linux/drivers/mtd/nand/docg4.c
<<
>>
Prefs
   1/*
   2 *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
   3 *
   4 * mtd nand driver for M-Systems DiskOnChip G4
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
  12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
  13 * Should work on these as well.  Let me know!
  14 *
  15 * TODO:
  16 *
  17 *  Mechanism for management of password-protected areas
  18 *
  19 *  Hamming ecc when reading oob only
  20 *
  21 *  According to the M-Sys documentation, this device is also available in a
  22 *  "dual-die" configuration having a 256MB capacity, but no mechanism for
  23 *  detecting this variant is documented.  Currently this driver assumes 128MB
  24 *  capacity.
  25 *
  26 *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
  27 *  contain multiple G4s in a cascaded configuration, if any.
  28 *
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/init.h>
  34#include <linux/string.h>
  35#include <linux/sched.h>
  36#include <linux/delay.h>
  37#include <linux/module.h>
  38#include <linux/export.h>
  39#include <linux/platform_device.h>
  40#include <linux/io.h>
  41#include <linux/bitops.h>
  42#include <linux/mtd/partitions.h>
  43#include <linux/mtd/mtd.h>
  44#include <linux/mtd/nand.h>
  45#include <linux/bch.h>
  46#include <linux/bitrev.h>
  47#include <linux/jiffies.h>
  48
  49/*
  50 * In "reliable mode" consecutive 2k pages are used in parallel (in some
  51 * fashion) to store the same data.  The data can be read back from the
  52 * even-numbered pages in the normal manner; odd-numbered pages will appear to
  53 * contain junk.  Systems that boot from the docg4 typically write the secondary
  54 * program loader (SPL) code in this mode.  The SPL is loaded by the initial
  55 * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
  56 * to the reset vector address).  This module parameter enables you to use this
  57 * driver to write the SPL.  When in this mode, no more than 2k of data can be
  58 * written at a time, because the addresses do not increment in the normal
  59 * manner, and the starting offset must be within an even-numbered 2k region;
  60 * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
  61 * 0x1a00, ...  Reliable mode is a special case and should not be used unless
  62 * you know what you're doing.
  63 */
  64static bool reliable_mode;
  65module_param(reliable_mode, bool, 0);
  66MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
  67
  68/*
  69 * You'll want to ignore badblocks if you're reading a partition that contains
  70 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
  71 * it does not use mtd nand's method for marking bad blocks (using oob area).
  72 * This will also skip the check of the "page written" flag.
  73 */
  74static bool ignore_badblocks;
  75module_param(ignore_badblocks, bool, 0);
  76MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
  77
  78struct docg4_priv {
  79        struct mtd_info *mtd;
  80        struct device *dev;
  81        void __iomem *virtadr;
  82        int status;
  83        struct {
  84                unsigned int command;
  85                int column;
  86                int page;
  87        } last_command;
  88        uint8_t oob_buf[16];
  89        uint8_t ecc_buf[7];
  90        int oob_page;
  91        struct bch_control *bch;
  92};
  93
  94/*
  95 * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
  96 * shared with other diskonchip devices (P3, G3 at least).
  97 *
  98 * Functions with names prefixed with docg4_ are mtd / nand interface functions
  99 * (though they may also be called internally).  All others are internal.
 100 */
 101
 102#define DOC_IOSPACE_DATA                0x0800
 103
 104/* register offsets */
 105#define DOC_CHIPID                      0x1000
 106#define DOC_DEVICESELECT                0x100a
 107#define DOC_ASICMODE                    0x100c
 108#define DOC_DATAEND                     0x101e
 109#define DOC_NOP                         0x103e
 110
 111#define DOC_FLASHSEQUENCE               0x1032
 112#define DOC_FLASHCOMMAND                0x1034
 113#define DOC_FLASHADDRESS                0x1036
 114#define DOC_FLASHCONTROL                0x1038
 115#define DOC_ECCCONF0                    0x1040
 116#define DOC_ECCCONF1                    0x1042
 117#define DOC_HAMMINGPARITY               0x1046
 118#define DOC_BCH_SYNDROM(idx)            (0x1048 + idx)
 119
 120#define DOC_ASICMODECONFIRM             0x1072
 121#define DOC_CHIPID_INV                  0x1074
 122#define DOC_POWERMODE                   0x107c
 123
 124#define DOCG4_MYSTERY_REG               0x1050
 125
 126/* apparently used only to write oob bytes 6 and 7 */
 127#define DOCG4_OOB_6_7                   0x1052
 128
 129/* DOC_FLASHSEQUENCE register commands */
 130#define DOC_SEQ_RESET                   0x00
 131#define DOCG4_SEQ_PAGE_READ             0x03
 132#define DOCG4_SEQ_FLUSH                 0x29
 133#define DOCG4_SEQ_PAGEWRITE             0x16
 134#define DOCG4_SEQ_PAGEPROG              0x1e
 135#define DOCG4_SEQ_BLOCKERASE            0x24
 136#define DOCG4_SEQ_SETMODE               0x45
 137
 138/* DOC_FLASHCOMMAND register commands */
 139#define DOCG4_CMD_PAGE_READ             0x00
 140#define DOC_CMD_ERASECYCLE2             0xd0
 141#define DOCG4_CMD_FLUSH                 0x70
 142#define DOCG4_CMD_READ2                 0x30
 143#define DOC_CMD_PROG_BLOCK_ADDR         0x60
 144#define DOCG4_CMD_PAGEWRITE             0x80
 145#define DOC_CMD_PROG_CYCLE2             0x10
 146#define DOCG4_CMD_FAST_MODE             0xa3 /* functionality guessed */
 147#define DOC_CMD_RELIABLE_MODE           0x22
 148#define DOC_CMD_RESET                   0xff
 149
 150/* DOC_POWERMODE register bits */
 151#define DOC_POWERDOWN_READY             0x80
 152
 153/* DOC_FLASHCONTROL register bits */
 154#define DOC_CTRL_CE                     0x10
 155#define DOC_CTRL_UNKNOWN                0x40
 156#define DOC_CTRL_FLASHREADY             0x01
