nr_waiting, and then
1071         * wait until nr_pending match nr_queued+extra
1072         * This is called in the context of one normal IO request
1073         * that has failed. Thus any sync request that might be pending
1074         * will be blocked by nr_pending, and we need to wait for
1075         * pending IO requests to complete or be queued for re-try.
1076         * Thus the number queued (nr_queued) plus this request (extra)
1077         * must match the number of pending IOs (nr_pending) before
1078         * we continue.
1079         */
1080        spin_lock_irq(&conf->resync_lock);
1081        conf->barrier++;
1082        conf->nr_waiting++;
1083        wait_event_lock_irq_cmd(conf->wait_barrier,
1084                                conf->nr_pending == conf->nr_queued+extra,
1085                                conf->resync_lock,
1086                                flush_pending_writes(conf));
1087
1088        spin_unlock_irq(&conf->resync_lock);
1089}
1090
1091static void unfreeze_array(struct r10conf *conf)
1092{
1093        /* reverse the effect of the freeze */
1094        spin_lock_irq(&conf->resync_lock);
1095        conf->barrier--;
1096        conf->nr_waiting--;
1097        wake_up(&conf->wait_barrier);
1098        spin_unlock_irq(&conf->resync_lock);
1099}
1100
1101static sector_t choose_data_offset(struct r10bio *r10_bio,
1102                                   struct md_rdev *rdev)
1103{
1104        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105            test_bit(R10BIO_Previous, &r10_bio->state))
1106                return rdev->data_offset;
1107        else
1108                return rdev->new_data_offset;
1109}
1110
1111struct raid10_plug_cb {
1112        struct blk_plug_cb      cb;
1113        struct bio_list         pending;
1114        int                     pending_cnt;
1115};
1116
1117static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118{
1119        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120                                                   cb);
1121        struct mddev *mddev = plug->cb.data;
1122        struct r10conf *conf = mddev->private;
1123        struct bio *bio;
1124
1125        if (from_schedule || current->bio_list) {
1126                spin_lock_irq(&conf->device_lock);
1127                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128                conf->pending_count += plug->pending_cnt;
1129                spin_unlock_irq(&conf->device_lock);
1130                wake_up(&conf->wait_barrier);
1131                md_wakeup_thread(mddev->thread);
1132                kfree(plug);
1133                return;
1134        }
1135
1136        /* we aren't scheduling, so we can do the write-out directly. */
1137        bio = bio_list_get(&plug->pending);
1138        bitmap_unplug(mddev->bitmap);
1139        wake_up(&conf->wait_barrier);
1140
1141        while (bio) { /* submit pending writes */
1142                struct bio *next = bio->bi_next;
1143                bio->bi_next = NULL;
1144                if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146                        /* Just ignore it */
1147                        bio_endio(bio, 0);
1148                else
1149                        generic_make_request(bio);
1150                bio = next;
1151        }
1152        kfree(plug);
1153}
1154
1155static void __make_request(struct mddev *mddev, struct bio *bio)
1156{
1157        struct r10conf *conf = mddev->private;
1158        struct r10bio *r10_bio;
1159        struct bio *read_bio;
1160        int i;
1161        const int rw = bio_data_dir(bio);
1162        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1163        const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1164        const unsigned long do_discard = (bio->bi_rw
1165                                          & (REQ_DISCARD | REQ_SECURE));
1166        const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1167        unsigned long flags;
1168        struct md_rdev *blocked_rdev;
1169        struct blk_plug_cb *cb;
1170        struct raid10_plug_cb *plug = NULL;
1171        int sectors_handled;
1172        int max_sectors;
1173        int sectors;
1174
1175        /*
1176         * Register the new request and wait if the reconstruction
1177         * thread has put up a bar for new requests.
1178         * Continue immediately if no resync is active currently.
1179         */
1180        wait_barrier(conf);
1181
1182        sectors = bio_sectors(bio);
1183        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1184            bio->bi_iter.bi_sector < conf->reshape_progress &&
1185            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1186                /* IO spans the reshape position.  Need to wait for
1187                 * reshape to pass
1188                 */
1189                allow_barrier(conf);
1190                wait_event(conf->wait_barrier,
1191                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1192                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1193                           sectors);
1194                wait_barrier(conf);
1195        }
1196        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1197            bio_data_dir(bio) == WRITE &&
1198            (mddev->reshape_backwards
1199             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1200                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1201             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1202                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1203                /* Need to update reshape_position in metadata */
1204                mddev->reshape_position = conf->reshape_progress;
1205                set_bit(MD_CHANGE_DEVS, &mddev->flags);
1206                set_bit(MD_CHANGE_PENDING, &mddev->flags);
1207                md_wakeup_thread(mddev->thread);
1208                wait_event(mddev->sb_wait,
1209                           !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1210
1211                conf->reshape_safe = mddev->reshape_position;
1212        }
1213
1214        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1215
1216        r10_bio->master_bio = bio;
1217        r10_bio->sectors = sectors;
1218
1219        r10_bio->mddev = mddev;
1220        r10_bio->sector = bio->bi_iter.bi_sector;
1221        r10_bio->state = 0;
1222
1223        /* We might need to issue multiple reads to different
1224         * devices if there are bad blocks around, so we keep
1225         * track of the number of reads in bio->bi_phys_segments.
1226         * If this is 0, there is only one r10_bio and no locking
1227         * will be needed when the request completes.  If it is
1228         * non-zero, then it is the number of not-completed requests.
1229         */
1230        bio->bi_phys_segments = 0;
1231        clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1232
1233        if (rw == READ) {
1234                /*
1235                 * read balancing logic:
1236                 */
1237                struct md_rdev *rdev;
1238                int slot;
1239
1240read_again:
1241                rdev = read_balance(conf, r10_bio, &max_sectors);
1242                if (!rdev) {
1243                        raid_end_bio_io(r10_bio);
1244                        return;
1245                }
1246                slot = r10_bio->read_slot;
1247
1248                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1249                bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1250                         max_sectors);
1251
1252                r10_bio->devs[slot].bio = read_bio;
1253                r10_bio->devs[slot].rdev = rdev;
1254
1255                read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1256                        choose_data_offset(r10_bio, rdev);
1257                read_bio->bi_bdev = rdev->bdev;
1258                read_bio->bi_end_io = raid10_end_read_request;
1259                read_bio->bi_rw = READ | do_sync;
1260                read_bio->bi_private = r10_bio;
1261
1262                if (max_sectors < r10_bio->sectors) {
1263                        /* Could not read all from this device, so we will
1264                         * need another r10_bio.
1265                         */
1266                        sectors_handled = (r10_bio->sector + max_sectors
1267                                           - bio->bi_iter.bi_sector);
1268                        r10_bio->sectors = max_sectors;
1269                        spin_lock_irq(&conf->device_lock);
1270                        if (bio->bi_phys_segments == 0)
1271                                bio->bi_phys_segments = 2;
1272                        else
1273                                bio->bi_phys_segments++;
1274                        spin_unlock_irq(&conf->device_lock);
1275                        /* Cannot call generic_make_request directly
1276                         * as that will be queued in __generic_make_request
1277                         * and subsequent mempool_alloc might block
1278                         * waiting for it.  so hand bio over to raid10d.
1279                         */
1280                        reschedule_retry(r10_bio);
1281
1282                        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1283
1284                        r10_bio->master_bio = bio;
1285                        r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1286                        r10_bio->state = 0;
1287                        r10_bio->mddev = mddev;
1288                        r10_bio->sector = bio->bi_iter.bi_sector +
1289                                sectors_handled;
1290                        goto read_again;
1291                } else
1292                        generic_make_request(read_bio);
1293                return;
1294        }
1295
1296        /*
1297         * WRITE:
1298         */
1299        if (conf->pending_count >= max_queued_requests) {
1300                md_wakeup_thread(mddev->thread);
1301                wait_event(conf->wait_barrier,
1302                           conf->pending_count < max_queued_requests);
1303        }
1304        /* first select target devices under rcu_lock and
1305         * inc refcount on their rdev.  Record them by setting
1306         * bios[x] to bio
1307         * If there are known/acknowledged bad blocks on any device
1308         * on which we have seen a write error, we want to avoid
1309         * writing to those blocks.  This potentially requires several
1310         * writes to write around the bad blocks.  Each set of writes
1311         * gets its own r10_bio with a set of bios attached.  The number
1312         * of r10_bios is recored in bio->bi_phys_segments just as with
1313         * the read case.
1314         */
1315
1316        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1317        raid10_find_phys(conf, r10_bio);
1318retry_write:
1319        blocked_rdev = NULL;
1320        rcu_read_lock();
1321        max_sectors = r10_bio->sectors;
1322
1323        for (i = 0;  i < conf->copies; i++) {
1324                int d = r10_bio->devs[i].devnum;
1325                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1326                struct md_rdev *rrdev = rcu_dereference(
1327                        conf->mirrors[d].replacement);
1328                if (rdev == rrdev)
1329                        rrdev = NULL;
1330                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1331                        atomic_inc(&rdev->nr_pending);
1332                        blocked_rdev = rdev;
1333                        break;
1334                }
1335                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1336                        atomic_inc(&rrdev->nr_pending);
1337                        blocked_rdev = rrdev;
1338                        break;
1339                }
1340                if (rdev && (test_bit(Faulty, &rdev->flags)
1341                             || test_bit(Unmerged, &rdev->flags)))
1342                        rdev = NULL;
1343                if (rrdev && (test_bit(Faulty, &rrdev->flags)
1344                              || test_bit(Unmerged, &rrdev->flags)))
1345                        rrdev = NULL;
1346
1347                r10_bio->devs[i].bio = NULL;
1348                r10_bio->devs[i].repl_bio = NULL;
1349
1350                if (!rdev && !rrdev) {
1351                        set_bit(R10BIO_Degraded, &r10_bio->state);
1352                        continue;
1353                }
1354                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1355                        sector_t first_bad;
1356                        sector_t dev_sector = r10_bio->devs[i].addr;
1357                        int bad_sectors;
1358                        int is_bad;
1359
1360                        is_bad = is_badblock(rdev, dev_sector,
1361                                             max_sectors,
1362                                             &first_bad, &bad_sectors);
1363                        if (is_bad < 0) {
1364                                /* Mustn't write here until the bad block
1365                                 * is acknowledged
1366                                 */
1367                                atomic_inc(&rdev->nr_pending);
1368                                set_bit(BlockedBadBlocks, &rdev->flags);
1369                                blocked_rdev = rdev;
1370                                break;
1371                        }
1372                        if (is_bad && first_bad <= dev_sector) {
1373                                /* Cannot write here at all */
1374                                bad_sectors -= (dev_sector - first_bad);
1375                                if (bad_sectors < max_sectors)
1376                                        /* Mustn't write more than bad_sectors
1377                                         * to other devices yet
1378                                         */
1379                                        max_sectors = bad_sectors;
1380                                /* We don't set R10BIO_Degraded as that
1381                                 * only applies if the disk is missing,
1382                                 * so it might be re-added, and we want to
1383                                 * know to recover this chunk.
1384                                 * In this case the device is here, and the
1385                                 * fact that this chunk is not in-sync is
1386                                 * recorded in the bad block log.
1387                                 */
1388                                continue;
1389                        }
1390                        if (is_bad) {
1391                                int good_sectors = first_bad - dev_sector;
1392                                if (good_sectors < max_sectors)
1393                                        max_sectors = good_sectors;
1394                        }
1395                }
1396                if (rdev) {
1397                        r10_bio->devs[i].bio = bio;
1398                        atomic_inc(&rdev->nr_pending);
1399                }
1400                if (rrdev) {
1401                        r10_bio->devs[i].repl_bio = bio;
1402                        atomic_inc(&rrdev->nr_pending);
1403                }
1404        }
1405        rcu_read_unlock();
1406
1407        if (unlikely(blocked_rdev)) {
1408                /* Have to wait for this device to get unblocked, then retry */
1409                int j;
1410                int d;
1411
1412                for (j = 0; j < i; j++) {
1413                        if (r10_bio->devs[j].bio) {
1414                                d = r10_bio->devs[j].devnum;
1415                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1416                        }
1417                        if (r10_bio->devs[j].repl_bio) {
1418                                struct md_rdev *rdev;
1419                                d = r10_bio->devs[j].devnum;
1420                                rdev = conf->mirrors[d].replacement;
1421                                if (!rdev) {
1422                                        /* Race with remove_disk */
1423                                        smp_mb();
1424                                        rdev = conf->mirrors[d].rdev;
1425                                }
1426                                rdev_dec_pending(rdev, mddev);
1427                        }
1428                }
1429                allow_barrier(conf);
1430                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431                wait_barrier(conf);
1432                goto retry_write;
1433        }
1434
1435        if (max_sectors < r10_bio->sectors) {
1436                /* We are splitting this into multiple parts, so
1437                 * we need to prepare for allocating another r10_bio.
1438                 */
1439                r10_bio->sectors = max_sectors;
1440                spin_lock_irq(&conf->device_lock);
1441                if (bio->bi_phys_segments == 0)
1442                        bio->bi_phys_segments = 2;
1443                else
1444                        bio->bi_phys_segments++;
1445                spin_unlock_irq(&conf->device_lock);
1446        }
1447        sectors_handled = r10_bio->sector + max_sectors -
1448                bio->bi_iter.bi_sector;
1449
1450        atomic_set(&r10_bio->remaining, 1);
1451        bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1452
1453        for (i = 0; i < conf->copies; i++) {
1454                struct bio *mbio;
1455                int d = r10_bio->devs[i].devnum;
1456                if (r10_bio->devs[i].bio) {
1457                        struct md_rdev *rdev = conf->mirrors[d].rdev;
1458                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1459                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1460                                 max_sectors);
1461                        r10_bio->devs[i].bio = mbio;
1462
1463                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1464                                           choose_data_offset(r10_bio,
1465                                                              rdev));
1466                        mbio->bi_bdev = rdev->bdev;
1467                        mbio->bi_end_io = raid10_end_write_request;
1468                        mbio->bi_rw =
1469                                WRITE | do_sync | do_fua | do_discard | do_same;
1470                        mbio->bi_private = r10_bio;
1471
1472                        atomic_inc(&r10_bio->remaining);
1473
1474                        cb = blk_check_plugged(raid10_unplug, mddev,
1475                                               sizeof(*plug));
1476                        if (cb)
1477                                plug = container_of(cb, struct raid10_plug_cb,
1478                                                    cb);
1479                        else
1480                                plug = NULL;
1481                        spin_lock_irqsave(&conf->device_lock, flags);
1482                        if (plug) {
1483                                bio_list_add(&plug->pending, mbio);
1484                                plug->pending_cnt++;
1485                        } else {
1486                                bio_list_add(&conf->pending_bio_list, mbio);
1487                                conf->pending_count++;
1488                        }
1489                        spin_unlock_irqrestore(&conf->device_lock, flags);
1490                        if (!plug)
1491                                md_wakeup_thread(mddev->thread);
1492                }
1493
1494                if (r10_bio->devs[i].repl_bio) {
1495                        struct md_rdev *rdev = conf->mirrors[d].replacement;
1496                        if (rdev == NULL) {
1497                                /* Replacement just got moved to main 'rdev' */
1498                                smp_mb();
1499                                rdev = conf->mirrors[d].rdev;
1500                        }
1501                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1502                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1503                                 max_sectors);
1504                        r10_bio->devs[i].repl_bio = mbio;
1505
1506                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1507                                           choose_data_offset(
1508                                                   r10_bio, rdev));
1509                        mbio->bi_bdev = rdev->bdev;
1510                        mbio->bi_end_io = raid10_end_write_request;
1511                        mbio->bi_rw =
1512                                WRITE | do_sync | do_fua | do_discard | do_same;
1513                        mbio->bi_private = r10_bio;
1514
1515                        atomic_inc(&r10_bio->remaining);
1516                        spin_lock_irqsave(&conf->device_lock, flags);
1517                        bio_list_add(&conf->pending_bio_list, mbio);
1518                        conf->pending_count++;
1519                        spin_unlock_irqrestore(&conf->device_lock, flags);
1520                        if (!mddev_check_plugged(mddev))
1521                                md_wakeup_thread(mddev->thread);
1522                }
1523        }
1524
1525        /* Don't remove the bias on 'remaining' (one_write_done) until
1526         * after checking if we need to go around again.
