linux/drivers/net/ethernet/chelsio/cxgb4/l2t.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/skbuff.h>
  36#include <linux/netdevice.h>
  37#include <linux/if.h>
  38#include <linux/if_vlan.h>
  39#include <linux/jhash.h>
  40#include <linux/module.h>
  41#include <linux/debugfs.h>
  42#include <linux/seq_file.h>
  43#include <net/neighbour.h>
  44#include "cxgb4.h"
  45#include "l2t.h"
  46#include "t4_msg.h"
  47#include "t4fw_api.h"
  48#include "t4_regs.h"
  49
  50#define VLAN_NONE 0xfff
  51
  52/* identifies sync vs async L2T_WRITE_REQs */
  53#define F_SYNC_WR    (1 << 12)
  54
  55enum {
  56        L2T_STATE_VALID,      /* entry is up to date */
  57        L2T_STATE_STALE,      /* entry may be used but needs revalidation */
  58        L2T_STATE_RESOLVING,  /* entry needs address resolution */
  59        L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */
  60
  61        /* when state is one of the below the entry is not hashed */
  62        L2T_STATE_SWITCHING,  /* entry is being used by a switching filter */
  63        L2T_STATE_UNUSED      /* entry not in use */
  64};
  65
  66struct l2t_data {
  67        rwlock_t lock;
  68        atomic_t nfree;             /* number of free entries */
  69        struct l2t_entry *rover;    /* starting point for next allocation */
  70        struct l2t_entry l2tab[L2T_SIZE];
  71};
  72
  73static inline unsigned int vlan_prio(const struct l2t_entry *e)
  74{
  75        return e->vlan >> 13;
  76}
  77
  78static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
  79{
  80        if (atomic_add_return(1, &e->refcnt) == 1)  /* 0 -> 1 transition */
  81                atomic_dec(&d->nfree);
  82}
  83
  84/*
  85 * To avoid having to check address families we do not allow v4 and v6
  86 * neighbors to be on the same hash chain.  We keep v4 entries in the first
  87 * half of available hash buckets and v6 in the second.
  88 */
  89enum {
  90        L2T_SZ_HALF = L2T_SIZE / 2,
  91        L2T_HASH_MASK = L2T_SZ_HALF - 1
  92};
  93
  94static inline unsigned int arp_hash(const u32 *key, int ifindex)
  95{
  96        return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK;
  97}
  98
  99static inline unsigned int ipv6_hash(const u32 *key, int ifindex)
 100{
 101        u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
 102
 103        return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK);
 104}
 105
 106static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex)
 107{
 108        return addr_len == 4 ? arp_hash(addr, ifindex) :
 109                               ipv6_hash(addr, ifindex);
 110}
 111
 112/*
 113 * Checks if an L2T entry is for the given IP/IPv6 address.  It does not check
 114 * whether the L2T entry and the address are of the same address family.
 115 * Callers ensure an address is only checked against L2T entries of the same
 116 * family, something made trivial by the separation of IP and IPv6 hash chains
 117 * mentioned above.  Returns 0 if there's a match,
 118 */
 119static int addreq(const struct l2t_entry *e, const u32 *addr)
 120{
 121        if (e->v6)
 122                return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
 123                       (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
 124        return e->addr[0] ^ addr[0];
 125}
 126
 127static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
 128{
 129        neigh_hold(n);
 130        if (e->neigh)
 131                neigh_release(e->neigh);
 132        e->neigh = n;
 133}
 134
 135/*
 136 * Write an L2T entry.  Must be called with the entry locked.
 137 * The write may be synchronous or asynchronous.
 138 */
 139static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
 140{
 141        struct sk_buff *skb;
 142        struct cpl_l2t_write_req *req;
 143
 144        skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
 145        if (!skb)
 146                return -ENOMEM;
 147
 148        req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
 149        INIT_TP_WR(req, 0);
 150
 151        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
 152                                        e->idx | (sync ? F_SYNC_WR : 0) |
 153                                        TID_QID(adap->sge.fw_evtq.abs_id)));
 154        req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync));
 155        req->l2t_idx = htons(e->idx);
 156        req->vlan = htons(e->vlan);
 157        if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK))
 158                memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
 159        memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
 160
 161        set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
 162        t4_ofld_send(adap, skb);
 163
 164        if (sync && e->state != L2T_STATE_SWITCHING)
 165                e->state = L2T_STATE_SYNC_WRITE;
 166        return 0;
 167}
 168
 169/*
 170 * Send packets waiting in an L2T entry's ARP queue.  Must be called with the
 171 * entry locked.
