linux/drivers/net/ethernet/intel/igb/igb_ethtool.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2014 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, see <http://www.gnu.org/licenses/>.
  17
  18  The full GNU General Public License is included in this distribution in
  19  the file called "COPYING".
  20
  21  Contact Information:
  22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24
  25*******************************************************************************/
  26
  27/* ethtool support for igb */
  28
  29#include <linux/vmalloc.h>
  30#include <linux/netdevice.h>
  31#include <linux/pci.h>
  32#include <linux/delay.h>
  33#include <linux/interrupt.h>
  34#include <linux/if_ether.h>
  35#include <linux/ethtool.h>
  36#include <linux/sched.h>
  37#include <linux/slab.h>
  38#include <linux/pm_runtime.h>
  39#include <linux/highmem.h>
  40#include <linux/mdio.h>
  41
  42#include "igb.h"
  43
  44struct igb_stats {
  45        char stat_string[ETH_GSTRING_LEN];
  46        int sizeof_stat;
  47        int stat_offset;
  48};
  49
  50#define IGB_STAT(_name, _stat) { \
  51        .stat_string = _name, \
  52        .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  53        .stat_offset = offsetof(struct igb_adapter, _stat) \
  54}
  55static const struct igb_stats igb_gstrings_stats[] = {
  56        IGB_STAT("rx_packets", stats.gprc),
  57        IGB_STAT("tx_packets", stats.gptc),
  58        IGB_STAT("rx_bytes", stats.gorc),
  59        IGB_STAT("tx_bytes", stats.gotc),
  60        IGB_STAT("rx_broadcast", stats.bprc),
  61        IGB_STAT("tx_broadcast", stats.bptc),
  62        IGB_STAT("rx_multicast", stats.mprc),
  63        IGB_STAT("tx_multicast", stats.mptc),
  64        IGB_STAT("multicast", stats.mprc),
  65        IGB_STAT("collisions", stats.colc),
  66        IGB_STAT("rx_crc_errors", stats.crcerrs),
  67        IGB_STAT("rx_no_buffer_count", stats.rnbc),
  68        IGB_STAT("rx_missed_errors", stats.mpc),
  69        IGB_STAT("tx_aborted_errors", stats.ecol),
  70        IGB_STAT("tx_carrier_errors", stats.tncrs),
  71        IGB_STAT("tx_window_errors", stats.latecol),
  72        IGB_STAT("tx_abort_late_coll", stats.latecol),
  73        IGB_STAT("tx_deferred_ok", stats.dc),
  74        IGB_STAT("tx_single_coll_ok", stats.scc),
  75        IGB_STAT("tx_multi_coll_ok", stats.mcc),
  76        IGB_STAT("tx_timeout_count", tx_timeout_count),
  77        IGB_STAT("rx_long_length_errors", stats.roc),
  78        IGB_STAT("rx_short_length_errors", stats.ruc),
  79        IGB_STAT("rx_align_errors", stats.algnerrc),
  80        IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  81        IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  82        IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  83        IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  84        IGB_STAT("tx_flow_control_xon", stats.xontxc),
  85        IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  86        IGB_STAT("rx_long_byte_count", stats.gorc),
  87        IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  88        IGB_STAT("tx_smbus", stats.mgptc),
  89        IGB_STAT("rx_smbus", stats.mgprc),
  90        IGB_STAT("dropped_smbus", stats.mgpdc),
  91        IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  92        IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  93        IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  94        IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  95        IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  96        IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  97};
  98
  99#define IGB_NETDEV_STAT(_net_stat) { \
 100        .stat_string = __stringify(_net_stat), \
 101        .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
 102        .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
 103}
 104static const struct igb_stats igb_gstrings_net_stats[] = {
 105        IGB_NETDEV_STAT(rx_errors),
 106        IGB_NETDEV_STAT(tx_errors),
 107        IGB_NETDEV_STAT(tx_dropped),
 108        IGB_NETDEV_STAT(rx_length_errors),
 109        IGB_NETDEV_STAT(rx_over_errors),
 110        IGB_NETDEV_STAT(rx_frame_errors),
 111        IGB_NETDEV_STAT(rx_fifo_errors),
 112        IGB_NETDEV_STAT(tx_fifo_errors),
 113        IGB_NETDEV_STAT(tx_heartbeat_errors)
 114};
 115
 116#define IGB_GLOBAL_STATS_LEN    \
 117        (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
 118#define IGB_NETDEV_STATS_LEN    \
 119        (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
 120#define IGB_RX_QUEUE_STATS_LEN \
 121        (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 122
 123#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 124
 125#define IGB_QUEUE_STATS_LEN \
 126        ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 127          IGB_RX_QUEUE_STATS_LEN) + \
 128         (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 129          IGB_TX_QUEUE_STATS_LEN))
 130#define IGB_STATS_LEN \
 131        (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 132
 133static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 134        "Register test  (offline)", "Eeprom test    (offline)",
 135        "Interrupt test (offline)", "Loopback test  (offline)",
 136        "Link test   (on/offline)"
 137};
 138#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 139
 140static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 141{
 142        struct igb_adapter *adapter = netdev_priv(netdev);
 143        struct e1000_hw *hw = &adapter->hw;
 144        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 145        struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 146        u32 status;
 147
 148        status = rd32(E1000_STATUS);
 149        if (hw->phy.media_type == e1000_media_type_copper) {
 150
 151                ecmd->supported = (SUPPORTED_10baseT_Half |
 152                                   SUPPORTED_10baseT_Full |
 153                                   SUPPORTED_100baseT_Half |
 154                                   SUPPORTED_100baseT_Full |
 155                                   SUPPORTED_1000baseT_Full|
 156                                   SUPPORTED_Autoneg |
 157                                   SUPPORTED_TP |
 158                                   SUPPORTED_Pause);
 159                ecmd->advertising = ADVERTISED_TP;
 160
 161                if (hw->mac.autoneg == 1) {
 162                        ecmd->advertising |= ADVERTISED_Autoneg;
 163                        /* the e1000 autoneg seems to match ethtool nicely */
 164                        ecmd->advertising |= hw->phy.autoneg_advertised;
 165                }
 166
 167                ecmd->port = PORT_TP;
 168                ecmd->phy_address = hw->phy.addr;
 169                ecmd->transceiver = XCVR_INTERNAL;
 170        } else {
 171                ecmd->supported = (SUPPORTED_FIBRE |
 172                                   SUPPORTED_1000baseKX_Full |
 173                                   SUPPORTED_Autoneg |
 174                                   SUPPORTED_Pause);
 175                ecmd->advertising = (ADVERTISED_FIBRE |
 176                                     ADVERTISED_1000baseKX_Full);
 177                if (hw->mac.type == e1000_i354) {
 178                        if ((hw->device_id ==
 179                             E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
 180                            !(status & E1000_STATUS_2P5_SKU_OVER)) {
 181                                ecmd->supported |= SUPPORTED_2500baseX_Full;
 182                                ecmd->supported &=
 183                                        ~SUPPORTED_1000baseKX_Full;
 184                                ecmd->advertising |= ADVERTISED_2500baseX_Full;
 185                                ecmd->advertising &=
 186                                        ~ADVERTISED_1000baseKX_Full;
 187                        }
 188                }
 189                if (eth_flags->e100_base_fx) {
 190                        ecmd->supported |= SUPPORTED_100baseT_Full;
 191                        ecmd->advertising |= ADVERTISED_100baseT_Full;
 192                }
 193                if (hw->mac.autoneg == 1)
 194                        ecmd->advertising |= ADVERTISED_Autoneg;
 195
 196                ecmd->port = PORT_FIBRE;
 197                ecmd->transceiver = XCVR_EXTERNAL;
 198        }
 199        if (hw->mac.autoneg != 1)
 200                ecmd->advertising &= ~(ADVERTISED_Pause |
 201                                       ADVERTISED_Asym_Pause);
 202
 203        switch (hw->fc.requested_mode) {
 204        case e1000_fc_full:
 205                ecmd->advertising |= ADVERTISED_Pause;
 206                break;
 207        case e1000_fc_rx_pause:
 208                ecmd->advertising |= (ADVERTISED_Pause |
 209                                      ADVERTISED_Asym_Pause);
 210                break;
 211        case e1000_fc_tx_pause:
 212                ecmd->advertising |=  ADVERTISED_Asym_Pause;
 213                break;
 214        default:
 215                ecmd->advertising &= ~(ADVERTISED_Pause |
 216                                       ADVERTISED_Asym_Pause);
 217        }
 218        if (status & E1000_STATUS_LU) {
 219                if ((status & E1000_STATUS_2P5_SKU) &&
 220                    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 221                        ecmd->speed = SPEED_2500;
 222                } else if (status & E1000_STATUS_SPEED_1000) {
 223                        ecmd->speed = SPEED_1000;
 224                } else if (status & E1000_STATUS_SPEED_100) {
 225                        ecmd->speed = SPEED_100;
 226                } else {
 227                        ecmd->speed = SPEED_10;
 228                }
 229                if ((status & E1000_STATUS_FD) ||
 230                    hw->phy.media_type != e1000_media_type_copper)
 231                        ecmd->duplex = DUPLEX_FULL;
 232                else
 233                        ecmd->duplex = DUPLEX_HALF;
 234        } else {
 235                ecmd->speed = -1;
 236                ecmd->duplex = -1;
 237        }
 238        if ((hw->phy.media_type == e1000_media_type_fiber) ||
 239            hw->mac.autoneg)
 240                ecmd->autoneg = AUTONEG_ENABLE;
 241        else
 242                ecmd->autoneg = AUTONEG_DISABLE;
 243
 244        /* MDI-X => 2; MDI =>1; Invalid =>0 */
 245        if (hw->phy.media_type == e1000_media_type_copper)
 246                ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 247                                                      ETH_TP_MDI;
 248        else
 249                ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
 250
 251        if (hw->phy.mdix == AUTO_ALL_MODES)
 252                ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 253        else
 254                ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
 255
 256        return 0;
 257}
 258
 259static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 260{
 261        struct igb_adapter *adapter = netdev_priv(netdev);
 262        struct e1000_hw *hw = &adapter->hw;
 263
 264        /* When SoL/IDER sessions are active, autoneg/speed/duplex
 265         * cannot be changed
 266         */
 267        if (igb_check_reset_block(hw)) {
 268                dev_err(&adapter->pdev->dev,
 269                        "Cannot change link characteristics when SoL/IDER is active.\n");
 270                return -EINVAL;
 271        }
 272
 273        /* MDI setting is only allowed when autoneg enabled because
 274         * some hardware doesn't allow MDI setting when speed or
 275         * duplex is forced.