1527         */
1528
1529        if (sectors_handled < bio_sectors(bio)) {
1530                one_write_done(r10_bio);
1531                /* We need another r10_bio.  It has already been counted
1532                 * in bio->bi_phys_segments.
1533                 */
1534                r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1535
1536                r10_bio->master_bio = bio;
1537                r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1538
1539                r10_bio->mddev = mddev;
1540                r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1541                r10_bio->state = 0;
1542                goto retry_write;
1543        }
1544        one_write_done(r10_bio);
1545}
1546
1547static void make_request(struct mddev *mddev, struct bio *bio)
1548{
1549        struct r10conf *conf = mddev->private;
1550        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1551        int chunk_sects = chunk_mask + 1;
1552
1553        struct bio *split;
1554
1555        if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1556                md_flush_request(mddev, bio);
1557                return;
1558        }
1559
1560        md_write_start(mddev, bio);
1561
1562
1563        do {
1564
1565                /*
1566                 * If this request crosses a chunk boundary, we need to split
1567                 * it.
1568                 */
1569                if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1570                             bio_sectors(bio) > chunk_sects
1571                             && (conf->geo.near_copies < conf->geo.raid_disks
1572                                 || conf->prev.near_copies <
1573                                 conf->prev.raid_disks))) {
1574                        split = bio_split(bio, chunk_sects -
1575                                          (bio->bi_iter.bi_sector &
1576                                           (chunk_sects - 1)),
1577                                          GFP_NOIO, fs_bio_set);
1578                        bio_chain(split, bio);
1579                } else {
1580                        split = bio;
1581                }
1582
1583                __make_request(mddev, split);
1584        } while (split != bio);
1585
1586        /* In case raid10d snuck in to freeze_array */
1587        wake_up(&conf->wait_barrier);
1588}
1589
1590static void status(struct seq_file *seq, struct mddev *mddev)
1591{
1592        struct r10conf *conf = mddev->private;
1593        int i;
1594
1595        if (conf->geo.near_copies < conf->geo.raid_disks)
1596                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1597        if (conf->geo.near_copies > 1)
1598                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1599        if (conf->geo.far_copies > 1) {
1600                if (conf->geo.far_offset)
1601                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1602                else
1603                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1604        }
1605        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606                                        conf->geo.raid_disks - mddev->degraded);
1607        for (i = 0; i < conf->geo.raid_disks; i++)
1608                seq_printf(seq, "%s",
1609                              conf->mirrors[i].rdev &&
1610                              test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1611        seq_printf(seq, "]");
1612}
1613
1614/* check if there are enough drives for
1615 * every block to appear on atleast one.
1616 * Don't consider the device numbered 'ignore'
1617 * as we might be about to remove it.
1618 */
1619static int _enough(struct r10conf *conf, int previous, int ignore)
1620{
1621        int first = 0;
1622        int has_enough = 0;
1623        int disks, ncopies;
1624        if (previous) {
1625                disks = conf->prev.raid_disks;
1626                ncopies = conf->prev.near_copies;
1627        } else {
1628                disks = conf->geo.raid_disks;
1629                ncopies = conf->geo.near_copies;
1630        }
1631
1632        rcu_read_lock();
1633        do {
1634                int n = conf->copies;
1635                int cnt = 0;
1636                int this = first;
1637                while (n--) {
1638                        struct md_rdev *rdev;
1639                        if (this != ignore &&
1640                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641                            test_bit(In_sync, &rdev->flags))
1642                                cnt++;
1643                        this = (this+1) % disks;
1644                }
1645                if (cnt == 0)
1646                        goto out;
1647                first = (first + ncopies) % disks;
1648        } while (first != 0);
1649        has_enough = 1;
1650out:
1651        rcu_read_unlock();
1652        return has_enough;
1653}
1654
1655static int enough(struct r10conf *conf, int ignore)
1656{
1657        /* when calling 'enough', both 'prev' and 'geo' must
1658         * be stable.
1659         * This is ensured if ->reconfig_mutex or ->device_lock
1660         * is held.
1661         */
1662        return _enough(conf, 0, ignore) &&
1663                _enough(conf, 1, ignore);
1664}
1665
1666static void error(struct mddev *mddev, struct md_rdev *rdev)
1667{
1668        char b[BDEVNAME_SIZE];
1669        struct r10conf *conf = mddev->private;
1670        unsigned long flags;
1671
1672        /*
1673         * If it is not operational, then we have already marked it as dead
1674         * else if it is the last working disks, ignore the error, let the
1675         * next level up know.
1676         * else mark the drive as failed
1677         */
1678        spin_lock_irqsave(&conf->device_lock, flags);
1679        if (test_bit(In_sync, &rdev->flags)
1680            && !enough(conf, rdev->raid_disk)) {
1681                /*
1682                 * Don't fail the drive, just return an IO error.
1683                 */
1684                spin_unlock_irqrestore(&conf->device_lock, flags);
1685                return;
1686        }
1687        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1688                mddev->degraded++;
1689                        /*
1690                 * if recovery is running, make sure it aborts.
1691                 */
1692                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693        }
1694        set_bit(Blocked, &rdev->flags);
1695        set_bit(Faulty, &rdev->flags);
1696        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1697        spin_unlock_irqrestore(&conf->device_lock, flags);
1698        printk(KERN_ALERT
1699               "md/raid10:%s: Disk failure on %s, disabling device.\n"
1700               "md/raid10:%s: Operation continuing on %d devices.\n",
1701               mdname(mddev), bdevname(rdev->bdev, b),
1702               mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1703}
1704
1705static void print_conf(struct r10conf *conf)
1706{
1707        int i;
1708        struct raid10_info *tmp;
1709
1710        printk(KERN_DEBUG "RAID10 conf printout:\n");
1711        if (!conf) {
1712                printk(KERN_DEBUG "(!conf)\n");
1713                return;
1714        }
1715        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1716                conf->geo.raid_disks);
1717
1718        for (i = 0; i < conf->geo.raid_disks; i++) {
1719                char b[BDEVNAME_SIZE];
1720                tmp = conf->mirrors + i;
1721                if (tmp->rdev)
1722                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1723                                i, !test_bit(In_sync, &tmp->rdev->flags),
1724                                !test_bit(Faulty, &tmp->rdev->flags),
1725                                bdevname(tmp->rdev->bdev,b));
1726        }
1727}
1728
1729static void close_sync(struct r10conf *conf)
1730{
1731        wait_barrier(conf);
1732        allow_barrier(conf);
1733
1734        mempool_destroy(conf->r10buf_pool);
1735        conf->r10buf_pool = NULL;
1736}
1737
1738static int raid10_spare_active(struct mddev *mddev)
1739{
1740        int i;
1741        struct r10conf *conf = mddev->private;
1742        struct raid10_info *tmp;
1743        int count = 0;
1744        unsigned long flags;
1745
1746        /*
1747         * Find all non-in_sync disks within the RAID10 configuration
1748         * and mark them in_sync
1749         */
1750        for (i = 0; i < conf->geo.raid_disks; i++) {
1751                tmp = conf->mirrors + i;
1752                if (tmp->replacement
1753                    && tmp->replacement->recovery_offset == MaxSector
1754                    && !test_bit(Faulty, &tmp->replacement->flags)
1755                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1756                        /* Replacement has just become active */
1757                        if (!tmp->rdev
1758                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1759                                count++;
1760                        if (tmp->rdev) {
1761                                /* Replaced device not technically faulty,
1762                                 * but we need to be sure it gets removed
1763                                 * and never re-added.
1764                                 */
1765                                set_bit(Faulty, &tmp->rdev->flags);
1766                                sysfs_notify_dirent_safe(
1767                                        tmp->rdev->sysfs_state);
1768                        }
1769                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1770                } else if (tmp->rdev
1771                           && tmp->rdev->recovery_offset == MaxSector
1772                           && !test_bit(Faulty, &tmp->rdev->flags)
1773                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1774                        count++;
1775                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1776                }
1777        }
1778        spin_lock_irqsave(&conf->device_lock, flags);
1779        mddev->degraded -= count;
1780        spin_unlock_irqrestore(&conf->device_lock, flags);
1781
1782        print_conf(conf);
1783        return count;
1784}
1785
1786
1787static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1788{
1789        struct r10conf *conf = mddev->private;
1790        int err = -EEXIST;
1791        int mirror;
1792        int first = 0;
1793        int last = conf->geo.raid_disks - 1;
1794        struct request_queue *q = bdev_get_queue(rdev->bdev);
1795
1796        if (mddev->recovery_cp < MaxSector)
1797                /* only hot-add to in-sync arrays, as recovery is
1798                 * very different from resync
1799                 */
1800                return -EBUSY;
1801        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1802                return -EINVAL;
1803
1804        if (rdev->raid_disk >= 0)
1805                first = last = rdev->raid_disk;
1806
1807        if (q->merge_bvec_fn) {
1808                set_bit(Unmerged, &rdev->flags);
1809                mddev->merge_check_needed = 1;
1810        }
1811
1812        if (rdev->saved_raid_disk >= first &&
1813            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1814                mirror = rdev->saved_raid_disk;
1815        else
1816                mirror = first;
1817        for ( ; mirror <= last ; mirror++) {
1818                struct raid10_info *p = &conf->mirrors[mirror];
1819                if (p->recovery_disabled == mddev->recovery_disabled)
1820                        continue;
1821                if (p->rdev) {
1822                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1823                            p->replacement != NULL)
1824                                continue;
1825                        clear_bit(In_sync, &rdev->flags);
1826                        set_bit(Replacement, &rdev->flags);
1827                        rdev->raid_disk = mirror;
1828                        err = 0;
1829                        if (mddev->gendisk)
1830                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1831                                                  rdev->data_offset << 9);
1832                        conf->fullsync = 1;
1833                        rcu_assign_pointer(p->replacement, rdev);
1834                        break;
1835                }
1836
1837                if (mddev->gendisk)
1838                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1839                                          rdev->data_offset << 9);
1840
1841                p->head_position = 0;
1842                p->recovery_disabled = mddev->recovery_disabled - 1;
1843                rdev->raid_disk = mirror;
1844                err = 0;
1845                if (rdev->saved_raid_disk != mirror)
1846                        conf->fullsync = 1;
1847                rcu_assign_pointer(p->rdev, rdev);
1848                break;
1849        }
1850        if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1851                /* Some requests might not have seen this new
1852                 * merge_bvec_fn.  We must wait for them to complete
1853                 * before merging the device fully.
1854                 * First we make sure any code which has tested
1855                 * our function has submitted the request, then
1856                 * we wait for all outstanding requests to complete.
1857                 */
1858                synchronize_sched();
1859                freeze_array(conf, 0);
1860                unfreeze_array(conf);
1861                clear_bit(Unmerged, &rdev->flags);
1862        }
1863        md_integrity_add_rdev(rdev, mddev);
1864        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1865                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1866
1867        print_conf(conf);
1868        return err;
1869}
1870
1871static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1872{
1873        struct r10conf *conf = mddev->private;
1874        int err = 0;
1875        int number = rdev->raid_disk;
1876        struct md_rdev **rdevp;
1877        struct raid10_info *p = conf->mirrors + number;
1878
1879        print_conf(conf);
1880        if (rdev == p->rdev)
1881                rdevp = &p->rdev;
1882        else if (rdev == p->replacement)
1883                rdevp = &p->replacement;
1884        else
1885                return 0;
1886
1887        if (test_bit(In_sync, &rdev->flags) ||
1888            atomic_read(&rdev->nr_pending)) {
1889                err = -EBUSY;
1890                goto abort;
1891        }
1892        /* Only remove faulty devices if recovery
1893         * is not possible.
1894         */
1895        if (!test_bit(Faulty, &rdev->flags) &&
1896            mddev->recovery_disabled != p->recovery_disabled &&
1897            (!p->replacement || p->replacement == rdev) &&
1898            number < conf->geo.raid_disks &&
1899            enough(conf, -1)) {
1900                err = -EBUSY;
1901                goto abort;
1902        }
1903        *rdevp = NULL;
1904        synchronize_rcu();
1905        if (atomic_read(&rdev->nr_pending)) {
1906                /* lost the race, try later */
1907                err = -EBUSY;
1908                *rdevp = rdev;
1909                goto abort;
1910        } else if (p->replacement) {
1911                /* We must have just cleared 'rdev' */
1912                p->rdev = p->replacement;
1913                clear_bit(Replacement, &p->replacement->flags);
1914                smp_mb(); /* Make sure other CPUs may see both as identical
1915                           * but will never see neither -- if they are careful.
1916                           */
1917                p->replacement = NULL;
1918                clear_bit(WantReplacement, &rdev->flags);
1919        } else
1920                /* We might have just remove the Replacement as faulty
1921                 * Clear the flag just in case
1922                 */
1923                clear_bit(WantReplacement, &rdev->flags);
1924
1925        err = md_integrity_register(mddev);
1926
1927abort:
1928
1929        print_conf(conf);
1930        return err;
1931}
1932
1933
1934static void end_sync_read(struct bio *bio, int error)
1935{
1936        struct r10bio *r10_bio = bio->bi_private;
1937        struct r10conf *conf = r10_bio->mddev->private;
1938        int d;
1939
1940        if (bio == r10_bio->master_bio) {
1941                /* this is a reshape read */
1942                d = r10_bio->read_slot; /* really the read dev */
1943        } else
1944                d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1945
1946        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1947                set_bit(R10BIO_Uptodate, &r10_bio->state);
1948        else
1949                /* The write handler will notice the lack of
1950                 * R10BIO_Uptodate and record any errors etc
1951                 */
1952                atomic_add(r10_bio->sectors,
1953                           &conf->mirrors[d].rdev->corrected_errors);
1954
1955        /* for reconstruct, we always reschedule after a read.
1956         * for resync, only after all reads
1957         */
1958        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1959        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1960            atomic_dec_and_test(&r10_bio->remaining)) {
1961                /* we have read all the blocks,
1962                 * do the comparison in process context in raid10d
1963                 */
1964                reschedule_retry(r10_bio);
1965        }
1966}
1967
1968static void end_sync_request(struct r10bio *r10_bio)
1969{
1970        struct mddev *mddev = r10_bio->mddev;
1971
1972        while (atomic_dec_and_test(&r10_bio->remaining)) {
1973                if (r10_bio->master_bio == NULL) {
1974                        /* the primary of several recovery bios */
1975                        sector_t s = r10_bio->sectors;
1976                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977                            test_bit(R10BIO_WriteError, &r10_bio->state))
1978                                reschedule_retry(r10_bio);
1979                        else
1980                                put_buf(r10_bio);
1981                        md_done_sync(mddev, s, 1);
1982                        break;
1983                } else {
1984                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1985                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1986                            test_bit(R10BIO_WriteError, &r10_bio->state))
1987                                reschedule_retry(r10_bio);
1988                        else
1989                                put_buf(r10_bio);
1990                        r10_bio = r10_bio2;
1991                }
1992        }
1993}
1994
1995static void end_sync_write(struct bio *bio, int error)
1996{
1997        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1998        struct r10bio *r10_bio = bio->bi_private;
1999        struct mddev *mddev = r10_bio->mddev;
2000        struct r10conf *conf = mddev->private;
2001        int d;
2002        sector_t first_bad;
2003        int bad_sectors;
2004        int slot;
2005        int repl;
2006        struct md_rdev *rdev = NULL;
2007
2008        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2009        if (repl)
2010                rdev = conf->mirrors[d].replacement;
2011        else
2012                rdev = conf->mirrors[d].rdev;
2013
2014        if (!uptodate) {
2015                if (repl)
2016                        md_error(mddev, rdev);
2017                else {
2018                        set_bit(WriteErrorSeen, &rdev->flags);
2019                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2020                                set_bit(MD_RECOVERY_NEEDED,
2021                                        &rdev->mddev->recovery);
2022                        set_bit(R10BIO_WriteError, &r10_bio->state);
2023                }
2024        } else if (is_badblock(rdev,
2025                             r10_bio->devs[slot].addr,
2026                             r10_bio->sectors,
2027                             &first_bad, &bad_sectors))
2028                set_bit(R10BIO_MadeGood, &r10_bio->state);
2029
2030        rdev_dec_pending(rdev, mddev);
2031
2032        end_sync_request(r10_bio);
2033}
2034
2035/*
2036 * Note: sync and recover and handled very differently for raid10
2037 * This code is for resync.