 172 */
 173static void send_pending(struct adapter *adap, struct l2t_entry *e)
 174{
 175        while (e->arpq_head) {
 176                struct sk_buff *skb = e->arpq_head;
 177
 178                e->arpq_head = skb->next;
 179                skb->next = NULL;
 180                t4_ofld_send(adap, skb);
 181        }
 182        e->arpq_tail = NULL;
 183}
 184
 185/*
 186 * Process a CPL_L2T_WRITE_RPL.  Wake up the ARP queue if it completes a
 187 * synchronous L2T_WRITE.  Note that the TID in the reply is really the L2T
 188 * index it refers to.
 189 */
 190void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
 191{
 192        unsigned int tid = GET_TID(rpl);
 193        unsigned int idx = tid & (L2T_SIZE - 1);
 194
 195        if (unlikely(rpl->status != CPL_ERR_NONE)) {
 196                dev_err(adap->pdev_dev,
 197                        "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
 198                        rpl->status, idx);
 199                return;
 200        }
 201
 202        if (tid & F_SYNC_WR) {
 203                struct l2t_entry *e = &adap->l2t->l2tab[idx];
 204
 205                spin_lock(&e->lock);
 206                if (e->state != L2T_STATE_SWITCHING) {
 207                        send_pending(adap, e);
 208                        e->state = (e->neigh->nud_state & NUD_STALE) ?
 209                                        L2T_STATE_STALE : L2T_STATE_VALID;
 210                }
 211                spin_unlock(&e->lock);
 212        }
 213}
 214
 215/*
 216 * Add a packet to an L2T entry's queue of packets awaiting resolution.
 217 * Must be called with the entry's lock held.
 218 */
 219static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
 220{
 221        skb->next = NULL;
 222        if (e->arpq_head)
 223                e->arpq_tail->next = skb;
 224        else
 225                e->arpq_head = skb;
 226        e->arpq_tail = skb;
 227}
 228
 229int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
 230                   struct l2t_entry *e)
 231{
 232        struct adapter *adap = netdev2adap(dev);
 233
 234again:
 235        switch (e->state) {
 236        case L2T_STATE_STALE:     /* entry is stale, kick off revalidation */
 237                neigh_event_send(e->neigh, NULL);
 238                spin_lock_bh(&e->lock);
 239                if (e->state == L2T_STATE_STALE)
 240                        e->state = L2T_STATE_VALID;
 241                spin_unlock_bh(&e->lock);
 242        case L2T_STATE_VALID:     /* fast-path, send the packet on */
 243                return t4_ofld_send(adap, skb);
 244        case L2T_STATE_RESOLVING:
 245        case L2T_STATE_SYNC_WRITE:
 246                spin_lock_bh(&e->lock);
 247                if (e->state != L2T_STATE_SYNC_WRITE &&
 248                    e->state != L2T_STATE_RESOLVING) {
 249                        spin_unlock_bh(&e->lock);
 250                        goto again;
 251                }
 252                arpq_enqueue(e, skb);
 253                spin_unlock_bh(&e->lock);
 254
 255                if (e->state == L2T_STATE_RESOLVING &&
 256                    !neigh_event_send(e->neigh, NULL)) {
 257                        spin_lock_bh(&e->lock);
 258                        if (e->state == L2T_STATE_RESOLVING && e->arpq_head)
 259                                write_l2e(adap, e, 1);
 260                        spin_unlock_bh(&e->lock);
 261                }
 262        }
 263        return 0;
 264}
 265EXPORT_SYMBOL(cxgb4_l2t_send);
 266
 267/*
 268 * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
 269 */
 270static struct l2t_entry *alloc_l2e(struct l2t_data *d)
 271{
 272        struct l2t_entry *end, *e, **p;
 273
 274        if (!atomic_read(&d->nfree))
 275                return NULL;
 276
 277        /* there's definitely a free entry */
 278        for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e)
 279                if (atomic_read(&e->refcnt) == 0)
 280                        goto found;
 281
 282        for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
 283                ;
 284found:
 285        d->rover = e + 1;
 286        atomic_dec(&d->nfree);
 287
 288        /*
 289         * The entry we found may be an inactive entry that is
 290         * presently in the hash table.  We need to remove it.