 276         */
 277        if (ecmd->eth_tp_mdix_ctrl) {
 278                if (hw->phy.media_type != e1000_media_type_copper)
 279                        return -EOPNOTSUPP;
 280
 281                if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 282                    (ecmd->autoneg != AUTONEG_ENABLE)) {
 283                        dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 284                        return -EINVAL;
 285                }
 286        }
 287
 288        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 289                msleep(1);
 290
 291        if (ecmd->autoneg == AUTONEG_ENABLE) {
 292                hw->mac.autoneg = 1;
 293                if (hw->phy.media_type == e1000_media_type_fiber) {
 294                        hw->phy.autoneg_advertised = ecmd->advertising |
 295                                                     ADVERTISED_FIBRE |
 296                                                     ADVERTISED_Autoneg;
 297                        switch (adapter->link_speed) {
 298                        case SPEED_2500:
 299                                hw->phy.autoneg_advertised =
 300                                        ADVERTISED_2500baseX_Full;
 301                                break;
 302                        case SPEED_1000:
 303                                hw->phy.autoneg_advertised =
 304                                        ADVERTISED_1000baseT_Full;
 305                                break;
 306                        case SPEED_100:
 307                                hw->phy.autoneg_advertised =
 308                                        ADVERTISED_100baseT_Full;
 309                                break;
 310                        default:
 311                                break;
 312                        }
 313                } else {
 314                        hw->phy.autoneg_advertised = ecmd->advertising |
 315                                                     ADVERTISED_TP |
 316                                                     ADVERTISED_Autoneg;
 317                }
 318                ecmd->advertising = hw->phy.autoneg_advertised;
 319                if (adapter->fc_autoneg)
 320                        hw->fc.requested_mode = e1000_fc_default;
 321        } else {
 322                u32 speed = ethtool_cmd_speed(ecmd);
 323                /* calling this overrides forced MDI setting */
 324                if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 325                        clear_bit(__IGB_RESETTING, &adapter->state);
 326                        return -EINVAL;
 327                }
 328        }
 329
 330        /* MDI-X => 2; MDI => 1; Auto => 3 */
 331        if (ecmd->eth_tp_mdix_ctrl) {
 332                /* fix up the value for auto (3 => 0) as zero is mapped
 333                 * internally to auto
 334                 */
 335                if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 336                        hw->phy.mdix = AUTO_ALL_MODES;
 337                else
 338                        hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
 339        }
 340
 341        /* reset the link */
 342        if (netif_running(adapter->netdev)) {
 343                igb_down(adapter);
 344                igb_up(adapter);
 345        } else
 346                igb_reset(adapter);
 347
 348        clear_bit(__IGB_RESETTING, &adapter->state);
 349        return 0;
 350}
 351
 352static u32 igb_get_link(struct net_device *netdev)
 353{
 354        struct igb_adapter *adapter = netdev_priv(netdev);
 355        struct e1000_mac_info *mac = &adapter->hw.mac;
 356
 357        /* If the link is not reported up to netdev, interrupts are disabled,
 358         * and so the physical link state may have changed since we last
 359         * looked. Set get_link_status to make sure that the true link
 360         * state is interrogated, rather than pulling a cached and possibly
 361         * stale link state from the driver.
 362         */
 363        if (!netif_carrier_ok(netdev))
 364                mac->get_link_status = 1;
 365
 366        return igb_has_link(adapter);
 367}
 368
 369static void igb_get_pauseparam(struct net_device *netdev,
 370                               struct ethtool_pauseparam *pause)
 371{
 372        struct igb_adapter *adapter = netdev_priv(netdev);
 373        struct e1000_hw *hw = &adapter->hw;
 374
 375        pause->autoneg =
 376                (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 377
 378        if (hw->fc.current_mode == e1000_fc_rx_pause)
 379                pause->rx_pause = 1;
 380        else if (hw->fc.current_mode == e1000_fc_tx_pause)
 381                pause->tx_pause = 1;
 382        else if (hw->fc.current_mode == e1000_fc_full) {
 383                pause->rx_pause = 1;
 384                pause->tx_pause = 1;
 385        }
 386}
 387
 388static int igb_set_pauseparam(struct net_device *netdev,
 389                              struct ethtool_pauseparam *pause)
 390{
 391        struct igb_adapter *adapter = netdev_priv(netdev);
 392        struct e1000_hw *hw = &adapter->hw;
 393        int retval = 0;
 394
 395        /* 100basefx does not support setting link flow control */
 396        if (hw->dev_spec._82575.eth_flags.e100_base_fx)
 397                return -EINVAL;
 398
 399        adapter->fc_autoneg = pause->autoneg;
 400
 401        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 402                msleep(1);
 403
 404        if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 405                hw->fc.requested_mode = e1000_fc_default;
 406                if (netif_running(adapter->netdev)) {
 407                        igb_down(adapter);
 408                        igb_up(adapter);
 409                } else {
 410                        igb_reset(adapter);
 411                }
 412        } else {
 413                if (pause->rx_pause && pause->tx_pause)
 414                        hw->fc.requested_mode = e1000_fc_full;
 415                else if (pause->rx_pause && !pause->tx_pause)
 416                        hw->fc.requested_mode = e1000_fc_rx_pause;
 417                else if (!pause->rx_pause && pause->tx_pause)
 418                        hw->fc.requested_mode = e1000_fc_tx_pause;
 419                else if (!pause->rx_pause && !pause->tx_pause)
 420                        hw->fc.requested_mode = e1000_fc_none;
 421
 422                hw->fc.current_mode = hw->fc.requested_mode;
 423
 424                retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 425                          igb_force_mac_fc(hw) : igb_setup_link(hw));
 426        }
 427
 428        clear_bit(__IGB_RESETTING, &adapter->state);
 429        return retval;
 430}
 431
 432static u32 igb_get_msglevel(struct net_device *netdev)
 433{
 434        struct igb_adapter *adapter = netdev_priv(netdev);
 435        return adapter->msg_enable;
 436}
 437
 438static void igb_set_msglevel(struct net_device *netdev, u32 data)
 439{
 440        struct igb_adapter *adapter = netdev_priv(netdev);
 441        adapter->msg_enable = data;
 442}
 443
 444static int igb_get_regs_len(struct net_device *netdev)
 445{
 446#define IGB_REGS_LEN 739
 447        return IGB_REGS_LEN * sizeof(u32);
 448}
 449
 450static void igb_get_regs(struct net_device *netdev,
 451                         struct ethtool_regs *regs, void *p)
 452{
 453        struct igb_adapter *adapter = netdev_priv(netdev);
 454        struct e1000_hw *hw = &adapter->hw;
 455        u32 *regs_buff = p;
 456        u8 i;
 457
 458        memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 459
 460        regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 461
 462        /* General Registers */
 463        regs_buff[0] = rd32(E1000_CTRL);
 464        regs_buff[1] = rd32(E1000_STATUS);
 465        regs_buff[2] = rd32(E1000_CTRL_EXT);
 466        regs_buff[3] = rd32(E1000_MDIC);
 467        regs_buff[4] = rd32(E1000_SCTL);
 468        regs_buff[5] = rd32(E1000_CONNSW);
 469        regs_buff[6] = rd32(E1000_VET);
 470        regs_buff[7] = rd32(E1000_LEDCTL);
 471        regs_buff[8] = rd32(E1000_PBA);
 472        regs_buff[9] = rd32(E1000_PBS);
 473        regs_buff[10] = rd32(E1000_FRTIMER);
 474        regs_buff[11] = rd32(E1000_TCPTIMER);
 475
 476        /* NVM Register */
 477        regs_buff[12] = rd32(E1000_EECD);
 478
 479        /* Interrupt */
 480        /* Reading EICS for EICR because they read the
 481         * same but EICS does not clear on read
 482         */
 483        regs_buff[13] = rd32(E1000_EICS);
 484        regs_buff[14] = rd32(E1000_EICS);
 485        regs_buff[15] = rd32(E1000_EIMS);
 486        regs_buff[16] = rd32(E1000_EIMC);
 487        regs_buff[17] = rd32(E1000_EIAC);
 488        regs_buff[18] = rd32(E1000_EIAM);
 489        /* Reading ICS for ICR because they read the
 490         * same but ICS does not clear on read
 491         */
 492        regs_buff[19] = rd32(E1000_ICS);
 493        regs_buff[20] = rd32(E1000_ICS);
 494        regs_buff[21] = rd32(E1000_IMS);
 495        regs_buff[22] = rd32(E1000_IMC);
 496        regs_buff[23] = rd32(E1000_IAC);
 497        regs_buff[24] = rd32(E1000_IAM);
 498        regs_buff[25] = rd32(E1000_IMIRVP);
 499
 500        /* Flow Control */
 501        regs_buff[26] = rd32(E1000_FCAL);
 502        regs_buff[27] = rd32(E1000_FCAH);
 503        regs_buff[28] = rd32(E1000_FCTTV);
 504        regs_buff[29] = rd32(E1000_FCRTL);
 505        regs_buff[30] = rd32(E1000_FCRTH);
 506        regs_buff[31] = rd32(E1000_FCRTV);
 507
 508        /* Receive */
 509        regs_buff[32] = rd32(E1000_RCTL);
 510        regs_buff[33] = rd32(E1000_RXCSUM);
 511        regs_buff[34] = rd32(E1000_RLPML);
 512        regs_buff[35] = rd32(E1000_RFCTL);
 513        regs_buff[36] = rd32(E1000_MRQC);
 514        regs_buff[37] = rd32(E1000_VT_CTL);
 515
 516        /* Transmit */
 517        regs_buff[38] = rd32(E1000_TCTL);
 518        regs_buff[39] = rd32(E1000_TCTL_EXT);
 519        regs_buff[40] = rd32(E1000_TIPG);
 520        regs_buff[41] = rd32(E1000_DTXCTL);
 521
 522        /* Wake Up */
 523        regs_buff[42] = rd32(E1000_WUC);
 524        regs_buff[43] = rd32(E1000_WUFC);
