linux/drivers/net/ethernet/intel/e1000e/nvm.c
<<
>>
Prefs
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22#include "e1000.h"
  23
  24/**
  25 *  e1000_raise_eec_clk - Raise EEPROM clock
  26 *  @hw: pointer to the HW structure
  27 *  @eecd: pointer to the EEPROM
  28 *
  29 *  Enable/Raise the EEPROM clock bit.
  30 **/
  31static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
  32{
  33        *eecd = *eecd | E1000_EECD_SK;
  34        ew32(EECD, *eecd);
  35        e1e_flush();
  36        udelay(hw->nvm.delay_usec);
  37}
  38
  39/**
  40 *  e1000_lower_eec_clk - Lower EEPROM clock
  41 *  @hw: pointer to the HW structure
  42 *  @eecd: pointer to the EEPROM
  43 *
  44 *  Clear/Lower the EEPROM clock bit.
  45 **/
  46static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
  47{
  48        *eecd = *eecd & ~E1000_EECD_SK;
  49        ew32(EECD, *eecd);
  50        e1e_flush();
  51        udelay(hw->nvm.delay_usec);
  52}
  53
  54/**
  55 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
  56 *  @hw: pointer to the HW structure
  57 *  @data: data to send to the EEPROM
  58 *  @count: number of bits to shift out
  59 *
  60 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
  61 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
  62 *  In order to do this, "data" must be broken down into bits.
  63 **/
  64static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
  65{
  66        struct e1000_nvm_info *nvm = &hw->nvm;
  67        u32 eecd = er32(EECD);
  68        u32 mask;
  69
  70        mask = 0x01 << (count - 1);
  71        if (nvm->type == e1000_nvm_eeprom_spi)
  72                eecd |= E1000_EECD_DO;
  73
  74        do {
  75                eecd &= ~E1000_EECD_DI;
  76
  77                if (data & mask)
  78                        eecd |= E1000_EECD_DI;
  79
  80                ew32(EECD, eecd);
  81                e1e_flush();
  82
  83                udelay(nvm->delay_usec);
  84
  85                e1000_raise_eec_clk(hw, &eecd);
  86                e1000_lower_eec_clk(hw, &eecd);
  87
  88                mask >>= 1;
  89        } while (mask);
  90
  91        eecd &= ~E1000_EECD_DI;
  92        ew32(EECD, eecd);
  93}
  94
  95/**
  96 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
  97 *  @hw: pointer to the HW structure
  98 *  @count: number of bits to shift in
  99 *
 100 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 101 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 102 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 103 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 104 *  always be clear.
 105 **/
 106static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
 107{
 108        u32 eecd;
 109        u32 i;
 110        u16 data;
 111
 112        eecd = er32(EECD);
 113        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 114        data = 0;
 115
 116        for (i = 0; i < count; i++) {
 117                data <<= 1;
 118                e1000_raise_eec_clk(hw, &eecd);
 119
 120                eecd = er32(EECD);
 121
 122                eecd &= ~E1000_EECD_DI;
 123                if (eecd & E1000_EECD_DO)
 124                        data |= 1;
 125
 126                e1000_lower_eec_clk(hw, &eecd);
 127        }
 128
 129        return data;
 130}
 131
 132/**
 133 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 134 *  @hw: pointer to the HW structure
 135 *  @ee_reg: EEPROM flag for polling
 136 *
 137 *  Polls the EEPROM status bit for either read or write completion based
 138 *  upon the value of 'ee_reg'.
 139 **/
 140s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
 141{
 142        u32 attempts = 100000;
 143        u32 i, reg = 0;
 144
 145        for (i = 0; i < attempts; i++) {
 146                if (ee_reg == E1000_NVM_POLL_READ)
 147                        reg = er32(EERD);
 148                else
 149                        reg = er32(EEWR);
 150
 151                if (reg & E1000_NVM_RW_REG_DONE)
 152                        return 0;
 153
 154                udelay(5);
 155        }
 156
 157        return -E1000_ERR_NVM;
 158}
 159
 160/**
 161 *  e1000e_acquire_nvm - Generic request for access to EEPROM
 162 *  @hw: pointer to the HW structure
 163 *
 164 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 165 *  Return successful if access grant bit set, else clear the request for
 166 *  EEPROM access and return -E1000_ERR_NVM (-1).