2038 * For resync, we read through virtual addresses and read all blocks.
2039 * If there is any error, we schedule a write.  The lowest numbered
2040 * drive is authoritative.
2041 * However requests come for physical address, so we need to map.
2042 * For every physical address there are raid_disks/copies virtual addresses,
2043 * which is always are least one, but is not necessarly an integer.
2044 * This means that a physical address can span multiple chunks, so we may
2045 * have to submit multiple io requests for a single sync request.
2046 */
2047/*
2048 * We check if all blocks are in-sync and only write to blocks that
2049 * aren't in sync
2050 */
2051static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2052{
2053        struct r10conf *conf = mddev->private;
2054        int i, first;
2055        struct bio *tbio, *fbio;
2056        int vcnt;
2057
2058        atomic_set(&r10_bio->remaining, 1);
2059
2060        /* find the first device with a block */
2061        for (i=0; i<conf->copies; i++)
2062                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2063                        break;
2064
2065        if (i == conf->copies)
2066                goto done;
2067
2068        first = i;
2069        fbio = r10_bio->devs[i].bio;
2070
2071        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2072        /* now find blocks with errors */
2073        for (i=0 ; i < conf->copies ; i++) {
2074                int  j, d;
2075
2076                tbio = r10_bio->devs[i].bio;
2077
2078                if (tbio->bi_end_io != end_sync_read)
2079                        continue;
2080                if (i == first)
2081                        continue;
2082                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2083                        /* We know that the bi_io_vec layout is the same for
2084                         * both 'first' and 'i', so we just compare them.
2085                         * All vec entries are PAGE_SIZE;
2086                         */
2087                        int sectors = r10_bio->sectors;
2088                        for (j = 0; j < vcnt; j++) {
2089                                int len = PAGE_SIZE;
2090                                if (sectors < (len / 512))
2091                                        len = sectors * 512;
2092                                if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2093                                           page_address(tbio->bi_io_vec[j].bv_page),
2094                                           len))
2095                                        break;
2096                                sectors -= len/512;
2097                        }
2098                        if (j == vcnt)
2099                                continue;
2100                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2101                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2102                                /* Don't fix anything. */
2103                                continue;
2104                }
2105                /* Ok, we need to write this bio, either to correct an
2106                 * inconsistency or to correct an unreadable block.
2107                 * First we need to fixup bv_offset, bv_len and
2108                 * bi_vecs, as the read request might have corrupted these
2109                 */
2110                bio_reset(tbio);
2111
2112                tbio->bi_vcnt = vcnt;
2113                tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2114                tbio->bi_rw = WRITE;
2115                tbio->bi_private = r10_bio;
2116                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2117
2118                for (j=0; j < vcnt ; j++) {
2119                        tbio->bi_io_vec[j].bv_offset = 0;
2120                        tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2121
2122                        memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2123                               page_address(fbio->bi_io_vec[j].bv_page),
2124                               PAGE_SIZE);
2125                }
2126                tbio->bi_end_io = end_sync_write;
2127
2128                d = r10_bio->devs[i].devnum;
2129                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2130                atomic_inc(&r10_bio->remaining);
2131                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2132
2133                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2134                tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2135                generic_make_request(tbio);
2136        }
2137
2138        /* Now write out to any replacement devices
2139         * that are active
2140         */
2141        for (i = 0; i < conf->copies; i++) {
2142                int j, d;
2143
2144                tbio = r10_bio->devs[i].repl_bio;
2145                if (!tbio || !tbio->bi_end_io)
2146                        continue;
2147                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2148                    && r10_bio->devs[i].bio != fbio)
2149                        for (j = 0; j < vcnt; j++)
2150                                memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2151                                       page_address(fbio->bi_io_vec[j].bv_page),
2152                                       PAGE_SIZE);
2153                d = r10_bio->devs[i].devnum;
2154                atomic_inc(&r10_bio->remaining);
2155                md_sync_acct(conf->mirrors[d].replacement->bdev,
2156                             bio_sectors(tbio));
2157                generic_make_request(tbio);
2158        }
2159
2160done:
2161        if (atomic_dec_and_test(&r10_bio->remaining)) {
2162                md_done_sync(mddev, r10_bio->sectors, 1);
2163                put_buf(r10_bio);
2164        }
2165}
2166
2167/*
2168 * Now for the recovery code.
2169 * Recovery happens across physical sectors.
2170 * We recover all non-is_sync drives by finding the virtual address of
2171 * each, and then choose a working drive that also has that virt address.
2172 * There is a separate r10_bio for each non-in_sync drive.
2173 * Only the first two slots are in use. The first for reading,
2174 * The second for writing.
2175 *
2176 */
2177static void fix_recovery_read_error(struct r10bio *r10_bio)
2178{
2179        /* We got a read error during recovery.
2180         * We repeat the read in smaller page-sized sections.
2181         * If a read succeeds, write it to the new device or record
2182         * a bad block if we cannot.
2183         * If a read fails, record a bad block on both old and
2184         * new devices.
2185         */
2186        struct mddev *mddev = r10_bio->mddev;
2187        struct r10conf *conf = mddev->private;
2188        struct bio *bio = r10_bio->devs[0].bio;
2189        sector_t sect = 0;
2190        int sectors = r10_bio->sectors;
2191        int idx = 0;
2192        int dr = r10_bio->devs[0].devnum;
2193        int dw = r10_bio->devs[1].devnum;
2194
2195        while (sectors) {
2196                int s = sectors;
2197                struct md_rdev *rdev;
2198                sector_t addr;
2199                int ok;
2200
2201                if (s > (PAGE_SIZE>>9))
2202                        s = PAGE_SIZE >> 9;
2203
2204                rdev = conf->mirrors[dr].rdev;
2205                addr = r10_bio->devs[0].addr + sect,
2206                ok = sync_page_io(rdev,
2207                                  addr,
2208                                  s << 9,
2209                                  bio->bi_io_vec[idx].bv_page,
2210                                  READ, false);
2211                if (ok) {
2212                        rdev = conf->mirrors[dw].rdev;
2213                        addr = r10_bio->devs[1].addr + sect;
2214                        ok = sync_page_io(rdev,
2215                                          addr,
2216                                          s << 9,
2217                                          bio->bi_io_vec[idx].bv_page,
2218                                          WRITE, false);
2219                        if (!ok) {
2220                                set_bit(WriteErrorSeen, &rdev->flags);
2221                                if (!test_and_set_bit(WantReplacement,
2222                                                      &rdev->flags))
2223                                        set_bit(MD_RECOVERY_NEEDED,
2224                                                &rdev->mddev->recovery);
2225                        }
2226                }
2227                if (!ok) {
2228                        /* We don't worry if we cannot set a bad block -
2229                         * it really is bad so there is no loss in not
2230                         * recording it yet
2231                         */
2232                        rdev_set_badblocks(rdev, addr, s, 0);
2233
2234                        if (rdev != conf->mirrors[dw].rdev) {
2235                                /* need bad block on destination too */
2236                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2237                                addr = r10_bio->devs[1].addr + sect;
2238                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2239                                if (!ok) {
2240                                        /* just abort the recovery */
2241                                        printk(KERN_NOTICE
2242                                               "md/raid10:%s: recovery aborted"
2243                                               " due to read error\n",
2244                                               mdname(mddev));
2245
2246                                        conf->mirrors[dw].recovery_disabled
2247                                                = mddev->recovery_disabled;
2248                                        set_bit(MD_RECOVERY_INTR,
2249                                                &mddev->recovery);
2250                                        break;
2251                                }
2252                        }
2253                }
2254
2255                sectors -= s;
2256                sect += s;
2257                idx++;
2258        }
2259}
2260
2261static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2262{
2263        struct r10conf *conf = mddev->private;
2264        int d;
2265        struct bio *wbio, *wbio2;
2266
2267        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2268                fix_recovery_read_error(r10_bio);
2269                end_sync_request(r10_bio);
2270                return;
2271        }
2272
2273        /*
2274         * share the pages with the first bio
2275         * and submit the write request
2276         */
2277        d = r10_bio->devs[1].devnum;
2278        wbio = r10_bio->devs[1].bio;
2279        wbio2 = r10_bio->devs[1].repl_bio;
2280        /* Need to test wbio2->bi_end_io before we call
2281         * generic_make_request as if the former is NULL,
2282         * the latter is free to free wbio2.
2283         */
2284        if (wbio2 && !wbio2->bi_end_io)
2285                wbio2 = NULL;
2286        if (wbio->bi_end_io) {
2287                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2288                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2289                generic_make_request(wbio);
2290        }
2291        if (wbio2) {
2292                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2293                md_sync_acct(conf->mirrors[d].replacement->bdev,
2294                             bio_sectors(wbio2));
2295                generic_make_request(wbio2);
2296        }
2297}
2298
2299
2300/*
2301 * Used by fix_read_error() to decay the per rdev read_errors.
2302 * We halve the read error count for every hour that has elapsed
2303 * since the last recorded read error.
2304 *
2305 */
2306static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2307{
2308        struct timespec cur_time_mon;
2309        unsigned long hours_since_last;
2310        unsigned int read_errors = atomic_read(&rdev->read_errors);
2311
2312        ktime_get_ts(&cur_time_mon);
2313
2314        if (rdev->last_read_error.tv_sec == 0 &&
2315            rdev->last_read_error.tv_nsec == 0) {
2316                /* first time we've seen a read error */
2317                rdev->last_read_error = cur_time_mon;
2318                return;
2319        }
2320
2321        hours_since_last = (cur_time_mon.tv_sec -
2322                            rdev->last_read_error.tv_sec) / 3600;
2323
2324        rdev->last_read_error = cur_time_mon;
2325
2326        /*
2327         * if hours_since_last is > the number of bits in read_errors
2328         * just set read errors to 0. We do this to avoid
2329         * overflowing the shift of read_errors by hours_since_last.
2330         */
2331        if (hours_since_last >= 8 * sizeof(read_errors))
2332                atomic_set(&rdev->read_errors, 0);
2333        else
2334                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2335}
2336
2337static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2338                            int sectors, struct page *page, int rw)
2339{
2340        sector_t first_bad;
2341        int bad_sectors;
2342
2343        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2344            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2345                return -1;
2346        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2347                /* success */
2348                return 1;
2349        if (rw == WRITE) {
2350                set_bit(WriteErrorSeen, &rdev->flags);
2351                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2352                        set_bit(MD_RECOVERY_NEEDED,
2353                                &rdev->mddev->recovery);
2354        }
2355        /* need to record an error - either for the block or the device */
2356        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2357                md_error(rdev->mddev, rdev);
2358        return 0;
2359}
2360
2361/*
2362 * This is a kernel thread which:
2363 *
2364 *      1.      Retries failed read operations on working mirrors.
2365 *      2.      Updates the raid superblock when problems encounter.
2366 *      3.      Performs writes following reads for array synchronising.
2367 */
2368
2369static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2370{
2371        int sect = 0; /* Offset from r10_bio->sector */
2372        int sectors = r10_bio->sectors;
2373        struct md_rdev*rdev;
2374        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2375        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2376
2377        /* still own a reference to this rdev, so it cannot
2378         * have been cleared recently.
2379         */
2380        rdev = conf->mirrors[d].rdev;
2381
2382        if (test_bit(Faulty, &rdev->flags))
2383                /* drive has already been failed, just ignore any
2384                   more fix_read_error() attempts */
2385                return;
2386
2387        check_decay_read_errors(mddev, rdev);
2388        atomic_inc(&rdev->read_errors);
2389        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2390                char b[BDEVNAME_SIZE];
2391                bdevname(rdev->bdev, b);
2392
2393                printk(KERN_NOTICE
2394                       "md/raid10:%s: %s: Raid device exceeded "
2395                       "read_error threshold [cur %d:max %d]\n",
2396                       mdname(mddev), b,
2397                       atomic_read(&rdev->read_errors), max_read_errors);
2398                printk(KERN_NOTICE
2399                       "md/raid10:%s: %s: Failing raid device\n",
2400                       mdname(mddev), b);
2401                md_error(mddev, conf->mirrors[d].rdev);
2402                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2403                return;
2404        }
2405
2406        while(sectors) {
2407                int s = sectors;
2408                int sl = r10_bio->read_slot;
2409                int success = 0;
2410                int start;
2411
2412                if (s > (PAGE_SIZE>>9))
2413                        s = PAGE_SIZE >> 9;
2414
2415                rcu_read_lock();
2416                do {
2417                        sector_t first_bad;
2418                        int bad_sectors;
2419
2420                        d = r10_bio->devs[sl].devnum;
2421                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2422                        if (rdev &&
2423                            !test_bit(Unmerged, &rdev->flags) &&
2424                            test_bit(In_sync, &rdev->flags) &&
2425                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2426                                        &first_bad, &bad_sectors) == 0) {
2427                                atomic_inc(&rdev->nr_pending);
2428                                rcu_read_unlock();
2429                                success = sync_page_io(rdev,
2430                                                       r10_bio->devs[sl].addr +
2431                                                       sect,
2432                                                       s<<9,
2433                                                       conf->tmppage, READ, false);
2434                                rdev_dec_pending(rdev, mddev);
2435                                rcu_read_lock();
2436                                if (success)
2437                                        break;
2438                        }
2439                        sl++;
2440                        if (sl == conf->copies)
2441                                sl = 0;
2442                } while (!success && sl != r10_bio->read_slot);
2443                rcu_read_unlock();
2444
2445                if (!success) {
2446                        /* Cannot read from anywhere, just mark the block
2447                         * as bad on the first device to discourage future
2448                         * reads.