 525        regs_buff[44] = rd32(E1000_WUS);
 526        regs_buff[45] = rd32(E1000_IPAV);
 527        regs_buff[46] = rd32(E1000_WUPL);
 528
 529        /* MAC */
 530        regs_buff[47] = rd32(E1000_PCS_CFG0);
 531        regs_buff[48] = rd32(E1000_PCS_LCTL);
 532        regs_buff[49] = rd32(E1000_PCS_LSTAT);
 533        regs_buff[50] = rd32(E1000_PCS_ANADV);
 534        regs_buff[51] = rd32(E1000_PCS_LPAB);
 535        regs_buff[52] = rd32(E1000_PCS_NPTX);
 536        regs_buff[53] = rd32(E1000_PCS_LPABNP);
 537
 538        /* Statistics */
 539        regs_buff[54] = adapter->stats.crcerrs;
 540        regs_buff[55] = adapter->stats.algnerrc;
 541        regs_buff[56] = adapter->stats.symerrs;
 542        regs_buff[57] = adapter->stats.rxerrc;
 543        regs_buff[58] = adapter->stats.mpc;
 544        regs_buff[59] = adapter->stats.scc;
 545        regs_buff[60] = adapter->stats.ecol;
 546        regs_buff[61] = adapter->stats.mcc;
 547        regs_buff[62] = adapter->stats.latecol;
 548        regs_buff[63] = adapter->stats.colc;
 549        regs_buff[64] = adapter->stats.dc;
 550        regs_buff[65] = adapter->stats.tncrs;
 551        regs_buff[66] = adapter->stats.sec;
 552        regs_buff[67] = adapter->stats.htdpmc;
 553        regs_buff[68] = adapter->stats.rlec;
 554        regs_buff[69] = adapter->stats.xonrxc;
 555        regs_buff[70] = adapter->stats.xontxc;
 556        regs_buff[71] = adapter->stats.xoffrxc;
 557        regs_buff[72] = adapter->stats.xofftxc;
 558        regs_buff[73] = adapter->stats.fcruc;
 559        regs_buff[74] = adapter->stats.prc64;
 560        regs_buff[75] = adapter->stats.prc127;
 561        regs_buff[76] = adapter->stats.prc255;
 562        regs_buff[77] = adapter->stats.prc511;
 563        regs_buff[78] = adapter->stats.prc1023;
 564        regs_buff[79] = adapter->stats.prc1522;
 565        regs_buff[80] = adapter->stats.gprc;
 566        regs_buff[81] = adapter->stats.bprc;
 567        regs_buff[82] = adapter->stats.mprc;
 568        regs_buff[83] = adapter->stats.gptc;
 569        regs_buff[84] = adapter->stats.gorc;
 570        regs_buff[86] = adapter->stats.gotc;
 571        regs_buff[88] = adapter->stats.rnbc;
 572        regs_buff[89] = adapter->stats.ruc;
 573        regs_buff[90] = adapter->stats.rfc;
 574        regs_buff[91] = adapter->stats.roc;
 575        regs_buff[92] = adapter->stats.rjc;
 576        regs_buff[93] = adapter->stats.mgprc;
 577        regs_buff[94] = adapter->stats.mgpdc;
 578        regs_buff[95] = adapter->stats.mgptc;
 579        regs_buff[96] = adapter->stats.tor;
 580        regs_buff[98] = adapter->stats.tot;
 581        regs_buff[100] = adapter->stats.tpr;
 582        regs_buff[101] = adapter->stats.tpt;
 583        regs_buff[102] = adapter->stats.ptc64;
 584        regs_buff[103] = adapter->stats.ptc127;
 585        regs_buff[104] = adapter->stats.ptc255;
 586        regs_buff[105] = adapter->stats.ptc511;
 587        regs_buff[106] = adapter->stats.ptc1023;
 588        regs_buff[107] = adapter->stats.ptc1522;
 589        regs_buff[108] = adapter->stats.mptc;
 590        regs_buff[109] = adapter->stats.bptc;
 591        regs_buff[110] = adapter->stats.tsctc;
 592        regs_buff[111] = adapter->stats.iac;
 593        regs_buff[112] = adapter->stats.rpthc;
 594        regs_buff[113] = adapter->stats.hgptc;
 595        regs_buff[114] = adapter->stats.hgorc;
 596        regs_buff[116] = adapter->stats.hgotc;
 597        regs_buff[118] = adapter->stats.lenerrs;
 598        regs_buff[119] = adapter->stats.scvpc;
 599        regs_buff[120] = adapter->stats.hrmpc;
 600
 601        for (i = 0; i < 4; i++)
 602                regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 603        for (i = 0; i < 4; i++)
 604                regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 605        for (i = 0; i < 4; i++)
 606                regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 607        for (i = 0; i < 4; i++)
 608                regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 609        for (i = 0; i < 4; i++)
 610                regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 611        for (i = 0; i < 4; i++)
 612                regs_buff[141 + i] = rd32(E1000_RDH(i));
 613        for (i = 0; i < 4; i++)
 614                regs_buff[145 + i] = rd32(E1000_RDT(i));
 615        for (i = 0; i < 4; i++)
 616                regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 617
 618        for (i = 0; i < 10; i++)
 619                regs_buff[153 + i] = rd32(E1000_EITR(i));
 620        for (i = 0; i < 8; i++)
 621                regs_buff[163 + i] = rd32(E1000_IMIR(i));
 622        for (i = 0; i < 8; i++)
 623                regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 624        for (i = 0; i < 16; i++)
 625                regs_buff[179 + i] = rd32(E1000_RAL(i));
 626        for (i = 0; i < 16; i++)
 627                regs_buff[195 + i] = rd32(E1000_RAH(i));
 628
 629        for (i = 0; i < 4; i++)
 630                regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 631        for (i = 0; i < 4; i++)
 632                regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 633        for (i = 0; i < 4; i++)
 634                regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 635        for (i = 0; i < 4; i++)
 636                regs_buff[223 + i] = rd32(E1000_TDH(i));
 637        for (i = 0; i < 4; i++)
 638                regs_buff[227 + i] = rd32(E1000_TDT(i));
 639        for (i = 0; i < 4; i++)
 640                regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 641        for (i = 0; i < 4; i++)
 642                regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 643        for (i = 0; i < 4; i++)
 644                regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 645        for (i = 0; i < 4; i++)
 646                regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 647
 648        for (i = 0; i < 4; i++)
 649                regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 650        for (i = 0; i < 4; i++)
 651                regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 652        for (i = 0; i < 32; i++)
 653                regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 654        for (i = 0; i < 128; i++)
 655                regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 656        for (i = 0; i < 128; i++)
 657                regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 658        for (i = 0; i < 4; i++)
 659                regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 660
 661        regs_buff[547] = rd32(E1000_TDFH);
 662        regs_buff[548] = rd32(E1000_TDFT);
 663        regs_buff[549] = rd32(E1000_TDFHS);
 664        regs_buff[550] = rd32(E1000_TDFPC);
 665
 666        if (hw->mac.type > e1000_82580) {
 667                regs_buff[551] = adapter->stats.o2bgptc;
 668                regs_buff[552] = adapter->stats.b2ospc;
 669                regs_buff[553] = adapter->stats.o2bspc;
 670                regs_buff[554] = adapter->stats.b2ogprc;
 671        }
 672
 673        if (hw->mac.type != e1000_82576)
 674                return;
 675        for (i = 0; i < 12; i++)
 676                regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 677        for (i = 0; i < 4; i++)
 678                regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 679        for (i = 0; i < 12; i++)
 680                regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 681        for (i = 0; i < 12; i++)
 682                regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 683        for (i = 0; i < 12; i++)
 684                regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 685        for (i = 0; i < 12; i++)
 686                regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 687        for (i = 0; i < 12; i++)
 688                regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 689        for (i = 0; i < 12; i++)
 690                regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 691
 692        for (i = 0; i < 12; i++)
 693                regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 694        for (i = 0; i < 12; i++)
 695                regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 696        for (i = 0; i < 12; i++)
 697                regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 698        for (i = 0; i < 12; i++)
 699                regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 700        for (i = 0; i < 12; i++)
 701                regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 702        for (i = 0; i < 12; i++)
 703                regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 704        for (i = 0; i < 12; i++)
 705                regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 706        for (i = 0; i < 12; i++)
 707                regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 708}
 709
 710static int igb_get_eeprom_len(struct net_device *netdev)
 711{
 712        struct igb_adapter *adapter = netdev_priv(netdev);
 713        return adapter->hw.nvm.word_size * 2;
 714}
 715
 716static int igb_get_eeprom(struct net_device *netdev,
 717                          struct ethtool_eeprom *eeprom, u8 *bytes)
 718{
 719        struct igb_adapter *adapter = netdev_priv(netdev);
 720        struct e1000_hw *hw = &adapter->hw;
 721        u16 *eeprom_buff;
 722        int first_word, last_word;
 723        int ret_val = 0;
 724        u16 i;
 725
 726        if (eeprom->len == 0)
 727                return -EINVAL;
 728
 729        eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 730
 731        first_word = eeprom->offset >> 1;
 732        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 733
 734        eeprom_buff = kmalloc(sizeof(u16) *
 735                        (last_word - first_word + 1), GFP_KERNEL);
 736        if (!eeprom_buff)
 737                return -ENOMEM;
 738
 739        if (hw->nvm.type == e1000_nvm_eeprom_spi)
 740                ret_val = hw->nvm.ops.read(hw, first_word,
 741                                           last_word - first_word + 1,