 167 **/
 168s32 e1000e_acquire_nvm(struct e1000_hw *hw)
 169{
 170        u32 eecd = er32(EECD);
 171        s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
 172
 173        ew32(EECD, eecd | E1000_EECD_REQ);
 174        eecd = er32(EECD);
 175
 176        while (timeout) {
 177                if (eecd & E1000_EECD_GNT)
 178                        break;
 179                udelay(5);
 180                eecd = er32(EECD);
 181                timeout--;
 182        }
 183
 184        if (!timeout) {
 185                eecd &= ~E1000_EECD_REQ;
 186                ew32(EECD, eecd);
 187                e_dbg("Could not acquire NVM grant\n");
 188                return -E1000_ERR_NVM;
 189        }
 190
 191        return 0;
 192}
 193
 194/**
 195 *  e1000_standby_nvm - Return EEPROM to standby state
 196 *  @hw: pointer to the HW structure
 197 *
 198 *  Return the EEPROM to a standby state.
 199 **/
 200static void e1000_standby_nvm(struct e1000_hw *hw)
 201{
 202        struct e1000_nvm_info *nvm = &hw->nvm;
 203        u32 eecd = er32(EECD);
 204
 205        if (nvm->type == e1000_nvm_eeprom_spi) {
 206                /* Toggle CS to flush commands */
 207                eecd |= E1000_EECD_CS;
 208                ew32(EECD, eecd);
 209                e1e_flush();
 210                udelay(nvm->delay_usec);
 211                eecd &= ~E1000_EECD_CS;
 212                ew32(EECD, eecd);
 213                e1e_flush();
 214                udelay(nvm->delay_usec);
 215        }
 216}
 217
 218/**
 219 *  e1000_stop_nvm - Terminate EEPROM command
 220 *  @hw: pointer to the HW structure
 221 *
 222 *  Terminates the current command by inverting the EEPROM's chip select pin.
 223 **/
 224static void e1000_stop_nvm(struct e1000_hw *hw)
 225{
 226        u32 eecd;
 227
 228        eecd = er32(EECD);
 229        if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 230                /* Pull CS high */
 231                eecd |= E1000_EECD_CS;
 232                e1000_lower_eec_clk(hw, &eecd);
 233        }
 234}
 235
 236/**
 237 *  e1000e_release_nvm - Release exclusive access to EEPROM
 238 *  @hw: pointer to the HW structure
 239 *
 240 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 241 **/
 242void e1000e_release_nvm(struct e1000_hw *hw)
 243{
 244        u32 eecd;
 245
 246        e1000_stop_nvm(hw);
 247
 248        eecd = er32(EECD);
 249        eecd &= ~E1000_EECD_REQ;
 250        ew32(EECD, eecd);
 251}
 252
 253/**
 254 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
 255 *  @hw: pointer to the HW structure
 256 *
 257 *  Setups the EEPROM for reading and writing.
 258 **/
 259static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
 260{
 261        struct e1000_nvm_info *nvm = &hw->nvm;
 262        u32 eecd = er32(EECD);
 263        u8 spi_stat_reg;
 264
 265        if (nvm->type == e1000_nvm_eeprom_spi) {
 266                u16 timeout = NVM_MAX_RETRY_SPI;
 267
 268                /* Clear SK and CS */
 269                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 270                ew32(EECD, eecd);
 271                e1e_flush();
 272                udelay(1);
 273
 274                /* Read "Status Register" repeatedly until the LSB is cleared.
 275                 * The EEPROM will signal that the command has been completed
 276                 * by clearing bit 0 of the internal status register.  If it's
 277                 * not cleared within 'timeout', then error out.
 278                 */
 279                while (timeout) {
 280                        e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
 281                                                 hw->nvm.opcode_bits);
 282                        spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
 283                        if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
 284                                break;
 285
 286                        udelay(5);
 287                        e1000_standby_nvm(hw);
 288                        timeout--;
 289                }
 290
 291                if (!timeout) {
 292                        e_dbg("SPI NVM Status error\n");
 293                        return -E1000_ERR_NVM;
 294                }
 295        }
 296
 297        return 0;
 298}
 299
 300/**
 301 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
 302 *  @hw: pointer to the HW structure
 303 *  @offset: offset of word in the EEPROM to read
 304 *  @words: number of words to read
 305 *  @data: word read from the EEPROM
 306 *
 307 *  Reads a 16 bit word from the EEPROM using the EERD register.
 308 **/
 309s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 310{
 311        struct e1000_nvm_info *nvm = &hw->nvm;
 312        u32 i, eerd = 0;
 313        s32 ret_val = 0;
 314
 315        /* A check for invalid values:  offset too large, too many words,
 316         * too many words for the offset, and not enough words.