 291         */
 292        if (e->state < L2T_STATE_SWITCHING)
 293                for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
 294                        if (*p == e) {
 295                                *p = e->next;
 296                                e->next = NULL;
 297                                break;
 298                        }
 299
 300        e->state = L2T_STATE_UNUSED;
 301        return e;
 302}
 303
 304/*
 305 * Called when an L2T entry has no more users.
 306 */
 307static void t4_l2e_free(struct l2t_entry *e)
 308{
 309        struct l2t_data *d;
 310
 311        spin_lock_bh(&e->lock);
 312        if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
 313                if (e->neigh) {
 314                        neigh_release(e->neigh);
 315                        e->neigh = NULL;
 316                }
 317                while (e->arpq_head) {
 318                        struct sk_buff *skb = e->arpq_head;
 319
 320                        e->arpq_head = skb->next;
 321                        kfree_skb(skb);
 322                }
 323                e->arpq_tail = NULL;
 324        }
 325        spin_unlock_bh(&e->lock);
 326
 327        d = container_of(e, struct l2t_data, l2tab[e->idx]);
 328        atomic_inc(&d->nfree);
 329}
 330
 331void cxgb4_l2t_release(struct l2t_entry *e)
 332{
 333        if (atomic_dec_and_test(&e->refcnt))
 334                t4_l2e_free(e);
 335}
 336EXPORT_SYMBOL(cxgb4_l2t_release);
 337
 338/*
 339 * Update an L2T entry that was previously used for the same next hop as neigh.
 340 * Must be called with softirqs disabled.
 341 */
 342static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
 343{
 344        unsigned int nud_state;
 345
 346        spin_lock(&e->lock);                /* avoid race with t4_l2t_free */
 347        if (neigh != e->neigh)
 348                neigh_replace(e, neigh);
 349        nud_state = neigh->nud_state;
 350        if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
 351            !(nud_state & NUD_VALID))
 352                e->state = L2T_STATE_RESOLVING;
 353        else if (nud_state & NUD_CONNECTED)
 354                e->state = L2T_STATE_VALID;
 355        else
 356                e->state = L2T_STATE_STALE;
 357        spin_unlock(&e->lock);
 358}
 359
 360struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
 361                                const struct net_device *physdev,
 362                                unsigned int priority)
 363{
 364        u8 lport;
 365        u16 vlan;
 366        struct l2t_entry *e;
 367        int addr_len = neigh->tbl->key_len;
 368        u32 *addr = (u32 *)neigh->primary_key;
 369        int ifidx = neigh->dev->ifindex;
 370        int hash = addr_hash(addr, addr_len, ifidx);
 371
 372        if (neigh->dev->flags & IFF_LOOPBACK)
 373                lport = netdev2pinfo(physdev)->tx_chan + 4;
 374        else
 375                lport = netdev2pinfo(physdev)->lport;
 376
 377        if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
 378                vlan = vlan_dev_vlan_id(neigh->dev);
 379        else
 380                vlan = VLAN_NONE;
 381
 382        write_lock_bh(&d->lock);
 383        for (e = d->l2tab[hash].first; e; e = e->next)
 384                if (!addreq(e, addr) && e->ifindex == ifidx &&
 385                    e->vlan == vlan && e->lport == lport) {
 386                        l2t_hold(d, e);
 387                        if (atomic_read(&e->refcnt) == 1)
 388                                reuse_entry(e, neigh);
 389                        goto done;
 390                }
 391
 392        /* Need to allocate a new entry */
 393        e = alloc_l2e(d);
 394        if (e) {
 395                spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
 396                e->state = L2T_STATE_RESOLVING;
 397                if (neigh->dev->flags & IFF_LOOPBACK)
 398                        memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac));
 399                memcpy(e->addr, addr, addr_len);
 400                e->ifindex = ifidx;
 401                e->hash = hash;
 402                e->lport = lport;
 403                e->v6 = addr_len == 16;
 404                atomic_set(&e->refcnt, 1);
 405                neigh_replace(e, neigh);
 406                e->vlan = vlan;
 407                e->next = d->l2tab[hash].first;
 408                d->l2tab[hash].first = e;
 409                spin_unlock(&e->lock);
 410        }
 411done:
 412        write_unlock_bh(&d->lock);
 413        return e;
 414}
 415EXPORT_SYMBOL(cxgb4_l2t_get);
 416
 417u64 cxgb4_select_ntuple(struct net_device *dev,
 418                        const struct l2t_entry *l2t)
 419{
 420        struct adapter *adap = netdev2adap(dev);
 421        struct tp_params *tp = &adap->params.tp;
 422        u64 ntuple = 0;
 423
 424        /* Initialize each of the fields which we care about which are present
 425         * in the Compressed Filter Tuple.