 742                                           eeprom_buff);
 743        else {
 744                for (i = 0; i < last_word - first_word + 1; i++) {
 745                        ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 746                                                   &eeprom_buff[i]);
 747                        if (ret_val)
 748                                break;
 749                }
 750        }
 751
 752        /* Device's eeprom is always little-endian, word addressable */
 753        for (i = 0; i < last_word - first_word + 1; i++)
 754                le16_to_cpus(&eeprom_buff[i]);
 755
 756        memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 757                        eeprom->len);
 758        kfree(eeprom_buff);
 759
 760        return ret_val;
 761}
 762
 763static int igb_set_eeprom(struct net_device *netdev,
 764                          struct ethtool_eeprom *eeprom, u8 *bytes)
 765{
 766        struct igb_adapter *adapter = netdev_priv(netdev);
 767        struct e1000_hw *hw = &adapter->hw;
 768        u16 *eeprom_buff;
 769        void *ptr;
 770        int max_len, first_word, last_word, ret_val = 0;
 771        u16 i;
 772
 773        if (eeprom->len == 0)
 774                return -EOPNOTSUPP;
 775
 776        if ((hw->mac.type >= e1000_i210) &&
 777            !igb_get_flash_presence_i210(hw)) {
 778                return -EOPNOTSUPP;
 779        }
 780
 781        if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 782                return -EFAULT;
 783
 784        max_len = hw->nvm.word_size * 2;
 785
 786        first_word = eeprom->offset >> 1;
 787        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 788        eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 789        if (!eeprom_buff)
 790                return -ENOMEM;
 791
 792        ptr = (void *)eeprom_buff;
 793
 794        if (eeprom->offset & 1) {
 795                /* need read/modify/write of first changed EEPROM word
 796                 * only the second byte of the word is being modified
 797                 */
 798                ret_val = hw->nvm.ops.read(hw, first_word, 1,
 799                                            &eeprom_buff[0]);
 800                ptr++;
 801        }
 802        if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 803                /* need read/modify/write of last changed EEPROM word
 804                 * only the first byte of the word is being modified
 805                 */
 806                ret_val = hw->nvm.ops.read(hw, last_word, 1,
 807                                   &eeprom_buff[last_word - first_word]);
 808        }
 809
 810        /* Device's eeprom is always little-endian, word addressable */
 811        for (i = 0; i < last_word - first_word + 1; i++)
 812                le16_to_cpus(&eeprom_buff[i]);
 813
 814        memcpy(ptr, bytes, eeprom->len);
 815
 816        for (i = 0; i < last_word - first_word + 1; i++)
 817                eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 818
 819        ret_val = hw->nvm.ops.write(hw, first_word,
 820                                    last_word - first_word + 1, eeprom_buff);
 821
 822        /* Update the checksum if nvm write succeeded */
 823        if (ret_val == 0)
 824                hw->nvm.ops.update(hw);
 825
 826        igb_set_fw_version(adapter);
 827        kfree(eeprom_buff);
 828        return ret_val;
 829}
 830
 831static void igb_get_drvinfo(struct net_device *netdev,
 832                            struct ethtool_drvinfo *drvinfo)
 833{
 834        struct igb_adapter *adapter = netdev_priv(netdev);
 835
 836        strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 837        strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
 838
 839        /* EEPROM image version # is reported as firmware version # for
 840         * 82575 controllers
 841         */
 842        strlcpy(drvinfo->fw_version, adapter->fw_version,
 843                sizeof(drvinfo->fw_version));
 844        strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 845                sizeof(drvinfo->bus_info));
 846        drvinfo->n_stats = IGB_STATS_LEN;
 847        drvinfo->testinfo_len = IGB_TEST_LEN;
 848        drvinfo->regdump_len = igb_get_regs_len(netdev);
 849        drvinfo->eedump_len = igb_get_eeprom_len(netdev);
 850}
 851
 852static void igb_get_ringparam(struct net_device *netdev,
 853                              struct ethtool_ringparam *ring)
 854{
 855        struct igb_adapter *adapter = netdev_priv(netdev);
 856
 857        ring->rx_max_pending = IGB_MAX_RXD;
 858        ring->tx_max_pending = IGB_MAX_TXD;
 859        ring->rx_pending = adapter->rx_ring_count;
 860        ring->tx_pending = adapter->tx_ring_count;
 861}
 862
 863static int igb_set_ringparam(struct net_device *netdev,
 864                             struct ethtool_ringparam *ring)
 865{
 866        struct igb_adapter *adapter = netdev_priv(netdev);
 867        struct igb_ring *temp_ring;
 868        int i, err = 0;
 869        u16 new_rx_count, new_tx_count;
 870
 871        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 872                return -EINVAL;
 873
 874        new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 875        new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 876        new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 877
 878        new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 879        new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 880        new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 881
 882        if ((new_tx_count == adapter->tx_ring_count) &&
 883            (new_rx_count == adapter->rx_ring_count)) {
 884                /* nothing to do */
 885                return 0;
 886        }
 887
 888        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 889                msleep(1);
 890
 891        if (!netif_running(adapter->netdev)) {
 892                for (i = 0; i < adapter->num_tx_queues; i++)
 893                        adapter->tx_ring[i]->count = new_tx_count;
 894                for (i = 0; i < adapter->num_rx_queues; i++)
 895                        adapter->rx_ring[i]->count = new_rx_count;
 896                adapter->tx_ring_count = new_tx_count;
 897                adapter->rx_ring_count = new_rx_count;
 898                goto clear_reset;
 899        }
 900
 901        if (adapter->num_tx_queues > adapter->num_rx_queues)
 902                temp_ring = vmalloc(adapter->num_tx_queues *
 903                                    sizeof(struct igb_ring));
 904        else
 905                temp_ring = vmalloc(adapter->num_rx_queues *
 906                                    sizeof(struct igb_ring));
 907
 908        if (!temp_ring) {
 909                err = -ENOMEM;
 910                goto clear_reset;
 911        }
 912
 913        igb_down(adapter);
 914
 915        /* We can't just free everything and then setup again,
 916         * because the ISRs in MSI-X mode get passed pointers
 917         * to the Tx and Rx ring structs.
 918         */
 919        if (new_tx_count != adapter->tx_ring_count) {
 920                for (i = 0; i < adapter->num_tx_queues; i++) {
 921                        memcpy(&temp_ring[i], adapter->tx_ring[i],
 922                               sizeof(struct igb_ring));
 923
 924                        temp_ring[i].count = new_tx_count;
 925                        err = igb_setup_tx_resources(&temp_ring[i]);
 926                        if (err) {
 927                                while (i) {
 928                                        i--;
 929                                        igb_free_tx_resources(&temp_ring[i]);
 930                                }
 931                                goto err_setup;
 932                        }
 933                }
 934
 935                for (i = 0; i < adapter->num_tx_queues; i++) {
 936                        igb_free_tx_resources(adapter->tx_ring[i]);
 937
 938                        memcpy(adapter->tx_ring[i], &temp_ring[i],
 939                               sizeof(struct igb_ring));
 940                }
 941
 942                adapter->tx_ring_count = new_tx_count;
 943        }
 944
 945        if (new_rx_count != adapter->rx_ring_count) {
 946                for (i = 0; i < adapter->num_rx_queues; i++) {
 947                        memcpy(&temp_ring[i], adapter->rx_ring[i],
 948                               sizeof(struct igb_ring));
 949
 950                        temp_ring[i].count = new_rx_count;
 951                        err = igb_setup_rx_resources(&temp_ring[i]);
 952                        if (err) {
 953                                while (i) {
 954                                        i--;
 955                                        igb_free_rx_resources(&temp_ring[i]);
 956                                }
 957                                goto err_setup;
 958                        }
 959
 960                }
 961
 962                for (i = 0; i < adapter->num_rx_queues; i++) {
 963                        igb_free_rx_resources(adapter->rx_ring[i]);
 964
 965                        memcpy(adapter->rx_ring[i], &temp_ring[i],
 966                               sizeof(struct igb_ring));
 967                }
 968
 969                adapter->rx_ring_count = new_rx_count;
 970        }
 971err_setup:
 972        igb_up(adapter);
 973        vfree(temp_ring);
 974clear_reset:
 975        clear_bit(__IGB_RESETTING, &adapter->state);
 976        return err;
 977}
 978
 979/* ethtool register test data */
 980struct igb_reg_test {
 981        u16 reg;
 982        u16 reg_offset;
 983        u16 array_len;
 984        u16 test_type;
 985        u32 mask;
 986        u32 write;
 987};
 988
 989/* In the hardware, registers are laid out either singly, in arrays
 990 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
 991 * most tests take place on arrays or single registers (handled
 992 * as a single-element array) and special-case the tables.
 993 * Table tests are always pattern tests.
 994 *
 995 * We also make provision for some required setup steps by specifying
 996 * registers to be written without any read-back testing.