2449                         */
2450                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2451                        rdev = conf->mirrors[dn].rdev;
2452
2453                        if (!rdev_set_badblocks(
2454                                    rdev,
2455                                    r10_bio->devs[r10_bio->read_slot].addr
2456                                    + sect,
2457                                    s, 0)) {
2458                                md_error(mddev, rdev);
2459                                r10_bio->devs[r10_bio->read_slot].bio
2460                                        = IO_BLOCKED;
2461                        }
2462                        break;
2463                }
2464
2465                start = sl;
2466                /* write it back and re-read */
2467                rcu_read_lock();
2468                while (sl != r10_bio->read_slot) {
2469                        char b[BDEVNAME_SIZE];
2470
2471                        if (sl==0)
2472                                sl = conf->copies;
2473                        sl--;
2474                        d = r10_bio->devs[sl].devnum;
2475                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2476                        if (!rdev ||
2477                            test_bit(Unmerged, &rdev->flags) ||
2478                            !test_bit(In_sync, &rdev->flags))
2479                                continue;
2480
2481                        atomic_inc(&rdev->nr_pending);
2482                        rcu_read_unlock();
2483                        if (r10_sync_page_io(rdev,
2484                                             r10_bio->devs[sl].addr +
2485                                             sect,
2486                                             s, conf->tmppage, WRITE)
2487                            == 0) {
2488                                /* Well, this device is dead */
2489                                printk(KERN_NOTICE
2490                                       "md/raid10:%s: read correction "
2491                                       "write failed"
2492                                       " (%d sectors at %llu on %s)\n",
2493                                       mdname(mddev), s,
2494                                       (unsigned long long)(
2495                                               sect +
2496                                               choose_data_offset(r10_bio,
2497                                                                  rdev)),
2498                                       bdevname(rdev->bdev, b));
2499                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2500                                       "drive\n",
2501                                       mdname(mddev),
2502                                       bdevname(rdev->bdev, b));
2503                        }
2504                        rdev_dec_pending(rdev, mddev);
2505                        rcu_read_lock();
2506                }
2507                sl = start;
2508                while (sl != r10_bio->read_slot) {
2509                        char b[BDEVNAME_SIZE];
2510
2511                        if (sl==0)
2512                                sl = conf->copies;
2513                        sl--;
2514                        d = r10_bio->devs[sl].devnum;
2515                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2516                        if (!rdev ||
2517                            !test_bit(In_sync, &rdev->flags))
2518                                continue;
2519
2520                        atomic_inc(&rdev->nr_pending);
2521                        rcu_read_unlock();
2522                        switch (r10_sync_page_io(rdev,
2523                                             r10_bio->devs[sl].addr +
2524                                             sect,
2525                                             s, conf->tmppage,
2526                                                 READ)) {
2527                        case 0:
2528                                /* Well, this device is dead */
2529                                printk(KERN_NOTICE
2530                                       "md/raid10:%s: unable to read back "
2531                                       "corrected sectors"
2532                                       " (%d sectors at %llu on %s)\n",
2533                                       mdname(mddev), s,
2534                                       (unsigned long long)(
2535                                               sect +
2536                                               choose_data_offset(r10_bio, rdev)),
2537                                       bdevname(rdev->bdev, b));
2538                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2539                                       "drive\n",
2540                                       mdname(mddev),
2541                                       bdevname(rdev->bdev, b));
2542                                break;
2543                        case 1:
2544                                printk(KERN_INFO
2545                                       "md/raid10:%s: read error corrected"
2546                                       " (%d sectors at %llu on %s)\n",
2547                                       mdname(mddev), s,
2548                                       (unsigned long long)(
2549                                               sect +
2550                                               choose_data_offset(r10_bio, rdev)),
2551                                       bdevname(rdev->bdev, b));
2552                                atomic_add(s, &rdev->corrected_errors);
2553                        }
2554
2555                        rdev_dec_pending(rdev, mddev);
2556                        rcu_read_lock();
2557                }
2558                rcu_read_unlock();
2559
2560                sectors -= s;
2561                sect += s;
2562        }
2563}
2564
2565static int narrow_write_error(struct r10bio *r10_bio, int i)
2566{
2567        struct bio *bio = r10_bio->master_bio;
2568        struct mddev *mddev = r10_bio->mddev;
2569        struct r10conf *conf = mddev->private;
2570        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2571        /* bio has the data to be written to slot 'i' where
2572         * we just recently had a write error.
2573         * We repeatedly clone the bio and trim down to one block,
2574         * then try the write.  Where the write fails we record
2575         * a bad block.
2576         * It is conceivable that the bio doesn't exactly align with
2577         * blocks.  We must handle this.
2578         *
2579         * We currently own a reference to the rdev.
2580         */
2581
2582        int block_sectors;
2583        sector_t sector;
2584        int sectors;
2585        int sect_to_write = r10_bio->sectors;
2586        int ok = 1;
2587
2588        if (rdev->badblocks.shift < 0)
2589                return 0;
2590
2591        block_sectors = 1 << rdev->badblocks.shift;
2592        sector = r10_bio->sector;
2593        sectors = ((r10_bio->sector + block_sectors)
2594                   & ~(sector_t)(block_sectors - 1))
2595                - sector;
2596
2597        while (sect_to_write) {
2598                struct bio *wbio;
2599                if (sectors > sect_to_write)
2600                        sectors = sect_to_write;
2601                /* Write at 'sector' for 'sectors' */
2602                wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2603                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2604                wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2605                                   choose_data_offset(r10_bio, rdev) +
2606                                   (sector - r10_bio->sector));
2607                wbio->bi_bdev = rdev->bdev;
2608                if (submit_bio_wait(WRITE, wbio) == 0)
2609                        /* Failure! */
2610                        ok = rdev_set_badblocks(rdev, sector,
2611                                                sectors, 0)
2612                                && ok;
2613
2614                bio_put(wbio);
2615                sect_to_write -= sectors;
2616                sector += sectors;
2617                sectors = block_sectors;
2618        }
2619        return ok;
2620}
2621
2622static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2623{
2624        int slot = r10_bio->read_slot;
2625        struct bio *bio;
2626        struct r10conf *conf = mddev->private;
2627        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2628        char b[BDEVNAME_SIZE];
2629        unsigned long do_sync;
2630        int max_sectors;
2631
2632        /* we got a read error. Maybe the drive is bad.  Maybe just
2633         * the block and we can fix it.
2634         * We freeze all other IO, and try reading the block from
2635         * other devices.  When we find one, we re-write
2636         * and check it that fixes the read error.
2637         * This is all done synchronously while the array is
2638         * frozen.
2639         */
2640        bio = r10_bio->devs[slot].bio;
2641        bdevname(bio->bi_bdev, b);
2642        bio_put(bio);
2643        r10_bio->devs[slot].bio = NULL;
2644
2645        if (mddev->ro == 0) {
2646                freeze_array(conf, 1);
2647                fix_read_error(conf, mddev, r10_bio);
2648                unfreeze_array(conf);
2649        } else
2650                r10_bio->devs[slot].bio = IO_BLOCKED;
2651
2652        rdev_dec_pending(rdev, mddev);
2653
2654read_more:
2655        rdev = read_balance(conf, r10_bio, &max_sectors);
2656        if (rdev == NULL) {
2657                printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2658                       " read error for block %llu\n",
2659                       mdname(mddev), b,
2660                       (unsigned long long)r10_bio->sector);
2661                raid_end_bio_io(r10_bio);
2662                return;
2663        }
2664
2665        do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2666        slot = r10_bio->read_slot;
2667        printk_ratelimited(
2668                KERN_ERR
2669                "md/raid10:%s: %s: redirecting "
2670                "sector %llu to another mirror\n",
2671                mdname(mddev),
2672                bdevname(rdev->bdev, b),
2673                (unsigned long long)r10_bio->sector);
2674        bio = bio_clone_mddev(r10_bio->master_bio,
2675                              GFP_NOIO, mddev);
2676        bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2677        r10_bio->devs[slot].bio = bio;
2678        r10_bio->devs[slot].rdev = rdev;
2679        bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2680                + choose_data_offset(r10_bio, rdev);
2681        bio->bi_bdev = rdev->bdev;
2682        bio->bi_rw = READ | do_sync;
2683        bio->bi_private = r10_bio;
2684        bio->bi_end_io = raid10_end_read_request;
2685        if (max_sectors < r10_bio->sectors) {
2686                /* Drat - have to split this up more */
2687                struct bio *mbio = r10_bio->master_bio;
2688                int sectors_handled =
2689                        r10_bio->sector + max_sectors
2690                        - mbio->bi_iter.bi_sector;
2691                r10_bio->sectors = max_sectors;
2692                spin_lock_irq(&conf->device_lock);
2693                if (mbio->bi_phys_segments == 0)
2694                        mbio->bi_phys_segments = 2;
2695                else
2696                        mbio->bi_phys_segments++;
2697                spin_unlock_irq(&conf->device_lock);
2698                generic_make_request(bio);
2699
2700                r10_bio = mempool_alloc(conf->r10bio_pool,
2701                                        GFP_NOIO);
2702                r10_bio->master_bio = mbio;
2703                r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2704                r10_bio->state = 0;
2705                set_bit(R10BIO_ReadError,
2706                        &r10_bio->state);
2707                r10_bio->mddev = mddev;
2708                r10_bio->sector = mbio->bi_iter.bi_sector
2709                        + sectors_handled;
2710
2711                goto read_more;
2712        } else
2713                generic_make_request(bio);
2714}
2715
2716static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2717{
2718        /* Some sort of write request has finished and it
2719         * succeeded in writing where we thought there was a
2720         * bad block.  So forget the bad block.
2721         * Or possibly if failed and we need to record
2722         * a bad block.
2723         */
2724        int m;
2725        struct md_rdev *rdev;
2726
2727        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2728            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2729                for (m = 0; m < conf->copies; m++) {
2730                        int dev = r10_bio->devs[m].devnum;
2731                        rdev = conf->mirrors[dev].rdev;
2732                        if (r10_bio->devs[m].bio == NULL)
2733                                continue;
2734                        if (test_bit(BIO_UPTODATE,
2735                                     &r10_bio->devs[m].bio->bi_flags)) {
2736                                rdev_clear_badblocks(
2737                                        rdev,
2738                                        r10_bio->devs[m].addr,
2739                                        r10_bio->sectors, 0);
2740                        } else {
2741                                if (!rdev_set_badblocks(
2742                                            rdev,
2743                                            r10_bio->devs[m].addr,
2744                                            r10_bio->sectors, 0))
2745                                        md_error(conf->mddev, rdev);
2746                        }
2747                        rdev = conf->mirrors[dev].replacement;
2748                        if (r10_bio->devs[m].repl_bio == NULL)
2749                                continue;
2750                        if (test_bit(BIO_UPTODATE,
2751                                     &r10_bio->devs[m].repl_bio->bi_flags)) {
2752                                rdev_clear_badblocks(
2753                                        rdev,
2754                                        r10_bio->devs[m].addr,
2755                                        r10_bio->sectors, 0);
2756                        } else {
2757                                if (!rdev_set_badblocks(
2758                                            rdev,
2759                                            r10_bio->devs[m].addr,
2760                                            r10_bio->sectors, 0))
2761                                        md_error(conf->mddev, rdev);
2762                        }
2763                }
2764                put_buf(r10_bio);
2765        } else {
2766                for (m = 0; m < conf->copies; m++) {
2767                        int dev = r10_bio->devs[m].devnum;
2768                        struct bio *bio = r10_bio->devs[m].bio;
2769                        rdev = conf->mirrors[dev].rdev;
2770                        if (bio == IO_MADE_GOOD) {
2771                                rdev_clear_badblocks(
2772                                        rdev,
2773                                        r10_bio->devs[m].addr,
2774                                        r10_bio->sectors, 0);
2775                                rdev_dec_pending(rdev, conf->mddev);
2776                        } else if (bio != NULL &&
2777                                   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2778                                if (!narrow_write_error(r10_bio, m)) {
2779                                        md_error(conf->mddev, rdev);
2780                                        set_bit(R10BIO_Degraded,
2781                                                &r10_bio->state);
2782                                }
2783                                rdev_dec_pending(rdev, conf->mddev);
2784                        }
2785                        bio = r10_bio->devs[m].repl_bio;
2786                        rdev = conf->mirrors[dev].replacement;
2787                        if (rdev && bio == IO_MADE_GOOD) {
2788                                rdev_clear_badblocks(
2789                                        rdev,
2790                                        r10_bio->devs[m].addr,
2791                                        r10_bio->sectors, 0);
2792                                rdev_dec_pending(rdev, conf->mddev);
2793                        }
2794                }
2795                if (test_bit(R10BIO_WriteError,
2796                             &r10_bio->state))
2797                        close_write(r10_bio);
2798                raid_end_bio_io(r10_bio);
2799        }
2800}
2801
2802static void raid10d(struct md_thread *thread)
2803{
2804        struct mddev *mddev = thread->mddev;
2805        struct r10bio *r10_bio;
2806        unsigned long flags;
2807        struct r10conf *conf = mddev->private;
2808        struct list_head *head = &conf->retry_list;
2809        struct blk_plug plug;
2810
2811        md_check_recovery(mddev);
2812
2813        blk_start_plug(&plug);
2814        for (;;) {
2815
2816                flush_pending_writes(conf);
2817
2818                spin_lock_irqsave(&conf->device_lock, flags);
2819                if (list_empty(head)) {
2820                        spin_unlock_irqrestore(&conf->device_lock, flags);
2821                        break;
2822                }
2823                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2824                list_del(head->prev);
2825                conf->nr_queued--;
2826                spin_unlock_irqrestore(&conf->device_lock, flags);
2827
2828                mddev = r10_bio->mddev;
2829                conf = mddev->private;
2830                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2831                    test_bit(R10BIO_WriteError, &r10_bio->state))
2832                        handle_write_completed(conf, r10_bio);
2833                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2834                        reshape_request_write(mddev, r10_bio);
2835                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2836                        sync_request_write(mddev, r10_bio);
2837                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2838                        recovery_request_write(mddev, r10_bio);
2839                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2840                        handle_read_error(mddev, r10_bio);
2841                else {
2842                        /* just a partial read to be scheduled from a
2843                         * separate context
2844                         */
2845                        int slot = r10_bio->read_slot;
2846                        generic_make_request(r10_bio->devs[slot].bio);
2847                }
2848
2849                cond_resched();
2850                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2851                        md_check_recovery(mddev);
2852        }
2853        blk_finish_plug(&plug);
2854}
2855
2856
2857static int init_resync(struct r10conf *conf)
2858{
2859        int buffs;
2860        int i;
2861
2862        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2863        BUG_ON(conf->r10buf_pool);
2864        conf->have_replacement = 0;
2865        for (i = 0; i < conf->geo.raid_disks; i++)
2866                if (conf->mirrors[i].replacement)
2867                        conf->have_replacement = 1;
2868        conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2869        if (!conf->r10buf_pool)
2870                return -ENOMEM;
2871        conf->next_resync = 0;
2872        return 0;
2873}
2874
2875/*
2876 * perform a "sync" on one "block"
2877 *
2878 * We need to make sure that no normal I/O request - particularly write
2879 * requests - conflict with active sync requests.
2880 *
2881 * This is achieved by tracking pending requests and a 'barrier' concept
2882 * that can be installed to exclude normal IO requests.
2883 *
2884 * Resync and recovery are handled very differently.
2885 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2886 *
2887 * For resync, we iterate over virtual addresses, read all copies,
2888 * and update if there are differences.  If only one copy is live,
2889 * skip it.
2890 * For recovery, we iterate over physical addresses, read a good
2891 * value for each non-in_sync drive, and over-write.
2892 *
2893 * So, for recovery we may have several outstanding complex requests for a
2894 * given address, one for each out-of-sync device.  We model this by allocating
2895 * a number of r10_bio structures, one for each out-of-sync device.
2896 * As we setup these structures, we collect all bio's together into a list
2897 * which we then process collectively to add pages, and then process again
2898 * to pass to generic_make_request.
2899 *
2900 * The r10_bio structures are linked using a borrowed master_bio pointer.
2901 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2902 * has its remaining count decremented to 0, the whole complex operation
2903 * is complete.
2904 *
2905 */
2906
2907static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2908                             int *skipped, int go_faster)
2909{
2910        struct r10conf *conf = mddev->private;
2911        struct r10bio *r10_bio;
2912        struct bio *biolist = NULL, *bio;
2913        sector_t max_sector, nr_sectors;
2914        int i;
2915        int max_sync;
2916        sector_t sync_blocks;
2917        sector_t sectors_skipped = 0;
2918        int chunks_skipped = 0;
2919        sector_t chunk_mask = conf->geo.chunk_mask;
2920
2921        if (!conf->r10buf_pool)
2922                if (init_resync(conf))
2923                        return 0;
2924
2925        /*
2926         * Allow skipping a full rebuild for incremental assembly
2927         * of a clean array, like RAID1 does.