 426         */
 427        if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
 428                ntuple |= (u64)(F_FT_VLAN_VLD | l2t->vlan) << tp->vlan_shift;
 429
 430        if (tp->port_shift >= 0)
 431                ntuple |= (u64)l2t->lport << tp->port_shift;
 432
 433        if (tp->protocol_shift >= 0)
 434                ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
 435
 436        if (tp->vnic_shift >= 0) {
 437                u32 viid = cxgb4_port_viid(dev);
 438                u32 vf = FW_VIID_VIN_GET(viid);
 439                u32 pf = FW_VIID_PFN_GET(viid);
 440                u32 vld = FW_VIID_VIVLD_GET(viid);
 441
 442                ntuple |= (u64)(V_FT_VNID_ID_VF(vf) |
 443                                V_FT_VNID_ID_PF(pf) |
 444                                V_FT_VNID_ID_VLD(vld)) << tp->vnic_shift;
 445        }
 446
 447        return ntuple;
 448}
 449EXPORT_SYMBOL(cxgb4_select_ntuple);
 450
 451/*
 452 * Called when address resolution fails for an L2T entry to handle packets
 453 * on the arpq head.  If a packet specifies a failure handler it is invoked,
 454 * otherwise the packet is sent to the device.
 455 */
 456static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq)
 457{
 458        while (arpq) {
 459                struct sk_buff *skb = arpq;
 460                const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
 461
 462                arpq = skb->next;
 463                skb->next = NULL;
 464                if (cb->arp_err_handler)
 465                        cb->arp_err_handler(cb->handle, skb);
 466                else
 467                        t4_ofld_send(adap, skb);
 468        }
 469}
 470
 471/*
 472 * Called when the host's neighbor layer makes a change to some entry that is
 473 * loaded into the HW L2 table.
 474 */
 475void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
 476{
 477        struct l2t_entry *e;
 478        struct sk_buff *arpq = NULL;
 479        struct l2t_data *d = adap->l2t;
 480        int addr_len = neigh->tbl->key_len;
 481        u32 *addr = (u32 *) neigh->primary_key;
 482        int ifidx = neigh->dev->ifindex;
 483        int hash = addr_hash(addr, addr_len, ifidx);
 484
 485        read_lock_bh(&d->lock);
 486        for (e = d->l2tab[hash].first; e; e = e->next)
 487                if (!addreq(e, addr) && e->ifindex == ifidx) {
 488                        spin_lock(&e->lock);
 489                        if (atomic_read(&e->refcnt))
 490                                goto found;
 491                        spin_unlock(&e->lock);
 492                        break;
 493                }
 494        read_unlock_bh(&d->lock);
 495        return;
 496
 497 found:
 498        read_unlock(&d->lock);
 499
 500        if (neigh != e->neigh)
 501                neigh_replace(e, neigh);
 502
 503        if (e->state == L2T_STATE_RESOLVING) {
 504                if (neigh->nud_state & NUD_FAILED) {
 505                        arpq = e->arpq_head;
 506                        e->arpq_head = e->arpq_tail = NULL;
 507                } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
 508                           e->arpq_head) {
 509                        write_l2e(adap, e, 1);
 510                }
 511        } else {
 512                e->state = neigh->nud_state & NUD_CONNECTED ?
 513                        L2T_STATE_VALID : L2T_STATE_STALE;
 514                if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
 515                        write_l2e(adap, e, 0);
 516        }
 517
 518        spin_unlock_bh(&e->lock);
 519
 520        if (arpq)
 521                handle_failed_resolution(adap, arpq);
 522}
 523
 524/* Allocate an L2T entry for use by a switching rule.  Such need to be
 525 * explicitly freed and while busy they are not on any hash chain, so normal
 526 * address resolution updates do not see them.