 997 */
 998
 999#define PATTERN_TEST    1
1000#define SET_READ_TEST   2
1001#define WRITE_NO_TEST   3
1002#define TABLE32_TEST    4
1003#define TABLE64_TEST_LO 5
1004#define TABLE64_TEST_HI 6
1005
1006/* i210 reg test */
1007static struct igb_reg_test reg_test_i210[] = {
1008        { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009        { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1010        { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1011        { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012        { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013        { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1014        /* RDH is read-only for i210, only test RDT. */
1015        { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1016        { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1017        { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1018        { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1019        { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1020        { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1021        { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1022        { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1024        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1025        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1026        { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1027        { E1000_RA,        0, 16, TABLE64_TEST_LO,
1028                                                0xFFFFFFFF, 0xFFFFFFFF },
1029        { E1000_RA,        0, 16, TABLE64_TEST_HI,
1030                                                0x900FFFFF, 0xFFFFFFFF },
1031        { E1000_MTA,       0, 128, TABLE32_TEST,
1032                                                0xFFFFFFFF, 0xFFFFFFFF },
1033        { 0, 0, 0, 0, 0 }
1034};
1035
1036/* i350 reg test */
1037static struct igb_reg_test reg_test_i350[] = {
1038        { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039        { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1040        { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1041        { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1042        { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1043        { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044        { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1045        { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1046        { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047        { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1048        /* RDH is read-only for i350, only test RDT. */
1049        { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050        { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051        { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1052        { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053        { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1054        { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1055        { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056        { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1057        { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1058        { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059        { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1060        { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1061        { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1062        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1063        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1064        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1065        { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1066        { E1000_RA,        0, 16, TABLE64_TEST_LO,
1067                                                0xFFFFFFFF, 0xFFFFFFFF },
1068        { E1000_RA,        0, 16, TABLE64_TEST_HI,
1069                                                0xC3FFFFFF, 0xFFFFFFFF },
1070        { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1071                                                0xFFFFFFFF, 0xFFFFFFFF },
1072        { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1073                                                0xC3FFFFFF, 0xFFFFFFFF },
1074        { E1000_MTA,       0, 128, TABLE32_TEST,
1075                                                0xFFFFFFFF, 0xFFFFFFFF },
1076        { 0, 0, 0, 0 }
1077};
1078
1079/* 82580 reg test */
1080static struct igb_reg_test reg_test_82580[] = {
1081        { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082        { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1083        { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1084        { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1085        { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1086        { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1087        { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1088        { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1089        { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1090        { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1091        /* RDH is read-only for 82580, only test RDT. */
1092        { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1093        { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1094        { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1095        { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096        { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1097        { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1098        { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1099        { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1100        { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1101        { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1102        { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1103        { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1104        { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1105        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1106        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1107        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1108        { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1109        { E1000_RA,        0, 16, TABLE64_TEST_LO,
1110                                                0xFFFFFFFF, 0xFFFFFFFF },
1111        { E1000_RA,        0, 16, TABLE64_TEST_HI,
1112                                                0x83FFFFFF, 0xFFFFFFFF },
1113        { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1114                                                0xFFFFFFFF, 0xFFFFFFFF },
1115        { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1116                                                0x83FFFFFF, 0xFFFFFFFF },
1117        { E1000_MTA,       0, 128, TABLE32_TEST,
1118                                                0xFFFFFFFF, 0xFFFFFFFF },
1119        { 0, 0, 0, 0 }
1120};
1121
1122/* 82576 reg test */
1123static struct igb_reg_test reg_test_82576[] = {
1124        { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125        { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1126        { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1127        { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1128        { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1129        { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1130        { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1131        { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1132        { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133        { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1134        /* Enable all RX queues before testing. */
1135        { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1136        { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1137        /* RDH is read-only for 82576, only test RDT. */
1138        { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1139        { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140        { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1141        { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1142        { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1143        { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1144        { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1145        { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1146        { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1147        { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1148        { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1149        { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1150        { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1151        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1152        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1153        { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1154        { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1155        { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1156        { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1157        { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1158        { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1159        { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1160        { 0, 0, 0, 0 }
1161};
1162
1163/* 82575 register test */
1164static struct igb_reg_test reg_test_82575[] = {
1165        { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166        { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1167        { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1168        { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1169        { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1170        { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1171        { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1172        /* Enable all four RX queues before testing. */
1173        { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1174        /* RDH is read-only for 82575, only test RDT. */
1175        { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1176        { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1177        { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1178        { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1179        { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1180        { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1181        { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1182        { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1183        { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1184        { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1185        { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1186        { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1187        { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1188        { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1189        { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1190        { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191        { 0, 0, 0, 0 }
1192};
1193
1194static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1195                             int reg, u32 mask, u32 write)
1196{
1197        struct e1000_hw *hw = &adapter->hw;
1198        u32 pat, val;
1199        static const u32 _test[] =
1200                {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1201        for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1202                wr32(reg, (_test[pat] & write));
1203                val = rd32(reg) & mask;
1204                if (val != (_test[pat] & write & mask)) {
1205                        dev_err(&adapter->pdev->dev,
1206                                "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1207                                reg, val, (_test[pat] & write & mask));
1208                        *data = reg;
1209                        return 1;
1210                }
1211        }
1212
1213        return 0;
1214}
1215
1216static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1217                              int reg, u32 mask, u32 write)
1218{
1219        struct e1000_hw *hw = &adapter->hw;
1220        u32 val;
1221        wr32(reg, write & mask);
1222        val = rd32(reg);
1223        if ((write & mask) != (val & mask)) {
1224                dev_err(&adapter->pdev->dev,
1225                        "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1226                        (val & mask), (write & mask));
1227                *data = reg;
1228                return 1;
1229        }
1230
1231        return 0;
1232}
1233
1234#define REG_PATTERN_TEST(reg, mask, write) \
1235        do { \
1236                if (reg_pattern_test(adapter, data, reg, mask, write)) \
1237                        return 1; \
1238        } while (0)
1239
1240#define REG_SET_AND_CHECK(reg, mask, write) \
1241        do { \
1242                if (reg_set_and_check(adapter, data, reg, mask, write)) \
1243                        return 1; \
1244        } while (0)
1245
1246static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1247{
1248        struct e1000_hw *hw = &adapter->hw;
1249        struct igb_reg_test *test;
1250        u32 value, before, after;
1251        u32 i, toggle;
1252
1253        switch (adapter->hw.mac.type) {
1254        case e1000_i350:
1255        case e1000_i354:
1256                test = reg_test_i350;
1257                toggle = 0x7FEFF3FF;
1258                break;
1259        case e1000_i210:
1260        case e1000_i211:
1261                test = reg_test_i210;
1262                toggle = 0x7FEFF3FF;
1263                break;
1264        case e1000_82580:
1265                test = reg_test_82580;
1266                toggle = 0x7FEFF3FF;
1267                break;
1268        case e1000_82576:
1269                test = reg_test_82576;
1270                toggle = 0x7FFFF3FF;
1271                break;
1272        default:
1273                test = reg_test_82575;
1274                toggle = 0x7FFFF3FF;
1275                break;
1276        }
1277
1278        /* Because the status register is such a special case,
1279         * we handle it separately from the rest of the register
1280         * tests.  Some bits are read-only, some toggle, and some
1281         * are writable on newer MACs.
1282         */
1283        before = rd32(E1000_STATUS);
1284        value = (rd32(E1000_STATUS) & toggle);
1285        wr32(E1000_STATUS, toggle);
1286        after = rd32(E1000_STATUS) & toggle;
1287        if (value != after) {
1288                dev_err(&adapter->pdev->dev,
1289                        "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1290                        after, value);
1291                *data = 1;
1292                return 1;
1293        }
1294        /* restore previous status */
1295        wr32(E1000_STATUS, before);
1296
1297        /* Perform the remainder of the register test, looping through
1298         * the test table until we either fail or reach the null entry.
1299         */
1300        while (test->reg) {
1301                for (i = 0; i < test->array_len; i++) {
1302                        switch (test->test_type) {
1303                        case PATTERN_TEST:
1304                                REG_PATTERN_TEST(test->reg +
1305                                                (i * test->reg_offset),
1306                                                test->mask,
1307                                                test->write);
1308                                break;
1309                        case SET_READ_TEST:
1310                                REG_SET_AND_CHECK(test->reg +
1311                                                (i * test->reg_offset),
1312                                                test->mask,
1313                                                test->write);
1314                                break;
1315                        case WRITE_NO_TEST:
1316                                writel(test->write,
1317                                    (adapter->hw.hw_addr + test->reg)
1318                                        + (i * test->reg_offset));
1319                                break;
1320                        case TABLE32_TEST:
1321                                REG_PATTERN_TEST(test->reg + (i * 4),
1322                                                test->mask,
1323                                                test->write);
1324                                break;
1325                        case TABLE64_TEST_LO:
1326                                REG_PATTERN_TEST(test->reg + (i * 8),
1327                                                test->mask,
1328                                                test->write);
1329                                break;
1330                        case TABLE64_TEST_HI:
1331                                REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1332                                                test->mask,
1333                                                test->write);
1334                                break;
1335                        }
1336                }
1337                test++;
1338        }
1339
1340        *data = 0;
1341        return 0;
1342}
1343
1344static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1345{
1346        struct e1000_hw *hw = &adapter->hw;
1347
1348        *data = 0;
1349
1350        /* Validate eeprom on all parts but flashless */
1351        switch (hw->mac.type) {
1352        case e1000_i210:
1353        case e1000_i211:
1354                if (igb_get_flash_presence_i210(hw)) {
1355                        if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1356                                *data = 2;
1357                }
1358                break;
1359        default:
1360                if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1361                        *data = 2;
1362                break;
1363        }
1364
1365        return *data;
1366}
1367
1368static irqreturn_t igb_test_intr(int irq, void *data)
1369{
1370        struct igb_adapter *adapter = (struct igb_adapter *) data;
1371        struct e1000_hw *hw = &adapter->hw;
1372
1373        adapter->test_icr |= rd32(E1000_ICR);
1374
1375        return IRQ_HANDLED;
1376}
1377
1378static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1379{
1380        struct e1000_hw *hw = &adapter->hw;
1381        struct net_device *netdev = adapter->netdev;
1382        u32 mask, ics_mask, i = 0, shared_int = true;
1383        u32 irq = adapter->pdev->irq;
1384
1385        *data = 0;
1386
1387        /* Hook up test interrupt handler just for this test */
1388        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1389                if (request_irq(adapter->msix_entries[0].vector,
1390                                igb_test_intr, 0, netdev->name, adapter)) {
1391                        *data = 1;
1392                        return -1;
1393                }
1394        } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1395                shared_int = false;
1396                if (request_irq(irq,
1397                                igb_test_intr, 0, netdev->name, adapter)) {
1398                        *data = 1;
1399                        return -1;
1400                }
1401        } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1402                                netdev->name, adapter)) {
1403                shared_int = false;
1404        } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1405                 netdev->name, adapter)) {
1406                *data = 1;
1407                return -1;
1408        }
1409        dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1410                (shared_int ? "shared" : "unshared"));
1411
1412        /* Disable all the interrupts */
1413        wr32(E1000_IMC, ~0);
1414        wrfl();
1415        msleep(10);
1416
1417        /* Define all writable bits for ICS */
1418        switch (hw->mac.type) {
1419        case e1000_82575:
1420                ics_mask = 0x37F47EDD;
1421                break;
1422        case e1000_82576:
1423                ics_mask = 0x77D4FBFD;
1424                break;
1425        case e1000_82580:
1426                ics_mask = 0x77DCFED5;
1427                break;
1428        case e1000_i350:
1429        case e1000_i354:
1430        case e1000_i210:
1431        case e1000_i211:
1432                ics_mask = 0x77DCFED5;
1433                break;
1434        default:
1435                ics_mask = 0x7FFFFFFF;
1436                break;
1437        }
1438
1439        /* Test each interrupt */
1440        for (; i < 31; i++) {
1441                /* Interrupt to test */
1442                mask = 1 << i;
1443
1444                if (!(mask & ics_mask))
1445                        continue;
1446
1447                if (!shared_int) {
1448                        /* Disable the interrupt to be reported in
1449                         * the cause register and then force the same
1450                         * interrupt and see if one gets posted.  If
1451                         * an interrupt was posted to the bus, the
1452                         * test failed.