2928         */
2929        if (mddev->bitmap == NULL &&
2930            mddev->recovery_cp == MaxSector &&
2931            mddev->reshape_position == MaxSector &&
2932            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2933            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2934            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2935            conf->fullsync == 0) {
2936                *skipped = 1;
2937                return mddev->dev_sectors - sector_nr;
2938        }
2939
2940 skipped:
2941        max_sector = mddev->dev_sectors;
2942        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2943            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2944                max_sector = mddev->resync_max_sectors;
2945        if (sector_nr >= max_sector) {
2946                /* If we aborted, we need to abort the
2947                 * sync on the 'current' bitmap chucks (there can
2948                 * be several when recovering multiple devices).
2949                 * as we may have started syncing it but not finished.
2950                 * We can find the current address in
2951                 * mddev->curr_resync, but for recovery,
2952                 * we need to convert that to several
2953                 * virtual addresses.
2954                 */
2955                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2956                        end_reshape(conf);
2957                        return 0;
2958                }
2959
2960                if (mddev->curr_resync < max_sector) { /* aborted */
2961                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962                                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963                                                &sync_blocks, 1);
2964                        else for (i = 0; i < conf->geo.raid_disks; i++) {
2965                                sector_t sect =
2966                                        raid10_find_virt(conf, mddev->curr_resync, i);
2967                                bitmap_end_sync(mddev->bitmap, sect,
2968                                                &sync_blocks, 1);
2969                        }
2970                } else {
2971                        /* completed sync */
2972                        if ((!mddev->bitmap || conf->fullsync)
2973                            && conf->have_replacement
2974                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975                                /* Completed a full sync so the replacements
2976                                 * are now fully recovered.
2977                                 */
2978                                for (i = 0; i < conf->geo.raid_disks; i++)
2979                                        if (conf->mirrors[i].replacement)
2980                                                conf->mirrors[i].replacement
2981                                                        ->recovery_offset
2982                                                        = MaxSector;
2983                        }
2984                        conf->fullsync = 0;
2985                }
2986                bitmap_close_sync(mddev->bitmap);
2987                close_sync(conf);
2988                *skipped = 1;
2989                return sectors_skipped;
2990        }
2991
2992        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2993                return reshape_request(mddev, sector_nr, skipped);
2994
2995        if (chunks_skipped >= conf->geo.raid_disks) {
2996                /* if there has been nothing to do on any drive,
2997                 * then there is nothing to do at all..
2998                 */
2999                *skipped = 1;
3000                return (max_sector - sector_nr) + sectors_skipped;
3001        }
3002
3003        if (max_sector > mddev->resync_max)
3004                max_sector = mddev->resync_max; /* Don't do IO beyond here */
3005
3006        /* make sure whole request will fit in a chunk - if chunks
3007         * are meaningful
3008         */
3009        if (conf->geo.near_copies < conf->geo.raid_disks &&
3010            max_sector > (sector_nr | chunk_mask))
3011                max_sector = (sector_nr | chunk_mask) + 1;
3012        /*
3013         * If there is non-resync activity waiting for us then
3014         * put in a delay to throttle resync.
3015         */
3016        if (!go_faster && conf->nr_waiting)
3017                msleep_interruptible(1000);
3018
3019        /* Again, very different code for resync and recovery.
3020         * Both must result in an r10bio with a list of bios that
3021         * have bi_end_io, bi_sector, bi_bdev set,
3022         * and bi_private set to the r10bio.
3023         * For recovery, we may actually create several r10bios
3024         * with 2 bios in each, that correspond to the bios in the main one.
3025         * In this case, the subordinate r10bios link back through a
3026         * borrowed master_bio pointer, and the counter in the master
3027         * includes a ref from each subordinate.
3028         */
3029        /* First, we decide what to do and set ->bi_end_io
3030         * To end_sync_read if we want to read, and
3031         * end_sync_write if we will want to write.
3032         */
3033
3034        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3035        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3036                /* recovery... the complicated one */
3037                int j;
3038                r10_bio = NULL;
3039
3040                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3041                        int still_degraded;
3042                        struct r10bio *rb2;
3043                        sector_t sect;
3044                        int must_sync;
3045                        int any_working;
3046                        struct raid10_info *mirror = &conf->mirrors[i];
3047
3048                        if ((mirror->rdev == NULL ||
3049                             test_bit(In_sync, &mirror->rdev->flags))
3050                            &&
3051                            (mirror->replacement == NULL ||
3052                             test_bit(Faulty,
3053                                      &mirror->replacement->flags)))
3054                                continue;
3055
3056                        still_degraded = 0;
3057                        /* want to reconstruct this device */
3058                        rb2 = r10_bio;
3059                        sect = raid10_find_virt(conf, sector_nr, i);
3060                        if (sect >= mddev->resync_max_sectors) {
3061                                /* last stripe is not complete - don't
3062                                 * try to recover this sector.
3063                                 */
3064                                continue;
3065                        }
3066                        /* Unless we are doing a full sync, or a replacement
3067                         * we only need to recover the block if it is set in
3068                         * the bitmap
3069                         */
3070                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3071                                                      &sync_blocks, 1);
3072                        if (sync_blocks < max_sync)
3073                                max_sync = sync_blocks;
3074                        if (!must_sync &&
3075                            mirror->replacement == NULL &&
3076                            !conf->fullsync) {
3077                                /* yep, skip the sync_blocks here, but don't assume
3078                                 * that there will never be anything to do here
3079                                 */
3080                                chunks_skipped = -1;
3081                                continue;
3082                        }
3083
3084                        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3085                        raise_barrier(conf, rb2 != NULL);
3086                        atomic_set(&r10_bio->remaining, 0);
3087
3088                        r10_bio->master_bio = (struct bio*)rb2;
3089                        if (rb2)
3090                                atomic_inc(&rb2->remaining);
3091                        r10_bio->mddev = mddev;
3092                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3093                        r10_bio->sector = sect;
3094
3095                        raid10_find_phys(conf, r10_bio);
3096
3097                        /* Need to check if the array will still be
3098                         * degraded
3099                         */
3100                        for (j = 0; j < conf->geo.raid_disks; j++)
3101                                if (conf->mirrors[j].rdev == NULL ||
3102                                    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3103                                        still_degraded = 1;
3104                                        break;
3105                                }
3106
3107                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3108                                                      &sync_blocks, still_degraded);
3109
3110                        any_working = 0;
3111                        for (j=0; j<conf->copies;j++) {
3112                                int k;
3113                                int d = r10_bio->devs[j].devnum;
3114                                sector_t from_addr, to_addr;
3115                                struct md_rdev *rdev;
3116                                sector_t sector, first_bad;
3117                                int bad_sectors;
3118                                if (!conf->mirrors[d].rdev ||
3119                                    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3120                                        continue;
3121                                /* This is where we read from */
3122                                any_working = 1;
3123                                rdev = conf->mirrors[d].rdev;
3124                                sector = r10_bio->devs[j].addr;
3125
3126                                if (is_badblock(rdev, sector, max_sync,
3127                                                &first_bad, &bad_sectors)) {
3128                                        if (first_bad > sector)
3129                                                max_sync = first_bad - sector;
3130                                        else {
3131                                                bad_sectors -= (sector
3132                                                                - first_bad);
3133                                                if (max_sync > bad_sectors)
3134                                                        max_sync = bad_sectors;
3135                                                continue;
3136                                        }
3137                                }
3138                                bio = r10_bio->devs[0].bio;
3139                                bio_reset(bio);
3140                                bio->bi_next = biolist;
3141                                biolist = bio;
3142                                bio->bi_private = r10_bio;
3143                                bio->bi_end_io = end_sync_read;
3144                                bio->bi_rw = READ;
3145                                from_addr = r10_bio->devs[j].addr;
3146                                bio->bi_iter.bi_sector = from_addr +
3147                                        rdev->data_offset;
3148                                bio->bi_bdev = rdev->bdev;
3149                                atomic_inc(&rdev->nr_pending);
3150                                /* and we write to 'i' (if not in_sync) */
3151
3152                                for (k=0; k<conf->copies; k++)
3153                                        if (r10_bio->devs[k].devnum == i)
3154                                                break;
3155                                BUG_ON(k == conf->copies);
3156                                to_addr = r10_bio->devs[k].addr;
3157                                r10_bio->devs[0].devnum = d;
3158                                r10_bio->devs[0].addr = from_addr;
3159                                r10_bio->devs[1].devnum = i;
3160                                r10_bio->devs[1].addr = to_addr;
3161
3162                                rdev = mirror->rdev;
3163                                if (!test_bit(In_sync, &rdev->flags)) {
3164                                        bio = r10_bio->devs[1].bio;
3165                                        bio_reset(bio);
3166                                        bio->bi_next = biolist;
3167                                        biolist = bio;
3168                                        bio->bi_private = r10_bio;
3169                                        bio->bi_end_io = end_sync_write;
3170                                        bio->bi_rw = WRITE;
3171                                        bio->bi_iter.bi_sector = to_addr
3172                                                + rdev->data_offset;
3173                                        bio->bi_bdev = rdev->bdev;
3174                                        atomic_inc(&r10_bio->remaining);
3175                                } else
3176                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3177
3178                                /* and maybe write to replacement */
3179                                bio = r10_bio->devs[1].repl_bio;
3180                                if (bio)
3181                                        bio->bi_end_io = NULL;
3182                                rdev = mirror->replacement;
3183                                /* Note: if rdev != NULL, then bio
3184                                 * cannot be NULL as r10buf_pool_alloc will
3185                                 * have allocated it.
3186                                 * So the second test here is pointless.
3187                                 * But it keeps semantic-checkers happy, and
3188                                 * this comment keeps human reviewers
3189                                 * happy.
3190                                 */
3191                                if (rdev == NULL || bio == NULL ||
3192                                    test_bit(Faulty, &rdev->flags))
3193                                        break;
3194                                bio_reset(bio);
3195                                bio->bi_next = biolist;
3196                                biolist = bio;
3197                                bio->bi_private = r10_bio;
3198                                bio->bi_end_io = end_sync_write;
3199                                bio->bi_rw = WRITE;
3200                                bio->bi_iter.bi_sector = to_addr +
3201                                        rdev->data_offset;
3202                                bio->bi_bdev = rdev->bdev;
3203                                atomic_inc(&r10_bio->remaining);
3204                                break;
3205                        }
3206                        if (j == conf->copies) {
3207                                /* Cannot recover, so abort the recovery or
3208                                 * record a bad block */
3209                                if (any_working) {
3210                                        /* problem is that there are bad blocks
3211                                         * on other device(s)
3212                                         */
3213                                        int k;
3214                                        for (k = 0; k < conf->copies; k++)
3215                                                if (r10_bio->devs[k].devnum == i)
3216                                                        break;
3217                                        if (!test_bit(In_sync,
3218                                                      &mirror->rdev->flags)
3219                                            && !rdev_set_badblocks(
3220                                                    mirror->rdev,
3221                                                    r10_bio->devs[k].addr,
3222                                                    max_sync, 0))
3223                                                any_working = 0;
3224                                        if (mirror->replacement &&
3225                                            !rdev_set_badblocks(
3226                                                    mirror->replacement,
3227                                                    r10_bio->devs[k].addr,
3228                                                    max_sync, 0))
3229                                                any_working = 0;
3230                                }
3231                                if (!any_working)  {
3232                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3233                                                              &mddev->recovery))
3234                                                printk(KERN_INFO "md/raid10:%s: insufficient "
3235                                                       "working devices for recovery.\n",
3236                                                       mdname(mddev));
3237                                        mirror->recovery_disabled
3238                                                = mddev->recovery_disabled;
3239                                }
3240                                put_buf(r10_bio);
3241                                if (rb2)
3242                                        atomic_dec(&rb2->remaining);
3243                                r10_bio = rb2;
3244                                break;
3245                        }
3246                }
3247                if (biolist == NULL) {
3248                        while (r10_bio) {
3249                                struct r10bio *rb2 = r10_bio;
3250                                r10_bio = (struct r10bio*) rb2->master_bio;
3251                                rb2->master_bio = NULL;
3252                                put_buf(rb2);
3253                        }
3254                        goto giveup;
3255                }
3256        } else {
3257                /* resync. Schedule a read for every block at this virt offset */
3258                int count = 0;
3259
3260                bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3261
3262                if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3263                                       &sync_blocks, mddev->degraded) &&
3264                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3265                                                 &mddev->recovery)) {
3266                        /* We can skip this block */
3267                        *skipped = 1;
3268                        return sync_blocks + sectors_skipped;
3269                }
3270                if (sync_blocks < max_sync)
3271                        max_sync = sync_blocks;
3272                r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3273
3274                r10_bio->mddev = mddev;
3275                atomic_set(&r10_bio->remaining, 0);
3276                raise_barrier(conf, 0);
3277                conf->next_resync = sector_nr;
3278
3279                r10_bio->master_bio = NULL;
3280                r10_bio->sector = sector_nr;
3281                set_bit(R10BIO_IsSync, &r10_bio->state);
3282                raid10_find_phys(conf, r10_bio);
3283                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3284
3285                for (i = 0; i < conf->copies; i++) {
3286                        int d = r10_bio->devs[i].devnum;
3287                        sector_t first_bad, sector;
3288                        int bad_sectors;
3289
3290                        if (r10_bio->devs[i].repl_bio)
3291                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3292
3293                        bio = r10_bio->devs[i].bio;
3294                        bio_reset(bio);
3295                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
3296                        if (conf->mirrors[d].rdev == NULL ||
3297                            test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3298                                continue;
3299                        sector = r10_bio->devs[i].addr;
3300                        if (is_badblock(conf->mirrors[d].rdev,
3301                                        sector, max_sync,
3302                                        &first_bad, &bad_sectors)) {
3303                                if (first_bad > sector)
3304                                        max_sync = first_bad - sector;
3305                                else {
3306                                        bad_sectors -= (sector - first_bad);
3307                                        if (max_sync > bad_sectors)
3308                                                max_sync = bad_sectors;
3309                                        continue;
3310                                }
3311                        }
3312                        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3313                        atomic_inc(&r10_bio->remaining);
3314                        bio->bi_next = biolist;
3315                        biolist = bio;
3316                        bio->bi_private = r10_bio;
3317                        bio->bi_end_io = end_sync_read;
3318                        bio->bi_rw = READ;
3319                        bio->bi_iter.bi_sector = sector +
3320                                conf->mirrors[d].rdev->data_offset;
3321                        bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3322                        count++;
3323
3324                        if (conf->mirrors[d].replacement == NULL ||
3325                            test_bit(Faulty,
3326                                     &conf->mirrors[d].replacement->flags))
3327                                continue;
3328
3329                        /* Need to set up for writing to the replacement */
3330                        bio = r10_bio->devs[i].repl_bio;
3331                        bio_reset(bio);
3332                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
3333
3334                        sector = r10_bio->devs[i].addr;
3335                        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3336                        bio->bi_next = biolist;
3337                        biolist = bio;
3338                        bio->bi_private = r10_bio;
3339                        bio->bi_end_io = end_sync_write;
3340                        bio->bi_rw = WRITE;
3341                        bio->bi_iter.bi_sector = sector +
3342                                conf->mirrors[d].replacement->data_offset;
3343                        bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3344                        count++;
3345                }
3346
3347                if (count < 2) {
3348                        for (i=0; i<conf->copies; i++) {
3349                                int d = r10_bio->devs[i].devnum;
3350                                if (r10_bio->devs[i].bio->bi_end_io)
3351                                        rdev_dec_pending(conf->mirrors[d].rdev,
3352                                                         mddev);
3353                                if (r10_bio->devs[i].repl_bio &&
3354                                    r10_bio->devs[i].repl_bio->bi_end_io)
3355                                        rdev_dec_pending(
3356                                                conf->mirrors[d].replacement,
3357                                                mddev);
3358                        }
3359                        put_buf(r10_bio);
3360                        biolist = NULL;
3361                        goto giveup;
3362                }
3363        }
3364
3365        nr_sectors = 0;
3366        if (sector_nr + max_sync < max_sector)
3367                max_sector = sector_nr + max_sync;
3368        do {
3369                struct page *page;
3370                int len = PAGE_SIZE;
3371                if (sector_nr + (len>>9) > max_sector)
3372                        len = (max_sector - sector_nr) << 9;
3373                if (len == 0)
3374                        break;
3375                for (bio= biolist ; bio ; bio=bio->bi_next) {
3376                        struct bio *bio2;
3377                        page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3378                        if (bio_add_page(bio, page, len, 0))
3379                                continue;
3380
3381                        /* stop here */
3382                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3383                        for (bio2 = biolist;
3384                             bio2 && bio2 != bio;
3385                             bio2 = bio2->bi_next) {
3386                                /* remove last page from this bio */
3387                                bio2->bi_vcnt--;
3388                                bio2->bi_iter.bi_size -= len;
3389                                bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3390                        }
3391                        goto bio_full;
3392                }
3393                nr_sectors += len>>9;
3394                sector_nr += len>>9;
3395        } while (biolist->bi_vcnt < RESYNC_PAGES);
3396 bio_full:
3397        r10_bio->sectors = nr_sectors;
3398
3399        while (biolist) {
3400                bio = biolist;
3401                biolist = biolist->bi_next;
3402
3403                bio->bi_next = NULL;
3404                r10_bio = bio->bi_private;
3405                r10_bio->sectors = nr_sectors;
3406
3407                if (bio->bi_end_io == end_sync_read) {
3408                        md_sync_acct(bio->bi_bdev, nr_sectors);
3409                        set_bit(BIO_UPTODATE, &bio->bi_flags);
3410                        generic_make_request(bio);
3411                }
3412        }
3413
3414        if (sectors_skipped)
3415                /* pretend they weren't skipped, it makes
3416                 * no important difference in this case
3417                 */
3418                md_done_sync(mddev, sectors_skipped, 1);
3419
3420        return sectors_skipped + nr_sectors;
3421 giveup:
3422        /* There is nowhere to write, so all non-sync
3423         * drives must be failed or in resync, all drives
3424         * have a bad block, so try the next chunk...