 157
 158/* DOC_ECCCONF0 register bits */
 159#define DOC_ECCCONF0_READ_MODE          0x8000
 160#define DOC_ECCCONF0_UNKNOWN            0x2000
 161#define DOC_ECCCONF0_ECC_ENABLE         0x1000
 162#define DOC_ECCCONF0_DATA_BYTES_MASK    0x07ff
 163
 164/* DOC_ECCCONF1 register bits */
 165#define DOC_ECCCONF1_BCH_SYNDROM_ERR    0x80
 166#define DOC_ECCCONF1_ECC_ENABLE         0x07
 167#define DOC_ECCCONF1_PAGE_IS_WRITTEN    0x20
 168
 169/* DOC_ASICMODE register bits */
 170#define DOC_ASICMODE_RESET              0x00
 171#define DOC_ASICMODE_NORMAL             0x01
 172#define DOC_ASICMODE_POWERDOWN          0x02
 173#define DOC_ASICMODE_MDWREN             0x04
 174#define DOC_ASICMODE_BDETCT_RESET       0x08
 175#define DOC_ASICMODE_RSTIN_RESET        0x10
 176#define DOC_ASICMODE_RAM_WE             0x20
 177
 178/* good status values read after read/write/erase operations */
 179#define DOCG4_PROGSTATUS_GOOD          0x51
 180#define DOCG4_PROGSTATUS_GOOD_2        0xe0
 181
 182/*
 183 * On read operations (page and oob-only), the first byte read from I/O reg is a
 184 * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
 185 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
 186 */
 187#define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
 188
 189/* anatomy of the device */
 190#define DOCG4_CHIP_SIZE        0x8000000
 191#define DOCG4_PAGE_SIZE        0x200
 192#define DOCG4_PAGES_PER_BLOCK  0x200
 193#define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
 194#define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
 195#define DOCG4_OOB_SIZE         0x10
 196#define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
 197#define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
 198#define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
 199
 200/* all but the last byte is included in ecc calculation */
 201#define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
 202
 203#define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
 204
 205/* expected values from the ID registers */
 206#define DOCG4_IDREG1_VALUE     0x0400
 207#define DOCG4_IDREG2_VALUE     0xfbff
 208
 209/* primitive polynomial used to build the Galois field used by hw ecc gen */
 210#define DOCG4_PRIMITIVE_POLY   0x4443
 211
 212#define DOCG4_M                14  /* Galois field is of order 2^14 */
 213#define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
 214
 215#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
 216#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
 217
 218/*
 219 * Bytes 0, 1 are used as badblock marker.
 220 * Bytes 2 - 6 are available to the user.
 221 * Byte 7 is hamming ecc for first 7 oob bytes only.
 222 * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
 223 * Byte 15 (the last) is used by the driver as a "page written" flag.
 224 */
 225static struct nand_ecclayout docg4_oobinfo = {
 226        .eccbytes = 9,
 227        .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
 228        .oobavail = 5,
 229        .oobfree = { {.offset = 2, .length = 5} }
 230};
 231
 232/*
 233 * The device has a nop register which M-Sys claims is for the purpose of
 234 * inserting precise delays.  But beware; at least some operations fail if the
 235 * nop writes are replaced with a generic delay!
 236 */
 237static inline void write_nop(void __iomem *docptr)
 238{
 239        writew(0, docptr + DOC_NOP);
 240}
 241
 242static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 243{
 244        int i;
 245        struct nand_chip *nand = mtd->priv;
 246        uint16_t *p = (uint16_t *) buf;
 247        len >>= 1;
 248
 249        for (i = 0; i < len; i++)
 250                p[i] = readw(nand->IO_ADDR_R);
 251}
 252
 253static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 254{
 255        int i;
 256        struct nand_chip *nand = mtd->priv;
 257        uint16_t *p = (uint16_t *) buf;
 258        len >>= 1;
 259
 260        for (i = 0; i < len; i++)
 261                writew(p[i], nand->IO_ADDR_W);
 262}
 263
 264static int poll_status(struct docg4_priv *doc)
 265{
 266        /*
 267         * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
 268         * register.  Operations known to take a long time (e.g., block erase)
 269         * should sleep for a while before calling this.
 270         */
 271
 272        uint16_t flash_status;
 273        unsigned long timeo;
 274        void __iomem *docptr = doc->virtadr;
 275
 276        dev_dbg(doc->dev, "%s...\n", __func__);
 277
 278        /* hardware quirk requires reading twice initially */
 279        flash_status = readw(docptr + DOC_FLASHCONTROL);
 280
 281        timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
 282        do {
 283                cpu_relax();
 284                flash_status = readb(docptr + DOC_FLASHCONTROL);
 285        } while (!(flash_status & DOC_CTRL_FLASHREADY) &&
 286                 time_before(jiffies, timeo));
 287
 288        if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
 289                dev_err(doc->dev, "%s: timed out!\n", __func__);
 290                return NAND_STATUS_FAIL;
 291        }
 292
 293        return 0;
 294}
 295
 296
 297static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
 298{
 299
 300        struct docg4_priv *doc = nand->priv;
 301        int status = NAND_STATUS_WP;       /* inverse logic?? */
 302        dev_dbg(doc->dev, "%s...\n", __func__);
 303
 304        /* report any previously unreported error */
 305        if (doc->status) {
 306                status |= doc->status;
 307                doc->status = 0;
 308                return status;
 309        }
 310
 311        status |= poll_status(doc);
 312        return status;
 313}
 314
 315static void docg4_select_chip(struct mtd_info *mtd, int chip)
 316{
 317        /*
 318         * Select among multiple cascaded chips ("floors").  Multiple floors are
 319         * not yet supported, so the only valid non-negative value is 0.