1453                         */
1454                        adapter->test_icr = 0;
1455
1456                        /* Flush any pending interrupts */
1457                        wr32(E1000_ICR, ~0);
1458
1459                        wr32(E1000_IMC, mask);
1460                        wr32(E1000_ICS, mask);
1461                        wrfl();
1462                        msleep(10);
1463
1464                        if (adapter->test_icr & mask) {
1465                                *data = 3;
1466                                break;
1467                        }
1468                }
1469
1470                /* Enable the interrupt to be reported in
1471                 * the cause register and then force the same
1472                 * interrupt and see if one gets posted.  If
1473                 * an interrupt was not posted to the bus, the
1474                 * test failed.
1475                 */
1476                adapter->test_icr = 0;
1477
1478                /* Flush any pending interrupts */
1479                wr32(E1000_ICR, ~0);
1480
1481                wr32(E1000_IMS, mask);
1482                wr32(E1000_ICS, mask);
1483                wrfl();
1484                msleep(10);
1485
1486                if (!(adapter->test_icr & mask)) {
1487                        *data = 4;
1488                        break;
1489                }
1490
1491                if (!shared_int) {
1492                        /* Disable the other interrupts to be reported in
1493                         * the cause register and then force the other
1494                         * interrupts and see if any get posted.  If
1495                         * an interrupt was posted to the bus, the
1496                         * test failed.
1497                         */
1498                        adapter->test_icr = 0;
1499
1500                        /* Flush any pending interrupts */
1501                        wr32(E1000_ICR, ~0);
1502
1503                        wr32(E1000_IMC, ~mask);
1504                        wr32(E1000_ICS, ~mask);
1505                        wrfl();
1506                        msleep(10);
1507
1508                        if (adapter->test_icr & mask) {
1509                                *data = 5;
1510                                break;
1511                        }
1512                }
1513        }
1514
1515        /* Disable all the interrupts */
1516        wr32(E1000_IMC, ~0);
1517        wrfl();
1518        msleep(10);
1519
1520        /* Unhook test interrupt handler */
1521        if (adapter->flags & IGB_FLAG_HAS_MSIX)
1522                free_irq(adapter->msix_entries[0].vector, adapter);
1523        else
1524                free_irq(irq, adapter);
1525
1526        return *data;
1527}
1528
1529static void igb_free_desc_rings(struct igb_adapter *adapter)
1530{
1531        igb_free_tx_resources(&adapter->test_tx_ring);
1532        igb_free_rx_resources(&adapter->test_rx_ring);
1533}
1534
1535static int igb_setup_desc_rings(struct igb_adapter *adapter)
1536{
1537        struct igb_ring *tx_ring = &adapter->test_tx_ring;
1538        struct igb_ring *rx_ring = &adapter->test_rx_ring;
1539        struct e1000_hw *hw = &adapter->hw;
1540        int ret_val;
1541
1542        /* Setup Tx descriptor ring and Tx buffers */
1543        tx_ring->count = IGB_DEFAULT_TXD;
1544        tx_ring->dev = &adapter->pdev->dev;
1545        tx_ring->netdev = adapter->netdev;
1546        tx_ring->reg_idx = adapter->vfs_allocated_count;
1547
1548        if (igb_setup_tx_resources(tx_ring)) {
1549                ret_val = 1;
1550                goto err_nomem;
1551        }
1552
1553        igb_setup_tctl(adapter);
1554        igb_configure_tx_ring(adapter, tx_ring);
1555
1556        /* Setup Rx descriptor ring and Rx buffers */
1557        rx_ring->count = IGB_DEFAULT_RXD;
1558        rx_ring->dev = &adapter->pdev->dev;
1559        rx_ring->netdev = adapter->netdev;
1560        rx_ring->reg_idx = adapter->vfs_allocated_count;
1561
1562        if (igb_setup_rx_resources(rx_ring)) {
1563                ret_val = 3;
1564                goto err_nomem;
1565        }
1566
1567        /* set the default queue to queue 0 of PF */
1568        wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1569
1570        /* enable receive ring */
1571        igb_setup_rctl(adapter);
1572        igb_configure_rx_ring(adapter, rx_ring);
1573
1574        igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1575
1576        return 0;
1577
1578err_nomem:
1579        igb_free_desc_rings(adapter);
1580        return ret_val;
1581}
1582
1583static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1584{
1585        struct e1000_hw *hw = &adapter->hw;
1586
1587        /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1588        igb_write_phy_reg(hw, 29, 0x001F);
1589        igb_write_phy_reg(hw, 30, 0x8FFC);
1590        igb_write_phy_reg(hw, 29, 0x001A);
1591        igb_write_phy_reg(hw, 30, 0x8FF0);
1592}
1593
1594static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1595{
1596        struct e1000_hw *hw = &adapter->hw;
1597        u32 ctrl_reg = 0;
1598
1599        hw->mac.autoneg = false;
1600
1601        if (hw->phy.type == e1000_phy_m88) {
1602                if (hw->phy.id != I210_I_PHY_ID) {
1603                        /* Auto-MDI/MDIX Off */
1604                        igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1605                        /* reset to update Auto-MDI/MDIX */
1606                        igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1607                        /* autoneg off */
1608                        igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1609                } else {
1610                        /* force 1000, set loopback  */
1611                        igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1612                        igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1613                }
1614        } else if (hw->phy.type == e1000_phy_82580) {
1615                /* enable MII loopback */
1616                igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1617        }
1618
1619        /* add small delay to avoid loopback test failure */
1620        msleep(50);
1621
1622        /* force 1000, set loopback */
1623        igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1624
1625        /* Now set up the MAC to the same speed/duplex as the PHY. */
1626        ctrl_reg = rd32(E1000_CTRL);
1627        ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1628        ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1629                     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1630                     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1631                     E1000_CTRL_FD |     /* Force Duplex to FULL */
1632                     E1000_CTRL_SLU);    /* Set link up enable bit */
1633
1634        if (hw->phy.type == e1000_phy_m88)
1635                ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1636
1637        wr32(E1000_CTRL, ctrl_reg);
1638
1639        /* Disable the receiver on the PHY so when a cable is plugged in, the
1640         * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1641         */
1642        if (hw->phy.type == e1000_phy_m88)
1643                igb_phy_disable_receiver(adapter);
1644
1645        mdelay(500);
1646        return 0;
1647}
1648
1649static int igb_set_phy_loopback(struct igb_adapter *adapter)
1650{
1651        return igb_integrated_phy_loopback(adapter);
1652}
1653
1654static int igb_setup_loopback_test(struct igb_adapter *adapter)
1655{
1656        struct e1000_hw *hw = &adapter->hw;
1657        u32 reg;
1658
1659        reg = rd32(E1000_CTRL_EXT);
1660
1661        /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1662        if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1663                if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1664                (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1665                (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1666                (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1667                (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1668
1669                        /* Enable DH89xxCC MPHY for near end loopback */
1670                        reg = rd32(E1000_MPHY_ADDR_CTL);
1671                        reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1672                        E1000_MPHY_PCS_CLK_REG_OFFSET;
1673                        wr32(E1000_MPHY_ADDR_CTL, reg);
1674
1675                        reg = rd32(E1000_MPHY_DATA);
1676                        reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1677                        wr32(E1000_MPHY_DATA, reg);
1678                }
1679
1680                reg = rd32(E1000_RCTL);
1681                reg |= E1000_RCTL_LBM_TCVR;
1682                wr32(E1000_RCTL, reg);
1683
1684                wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1685
1686                reg = rd32(E1000_CTRL);
1687                reg &= ~(E1000_CTRL_RFCE |
1688                         E1000_CTRL_TFCE |
1689                         E1000_CTRL_LRST);
1690                reg |= E1000_CTRL_SLU |
1691                       E1000_CTRL_FD;
1692                wr32(E1000_CTRL, reg);
1693
1694                /* Unset switch control to serdes energy detect */
1695                reg = rd32(E1000_CONNSW);
1696                reg &= ~E1000_CONNSW_ENRGSRC;
1697                wr32(E1000_CONNSW, reg);
1698
1699                /* Unset sigdetect for SERDES loopback on
1700                 * 82580 and newer devices.