3425         */
3426        if (sector_nr + max_sync < max_sector)
3427                max_sector = sector_nr + max_sync;
3428
3429        sectors_skipped += (max_sector - sector_nr);
3430        chunks_skipped ++;
3431        sector_nr = max_sector;
3432        goto skipped;
3433}
3434
3435static sector_t
3436raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3437{
3438        sector_t size;
3439        struct r10conf *conf = mddev->private;
3440
3441        if (!raid_disks)
3442                raid_disks = min(conf->geo.raid_disks,
3443                                 conf->prev.raid_disks);
3444        if (!sectors)
3445                sectors = conf->dev_sectors;
3446
3447        size = sectors >> conf->geo.chunk_shift;
3448        sector_div(size, conf->geo.far_copies);
3449        size = size * raid_disks;
3450        sector_div(size, conf->geo.near_copies);
3451
3452        return size << conf->geo.chunk_shift;
3453}
3454
3455static void calc_sectors(struct r10conf *conf, sector_t size)
3456{
3457        /* Calculate the number of sectors-per-device that will
3458         * actually be used, and set conf->dev_sectors and
3459         * conf->stride
3460         */
3461
3462        size = size >> conf->geo.chunk_shift;
3463        sector_div(size, conf->geo.far_copies);
3464        size = size * conf->geo.raid_disks;
3465        sector_div(size, conf->geo.near_copies);
3466        /* 'size' is now the number of chunks in the array */
3467        /* calculate "used chunks per device" */
3468        size = size * conf->copies;
3469
3470        /* We need to round up when dividing by raid_disks to
3471         * get the stride size.
3472         */
3473        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3474
3475        conf->dev_sectors = size << conf->geo.chunk_shift;
3476
3477        if (conf->geo.far_offset)
3478                conf->geo.stride = 1 << conf->geo.chunk_shift;
3479        else {
3480                sector_div(size, conf->geo.far_copies);
3481                conf->geo.stride = size << conf->geo.chunk_shift;
3482        }
3483}
3484
3485enum geo_type {geo_new, geo_old, geo_start};
3486static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3487{
3488        int nc, fc, fo;
3489        int layout, chunk, disks;
3490        switch (new) {
3491        case geo_old:
3492                layout = mddev->layout;
3493                chunk = mddev->chunk_sectors;
3494                disks = mddev->raid_disks - mddev->delta_disks;
3495                break;
3496        case geo_new:
3497                layout = mddev->new_layout;
3498                chunk = mddev->new_chunk_sectors;
3499                disks = mddev->raid_disks;
3500                break;
3501        default: /* avoid 'may be unused' warnings */
3502        case geo_start: /* new when starting reshape - raid_disks not
3503                         * updated yet. */
3504                layout = mddev->new_layout;
3505                chunk = mddev->new_chunk_sectors;
3506                disks = mddev->raid_disks + mddev->delta_disks;
3507                break;
3508        }
3509        if (layout >> 18)
3510                return -1;
3511        if (chunk < (PAGE_SIZE >> 9) ||
3512            !is_power_of_2(chunk))
3513                return -2;
3514        nc = layout & 255;
3515        fc = (layout >> 8) & 255;
3516        fo = layout & (1<<16);
3517        geo->raid_disks = disks;
3518        geo->near_copies = nc;
3519        geo->far_copies = fc;
3520        geo->far_offset = fo;
3521        geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3522        geo->chunk_mask = chunk - 1;
3523        geo->chunk_shift = ffz(~chunk);
3524        return nc*fc;
3525}
3526
3527static struct r10conf *setup_conf(struct mddev *mddev)
3528{
3529        struct r10conf *conf = NULL;
3530        int err = -EINVAL;
3531        struct geom geo;
3532        int copies;
3533
3534        copies = setup_geo(&geo, mddev, geo_new);
3535
3536        if (copies == -2) {
3537                printk(KERN_ERR "md/raid10:%s: chunk size must be "
3538                       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3539                       mdname(mddev), PAGE_SIZE);
3540                goto out;
3541        }
3542
3543        if (copies < 2 || copies > mddev->raid_disks) {
3544                printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3545                       mdname(mddev), mddev->new_layout);
3546                goto out;
3547        }
3548
3549        err = -ENOMEM;
3550        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3551        if (!conf)
3552                goto out;
3553
3554        /* FIXME calc properly */
3555        conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3556                                                            max(0,-mddev->delta_disks)),
3557                                GFP_KERNEL);
3558        if (!conf->mirrors)
3559                goto out;
3560
3561        conf->tmppage = alloc_page(GFP_KERNEL);
3562        if (!conf->tmppage)
3563                goto out;
3564
3565        conf->geo = geo;
3566        conf->copies = copies;
3567        conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3568                                           r10bio_pool_free, conf);
3569        if (!conf->r10bio_pool)
3570                goto out;
3571
3572        calc_sectors(conf, mddev->dev_sectors);
3573        if (mddev->reshape_position == MaxSector) {
3574                conf->prev = conf->geo;
3575                conf->reshape_progress = MaxSector;
3576        } else {
3577                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3578                        err = -EINVAL;
3579                        goto out;
3580                }
3581                conf->reshape_progress = mddev->reshape_position;
3582                if (conf->prev.far_offset)
3583                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3584                else
3585                        /* far_copies must be 1 */
3586                        conf->prev.stride = conf->dev_sectors;
3587        }
3588        spin_lock_init(&conf->device_lock);
3589        INIT_LIST_HEAD(&conf->retry_list);
3590
3591        spin_lock_init(&conf->resync_lock);
3592        init_waitqueue_head(&conf->wait_barrier);
3593
3594        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3595        if (!conf->thread)
3596                goto out;
3597
3598        conf->mddev = mddev;
3599        return conf;
3600
3601 out:
3602        if (err == -ENOMEM)
3603                printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3604                       mdname(mddev));
3605        if (conf) {
3606                if (conf->r10bio_pool)
3607                        mempool_destroy(conf->r10bio_pool);
3608                kfree(conf->mirrors);
3609                safe_put_page(conf->tmppage);
3610                kfree(conf);
3611        }
3612        return ERR_PTR(err);
3613}
3614
3615static int run(struct mddev *mddev)
3616{
3617        struct r10conf *conf;
3618        int i, disk_idx, chunk_size;
3619        struct raid10_info *disk;
3620        struct md_rdev *rdev;
3621        sector_t size;
3622        sector_t min_offset_diff = 0;
3623        int first = 1;
3624        bool discard_supported = false;
3625
3626        if (mddev->private == NULL) {
3627                conf = setup_conf(mddev);
3628                if (IS_ERR(conf))
3629                        return PTR_ERR(conf);
3630                mddev->private = conf;
3631        }
3632        conf = mddev->private;
3633        if (!conf)
3634                goto out;
3635
3636        mddev->thread = conf->thread;
3637        conf->thread = NULL;
3638
3639        chunk_size = mddev->chunk_sectors << 9;
3640        if (mddev->queue) {
3641                blk_queue_max_discard_sectors(mddev->queue,
3642                                              mddev->chunk_sectors);
3643                blk_queue_max_write_same_sectors(mddev->queue, 0);
3644                blk_queue_io_min(mddev->queue, chunk_size);
3645                if (conf->geo.raid_disks % conf->geo.near_copies)
3646                        blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3647                else
3648                        blk_queue_io_opt(mddev->queue, chunk_size *
3649                                         (conf->geo.raid_disks / conf->geo.near_copies));
3650        }
3651
3652        rdev_for_each(rdev, mddev) {
3653                long long diff;
3654                struct request_queue *q;
3655
3656                disk_idx = rdev->raid_disk;
3657                if (disk_idx < 0)
3658                        continue;
3659                if (disk_idx >= conf->geo.raid_disks &&
3660                    disk_idx >= conf->prev.raid_disks)
3661                        continue;
3662                disk = conf->mirrors + disk_idx;
3663
3664                if (test_bit(Replacement, &rdev->flags)) {
3665                        if (disk->replacement)
3666                                goto out_free_conf;
3667                        disk->replacement = rdev;
3668                } else {
3669                        if (disk->rdev)
3670                                goto out_free_conf;
3671                        disk->rdev = rdev;
3672                }
3673                q = bdev_get_queue(rdev->bdev);
3674                if (q->merge_bvec_fn)
3675                        mddev->merge_check_needed = 1;
3676                diff = (rdev->new_data_offset - rdev->data_offset);
3677                if (!mddev->reshape_backwards)
3678                        diff = -diff;
3679                if (diff < 0)
3680                        diff = 0;
3681                if (first || diff < min_offset_diff)
3682                        min_offset_diff = diff;
3683
3684                if (mddev->gendisk)
3685                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3686                                          rdev->data_offset << 9);
3687
3688                disk->head_position = 0;
3689
3690                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3691                        discard_supported = true;
3692        }
3693
3694        if (mddev->queue) {
3695                if (discard_supported)
3696                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3697                                                mddev->queue);
3698                else
3699                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3700                                                  mddev->queue);
3701        }
3702        /* need to check that every block has at least one working mirror */
3703        if (!enough(conf, -1)) {
3704                printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3705                       mdname(mddev));
3706                goto out_free_conf;
3707        }
3708
3709        if (conf->reshape_progress != MaxSector) {
3710                /* must ensure that shape change is supported */
3711                if (conf->geo.far_copies != 1 &&
3712                    conf->geo.far_offset == 0)
3713                        goto out_free_conf;
3714                if (conf->prev.far_copies != 1 &&
3715                    conf->prev.far_offset == 0)
3716                        goto out_free_conf;
3717        }
3718
3719        mddev->degraded = 0;
3720        for (i = 0;
3721             i < conf->geo.raid_disks
3722                     || i < conf->prev.raid_disks;
3723             i++) {
3724
3725                disk = conf->mirrors + i;
3726
3727                if (!disk->rdev && disk->replacement) {
3728                        /* The replacement is all we have - use it */
3729                        disk->rdev = disk->replacement;
3730                        disk->replacement = NULL;
3731                        clear_bit(Replacement, &disk->rdev->flags);
3732                }
3733
3734                if (!disk->rdev ||
3735                    !test_bit(In_sync, &disk->rdev->flags)) {
3736                        disk->head_position = 0;
3737                        mddev->degraded++;
3738                        if (disk->rdev &&
3739                            disk->rdev->saved_raid_disk < 0)
3740                                conf->fullsync = 1;
3741                }
3742                disk->recovery_disabled = mddev->recovery_disabled - 1;
3743        }
3744
3745        if (mddev->recovery_cp != MaxSector)
3746                printk(KERN_NOTICE "md/raid10:%s: not clean"
3747                       " -- starting background reconstruction\n",
3748                       mdname(mddev));
3749        printk(KERN_INFO
3750                "md/raid10:%s: active with %d out of %d devices\n",
3751                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3752                conf->geo.raid_disks);
3753        /*
3754         * Ok, everything is just fine now
3755         */
3756        mddev->dev_sectors = conf->dev_sectors;
3757        size = raid10_size(mddev, 0, 0);
3758        md_set_array_sectors(mddev, size);
3759        mddev->resync_max_sectors = size;
3760
3761        if (mddev->queue) {
3762                int stripe = conf->geo.raid_disks *
3763                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3764                mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3765                mddev->queue->backing_dev_info.congested_data = mddev;
3766
3767                /* Calculate max read-ahead size.
3768                 * We need to readahead at least twice a whole stripe....
3769                 * maybe...
3770                 */
3771                stripe /= conf->geo.near_copies;
3772                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3773                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3774                blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3775        }
3776
3777
3778        if (md_integrity_register(mddev))
3779                goto out_free_conf;
3780
3781        if (conf->reshape_progress != MaxSector) {
3782                unsigned long before_length, after_length;
3783
3784                before_length = ((1 << conf->prev.chunk_shift) *
3785                                 conf->prev.far_copies);
3786                after_length = ((1 << conf->geo.chunk_shift) *
3787                                conf->geo.far_copies);
3788
3789                if (max(before_length, after_length) > min_offset_diff) {
3790                        /* This cannot work */
3791                        printk("md/raid10: offset difference not enough to continue reshape\n");
3792                        goto out_free_conf;
3793                }
3794                conf->offset_diff = min_offset_diff;
3795
3796                conf->reshape_safe = conf->reshape_progress;
3797                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3798                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3799                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3800                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3801                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3802                                                        "reshape");
3803        }
3804
3805        return 0;
3806
3807out_free_conf:
3808        md_unregister_thread(&mddev->thread);
3809        if (conf->r10bio_pool)
3810                mempool_destroy(conf->r10bio_pool);
3811        safe_put_page(conf->tmppage);
3812        kfree(conf->mirrors);
3813        kfree(conf);
3814        mddev->private = NULL;
3815out:
3816        return -EIO;
3817}
3818
3819static int stop(struct mddev *mddev)
3820{
3821        struct r10conf *conf = mddev->private;
3822
3823        raise_barrier(conf, 0);
3824        lower_barrier(conf);
3825
3826        md_unregister_thread(&mddev->thread);
3827        if (mddev->queue)
3828                /* the unplug fn references 'conf'*/
3829                blk_sync_queue(mddev->queue);
3830
3831        if (conf->r10bio_pool)
3832                mempool_destroy(conf->r10bio_pool);
3833        safe_put_page(conf->tmppage);
3834        kfree(conf->mirrors);
3835        kfree(conf);
3836        mddev->private = NULL;
3837        return 0;
3838}
3839
3840static void raid10_quiesce(struct mddev *mddev, int state)
3841{
3842        struct r10conf *conf = mddev->private;
3843
3844        switch(state) {
3845        case 1:
3846                raise_barrier(conf, 0);
3847                break;
3848        case 0:
3849                lower_barrier(conf);
3850                break;
3851        }
3852}
3853
3854static int raid10_resize(struct mddev *mddev, sector_t sectors)
3855{
3856        /* Resize of 'far' arrays is not supported.