 527 */
 528struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d)
 529{
 530        struct l2t_entry *e;
 531
 532        write_lock_bh(&d->lock);
 533        e = alloc_l2e(d);
 534        if (e) {
 535                spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
 536                e->state = L2T_STATE_SWITCHING;
 537                atomic_set(&e->refcnt, 1);
 538                spin_unlock(&e->lock);
 539        }
 540        write_unlock_bh(&d->lock);
 541        return e;
 542}
 543
 544/* Sets/updates the contents of a switching L2T entry that has been allocated
 545 * with an earlier call to @t4_l2t_alloc_switching.
 546 */
 547int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan,
 548                u8 port, u8 *eth_addr)
 549{
 550        e->vlan = vlan;
 551        e->lport = port;
 552        memcpy(e->dmac, eth_addr, ETH_ALEN);
 553        return write_l2e(adap, e, 0);
 554}
 555
 556struct l2t_data *t4_init_l2t(void)
 557{
 558        int i;
 559        struct l2t_data *d;
 560
 561        d = t4_alloc_mem(sizeof(*d));
 562        if (!d)
 563                return NULL;
 564
 565        d->rover = d->l2tab;
 566        atomic_set(&d->nfree, L2T_SIZE);
 567        rwlock_init(&d->lock);
 568
 569        for (i = 0; i < L2T_SIZE; ++i) {
 570                d->l2tab[i].idx = i;
 571                d->l2tab[i].state = L2T_STATE_UNUSED;
 572                spin_lock_init(&d->l2tab[i].lock);
 573                atomic_set(&d->l2tab[i].refcnt, 0);
 574        }
 575        return d;
 576}
 577
 578static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
 579{
 580        struct l2t_entry *l2tab = seq->private;
 581
 582        return pos >= L2T_SIZE ? NULL : &l2tab[pos];
 583}
 584
 585static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
 586{
 587        return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
 588}
 589
 590static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 591{
 592        v = l2t_get_idx(seq, *pos);
 593        if (v)
 594                ++*pos;
 595        return v;
 596}
 597
 598static void l2t_seq_stop(struct seq_file *seq, void *v)
 599{
 600}
 601
 602static char l2e_state(const struct l2t_entry *e)
 603{
 604        switch (e->state) {
 605        case L2T_STATE_VALID: return 'V';
 606        case L2T_STATE_STALE: return 'S';
 607        case L2T_STATE_SYNC_WRITE: return 'W';
 608        case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R';
 609        case L2T_STATE_SWITCHING: return 'X';
 610        default:
 611                return 'U';
 612        }
 613}
 614
 615static int l2t_seq_show(struct seq_file *seq, void *v)
 616{
 617        if (v == SEQ_START_TOKEN)
 618                seq_puts(seq, " Idx IP address                "
 619                         "Ethernet address  VLAN/P LP State Users Port\n");
 620        else {
 621                char ip[60];
 622                struct l2t_entry *e = v;
 623
 624                spin_lock_bh(&e->lock);
 625                if (e->state == L2T_STATE_SWITCHING)
 626                        ip[0] = '\0';
 627                else
 628                        sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
 629                seq_printf(seq, "%4u %-25s %17pM %4d %u %2u   %c   %5u %s\n",
 630                           e->idx, ip, e->dmac,
 631                           e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
 632                           l2e_state(e), atomic_read(&e->refcnt),
 633                           e->neigh ? e->neigh->dev->name : "");
 634                spin_unlock_bh(&e->lock);
 635        }
 636        return 0;
 637}
 638
 639static const struct seq_operations l2t_seq_ops = {
 640        .start = l2t_seq_start,
 641        .next = l2t_seq_next,
 642        .stop = l2t_seq_stop,
 643        .show = l2t_seq_show
 644};
 645
 646static int l2t_seq_open(struct inode *inode, struct file *file)
 647{
 648        int rc = seq_open(file, &l2t_seq_ops);
 649
 650        if (!rc) {
 651                struct adapter *adap = inode->i_private;
 652                struct seq_file *seq = file->private_data;
 653
 654                seq->private = adap->l2t->l2tab;
 655        }
 656        return rc;
 657}
 658
 659const struct file_operations t4_l2t_fops = {
 660        .owner = THIS_MODULE,
 661        .open = l2t_seq_open,
 662        .read = seq_read,
 663        .llseek = seq_lseek,
 664        .release = seq_release,
 665};
 666