 320         */
 321        struct nand_chip *nand = mtd->priv;
 322        struct docg4_priv *doc = nand->priv;
 323        void __iomem *docptr = doc->virtadr;
 324
 325        dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
 326
 327        if (chip < 0)
 328                return;         /* deselected */
 329
 330        if (chip > 0)
 331                dev_warn(doc->dev, "multiple floors currently unsupported\n");
 332
 333        writew(0, docptr + DOC_DEVICESELECT);
 334}
 335
 336static void reset(struct mtd_info *mtd)
 337{
 338        /* full device reset */
 339
 340        struct nand_chip *nand = mtd->priv;
 341        struct docg4_priv *doc = nand->priv;
 342        void __iomem *docptr = doc->virtadr;
 343
 344        writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
 345               docptr + DOC_ASICMODE);
 346        writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
 347               docptr + DOC_ASICMODECONFIRM);
 348        write_nop(docptr);
 349
 350        writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
 351               docptr + DOC_ASICMODE);
 352        writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
 353               docptr + DOC_ASICMODECONFIRM);
 354
 355        writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
 356
 357        poll_status(doc);
 358}
 359
 360static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
 361{
 362        /* read the 7 hw-generated ecc bytes */
 363
 364        int i;
 365        for (i = 0; i < 7; i++) { /* hw quirk; read twice */
 366                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 367                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 368        }
 369}
 370
 371static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
 372{
 373        /*
 374         * Called after a page read when hardware reports bitflips.
 375         * Up to four bitflips can be corrected.
 376         */
 377
 378        struct nand_chip *nand = mtd->priv;
 379        struct docg4_priv *doc = nand->priv;
 380        void __iomem *docptr = doc->virtadr;
 381        int i, numerrs, errpos[4];
 382        const uint8_t blank_read_hwecc[8] = {
 383                0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
 384
 385        read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
 386
 387        /* check if read error is due to a blank page */
 388        if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
 389                return 0;       /* yes */
 390
 391        /* skip additional check of "written flag" if ignore_badblocks */
 392        if (ignore_badblocks == false) {
 393
 394                /*
 395                 * If the hw ecc bytes are not those of a blank page, there's
 396                 * still a chance that the page is blank, but was read with
 397                 * errors.  Check the "written flag" in last oob byte, which
 398                 * is set to zero when a page is written.  If more than half
 399                 * the bits are set, assume a blank page.  Unfortunately, the
 400                 * bit flips(s) are not reported in stats.
 401                 */
 402
 403                if (nand->oob_poi[15]) {
 404                        int bit, numsetbits = 0;
 405                        unsigned long written_flag = nand->oob_poi[15];
 406                        for_each_set_bit(bit, &written_flag, 8)
 407                                numsetbits++;
 408                        if (numsetbits > 4) { /* assume blank */
 409                                dev_warn(doc->dev,
 410                                         "error(s) in blank page "
 411                                         "at offset %08x\n",
 412                                         page * DOCG4_PAGE_SIZE);
 413                                return 0;
 414                        }
 415                }
 416        }
 417
 418        /*
 419         * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
 420         * algorithm is used to decode this.  However the hw operates on page
 421         * data in a bit order that is the reverse of that of the bch alg,
 422         * requiring that the bits be reversed on the result.  Thanks to Ivan
 423         * Djelic for his analysis!
 424         */
 425        for (i = 0; i < 7; i++)
 426                doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
 427
 428        numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
 429                             doc->ecc_buf, NULL, errpos);
 430
 431        if (numerrs == -EBADMSG) {
 432                dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
 433                         page * DOCG4_PAGE_SIZE);
 434                return -EBADMSG;
 435        }
 436
 437        BUG_ON(numerrs < 0);    /* -EINVAL, or anything other than -EBADMSG */
 438
 439        /* undo last step in BCH alg (modulo mirroring not needed) */
 440        for (i = 0; i < numerrs; i++)
 441                errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
 442
 443        /* fix the errors */
 444        for (i = 0; i < numerrs; i++) {
 445
 446                /* ignore if error within oob ecc bytes */
 447                if (errpos[i] > DOCG4_USERDATA_LEN * 8)
 448                        continue;
 449
 450                /* if error within oob area preceeding ecc bytes... */
 451                if (errpos[i] > DOCG4_PAGE_SIZE * 8)
 452                        change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
 453                                   (unsigned long *)nand->oob_poi);
 454
 455                else    /* error in page data */
 456                        change_bit(errpos[i], (unsigned long *)buf);
 457        }
 458
 459        dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
 460                   numerrs, page * DOCG4_PAGE_SIZE);
 461
 462        return numerrs;
 463}
 464
 465static uint8_t docg4_read_byte(struct mtd_info *mtd)
 466{
 467        struct nand_chip *nand = mtd->priv;
 468        struct docg4_priv *doc = nand->priv;
 469
 470        dev_dbg(doc->dev, "%s\n", __func__);
 471
 472        if (doc->last_command.command == NAND_CMD_STATUS) {
 473                int status;
 474
 475                /*
 476                 * Previous nand command was status request, so nand
 477                 * infrastructure code expects to read the status here.  If an
 478                 * error occurred in a previous operation, report it.
 479                 */
 480                doc->last_command.command = 0;
 481
 482                if (doc->status) {
 483                        status = doc->status;
 484                        doc->status = 0;
 485                }
 486
 487                /* why is NAND_STATUS_WP inverse logic?? */
 488                else
 489                        status = NAND_STATUS_WP | NAND_STATUS_READY;
 490
 491                return status;
 492        }
 493
 494        dev_warn(doc->dev, "unexpected call to read_byte()\n");
 495
 496        return 0;
 497}
 498
 499static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
 500{
 501        /* write the four address bytes packed in docg4_addr to the device */
 502
 503        void __iomem *docptr = doc->virtadr;
 504        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 505        docg4_addr >>= 8;
 506        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 507        docg4_addr >>= 8;
 508        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 509        docg4_addr >>= 8;
 510        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 511}
 512
 513static int read_progstatus(struct docg4_priv *doc)
 514{
 515        /*
 516         * This apparently checks the status of programming.  Done after an
 517         * erasure, and after page data is written.  On error, the status is
 518         * saved, to be later retrieved by the nand infrastructure code.