1701                 */
1702                if (hw->mac.type >= e1000_82580) {
1703                        reg = rd32(E1000_PCS_CFG0);
1704                        reg |= E1000_PCS_CFG_IGN_SD;
1705                        wr32(E1000_PCS_CFG0, reg);
1706                }
1707
1708                /* Set PCS register for forced speed */
1709                reg = rd32(E1000_PCS_LCTL);
1710                reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1711                reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1712                       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1713                       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1714                       E1000_PCS_LCTL_FSD |           /* Force Speed */
1715                       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1716                wr32(E1000_PCS_LCTL, reg);
1717
1718                return 0;
1719        }
1720
1721        return igb_set_phy_loopback(adapter);
1722}
1723
1724static void igb_loopback_cleanup(struct igb_adapter *adapter)
1725{
1726        struct e1000_hw *hw = &adapter->hw;
1727        u32 rctl;
1728        u16 phy_reg;
1729
1730        if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1731        (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1732        (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1733        (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1734        (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1735                u32 reg;
1736
1737                /* Disable near end loopback on DH89xxCC */
1738                reg = rd32(E1000_MPHY_ADDR_CTL);
1739                reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1740                E1000_MPHY_PCS_CLK_REG_OFFSET;
1741                wr32(E1000_MPHY_ADDR_CTL, reg);
1742
1743                reg = rd32(E1000_MPHY_DATA);
1744                reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1745                wr32(E1000_MPHY_DATA, reg);
1746        }
1747
1748        rctl = rd32(E1000_RCTL);
1749        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1750        wr32(E1000_RCTL, rctl);
1751
1752        hw->mac.autoneg = true;
1753        igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1754        if (phy_reg & MII_CR_LOOPBACK) {
1755                phy_reg &= ~MII_CR_LOOPBACK;
1756                igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1757                igb_phy_sw_reset(hw);
1758        }
1759}
1760
1761static void igb_create_lbtest_frame(struct sk_buff *skb,
1762                                    unsigned int frame_size)
1763{
1764        memset(skb->data, 0xFF, frame_size);
1765        frame_size /= 2;
1766        memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1767        memset(&skb->data[frame_size + 10], 0xBE, 1);
1768        memset(&skb->data[frame_size + 12], 0xAF, 1);
1769}
1770
1771static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1772                                  unsigned int frame_size)
1773{
1774        unsigned char *data;
1775        bool match = true;
1776
1777        frame_size >>= 1;
1778
1779        data = kmap(rx_buffer->page);
1780
1781        if (data[3] != 0xFF ||
1782            data[frame_size + 10] != 0xBE ||
1783            data[frame_size + 12] != 0xAF)
1784                match = false;
1785
1786        kunmap(rx_buffer->page);
1787
1788        return match;
1789}
1790
1791static int igb_clean_test_rings(struct igb_ring *rx_ring,
1792                                struct igb_ring *tx_ring,
1793                                unsigned int size)
1794{
1795        union e1000_adv_rx_desc *rx_desc;
1796        struct igb_rx_buffer *rx_buffer_info;
1797        struct igb_tx_buffer *tx_buffer_info;
1798        u16 rx_ntc, tx_ntc, count = 0;
1799
1800        /* initialize next to clean and descriptor values */
1801        rx_ntc = rx_ring->next_to_clean;
1802        tx_ntc = tx_ring->next_to_clean;
1803        rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1804
1805        while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1806                /* check Rx buffer */
1807                rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1808
1809                /* sync Rx buffer for CPU read */
1810                dma_sync_single_for_cpu(rx_ring->dev,
1811                                        rx_buffer_info->dma,
1812                                        IGB_RX_BUFSZ,
1813                                        DMA_FROM_DEVICE);
1814
1815                /* verify contents of skb */
1816                if (igb_check_lbtest_frame(rx_buffer_info, size))
1817                        count++;
1818
1819                /* sync Rx buffer for device write */
1820                dma_sync_single_for_device(rx_ring->dev,
1821                                           rx_buffer_info->dma,
1822                                           IGB_RX_BUFSZ,
1823                                           DMA_FROM_DEVICE);
1824
1825                /* unmap buffer on Tx side */
1826                tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1827                igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1828
1829                /* increment Rx/Tx next to clean counters */
1830                rx_ntc++;
1831                if (rx_ntc == rx_ring->count)
1832                        rx_ntc = 0;
1833                tx_ntc++;
1834                if (tx_ntc == tx_ring->count)
1835                        tx_ntc = 0;
1836
1837                /* fetch next descriptor */
1838                rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1839        }
1840
1841        netdev_tx_reset_queue(txring_txq(tx_ring));
1842
1843        /* re-map buffers to ring, store next to clean values */
1844        igb_alloc_rx_buffers(rx_ring, count);
1845        rx_ring->next_to_clean = rx_ntc;
1846        tx_ring->next_to_clean = tx_ntc;
1847
1848        return count;
1849}
1850
1851static int igb_run_loopback_test(struct igb_adapter *adapter)
1852{
1853        struct igb_ring *tx_ring = &adapter->test_tx_ring;
1854        struct igb_ring *rx_ring = &adapter->test_rx_ring;
1855        u16 i, j, lc, good_cnt;
1856        int ret_val = 0;
1857        unsigned int size = IGB_RX_HDR_LEN;
1858        netdev_tx_t tx_ret_val;
1859        struct sk_buff *skb;
1860
1861        /* allocate test skb */
1862        skb = alloc_skb(size, GFP_KERNEL);
1863        if (!skb)
1864                return 11;
1865
1866        /* place data into test skb */
1867        igb_create_lbtest_frame(skb, size);
1868        skb_put(skb, size);
1869
1870        /* Calculate the loop count based on the largest descriptor ring
1871         * The idea is to wrap the largest ring a number of times using 64
1872         * send/receive pairs during each loop
1873         */
1874
1875        if (rx_ring->count <= tx_ring->count)
1876                lc = ((tx_ring->count / 64) * 2) + 1;
1877        else
1878                lc = ((rx_ring->count / 64) * 2) + 1;
1879
1880        for (j = 0; j <= lc; j++) { /* loop count loop */
1881                /* reset count of good packets */
1882                good_cnt = 0;
1883
1884                /* place 64 packets on the transmit queue*/
1885                for (i = 0; i < 64; i++) {
1886                        skb_get(skb);
1887                        tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1888                        if (tx_ret_val == NETDEV_TX_OK)
1889                                good_cnt++;
1890                }
1891
1892                if (good_cnt != 64) {
1893                        ret_val = 12;
1894                        break;
1895                }
1896
1897                /* allow 200 milliseconds for packets to go from Tx to Rx */
1898                msleep(200);
1899
1900                good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1901                if (good_cnt != 64) {
1902                        ret_val = 13;
1903                        break;
1904                }
1905        } /* end loop count loop */
1906
1907        /* free the original skb */
1908        kfree_skb(skb);
1909
1910        return ret_val;
1911}
1912
1913static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1914{
1915        /* PHY loopback cannot be performed if SoL/IDER
1916         * sessions are active
1917         */
1918        if (igb_check_reset_block(&adapter->hw)) {
1919                dev_err(&adapter->pdev->dev,
1920                        "Cannot do PHY loopback test when SoL/IDER is active.\n");
1921                *data = 0;
1922                goto out;
1923        }
1924
1925        if (adapter->hw.mac.type == e1000_i354) {
1926                dev_info(&adapter->pdev->dev,
1927                        "Loopback test not supported on i354.\n");
1928                *data = 0;
1929                goto out;
1930        }
1931        *data = igb_setup_desc_rings(adapter);
1932        if (*data)
1933                goto out;
1934        *data = igb_setup_loopback_test(adapter);
1935        if (*data)
1936                goto err_loopback;
1937        *data = igb_run_loopback_test(adapter);
1938        igb_loopback_cleanup(adapter);
1939
1940err_loopback:
1941        igb_free_desc_rings(adapter);
1942out:
1943        return *data;
1944}
1945
1946static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1947{
1948        struct e1000_hw *hw = &adapter->hw;
1949        *data = 0;
1950        if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1951                int i = 0;
1952                hw->mac.serdes_has_link = false;
1953
1954                /* On some blade server designs, link establishment
1955                 * could take as long as 2-3 minutes
1956                 */
1957                do {
1958                        hw->mac.ops.check_for_link(&adapter->hw);
1959                        if (hw->mac.serdes_has_link)
1960                                return *data;
1961                        msleep(20);
1962                } while (i++ < 3750);
1963
1964                *data = 1;
1965        } else {
1966                hw->mac.ops.check_for_link(&adapter->hw);
1967                if (hw->mac.autoneg)
1968                        msleep(5000);
1969
1970                if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1971                        *data = 1;
1972        }
1973        return *data;
1974}
1975
1976static void igb_diag_test(struct net_device *netdev,
1977                          struct ethtool_test *eth_test, u64 *data)
1978{
1979        struct igb_adapter *adapter = netdev_priv(netdev);
1980        u16 autoneg_advertised;
1981        u8 forced_speed_duplex, autoneg;
1982        bool if_running = netif_running(netdev);
1983
1984        set_bit(__IGB_TESTING, &adapter->state);
1985
1986        /* can't do offline tests on media switching devices */
1987        if (adapter->hw.dev_spec._82575.mas_capable)
1988                eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1989        if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1990                /* Offline tests */
1991
1992                /* save speed, duplex, autoneg settings */
1993                autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1994                forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1995                autoneg = adapter->hw.mac.autoneg;
1996
1997                dev_info(&adapter->pdev->dev, "offline testing starting\n");
1998
1999                /* power up link for link test */
2000                igb_power_up_link(adapter);
2001
2002                /* Link test performed before hardware reset so autoneg doesn't
2003                 * interfere with test result
2004                 */
2005                if (igb_link_test(adapter, &data[4]))
2006                        eth_test->flags |= ETH_TEST_FL_FAILED;
2007
2008                if (if_running)
2009                        /* indicate we're in test mode */
2010                        dev_close(netdev);
2011                else
2012                        igb_reset(adapter);
2013
2014                if (igb_reg_test(adapter, &data[0]))
2015                        eth_test->flags |= ETH_TEST_FL_FAILED;
2016
2017                igb_reset(adapter);
2018                if (igb_eeprom_test(adapter, &data[1]))
2019                        eth_test->flags |= ETH_TEST_FL_FAILED;
2020
2021                igb_reset(adapter);
2022                if (igb_intr_test(adapter, &data[2]))
2023                        eth_test->flags |= ETH_TEST_FL_FAILED;
2024
2025                igb_reset(adapter);
2026                /* power up link for loopback test */
2027                igb_power_up_link(adapter);
2028                if (igb_loopback_test(adapter, &data[3]))
2029                        eth_test->flags |= ETH_TEST_FL_FAILED;
2030
2031                /* restore speed, duplex, autoneg settings */
2032                adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2033                adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2034                adapter->hw.mac.autoneg = autoneg;
2035
2036                /* force this routine to wait until autoneg complete/timeout */
2037                adapter->hw.phy.autoneg_wait_to_complete = true;
2038                igb_reset(adapter);
2039                adapter->hw.phy.autoneg_wait_to_complete = false;
2040
2041                clear_bit(__IGB_TESTING, &adapter->state);
2042                if (if_running)
2043                        dev_open(netdev);