 317         */
 318        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 319            (words == 0)) {
 320                e_dbg("nvm parameter(s) out of bounds\n");
 321                return -E1000_ERR_NVM;
 322        }
 323
 324        for (i = 0; i < words; i++) {
 325                eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
 326                    E1000_NVM_RW_REG_START;
 327
 328                ew32(EERD, eerd);
 329                ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
 330                if (ret_val)
 331                        break;
 332
 333                data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
 334        }
 335
 336        return ret_val;
 337}
 338
 339/**
 340 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
 341 *  @hw: pointer to the HW structure
 342 *  @offset: offset within the EEPROM to be written to
 343 *  @words: number of words to write
 344 *  @data: 16 bit word(s) to be written to the EEPROM
 345 *
 346 *  Writes data to EEPROM at offset using SPI interface.
 347 *
 348 *  If e1000e_update_nvm_checksum is not called after this function , the
 349 *  EEPROM will most likely contain an invalid checksum.
 350 **/
 351s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 352{
 353        struct e1000_nvm_info *nvm = &hw->nvm;
 354        s32 ret_val = -E1000_ERR_NVM;
 355        u16 widx = 0;
 356
 357        /* A check for invalid values:  offset too large, too many words,
 358         * and not enough words.
 359         */
 360        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 361            (words == 0)) {
 362                e_dbg("nvm parameter(s) out of bounds\n");
 363                return -E1000_ERR_NVM;
 364        }
 365
 366        while (widx < words) {
 367                u8 write_opcode = NVM_WRITE_OPCODE_SPI;
 368
 369                ret_val = nvm->ops.acquire(hw);
 370                if (ret_val)
 371                        return ret_val;
 372
 373                ret_val = e1000_ready_nvm_eeprom(hw);
 374                if (ret_val) {
 375                        nvm->ops.release(hw);
 376                        return ret_val;
 377                }
 378
 379                e1000_standby_nvm(hw);
 380
 381                /* Send the WRITE ENABLE command (8 bit opcode) */
 382                e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
 383                                         nvm->opcode_bits);
 384
 385                e1000_standby_nvm(hw);
 386
 387                /* Some SPI eeproms use the 8th address bit embedded in the
 388                 * opcode
 389                 */
 390                if ((nvm->address_bits == 8) && (offset >= 128))
 391                        write_opcode |= NVM_A8_OPCODE_SPI;
 392
 393                /* Send the Write command (8-bit opcode + addr) */
 394                e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
 395                e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
 396                                         nvm->address_bits);
 397
 398                /* Loop to allow for up to whole page write of eeprom */
 399                while (widx < words) {
 400                        u16 word_out = data[widx];
 401                        word_out = (word_out >> 8) | (word_out << 8);
 402                        e1000_shift_out_eec_bits(hw, word_out, 16);
 403                        widx++;
 404
 405                        if ((((offset + widx) * 2) % nvm->page_size) == 0) {
 406                                e1000_standby_nvm(hw);
 407                                break;
 408                        }
 409                }
 410                usleep_range(10000, 20000);
 411                nvm->ops.release(hw);
 412        }
 413
 414        return ret_val;
 415}
 416
 417/**
 418 *  e1000_read_pba_string_generic - Read device part number
 419 *  @hw: pointer to the HW structure
 420 *  @pba_num: pointer to device part number
 421 *  @pba_num_size: size of part number buffer
 422 *
 423 *  Reads the product board assembly (PBA) number from the EEPROM and stores
 424 *  the value in pba_num.
 425 **/
 426s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
 427                                  u32 pba_num_size)
 428{
 429        s32 ret_val;
 430        u16 nvm_data;
 431        u16 pba_ptr;
 432        u16 offset;
 433        u16 length;
 434
 435        if (pba_num == NULL) {
 436                e_dbg("PBA string buffer was null\n");
 437                return -E1000_ERR_INVALID_ARGUMENT;
 438        }
 439
 440        ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
 441        if (ret_val) {
 442                e_dbg("NVM Read Error\n");
 443                return ret_val;
 444        }
 445
 446        ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
 447        if (ret_val) {
 448                e_dbg("NVM Read Error\n");
 449                return ret_val;
 450        }
 451
 452        /* if nvm_data is not ptr guard the PBA must be in legacy format which
 453         * means pba_ptr is actually our second data word for the PBA number
 454         * and we can decode it into an ascii string
 455         */
 456        if (nvm_data != NVM_PBA_PTR_GUARD) {
 457                e_dbg("NVM PBA number is not stored as string\n");
 458
 459                /* make sure callers buffer is big enough to store the PBA */
 460                if (pba_num_size < E1000_PBANUM_LENGTH) {
 461                        e_dbg("PBA string buffer too small\n");
 462                        return E1000_ERR_NO_SPACE;
 463                }
 464
 465                /* extract hex string from data and pba_ptr */
 466                pba_num[0] = (nvm_data >> 12) & 0xF;