3857         * For 'near' and 'offset' arrays we can set the
3858         * number of sectors used to be an appropriate multiple
3859         * of the chunk size.
3860         * For 'offset', this is far_copies*chunksize.
3861         * For 'near' the multiplier is the LCM of
3862         * near_copies and raid_disks.
3863         * So if far_copies > 1 && !far_offset, fail.
3864         * Else find LCM(raid_disks, near_copy)*far_copies and
3865         * multiply by chunk_size.  Then round to this number.
3866         * This is mostly done by raid10_size()
3867         */
3868        struct r10conf *conf = mddev->private;
3869        sector_t oldsize, size;
3870
3871        if (mddev->reshape_position != MaxSector)
3872                return -EBUSY;
3873
3874        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3875                return -EINVAL;
3876
3877        oldsize = raid10_size(mddev, 0, 0);
3878        size = raid10_size(mddev, sectors, 0);
3879        if (mddev->external_size &&
3880            mddev->array_sectors > size)
3881                return -EINVAL;
3882        if (mddev->bitmap) {
3883                int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3884                if (ret)
3885                        return ret;
3886        }
3887        md_set_array_sectors(mddev, size);
3888        set_capacity(mddev->gendisk, mddev->array_sectors);
3889        revalidate_disk(mddev->gendisk);
3890        if (sectors > mddev->dev_sectors &&
3891            mddev->recovery_cp > oldsize) {
3892                mddev->recovery_cp = oldsize;
3893                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3894        }
3895        calc_sectors(conf, sectors);
3896        mddev->dev_sectors = conf->dev_sectors;
3897        mddev->resync_max_sectors = size;
3898        return 0;
3899}
3900
3901static void *raid10_takeover_raid0(struct mddev *mddev)
3902{
3903        struct md_rdev *rdev;
3904        struct r10conf *conf;
3905
3906        if (mddev->degraded > 0) {
3907                printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3908                       mdname(mddev));
3909                return ERR_PTR(-EINVAL);
3910        }
3911
3912        /* Set new parameters */
3913        mddev->new_level = 10;
3914        /* new layout: far_copies = 1, near_copies = 2 */
3915        mddev->new_layout = (1<<8) + 2;
3916        mddev->new_chunk_sectors = mddev->chunk_sectors;
3917        mddev->delta_disks = mddev->raid_disks;
3918        mddev->raid_disks *= 2;
3919        /* make sure it will be not marked as dirty */
3920        mddev->recovery_cp = MaxSector;
3921
3922        conf = setup_conf(mddev);
3923        if (!IS_ERR(conf)) {
3924                rdev_for_each(rdev, mddev)
3925                        if (rdev->raid_disk >= 0)
3926                                rdev->new_raid_disk = rdev->raid_disk * 2;
3927                conf->barrier = 1;
3928        }
3929
3930        return conf;
3931}
3932
3933static void *raid10_takeover(struct mddev *mddev)
3934{
3935        struct r0conf *raid0_conf;
3936
3937        /* raid10 can take over:
3938         *  raid0 - providing it has only two drives
3939         */
3940        if (mddev->level == 0) {
3941                /* for raid0 takeover only one zone is supported */
3942                raid0_conf = mddev->private;
3943                if (raid0_conf->nr_strip_zones > 1) {
3944                        printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3945                               " with more than one zone.\n",
3946                               mdname(mddev));
3947                        return ERR_PTR(-EINVAL);
3948                }
3949                return raid10_takeover_raid0(mddev);
3950        }
3951        return ERR_PTR(-EINVAL);
3952}
3953
3954static int raid10_check_reshape(struct mddev *mddev)
3955{
3956        /* Called when there is a request to change
3957         * - layout (to ->new_layout)
3958         * - chunk size (to ->new_chunk_sectors)
3959         * - raid_disks (by delta_disks)
3960         * or when trying to restart a reshape that was ongoing.
3961         *
3962         * We need to validate the request and possibly allocate
3963         * space if that might be an issue later.
3964         *
3965         * Currently we reject any reshape of a 'far' mode array,
3966         * allow chunk size to change if new is generally acceptable,
3967         * allow raid_disks to increase, and allow
3968         * a switch between 'near' mode and 'offset' mode.
3969         */
3970        struct r10conf *conf = mddev->private;
3971        struct geom geo;
3972
3973        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3974                return -EINVAL;
3975
3976        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3977                /* mustn't change number of copies */
3978                return -EINVAL;
3979        if (geo.far_copies > 1 && !geo.far_offset)
3980                /* Cannot switch to 'far' mode */
3981                return -EINVAL;
3982
3983        if (mddev->array_sectors & geo.chunk_mask)
3984                        /* not factor of array size */
3985                        return -EINVAL;
3986
3987        if (!enough(conf, -1))
3988                return -EINVAL;
3989
3990        kfree(conf->mirrors_new);
3991        conf->mirrors_new = NULL;
3992        if (mddev->delta_disks > 0) {
3993                /* allocate new 'mirrors' list */
3994                conf->mirrors_new = kzalloc(
3995                        sizeof(struct raid10_info)
3996                        *(mddev->raid_disks +
3997                          mddev->delta_disks),
3998                        GFP_KERNEL);
3999                if (!conf->mirrors_new)
4000                        return -ENOMEM;
4001        }
4002        return 0;
4003}
4004
4005/*
4006 * Need to check if array has failed when deciding whether to:
4007 *  - start an array
4008 *  - remove non-faulty devices
4009 *  - add a spare
4010 *  - allow a reshape
4011 * This determination is simple when no reshape is happening.
4012 * However if there is a reshape, we need to carefully check
4013 * both the before and after sections.
4014 * This is because some failed devices may only affect one
4015 * of the two sections, and some non-in_sync devices may
4016 * be insync in the section most affected by failed devices.
4017 */
4018static int calc_degraded(struct r10conf *conf)
4019{
4020        int degraded, degraded2;
4021        int i;
4022
4023        rcu_read_lock();
4024        degraded = 0;
4025        /* 'prev' section first */
4026        for (i = 0; i < conf->prev.raid_disks; i++) {
4027                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4028                if (!rdev || test_bit(Faulty, &rdev->flags))
4029                        degraded++;
4030                else if (!test_bit(In_sync, &rdev->flags))
4031                        /* When we can reduce the number of devices in
4032                         * an array, this might not contribute to
4033                         * 'degraded'.  It does now.
4034                         */
4035                        degraded++;
4036        }
4037        rcu_read_unlock();
4038        if (conf->geo.raid_disks == conf->prev.raid_disks)
4039                return degraded;
4040        rcu_read_lock();
4041        degraded2 = 0;
4042        for (i = 0; i < conf->geo.raid_disks; i++) {
4043                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4044                if (!rdev || test_bit(Faulty, &rdev->flags))
4045                        degraded2++;
4046                else if (!test_bit(In_sync, &rdev->flags)) {
4047                        /* If reshape is increasing the number of devices,
4048                         * this section has already been recovered, so
4049                         * it doesn't contribute to degraded.
4050                         * else it does.
4051                         */
4052                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4053                                degraded2++;
4054                }
4055        }
4056        rcu_read_unlock();
4057        if (degraded2 > degraded)
4058                return degraded2;
4059        return degraded;
4060}
4061
4062static int raid10_start_reshape(struct mddev *mddev)
4063{
4064        /* A 'reshape' has been requested. This commits
4065         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4066         * This also checks if there are enough spares and adds them
4067         * to the array.
4068         * We currently require enough spares to make the final
4069         * array non-degraded.  We also require that the difference
4070         * between old and new data_offset - on each device - is
4071         * enough that we never risk over-writing.
4072         */
4073
4074        unsigned long before_length, after_length;
4075        sector_t min_offset_diff = 0;
4076        int first = 1;
4077        struct geom new;
4078        struct r10conf *conf = mddev->private;
4079        struct md_rdev *rdev;
4080        int spares = 0;
4081        int ret;
4082
4083        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4084                return -EBUSY;
4085
4086        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4087                return -EINVAL;
4088
4089        before_length = ((1 << conf->prev.chunk_shift) *
4090                         conf->prev.far_copies);
4091        after_length = ((1 << conf->geo.chunk_shift) *
4092                        conf->geo.far_copies);
4093
4094        rdev_for_each(rdev, mddev) {
4095                if (!test_bit(In_sync, &rdev->flags)
4096                    && !test_bit(Faulty, &rdev->flags))
4097                        spares++;
4098                if (rdev->raid_disk >= 0) {
4099                        long long diff = (rdev->new_data_offset
4100                                          - rdev->data_offset);
4101                        if (!mddev->reshape_backwards)
4102                                diff = -diff;
4103                        if (diff < 0)
4104                                diff = 0;
4105                        if (first || diff < min_offset_diff)
4106                                min_offset_diff = diff;
4107                }
4108        }
4109
4110        if (max(before_length, after_length) > min_offset_diff)
4111                return -EINVAL;
4112
4113        if (spares < mddev->delta_disks)
4114                return -EINVAL;
4115
4116        conf->offset_diff = min_offset_diff;
4117        spin_lock_irq(&conf->device_lock);
4118        if (conf->mirrors_new) {
4119                memcpy(conf->mirrors_new, conf->mirrors,
4120                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4121                smp_mb();
4122                kfree(conf->mirrors_old); /* FIXME and elsewhere */
4123                conf->mirrors_old = conf->mirrors;
4124                conf->mirrors = conf->mirrors_new;
4125                conf->mirrors_new = NULL;
4126        }
4127        setup_geo(&conf->geo, mddev, geo_start);
4128        smp_mb();
4129        if (mddev->reshape_backwards) {
4130                sector_t size = raid10_size(mddev, 0, 0);
4131                if (size < mddev->array_sectors) {
4132                        spin_unlock_irq(&conf->device_lock);
4133                        printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4134                               mdname(mddev));
4135                        return -EINVAL;
4136                }
4137                mddev->resync_max_sectors = size;
4138                conf->reshape_progress = size;
4139        } else
4140                conf->reshape_progress = 0;
4141        spin_unlock_irq(&conf->device_lock);
4142
4143        if (mddev->delta_disks && mddev->bitmap) {
4144                ret = bitmap_resize(mddev->bitmap,
4145                                    raid10_size(mddev, 0,
4146                                                conf->geo.raid_disks),
4147                                    0, 0);
4148                if (ret)
4149                        goto abort;
4150        }
4151        if (mddev->delta_disks > 0) {
4152                rdev_for_each(rdev, mddev)
4153                        if (rdev->raid_disk < 0 &&
4154                            !test_bit(Faulty, &rdev->flags)) {
4155                                if (raid10_add_disk(mddev, rdev) == 0) {
4156                                        if (rdev->raid_disk >=
4157                                            conf->prev.raid_disks)
4158                                                set_bit(In_sync, &rdev->flags);
4159                                        else
4160                                                rdev->recovery_offset = 0;
4161
4162                                        if (sysfs_link_rdev(mddev, rdev))
4163                                                /* Failure here  is OK */;
4164                                }
4165                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4166                                   && !test_bit(Faulty, &rdev->flags)) {
4167                                /* This is a spare that was manually added */
4168                                set_bit(In_sync, &rdev->flags);
4169                        }
4170        }
4171        /* When a reshape changes the number of devices,
4172         * ->degraded is measured against the larger of the
4173         * pre and  post numbers.
4174         */
4175        spin_lock_irq(&conf->device_lock);
4176        mddev->degraded = calc_degraded(conf);
4177        spin_unlock_irq(&conf->device_lock);
4178        mddev->raid_disks = conf->geo.raid_disks;
4179        mddev->reshape_position = conf->reshape_progress;
4180        set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181
4182        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4184        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4185        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4186
4187        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4188                                                "reshape");
4189        if (!mddev->sync_thread) {
4190                ret = -EAGAIN;
4191                goto abort;
4192        }
4193        conf->reshape_checkpoint = jiffies;
4194        md_wakeup_thread(mddev->sync_thread);
4195        md_new_event(mddev);
4196        return 0;
4197
4198abort:
4199        mddev->recovery = 0;
4200        spin_lock_irq(&conf->device_lock);
4201        conf->geo = conf->prev;
4202        mddev->raid_disks = conf->geo.raid_disks;
4203        rdev_for_each(rdev, mddev)
4204                rdev->new_data_offset = rdev->data_offset;
4205        smp_wmb();
4206        conf->reshape_progress = MaxSector;
4207        mddev->reshape_position = MaxSector;
4208        spin_unlock_irq(&conf->device_lock);
4209        return ret;
4210}
4211
4212/* Calculate the last device-address that could contain
4213 * any block from the chunk that includes the array-address 's'
4214 * and report the next address.
4215 * i.e. the address returned will be chunk-aligned and after
4216 * any data that is in the chunk containing 's'.
4217 */
4218static sector_t last_dev_address(sector_t s, struct geom *geo)
4219{
4220        s = (s | geo->chunk_mask) + 1;
4221        s >>= geo->chunk_shift;
4222        s *= geo->near_copies;
4223        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4224        s *= geo->far_copies;
4225        s <<= geo->chunk_shift;
4226        return s;
4227}
4228
4229/* Calculate the first device-address that could contain
4230 * any block from the chunk that includes the array-address 's'.
4231 * This too will be the start of a chunk
4232 */
4233static sector_t first_dev_address(sector_t s, struct geom *geo)
4234{
4235        s >>= geo->chunk_shift;
4236        s *= geo->near_copies;
4237        sector_div(s, geo->raid_disks);
4238        s *= geo->far_copies;
4239        s <<= geo->chunk_shift;
4240        return s;
4241}
4242
4243static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4244                                int *skipped)
4245{
4246        /* We simply copy at most one chunk (smallest of old and new)
4247         * at a time, possibly less if that exceeds RESYNC_PAGES,
4248         * or we hit a bad block or something.
4249         * This might mean we pause for normal IO in the middle of
4250         * a chunk, but that is not a problem was mddev->reshape_position
4251         * can record any location.
4252         *
4253         * If we will want to write to a location that isn't
4254         * yet recorded as 'safe' (i.e. in metadata on disk) then
4255         * we need to flush all reshape requests and update the metadata.
4256         *
4257         * When reshaping forwards (e.g. to more devices), we interpret
4258         * 'safe' as the earliest block which might not have been copied
4259         * down yet.  We divide this by previous stripe size and multiply
4260         * by previous stripe length to get lowest device offset that we
4261         * cannot write to yet.
4262         * We interpret 'sector_nr' as an address that we want to write to.
4263         * From this we use last_device_address() to find where we might
4264         * write to, and first_device_address on the  'safe' position.
4265         * If this 'next' write position is after the 'safe' position,
4266         * we must update the metadata to increase the 'safe' position.
4267         *
4268         * When reshaping backwards, we round in the opposite direction
4269         * and perform the reverse test:  next write position must not be
4270         * less than current safe position.
4271         *
4272         * In all this the minimum difference in data offsets
4273         * (conf->offset_diff - always positive) allows a bit of slack,
4274         * so next can be after 'safe', but not by more than offset_disk
4275         *
4276         * We need to prepare all the bios here before we start any IO
4277         * to ensure the size we choose is acceptable to all devices.