 519         */
 520        void __iomem *docptr = doc->virtadr;
 521
 522        /* status is read from the I/O reg */
 523        uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
 524        uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
 525        uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
 526
 527        dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
 528              __func__, status1, status2, status3);
 529
 530        if (status1 != DOCG4_PROGSTATUS_GOOD
 531            || status2 != DOCG4_PROGSTATUS_GOOD_2
 532            || status3 != DOCG4_PROGSTATUS_GOOD_2) {
 533                doc->status = NAND_STATUS_FAIL;
 534                dev_warn(doc->dev, "read_progstatus failed: "
 535                         "%02x, %02x, %02x\n", status1, status2, status3);
 536                return -EIO;
 537        }
 538        return 0;
 539}
 540
 541static int pageprog(struct mtd_info *mtd)
 542{
 543        /*
 544         * Final step in writing a page.  Writes the contents of its
 545         * internal buffer out to the flash array, or some such.
 546         */
 547
 548        struct nand_chip *nand = mtd->priv;
 549        struct docg4_priv *doc = nand->priv;
 550        void __iomem *docptr = doc->virtadr;
 551        int retval = 0;
 552
 553        dev_dbg(doc->dev, "docg4: %s\n", __func__);
 554
 555        writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
 556        writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
 557        write_nop(docptr);
 558        write_nop(docptr);
 559
 560        /* Just busy-wait; usleep_range() slows things down noticeably. */
 561        poll_status(doc);
 562
 563        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 564        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 565        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 566        write_nop(docptr);
 567        write_nop(docptr);
 568        write_nop(docptr);
 569        write_nop(docptr);
 570        write_nop(docptr);
 571
 572        retval = read_progstatus(doc);
 573        writew(0, docptr + DOC_DATAEND);
 574        write_nop(docptr);
 575        poll_status(doc);
 576        write_nop(docptr);
 577
 578        return retval;
 579}
 580
 581static void sequence_reset(struct mtd_info *mtd)
 582{
 583        /* common starting sequence for all operations */
 584
 585        struct nand_chip *nand = mtd->priv;
 586        struct docg4_priv *doc = nand->priv;
 587        void __iomem *docptr = doc->virtadr;
 588
 589        writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
 590        writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
 591        writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
 592        write_nop(docptr);
 593        write_nop(docptr);
 594        poll_status(doc);
 595        write_nop(docptr);
 596}
 597
 598static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 599{
 600        /* first step in reading a page */
 601
 602        struct nand_chip *nand = mtd->priv;
 603        struct docg4_priv *doc = nand->priv;
 604        void __iomem *docptr = doc->virtadr;
 605
 606        dev_dbg(doc->dev,
 607              "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
 608
 609        sequence_reset(mtd);
 610
 611        writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
 612        writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
 613        write_nop(docptr);
 614
 615        write_addr(doc, docg4_addr);
 616
 617        write_nop(docptr);
 618        writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
 619        write_nop(docptr);
 620        write_nop(docptr);
 621
 622        poll_status(doc);
 623}
 624
 625static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 626{
 627        /* first step in writing a page */
 628
 629        struct nand_chip *nand = mtd->priv;
 630        struct docg4_priv *doc = nand->priv;
 631        void __iomem *docptr = doc->virtadr;
 632
 633        dev_dbg(doc->dev,
 634              "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
 635        sequence_reset(mtd);
 636
 637        if (unlikely(reliable_mode)) {
 638                writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
 639                writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
 640                writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
 641                write_nop(docptr);
 642        }
 643
 644        writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
 645        writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
 646        write_nop(docptr);
 647        write_addr(doc, docg4_addr);
 648        write_nop(docptr);
 649        write_nop(docptr);
 650        poll_status(doc);
 651}
 652
 653static uint32_t mtd_to_docg4_address(int page, int column)
 654{
 655        /*
 656         * Convert mtd address to format used by the device, 32 bit packed.
 657         *
 658         * Some notes on G4 addressing... The M-Sys documentation on this device
 659         * claims that pages are 2K in length, and indeed, the format of the
 660         * address used by the device reflects that.  But within each page are
 661         * four 512 byte "sub-pages", each with its own oob data that is
 662         * read/written immediately after the 512 bytes of page data.  This oob
 663         * data contains the ecc bytes for the preceeding 512 bytes.
 664         *
 665         * Rather than tell the mtd nand infrastructure that page size is 2k,
 666         * with four sub-pages each, we engage in a little subterfuge and tell
 667         * the infrastructure code that pages are 512 bytes in size.  This is
 668         * done because during the course of reverse-engineering the device, I
 669         * never observed an instance where an entire 2K "page" was read or
 670         * written as a unit.  Each "sub-page" is always addressed individually,
 671         * its data read/written, and ecc handled before the next "sub-page" is
 672         * addressed.
 673         *
 674         * This requires us to convert addresses passed by the mtd nand
 675         * infrastructure code to those used by the device.
 676         *
 677         * The address that is written to the device consists of four bytes: the
 678         * first two are the 2k page number, and the second is the index into
 679         * the page.  The index is in terms of 16-bit half-words and includes
 680         * the preceeding oob data, so e.g., the index into the second
 681         * "sub-page" is 0x108, and the full device address of the start of mtd
 682         * page 0x201 is 0x00800108.