 467                pba_num[1] = (nvm_data >> 8) & 0xF;
 468                pba_num[2] = (nvm_data >> 4) & 0xF;
 469                pba_num[3] = nvm_data & 0xF;
 470                pba_num[4] = (pba_ptr >> 12) & 0xF;
 471                pba_num[5] = (pba_ptr >> 8) & 0xF;
 472                pba_num[6] = '-';
 473                pba_num[7] = 0;
 474                pba_num[8] = (pba_ptr >> 4) & 0xF;
 475                pba_num[9] = pba_ptr & 0xF;
 476
 477                /* put a null character on the end of our string */
 478                pba_num[10] = '\0';
 479
 480                /* switch all the data but the '-' to hex char */
 481                for (offset = 0; offset < 10; offset++) {
 482                        if (pba_num[offset] < 0xA)
 483                                pba_num[offset] += '0';
 484                        else if (pba_num[offset] < 0x10)
 485                                pba_num[offset] += 'A' - 0xA;
 486                }
 487
 488                return 0;
 489        }
 490
 491        ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
 492        if (ret_val) {
 493                e_dbg("NVM Read Error\n");
 494                return ret_val;
 495        }
 496
 497        if (length == 0xFFFF || length == 0) {
 498                e_dbg("NVM PBA number section invalid length\n");
 499                return -E1000_ERR_NVM_PBA_SECTION;
 500        }
 501        /* check if pba_num buffer is big enough */
 502        if (pba_num_size < (((u32)length * 2) - 1)) {
 503                e_dbg("PBA string buffer too small\n");
 504                return -E1000_ERR_NO_SPACE;
 505        }
 506
 507        /* trim pba length from start of string */
 508        pba_ptr++;
 509        length--;
 510
 511        for (offset = 0; offset < length; offset++) {
 512                ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
 513                if (ret_val) {
 514                        e_dbg("NVM Read Error\n");
 515                        return ret_val;
 516                }
 517                pba_num[offset * 2] = (u8)(nvm_data >> 8);
 518                pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
 519        }
 520        pba_num[offset * 2] = '\0';
 521
 522        return 0;
 523}
 524
 525/**
 526 *  e1000_read_mac_addr_generic - Read device MAC address
 527 *  @hw: pointer to the HW structure
 528 *
 529 *  Reads the device MAC address from the EEPROM and stores the value.
 530 *  Since devices with two ports use the same EEPROM, we increment the
 531 *  last bit in the MAC address for the second port.
 532 **/
 533s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
 534{
 535        u32 rar_high;
 536        u32 rar_low;
 537        u16 i;
 538
 539        rar_high = er32(RAH(0));
 540        rar_low = er32(RAL(0));
 541
 542        for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
 543                hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
 544
 545        for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
 546                hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
 547
 548        for (i = 0; i < ETH_ALEN; i++)
 549                hw->mac.addr[i] = hw->mac.perm_addr[i];
 550
 551        return 0;
 552}
 553
 554/**
 555 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
 556 *  @hw: pointer to the HW structure
 557 *
 558 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 559 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 560 **/
 561s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
 562{
 563        s32 ret_val;
 564        u16 checksum = 0;
 565        u16 i, nvm_data;
 566
 567        for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 568                ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
 569                if (ret_val) {
 570                        e_dbg("NVM Read Error\n");
 571                        return ret_val;
 572                }
 573                checksum += nvm_data;
 574        }
 575
 576        if (checksum != (u16)NVM_SUM) {
 577                e_dbg("NVM Checksum Invalid\n");
 578                return -E1000_ERR_NVM;
 579        }
 580
 581        return 0;
 582}
 583
 584/**
 585 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
 586 *  @hw: pointer to the HW structure
 587 *
 588 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 589 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 590 *  value to the EEPROM.
 591 **/
 592s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
 593{
 594        s32 ret_val;
 595        u16 checksum = 0;
 596        u16 i, nvm_data;
 597
 598        for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 599                ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
 600                if (ret_val) {
 601                        e_dbg("NVM Read Error while updating checksum.\n");
 602                        return ret_val;
 603                }
 604                checksum += nvm_data;
 605        }
 606        checksum = (u16)NVM_SUM - checksum;
 607        ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
 608        if (ret_val)
 609                e_dbg("NVM Write Error while updating checksum.\n");
 610
 611        return ret_val;
 612}
 613
 614/**
 615 *  e1000e_reload_nvm_generic - Reloads EEPROM
 616 *  @hw: pointer to the HW structure
 617 *
 618 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
 619 *  extended control register.
 620 **/
 621void e1000e_reload_nvm_generic(struct e1000_hw *hw)
 622{
 623        u32 ctrl_ext;
 624
 625        usleep_range(10, 20);
 626        ctrl_ext = er32(CTRL_EXT);
 627        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 628        ew32(CTRL_EXT, ctrl_ext);
 629        e1e_flush();
 630}
 631