4278         * The means one for each copy for write-out and an extra one for
4279         * read-in.
4280         * We store the read-in bio in ->master_bio and the others in
4281         * ->devs[x].bio and ->devs[x].repl_bio.
4282         */
4283        struct r10conf *conf = mddev->private;
4284        struct r10bio *r10_bio;
4285        sector_t next, safe, last;
4286        int max_sectors;
4287        int nr_sectors;
4288        int s;
4289        struct md_rdev *rdev;
4290        int need_flush = 0;
4291        struct bio *blist;
4292        struct bio *bio, *read_bio;
4293        int sectors_done = 0;
4294
4295        if (sector_nr == 0) {
4296                /* If restarting in the middle, skip the initial sectors */
4297                if (mddev->reshape_backwards &&
4298                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4299                        sector_nr = (raid10_size(mddev, 0, 0)
4300                                     - conf->reshape_progress);
4301                } else if (!mddev->reshape_backwards &&
4302                           conf->reshape_progress > 0)
4303                        sector_nr = conf->reshape_progress;
4304                if (sector_nr) {
4305                        mddev->curr_resync_completed = sector_nr;
4306                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4307                        *skipped = 1;
4308                        return sector_nr;
4309                }
4310        }
4311
4312        /* We don't use sector_nr to track where we are up to
4313         * as that doesn't work well for ->reshape_backwards.
4314         * So just use ->reshape_progress.
4315         */
4316        if (mddev->reshape_backwards) {
4317                /* 'next' is the earliest device address that we might
4318                 * write to for this chunk in the new layout
4319                 */
4320                next = first_dev_address(conf->reshape_progress - 1,
4321                                         &conf->geo);
4322
4323                /* 'safe' is the last device address that we might read from
4324                 * in the old layout after a restart
4325                 */
4326                safe = last_dev_address(conf->reshape_safe - 1,
4327                                        &conf->prev);
4328
4329                if (next + conf->offset_diff < safe)
4330                        need_flush = 1;
4331
4332                last = conf->reshape_progress - 1;
4333                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4334                                               & conf->prev.chunk_mask);
4335                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4336                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4337        } else {
4338                /* 'next' is after the last device address that we
4339                 * might write to for this chunk in the new layout
4340                 */
4341                next = last_dev_address(conf->reshape_progress, &conf->geo);
4342
4343                /* 'safe' is the earliest device address that we might
4344                 * read from in the old layout after a restart
4345                 */
4346                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4347
4348                /* Need to update metadata if 'next' might be beyond 'safe'
4349                 * as that would possibly corrupt data
4350                 */
4351                if (next > safe + conf->offset_diff)
4352                        need_flush = 1;
4353
4354                sector_nr = conf->reshape_progress;
4355                last  = sector_nr | (conf->geo.chunk_mask
4356                                     & conf->prev.chunk_mask);
4357
4358                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4359                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4360        }
4361
4362        if (need_flush ||
4363            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4364                /* Need to update reshape_position in metadata */
4365                wait_barrier(conf);
4366                mddev->reshape_position = conf->reshape_progress;
4367                if (mddev->reshape_backwards)
4368                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4369                                - conf->reshape_progress;
4370                else
4371                        mddev->curr_resync_completed = conf->reshape_progress;
4372                conf->reshape_checkpoint = jiffies;
4373                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4374                md_wakeup_thread(mddev->thread);
4375                wait_event(mddev->sb_wait, mddev->flags == 0 ||
4376                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4377                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4378                        allow_barrier(conf);
4379                        return sectors_done;
4380                }
4381                conf->reshape_safe = mddev->reshape_position;
4382                allow_barrier(conf);
4383        }
4384
4385read_more:
4386        /* Now schedule reads for blocks from sector_nr to last */
4387        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4388        raise_barrier(conf, sectors_done != 0);
4389        atomic_set(&r10_bio->remaining, 0);
4390        r10_bio->mddev = mddev;
4391        r10_bio->sector = sector_nr;
4392        set_bit(R10BIO_IsReshape, &r10_bio->state);
4393        r10_bio->sectors = last - sector_nr + 1;
4394        rdev = read_balance(conf, r10_bio, &max_sectors);
4395        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4396
4397        if (!rdev) {
4398                /* Cannot read from here, so need to record bad blocks
4399                 * on all the target devices.
4400                 */
4401                // FIXME
4402                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4403                return sectors_done;
4404        }
4405
4406        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4407
4408        read_bio->bi_bdev = rdev->bdev;
4409        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4410                               + rdev->data_offset);
4411        read_bio->bi_private = r10_bio;
4412        read_bio->bi_end_io = end_sync_read;
4413        read_bio->bi_rw = READ;
4414        read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4415        read_bio->bi_flags |= 1 << BIO_UPTODATE;
4416        read_bio->bi_vcnt = 0;
4417        read_bio->bi_iter.bi_size = 0;
4418        r10_bio->master_bio = read_bio;
4419        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4420
4421        /* Now find the locations in the new layout */
4422        __raid10_find_phys(&conf->geo, r10_bio);
4423
4424        blist = read_bio;
4425        read_bio->bi_next = NULL;
4426
4427        for (s = 0; s < conf->copies*2; s++) {
4428                struct bio *b;
4429                int d = r10_bio->devs[s/2].devnum;
4430                struct md_rdev *rdev2;
4431                if (s&1) {
4432                        rdev2 = conf->mirrors[d].replacement;
4433                        b = r10_bio->devs[s/2].repl_bio;
4434                } else {
4435                        rdev2 = conf->mirrors[d].rdev;
4436                        b = r10_bio->devs[s/2].bio;
4437                }
4438                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4439                        continue;
4440
4441                bio_reset(b);
4442                b->bi_bdev = rdev2->bdev;
4443                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4444                        rdev2->new_data_offset;
4445                b->bi_private = r10_bio;
4446                b->bi_end_io = end_reshape_write;
4447                b->bi_rw = WRITE;
4448                b->bi_next = blist;
4449                blist = b;
4450        }
4451
4452        /* Now add as many pages as possible to all of these bios. */
4453
4454        nr_sectors = 0;
4455        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4456                struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4457                int len = (max_sectors - s) << 9;
4458                if (len > PAGE_SIZE)
4459                        len = PAGE_SIZE;
4460                for (bio = blist; bio ; bio = bio->bi_next) {
4461                        struct bio *bio2;
4462                        if (bio_add_page(bio, page, len, 0))
4463                                continue;
4464
4465                        /* Didn't fit, must stop */
4466                        for (bio2 = blist;
4467                             bio2 && bio2 != bio;
4468                             bio2 = bio2->bi_next) {
4469                                /* Remove last page from this bio */
4470                                bio2->bi_vcnt--;
4471                                bio2->bi_iter.bi_size -= len;
4472                                bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4473                        }
4474                        goto bio_full;
4475                }
4476                sector_nr += len >> 9;
4477                nr_sectors += len >> 9;
4478        }
4479bio_full:
4480        r10_bio->sectors = nr_sectors;
4481
4482        /* Now submit the read */
4483        md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4484        atomic_inc(&r10_bio->remaining);
4485        read_bio->bi_next = NULL;
4486        generic_make_request(read_bio);
4487        sector_nr += nr_sectors;
4488        sectors_done += nr_sectors;
4489        if (sector_nr <= last)
4490                goto read_more;
4491
4492        /* Now that we have done the whole section we can
4493         * update reshape_progress
4494         */
4495        if (mddev->reshape_backwards)
4496                conf->reshape_progress -= sectors_done;
4497        else
4498                conf->reshape_progress += sectors_done;
4499
4500        return sectors_done;
4501}
4502
4503static void end_reshape_request(struct r10bio *r10_bio);
4504static int handle_reshape_read_error(struct mddev *mddev,
4505                                     struct r10bio *r10_bio);
4506static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4507{
4508        /* Reshape read completed.  Hopefully we have a block
4509         * to write out.
4510         * If we got a read error then we do sync 1-page reads from
4511         * elsewhere until we find the data - or give up.
4512         */
4513        struct r10conf *conf = mddev->private;
4514        int s;
4515
4516        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4517                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4518                        /* Reshape has been aborted */
4519                        md_done_sync(mddev, r10_bio->sectors, 0);
4520                        return;
4521                }
4522
4523        /* We definitely have the data in the pages, schedule the
4524         * writes.
4525         */
4526        atomic_set(&r10_bio->remaining, 1);
4527        for (s = 0; s < conf->copies*2; s++) {
4528                struct bio *b;
4529                int d = r10_bio->devs[s/2].devnum;
4530                struct md_rdev *rdev;
4531                if (s&1) {
4532                        rdev = conf->mirrors[d].replacement;
4533                        b = r10_bio->devs[s/2].repl_bio;
4534                } else {
4535                        rdev = conf->mirrors[d].rdev;
4536                        b = r10_bio->devs[s/2].bio;
4537                }
4538                if (!rdev || test_bit(Faulty, &rdev->flags))
4539                        continue;
4540                atomic_inc(&rdev->nr_pending);
4541                md_sync_acct(b->bi_bdev, r10_bio->sectors);
4542                atomic_inc(&r10_bio->remaining);
4543                b->bi_next = NULL;
4544                generic_make_request(b);
4545        }
4546        end_reshape_request(r10_bio);
4547}
4548
4549static void end_reshape(struct r10conf *conf)
4550{
4551        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4552                return;
4553
4554        spin_lock_irq(&conf->device_lock);
4555        conf->prev = conf->geo;
4556        md_finish_reshape(conf->mddev);
4557        smp_wmb();
4558        conf->reshape_progress = MaxSector;
4559        spin_unlock_irq(&conf->device_lock);
4560
4561        /* read-ahead size must cover two whole stripes, which is
4562         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4563         */
4564        if (conf->mddev->queue) {
4565                int stripe = conf->geo.raid_disks *
4566                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4567                stripe /= conf->geo.near_copies;
4568                if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4569                        conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4570        }
4571        conf->fullsync = 0;
4572}
4573
4574
4575static int handle_reshape_read_error(struct mddev *mddev,
4576                                     struct r10bio *r10_bio)
4577{
4578        /* Use sync reads to get the blocks from somewhere else */
4579        int sectors = r10_bio->sectors;
4580        struct r10conf *conf = mddev->private;
4581        struct {
4582                struct r10bio r10_bio;
4583                struct r10dev devs[conf->copies];
4584        } on_stack;
4585        struct r10bio *r10b = &on_stack.r10_bio;
4586        int slot = 0;
4587        int idx = 0;
4588        struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4589
4590        r10b->sector = r10_bio->sector;
4591        __raid10_find_phys(&conf->prev, r10b);
4592
4593        while (sectors) {
4594                int s = sectors;
4595                int success = 0;
4596                int first_slot = slot;
4597
4598                if (s > (PAGE_SIZE >> 9))
4599                        s = PAGE_SIZE >> 9;
4600
4601                while (!success) {
4602                        int d = r10b->devs[slot].devnum;
4603                        struct md_rdev *rdev = conf->mirrors[d].rdev;
4604                        sector_t addr;
4605                        if (rdev == NULL ||
4606                            test_bit(Faulty, &rdev->flags) ||
4607                            !test_bit(In_sync, &rdev->flags))
4608                                goto failed;
4609
4610                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4611                        success = sync_page_io(rdev,
4612                                               addr,
4613                                               s << 9,
4614                                               bvec[idx].bv_page,
4615                                               READ, false);
4616                        if (success)
4617                                break;
4618                failed:
4619                        slot++;
4620                        if (slot >= conf->copies)
4621                                slot = 0;
4622                        if (slot == first_slot)
4623                                break;
4624                }
4625                if (!success) {
4626                        /* couldn't read this block, must give up */
4627                        set_bit(MD_RECOVERY_INTR,
4628                                &mddev->recovery);
4629                        return -EIO;
4630                }
4631                sectors -= s;
4632                idx++;
4633        }
4634        return 0;
4635}
4636
4637static void end_reshape_write(struct bio *bio, int error)
4638{
4639        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4640        struct r10bio *r10_bio = bio->bi_private;
4641        struct mddev *mddev = r10_bio->mddev;
4642        struct r10conf *conf = mddev->private;
4643        int d;
4644        int slot;
4645        int repl;
4646        struct md_rdev *rdev = NULL;
4647
4648        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4649        if (repl)
4650                rdev = conf->mirrors[d].replacement;
4651        if (!rdev) {
4652                smp_mb();
4653                rdev = conf->mirrors[d].rdev;
4654        }
4655
4656        if (!uptodate) {
4657                /* FIXME should record badblock */
4658                md_error(mddev, rdev);
4659        }
4660
4661        rdev_dec_pending(rdev, mddev);
4662        end_reshape_request(r10_bio);
4663}
4664
4665static void end_reshape_request(struct r10bio *r10_bio)
4666{
4667        if (!atomic_dec_and_test(&r10_bio->remaining))
4668                return;
4669        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4670        bio_put(r10_bio->master_bio);
4671        put_buf(r10_bio);
4672}
4673
4674static void raid10_finish_reshape(struct mddev *mddev)
4675{
4676        struct r10conf *conf = mddev->private;
4677
4678        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4679                return;
4680
4681        if (mddev->delta_disks > 0) {
4682                sector_t size = raid10_size(mddev, 0, 0);
4683                md_set_array_sectors(mddev, size);
4684                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4685                        mddev->recovery_cp = mddev->resync_max_sectors;
4686                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4687                }
4688                mddev->resync_max_sectors = size;
4689                set_capacity(mddev->gendisk, mddev->array_sectors);
4690                revalidate_disk(mddev->gendisk);
4691        } else {
4692                int d;
4693                for (d = conf->geo.raid_disks ;
4694                     d < conf->geo.raid_disks - mddev->delta_disks;
4695                     d++) {
4696                        struct md_rdev *rdev = conf->mirrors[d].rdev;
4697                        if (rdev)
4698                                clear_bit(In_sync, &rdev->flags);
4699                        rdev = conf->mirrors[d].replacement;
4700                        if (rdev)
4701                                clear_bit(In_sync, &rdev->flags);
4702                }
4703        }
4704        mddev->layout = mddev->new_layout;
4705        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4706        mddev->reshape_position = MaxSector;
4707        mddev->delta_disks = 0;
4708        mddev->reshape_backwards = 0;
4709}
4710
4711static struct md_personality raid10_personality =
4712{
4713        .name           = "raid10",
4714        .level          = 10,
4715        .owner          = THIS_MODULE,
4716        .make_request   = make_request,
4717        .run            = run,
4718        .stop           = stop,
4719        .status         = status,
4720        .error_handler  = error,
4721        .hot_add_disk   = raid10_add_disk,
4722        .hot_remove_disk= raid10_remove_disk,
4723        .spare_active   = raid10_spare_active,
4724        .sync_request   = sync_request,
4725        .quiesce        = raid10_quiesce,
4726        .size           = raid10_size,
4727        .resize         = raid10_resize,
4728        .takeover       = raid10_takeover,
4729        .check_reshape  = raid10_check_reshape,
4730        .start_reshape  = raid10_start_reshape,
4731        .finish_reshape = raid10_finish_reshape,
4732};
4733
4734static int __init raid_init(void)
4735{
4736        return register_md_personality(&raid10_personality);
4737}
4738
4739static void raid_exit(void)
4740{
4741        unregister_md_personality(&raid10_personality);
4742}
4743
4744module_init(raid_init);
4745module_exit(raid_exit);
4746MODULE_LICENSE("GPL");
4747MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4748MODULE_ALIAS("md-personality-9"); /* RAID10 */
4749MODULE_ALIAS("md-raid10");
4750MODULE_ALIAS("md-level-10");
4751
4752module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4753