 683         */
 684        int g4_page = page / 4;                       /* device's 2K page */
 685        int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
 686        return (g4_page << 16) | g4_index;            /* pack */
 687}
 688
 689static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
 690                          int page_addr)
 691{
 692        /* handle standard nand commands */
 693
 694        struct nand_chip *nand = mtd->priv;
 695        struct docg4_priv *doc = nand->priv;
 696        uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
 697
 698        dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
 699              __func__, command, page_addr, column);
 700
 701        /*
 702         * Save the command and its arguments.  This enables emulation of
 703         * standard flash devices, and also some optimizations.
 704         */
 705        doc->last_command.command = command;
 706        doc->last_command.column = column;
 707        doc->last_command.page = page_addr;
 708
 709        switch (command) {
 710
 711        case NAND_CMD_RESET:
 712                reset(mtd);
 713                break;
 714
 715        case NAND_CMD_READ0:
 716                read_page_prologue(mtd, g4_addr);
 717                break;
 718
 719        case NAND_CMD_STATUS:
 720                /* next call to read_byte() will expect a status */
 721                break;
 722
 723        case NAND_CMD_SEQIN:
 724                if (unlikely(reliable_mode)) {
 725                        uint16_t g4_page = g4_addr >> 16;
 726
 727                        /* writes to odd-numbered 2k pages are invalid */
 728                        if (g4_page & 0x01)
 729                                dev_warn(doc->dev,
 730                                         "invalid reliable mode address\n");
 731                }
 732
 733                write_page_prologue(mtd, g4_addr);
 734
 735                /* hack for deferred write of oob bytes */
 736                if (doc->oob_page == page_addr)
 737                        memcpy(nand->oob_poi, doc->oob_buf, 16);
 738                break;
 739
 740        case NAND_CMD_PAGEPROG:
 741                pageprog(mtd);
 742                break;
 743
 744        /* we don't expect these, based on review of nand_base.c */
 745        case NAND_CMD_READOOB:
 746        case NAND_CMD_READID:
 747        case NAND_CMD_ERASE1:
 748        case NAND_CMD_ERASE2:
 749                dev_warn(doc->dev, "docg4_command: "
 750                         "unexpected nand command 0x%x\n", command);
 751                break;
 752
 753        }
 754}
 755
 756static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
 757                     uint8_t *buf, int page, bool use_ecc)
 758{
 759        struct docg4_priv *doc = nand->priv;
 760        void __iomem *docptr = doc->virtadr;
 761        uint16_t status, edc_err, *buf16;
 762        int bits_corrected = 0;
 763
 764        dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
 765
 766        writew(DOC_ECCCONF0_READ_MODE |
 767               DOC_ECCCONF0_ECC_ENABLE |
 768               DOC_ECCCONF0_UNKNOWN |
 769               DOCG4_BCH_SIZE,
 770               docptr + DOC_ECCCONF0);
 771        write_nop(docptr);
 772        write_nop(docptr);
 773        write_nop(docptr);
 774        write_nop(docptr);
 775        write_nop(docptr);
 776
 777        /* the 1st byte from the I/O reg is a status; the rest is page data */
 778        status = readw(docptr + DOC_IOSPACE_DATA);
 779        if (status & DOCG4_READ_ERROR) {
 780                dev_err(doc->dev,
 781                        "docg4_read_page: bad status: 0x%02x\n", status);
 782                writew(0, docptr + DOC_DATAEND);
 783                return -EIO;
 784        }
 785
 786        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 787
 788        docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
 789
 790        /* this device always reads oob after page data */
 791        /* first 14 oob bytes read from I/O reg */
 792        docg4_read_buf(mtd, nand->oob_poi, 14);
 793
 794        /* last 2 read from another reg */
 795        buf16 = (uint16_t *)(nand->oob_poi + 14);
 796        *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
 797
 798        write_nop(docptr);
 799
 800        if (likely(use_ecc == true)) {
 801
 802                /* read the register that tells us if bitflip(s) detected  */
 803                edc_err = readw(docptr + DOC_ECCCONF1);
 804                edc_err = readw(docptr + DOC_ECCCONF1);
 805                dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
 806
 807                /* If bitflips are reported, attempt to correct with ecc */
 808                if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
 809                        bits_corrected = correct_data(mtd, buf, page);
 810                        if (bits_corrected == -EBADMSG)
 811                                mtd->ecc_stats.failed++;
 812                        else
 813                                mtd->ecc_stats.corrected += bits_corrected;
 814                }
 815        }
 816
 817        writew(0, docptr + DOC_DATAEND);
 818        if (bits_corrected == -EBADMSG)   /* uncorrectable errors */
 819                return 0;
 820        return bits_corrected;
 821}
 822
 823
 824static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 825                               uint8_t *buf, int oob_required, int page)
 826{
 827        return read_page(mtd, nand, buf, page, false);
 828}
 829
 830static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 831                           uint8_t *buf, int oob_required, int page)
 832{
 833        return read_page(mtd, nand, buf, page, true);
 834}
 835
 836static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 837                          int page)
 838{
 839        struct docg4_priv *doc = nand->priv;
 840        void __iomem *docptr = doc->virtadr;
 841        uint16_t status;
 842
 843        dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
 844
 845        docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
 846
 847        writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
 848        write_nop(docptr);
 849        write_nop(docptr);
 850        write_nop(docptr);
 851        write_nop(docptr);
 852        write_nop(docptr);
 853
 854        /* the 1st byte from the I/O reg is a status; the rest is oob data */
 855        status = readw(docptr + DOC_IOSPACE_DATA);
 856        if (status & DOCG4_READ_ERROR) {
 857                dev_warn(doc->dev,
 858                         "docg4_read_oob failed: status = 0x%02x\n", status);
 859                return -EIO;
 860        }
 861
 862        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 863
 864        docg4_read_buf(mtd, nand->oob_poi, 16);
 865
 866        write_nop(docptr);
 867        write_nop(docptr);
 868        write_nop(docptr);
 869        writew(0, docptr + DOC_DATAEND);
 870        write_nop(docptr);
 871
 872        return 0;
 873}
 874
 875static void docg4_erase_block(struct mtd_info *mtd, int page)
 876{
 877        struct nand_chip *nand = mtd->priv;
 878        struct docg4_priv *doc = nand->priv;
 879        void __iomem *docptr = doc->virtadr;
 880        uint16_t g4_page;
 881
 882        dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
 883
 884        sequence_reset(mtd);
 885
 886        writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
 887        writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
 888        write_nop(docptr);
 889
 890        /* only 2 bytes of address are written to specify erase block */
 891        g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
 892        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 893        g4_page >>= 8;
 894        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 895        write_nop(docptr);
 896
 897        /* start the erasure */
 898        writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
 899        write_nop(docptr);
 900        write_nop(docptr);
 901
 902        usleep_range(500, 1000); /* erasure is long; take a snooze */
 903        poll_status(doc);
 904        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 905        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 906        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 907        write_nop(docptr);
 908        write_nop(docptr);
 909        write_nop(docptr);
 910        write_nop(docptr);
 911        write_nop(docptr);
 912
 913        read_progstatus(doc);
 914
 915        writew(0, docptr + DOC_DATAEND);
 916        write_nop(docptr);
 917        poll_status(doc);
 918        write_nop(docptr);
 919}
 920
 921static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
 922                       const uint8_t *buf, bool use_ecc)
 923{
 924        struct docg4_priv *doc = nand->priv;
 925        void __iomem *docptr = doc->virtadr;
 926        uint8_t ecc_buf[8];
 927
 928        dev_dbg(doc->dev, "%s...\n", __func__);
 929
 930        writew(DOC_ECCCONF0_ECC_ENABLE |
 931               DOC_ECCCONF0_UNKNOWN |
 932               DOCG4_BCH_SIZE,
 933               docptr + DOC_ECCCONF0);
 934        write_nop(docptr);
 935
 936        /* write the page data */
 937        docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
 938
 939        /* oob bytes 0 through 5 are written to I/O reg */
 940        docg4_write_buf16(mtd, nand->oob_poi, 6);
 941
 942        /* oob byte 6 written to a separate reg */
 943        writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
 944
 945        write_nop(docptr);
 946        write_nop(docptr);
 947
 948        /* write hw-generated ecc bytes to oob */
 949        if (likely(use_ecc == true)) {
 950                /* oob byte 7 is hamming code */
 951                uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
 952                hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
 953                writew(hamming, docptr + DOCG4_OOB_6_7);
 954                write_nop(docptr);
 955
 956                /* read the 7 bch bytes from ecc regs */
 957                read_hw_ecc(docptr, ecc_buf);
 958                ecc_buf[7] = 0;         /* clear the "page written" flag */
 959        }
 960
 961        /* write user-supplied bytes to oob */
 962        else {
 963                writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
 964                write_nop(docptr);
 965                memcpy(ecc_buf, &nand->oob_poi[8], 8);
 966        }
 967
 968        docg4_write_buf16(mtd, ecc_buf, 8);
 969        write_nop(docptr);
 970        write_nop(docptr);
 971        writew(0, docptr + DOC_DATAEND);
 972        write_nop(docptr);
 973
 974        return 0;
 975}
 976
 977static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 978                                 const uint8_t *buf, int oob_required)
 979{
 980        return write_page(mtd, nand, buf, false);
 981}
 982
 983static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
 984                             const uint8_t *buf, int oob_required)
 985{
 986        return write_page(mtd, nand, buf, true);
 987}
 988
 989static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 990                           int page)
 991{
 992        /*
 993         * Writing oob-only is not really supported, because MLC nand must write
 994         * oob bytes at the same time as page data.  Nonetheless, we save the
 995         * oob buffer contents here, and then write it along with the page data
 996         * if the same page is subsequently written.  This allows user space
 997         * utilities that write the oob data prior to the page data to work
 998         * (e.g., nandwrite).  The disdvantage is that, if the intention was to
 999         * write oob only, the operation is quietly ignored.  Also, oob can get
1000         * corrupted if two concurrent processes are running nandwrite.
1001         */
1002
1003        /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1004        struct docg4_priv *doc = nand->priv;
1005        doc->oob_page = page;
1006        memcpy(doc->oob_buf, nand->oob_poi, 16);
1007        return 0;
1008}
1009
1010static int __init read_factory_bbt(struct mtd_info *mtd)
1011{
1012        /*
1013         * The device contains a read-only factory bad block table.  Read it and
1014         * update the memory-based bbt accordingly.
1015         */
1016
1017        struct nand_chip *nand = mtd->priv;
1018        struct docg4_priv *doc = nand->priv;
1019        uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1020        uint8_t *buf;
1021        int i, block;
1022        __u32 eccfailed_stats = mtd->ecc_stats.failed;
1023
1024        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1025        if (buf == NULL)
1026                return -ENOMEM;
1027
1028        read_page_prologue(mtd, g4_addr);
1029        docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1030
1031        /*
1032         * If no memory-based bbt was created, exit.  This will happen if module
1033         * parameter ignore_badblocks is set.  Then why even call this function?
1034         * For an unknown reason, block erase always fails if it's the first
1035         * operation after device power-up.  The above read ensures it never is.
1036         * Ugly, I know.
1037         */
1038        if (nand->bbt == NULL)  /* no memory-based bbt */
1039                goto exit;
1040
1041        if (mtd->ecc_stats.failed > eccfailed_stats) {
1042                /*
1043                 * Whoops, an ecc failure ocurred reading the factory bbt.
1044                 * It is stored redundantly, so we get another chance.
1045                 */
1046                eccfailed_stats = mtd->ecc_stats.failed;
1047                docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1048                if (mtd->ecc_stats.failed > eccfailed_stats) {
1049                        dev_warn(doc->dev,
1050                                 "The factory bbt could not be read!\n");
1051                        goto exit;
1052                }
1053        }
1054
1055        /*
1056         * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1057         * simple: one bit per block, block numbers increase left to right (msb
1058         * to lsb).  Bit clear means bad block.
1059         */
1060        for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1061                int bitnum;
1062                unsigned long bits = ~buf[i];
1063                for_each_set_bit(bitnum, &bits, 8) {
1064                        int badblock = block + 7 - bitnum;
1065                        nand->bbt[badblock / 4] |=
1066                                0x03 << ((badblock % 4) * 2);
1067                        mtd->ecc_stats.badblocks++;
1068                        dev_notice(doc->dev, "factory-marked bad block: %d\n",
1069                                   badblock);
1070                }
1071        }
1072 exit:
1073        kfree(buf);
1074        return 0;
1075}
1076
1077static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1078{
1079        /*
1080         * Mark a block as bad.  Bad blocks are marked in the oob area of the
1081         * first page of the block.  The default scan_bbt() in the nand
1082         * infrastructure code works fine for building the memory-based bbt
1083         * during initialization, as does the nand infrastructure function that
1084         * checks if a block is bad by reading the bbt.  This function replaces
1085         * the nand default because writes to oob-only are not supported.
1086         */
1087
1088        int ret, i;
1089        uint8_t *buf;
1090        struct nand_chip *nand = mtd->priv;
1091        struct docg4_priv *doc = nand->priv;
1092        struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1093        int page = (int)(ofs >> nand->page_shift);
1094        uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1095
1096        dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1097
1098        if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1099                dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1100                         __func__, ofs);
1101
1102        /* allocate blank buffer for page data */
1103        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1104        if (buf == NULL)
1105                return -ENOMEM;
1106
1107        /* write bit-wise negation of pattern to oob buffer */
1108        memset(nand->oob_poi, 0xff, mtd->oobsize);
1109        for (i = 0; i < bbtd->len; i++)
1110                nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1111
1112        /* write first page of block */
1113        write_page_prologue(mtd, g4_addr);
1114        docg4_write_page(mtd, nand, buf, 1);
1115        ret = pageprog(mtd);
1116
1117        kfree(buf);
1118
1119        return ret;
1120}
1121
1122static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1123{
1124        /* only called when module_param ignore_badblocks is set */
1125        return 0;
1126}
1127
1128static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1129{
1130        /*
1131         * Put the device into "deep power-down" mode.  Note that CE# must be
1132         * deasserted for this to take effect.  The xscale, e.g., can be
1133         * configured to float this signal when the processor enters power-down,
1134         * and a suitable pull-up ensures its deassertion.
1135         */
1136
1137        int i;
1138        uint8_t pwr_down;
1139        struct docg4_priv *doc = platform_get_drvdata(pdev);
1140        void __iomem *docptr = doc->virtadr;
1141
1142        dev_dbg(doc->dev, "%s...\n", __func__);
1143
1144        /* poll the register that tells us we're ready to go to sleep */
1145        for (i = 0; i < 10; i++) {
1146                pwr_down = readb(docptr + DOC_POWERMODE);
1147                if (pwr_down & DOC_POWERDOWN_READY)
1148                        break;
1149                usleep_range(1000, 4000);
1150        }
1151
1152        if (pwr_down & DOC_POWERDOWN_READY) {
1153                dev_err(doc->dev, "suspend failed; "
1154                        "timeout polling DOC_POWERDOWN_READY\n");
1155                return -EIO;
1156        }
1157
1158        writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1159               docptr + DOC_ASICMODE);
1160        writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1161               docptr + DOC_ASICMODECONFIRM);
1162
1163        write_nop(docptr);
1164
1165        return 0;
1166}
1167
1168static int docg4_resume(struct platform_device *pdev)
1169{
1170
1171        /*
1172         * Exit power-down.  Twelve consecutive reads of the address below
1173         * accomplishes this, assuming CE# has been asserted.
1174         */
1175
1176        struct docg4_priv *doc = platform_get_drvdata(pdev);
1177        void __iomem *docptr = doc->virtadr;
1178        int i;
1179
1180        dev_dbg(doc->dev, "%s...\n", __func__);
1181
1182        for (i = 0; i < 12; i++)
1183                readb(docptr + 0x1fff);
1184
1185        return 0;
1186}
1187
1188static void __init init_mtd_structs(struct mtd_info *mtd)
1189{
1190        /* initialize mtd and nand data structures */
1191
1192        /*
1193         * Note that some of the following initializations are not usually
1194         * required within a nand driver because they are performed by the nand
1195         * infrastructure code as part of nand_scan().  In this case they need
1196         * to be initialized here because we skip call to nand_scan_ident() (the
1197         * first half of nand_scan()).  The call to nand_scan_ident() is skipped
1198         * because for this device the chip id is not read in the manner of a
1199         * standard nand device.  Unfortunately, nand_scan_ident() does other
1200         * things as well, such as call nand_set_defaults().
1201         */
1202
1203        struct nand_chip *nand = mtd->priv;
1204        struct docg4_priv *doc = nand->priv;
1205
1206        mtd->size = DOCG4_CHIP_SIZE;
1207        mtd->name = "Msys_Diskonchip_G4";
1208        mtd->writesize = DOCG4_PAGE_SIZE;
1209        mtd->erasesize = DOCG4_BLOCK_SIZE;
1210        mtd->oobsize = DOCG4_OOB_SIZE;
1211        nand->chipsize = DOCG4_CHIP_SIZE;
1212        nand->chip_shift = DOCG4_CHIP_SHIFT;
1213        nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1214        nand->chip_delay = 20;
1215        nand->page_shift = DOCG4_PAGE_SHIFT;
1216        nand->pagemask = 0x3ffff;
1217        nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1218        nand->badblockbits = 8;
1219        nand->ecc.layout = &docg4_oobinfo;
1220        nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1221        nand->ecc.size = DOCG4_PAGE_SIZE;
1222        nand->ecc.prepad = 8;
1223        nand->ecc.bytes = 8;
1224        nand->ecc.strength = DOCG4_T;
1225        nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1226        nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1227        nand->controller = &nand->hwcontrol;
1228        spin_lock_init(&nand->controller->lock);
1229        init_waitqueue_head(&nand->controller->wq);
1230
1231        /* methods */
1232        nand->cmdfunc = docg4_command;
1233        nand->waitfunc = docg4_wait;
1234        nand->select_chip = docg4_select_chip;
1235        nand->read_byte = docg4_read_byte;
1236        nand->block_markbad = docg4_block_markbad;
1237        nand->read_buf = docg4_read_buf;
1238        nand->write_buf = docg4_write_buf16;
1239        nand->erase_cmd = docg4_erase_block;
1240        nand->ecc.read_page = docg4_read_page;
1241        nand->ecc.write_page = docg4_write_page;
1242        nand->ecc.read_page_raw = docg4_read_page_raw;
1243        nand->ecc.write_page_raw = docg4_write_page_raw;
1244        nand->ecc.read_oob = docg4_read_oob;
1245        nand->ecc.write_oob = docg4_write_oob;
1246
1247        /*
1248         * The way the nand infrastructure code is written, a memory-based bbt
1249         * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1250         * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1251         * scan and define a dummy block_bad() which always returns 0.
1252         */
1253        if (ignore_badblocks) {
1254                nand->options |= NAND_SKIP_BBTSCAN;
1255                nand->block_bad = docg4_block_neverbad;
1256        }
1257
1258}
1259
1260static int __init read_id_reg(struct mtd_info *mtd)
1261{
1262        struct nand_chip *nand = mtd->priv;
1263        struct docg4_priv *doc = nand->priv;
1264        void __iomem *docptr = doc->virtadr;
1265        uint16_t id1, id2;
1266
1267        /* check for presence of g4 chip by reading id registers */
1268        id1 = readw(docptr + DOC_CHIPID);
1269        id1 = readw(docptr + DOCG4_MYSTERY_REG);
1270        id2 = readw(docptr + DOC_CHIPID_INV);
1271        id2 = readw(docptr + DOCG4_MYSTERY_REG);
1272
1273        if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1274                dev_info(doc->dev,
1275                         "NAND device: 128MiB Diskonchip G4 detected\n");
1276                return 0;
1277        }
1278
1279        return -ENODEV;
1280}
1281
1282static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1283
1284static int __init probe_docg4(struct platform_device *pdev)
1285{
1286        struct mtd_info *mtd;
1287        struct nand_chip *nand;
1288        void __iomem *virtadr;
1289        struct docg4_priv *doc;
1290        int len, retval;
1291        struct resource *r;
1292        struct device *dev = &pdev->dev;
1293
1294        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1295        if (r == NULL) {
1296                dev_err(dev, "no io memory resource defined!\n");
1297                return -ENODEV;
1298        }
1299
1300        virtadr = ioremap(r->start, resource_size(r));
1301        if (!virtadr) {
1302                dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1303                return -EIO;
1304        }
1305
1306        len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1307                sizeof(struct docg4_priv);
1308        mtd = kzalloc(len, GFP_KERNEL);
1309        if (mtd == NULL) {
1310                retval = -ENOMEM;
1311                goto fail;
1312        }
1313        nand = (struct nand_chip *) (mtd + 1);
1314        doc = (struct docg4_priv *) (nand + 1);
1315        mtd->priv = nand;
1316        nand->priv = doc;
1317        mtd->owner = THIS_MODULE;
1318        doc->virtadr = virtadr;
1319        doc->dev = dev;
1320
1321        init_mtd_structs(mtd);
1322
1323        /* initialize kernel bch algorithm */
1324        doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1325        if (doc->bch == NULL) {
1326                retval = -EINVAL;
1327                goto fail;
1328        }
1329
1330        platform_set_drvdata(pdev, doc);
1331
1332        reset(mtd);
1333        retval = read_id_reg(mtd);
1334        if (retval == -ENODEV) {
1335                dev_warn(dev, "No diskonchip G4 device found.\n");
1336                goto fail;
1337        }
1338
1339        retval = nand_scan_tail(mtd);
1340        if (retval)
1341                goto fail;
1342
1343        retval = read_factory_bbt(mtd);
1344        if (retval)
1345                goto fail;
1346
1347        retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1348        if (retval)
1349                goto fail;
1350
1351        doc->mtd = mtd;
1352        return 0;
1353
1354 fail:
1355        iounmap(virtadr);
1356        if (mtd) {
1357                /* re-declarations avoid compiler warning */
1358                struct nand_chip *nand = mtd->priv;
1359                struct docg4_priv *doc = nand->priv;
1360                nand_release(mtd); /* deletes partitions and mtd devices */
1361                free_bch(doc->bch);
1362                kfree(mtd);
1363        }
1364
1365        return retval;
1366}
1367
1368static int __exit cleanup_docg4(struct platform_device *pdev)
1369{
1370        struct docg4_priv *doc = platform_get_drvdata(pdev);
1371        nand_release(doc->mtd);
1372        free_bch(doc->bch);
1373        kfree(doc->mtd);
1374        iounmap(doc->virtadr);
1375        return 0;
1376}
1377
1378static struct platform_driver docg4_driver = {
1379        .driver         = {
1380                .name   = "docg4",
1381                .owner  = THIS_MODULE,
1382        },
1383        .suspend        = docg4_suspend,
1384        .resume         = docg4_resume,
1385        .remove         = __exit_p(cleanup_docg4),
1386};
1387
1388module_platform_driver_probe(docg4_driver, probe_docg4);
1389
1390MODULE_LICENSE("GPL");
1391MODULE_AUTHOR("Mike Dunn");
1392MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
1393