2044        } else {
2045                dev_info(&adapter->pdev->dev, "online testing starting\n");
2046
2047                /* PHY is powered down when interface is down */
2048                if (if_running && igb_link_test(adapter, &data[4]))
2049                        eth_test->flags |= ETH_TEST_FL_FAILED;
2050                else
2051                        data[4] = 0;
2052
2053                /* Online tests aren't run; pass by default */
2054                data[0] = 0;
2055                data[1] = 0;
2056                data[2] = 0;
2057                data[3] = 0;
2058
2059                clear_bit(__IGB_TESTING, &adapter->state);
2060        }
2061        msleep_interruptible(4 * 1000);
2062}
2063
2064static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2065{
2066        struct igb_adapter *adapter = netdev_priv(netdev);
2067
2068        wol->wolopts = 0;
2069
2070        if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2071                return;
2072
2073        wol->supported = WAKE_UCAST | WAKE_MCAST |
2074                         WAKE_BCAST | WAKE_MAGIC |
2075                         WAKE_PHY;
2076
2077        /* apply any specific unsupported masks here */
2078        switch (adapter->hw.device_id) {
2079        default:
2080                break;
2081        }
2082
2083        if (adapter->wol & E1000_WUFC_EX)
2084                wol->wolopts |= WAKE_UCAST;
2085        if (adapter->wol & E1000_WUFC_MC)
2086                wol->wolopts |= WAKE_MCAST;
2087        if (adapter->wol & E1000_WUFC_BC)
2088                wol->wolopts |= WAKE_BCAST;
2089        if (adapter->wol & E1000_WUFC_MAG)
2090                wol->wolopts |= WAKE_MAGIC;
2091        if (adapter->wol & E1000_WUFC_LNKC)
2092                wol->wolopts |= WAKE_PHY;
2093}
2094
2095static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2096{
2097        struct igb_adapter *adapter = netdev_priv(netdev);
2098
2099        if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2100                return -EOPNOTSUPP;
2101
2102        if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2103                return wol->wolopts ? -EOPNOTSUPP : 0;
2104
2105        /* these settings will always override what we currently have */
2106        adapter->wol = 0;
2107
2108        if (wol->wolopts & WAKE_UCAST)
2109                adapter->wol |= E1000_WUFC_EX;
2110        if (wol->wolopts & WAKE_MCAST)
2111                adapter->wol |= E1000_WUFC_MC;
2112        if (wol->wolopts & WAKE_BCAST)
2113                adapter->wol |= E1000_WUFC_BC;
2114        if (wol->wolopts & WAKE_MAGIC)
2115                adapter->wol |= E1000_WUFC_MAG;
2116        if (wol->wolopts & WAKE_PHY)
2117                adapter->wol |= E1000_WUFC_LNKC;
2118        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2119
2120        return 0;
2121}
2122
2123/* bit defines for adapter->led_status */
2124#define IGB_LED_ON              0
2125
2126static int igb_set_phys_id(struct net_device *netdev,
2127                           enum ethtool_phys_id_state state)
2128{
2129        struct igb_adapter *adapter = netdev_priv(netdev);
2130        struct e1000_hw *hw = &adapter->hw;
2131
2132        switch (state) {
2133        case ETHTOOL_ID_ACTIVE:
2134                igb_blink_led(hw);
2135                return 2;
2136        case ETHTOOL_ID_ON:
2137                igb_blink_led(hw);
2138                break;
2139        case ETHTOOL_ID_OFF:
2140                igb_led_off(hw);
2141                break;
2142        case ETHTOOL_ID_INACTIVE:
2143                igb_led_off(hw);
2144                clear_bit(IGB_LED_ON, &adapter->led_status);
2145                igb_cleanup_led(hw);
2146                break;
2147        }
2148
2149        return 0;
2150}
2151
2152static int igb_set_coalesce(struct net_device *netdev,
2153                            struct ethtool_coalesce *ec)
2154{
2155        struct igb_adapter *adapter = netdev_priv(netdev);
2156        int i;
2157
2158        if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2159            ((ec->rx_coalesce_usecs > 3) &&
2160             (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2161            (ec->rx_coalesce_usecs == 2))
2162                return -EINVAL;
2163
2164        if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2165            ((ec->tx_coalesce_usecs > 3) &&
2166             (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2167            (ec->tx_coalesce_usecs == 2))
2168                return -EINVAL;
2169
2170        if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2171                return -EINVAL;
2172
2173        /* If ITR is disabled, disable DMAC */
2174        if (ec->rx_coalesce_usecs == 0) {
2175                if (adapter->flags & IGB_FLAG_DMAC)
2176                        adapter->flags &= ~IGB_FLAG_DMAC;
2177        }
2178
2179        /* convert to rate of irq's per second */
2180        if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2181                adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2182        else
2183                adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2184
2185        /* convert to rate of irq's per second */
2186        if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2187                adapter->tx_itr_setting = adapter->rx_itr_setting;
2188        else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2189                adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2190        else
2191                adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2192
2193        for (i = 0; i < adapter->num_q_vectors; i++) {
2194                struct igb_q_vector *q_vector = adapter->q_vector[i];
2195                q_vector->tx.work_limit = adapter->tx_work_limit;
2196                if (q_vector->rx.ring)
2197                        q_vector->itr_val = adapter->rx_itr_setting;
2198                else
2199                        q_vector->itr_val = adapter->tx_itr_setting;
2200                if (q_vector->itr_val && q_vector->itr_val <= 3)
2201                        q_vector->itr_val = IGB_START_ITR;
2202                q_vector->set_itr = 1;
2203        }
2204
2205        return 0;
2206}
2207
2208static int igb_get_coalesce(struct net_device *netdev,
2209                            struct ethtool_coalesce *ec)
2210{
2211        struct igb_adapter *adapter = netdev_priv(netdev);
2212
2213        if (adapter->rx_itr_setting <= 3)
2214                ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2215        else
2216                ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2217
2218        if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2219                if (adapter->tx_itr_setting <= 3)
2220                        ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2221                else
2222                        ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2223        }
2224
2225        return 0;
2226}
2227
2228static int igb_nway_reset(struct net_device *netdev)
2229{
2230        struct igb_adapter *adapter = netdev_priv(netdev);
2231        if (netif_running(netdev))
2232                igb_reinit_locked(adapter);
2233        return 0;
2234}
2235
2236static int igb_get_sset_count(struct net_device *netdev, int sset)
2237{
2238        switch (sset) {
2239        case ETH_SS_STATS:
2240                return IGB_STATS_LEN;
2241        case ETH_SS_TEST:
2242                return IGB_TEST_LEN;
2243        default:
2244                return -ENOTSUPP;
2245        }
2246}
2247
2248static void igb_get_ethtool_stats(struct net_device *netdev,
2249                                  struct ethtool_stats *stats, u64 *data)
2250{
2251        struct igb_adapter *adapter = netdev_priv(netdev);
2252        struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2253        unsigned int start;
2254        struct igb_ring *ring;
2255        int i, j;
2256        char *p;
2257
2258        spin_lock(&adapter->stats64_lock);
2259        igb_update_stats(adapter, net_stats);
2260
2261        for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2262                p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2263                data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2264                        sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2265        }
2266        for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2267                p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2268                data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2269                        sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2270        }
2271        for (j = 0; j < adapter->num_tx_queues; j++) {
2272                u64     restart2;
2273
2274                ring = adapter->tx_ring[j];
2275                do {
2276                        start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2277                        data[i]   = ring->tx_stats.packets;
2278                        data[i+1] = ring->tx_stats.bytes;
2279                        data[i+2] = ring->tx_stats.restart_queue;
2280                } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2281                do {
2282                        start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2283                        restart2  = ring->tx_stats.restart_queue2;
2284                } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2285                data[i+2] += restart2;
2286
2287                i += IGB_TX_QUEUE_STATS_LEN;
2288        }
2289        for (j = 0; j < adapter->num_rx_queues; j++) {
2290                ring = adapter->rx_ring[j];
2291                do {
2292                        start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2293                        data[i]   = ring->rx_stats.packets;
2294                        data[i+1] = ring->rx_stats.bytes;
2295                        data[i+2] = ring->rx_stats.drops;
2296                        data[i+3] = ring->rx_stats.csum_err;
2297                        data[i+4] = ring->rx_stats.alloc_failed;
2298                } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2299                i += IGB_RX_QUEUE_STATS_LEN;
2300        }
2301        spin_unlock(&adapter->stats64_lock);
2302}
2303
2304static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2305{
2306        struct igb_adapter *adapter = netdev_priv(netdev);
2307        u8 *p = data;
2308        int i;
2309
2310        switch (stringset) {
2311        case ETH_SS_TEST:
2312                memcpy(data, *igb_gstrings_test,
2313                        IGB_TEST_LEN*ETH_GSTRING_LEN);
2314                break;
2315        case ETH_SS_STATS:
2316                for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2317                        memcpy(p, igb_gstrings_stats[i].stat_string,
2318                               ETH_GSTRING_LEN);
2319                        p += ETH_GSTRING_LEN;
2320                }
2321                for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2322                        memcpy(p, igb_gstrings_net_stats[i].stat_string,
2323                               ETH_GSTRING_LEN);
2324                        p += ETH_GSTRING_LEN;
2325                }
2326                for (i = 0; i < adapter->num_tx_queues; i++) {
2327                        sprintf(p, "tx_queue_%u_packets", i);
2328                        p += ETH_GSTRING_LEN;
2329                        sprintf(p, "tx_queue_%u_bytes", i);
2330                        p += ETH_GSTRING_LEN;
2331                        sprintf(p, "tx_queue_%u_restart", i);
2332                        p += ETH_GSTRING_LEN;
2333                }
2334                for (i = 0; i < adapter->num_rx_queues; i++) {
2335                        sprintf(p, "rx_queue_%u_packets", i);
2336                        p += ETH_GSTRING_LEN;
2337                        sprintf(p, "rx_queue_%u_bytes", i);
2338                        p += ETH_GSTRING_LEN;
2339                        sprintf(p, "rx_queue_%u_drops", i);
2340                        p += ETH_GSTRING_LEN;
2341                        sprintf(p, "rx_queue_%u_csum_err", i);
2342                        p += ETH_GSTRING_LEN;
2343                        sprintf(p, "rx_queue_%u_alloc_failed", i);
2344                        p += ETH_GSTRING_LEN;
2345                }
2346                /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2347                break;
2348        }
2349}
2350
2351static int igb_get_ts_info(struct net_device *dev,
2352                           struct ethtool_ts_info *info)
2353{
2354        struct igb_adapter *adapter = netdev_priv(dev);
2355
2356        if (adapter->ptp_clock)
2357                info->phc_index = ptp_clock_index(adapter->ptp_clock);
2358        else
2359                info->phc_index = -1;
2360
2361        switch (adapter->hw.mac.type) {
2362        case e1000_82575:
2363                info->so_timestamping =
2364                        SOF_TIMESTAMPING_TX_SOFTWARE |
2365                        SOF_TIMESTAMPING_RX_SOFTWARE |
2366                        SOF_TIMESTAMPING_SOFTWARE;
2367                return 0;
2368        case e1000_82576:
2369        case e1000_82580:
2370        case e1000_i350:
2371        case e1000_i354:
2372        case e1000_i210:
2373        case e1000_i211:
2374                info->so_timestamping =
2375                        SOF_TIMESTAMPING_TX_SOFTWARE |
2376                        SOF_TIMESTAMPING_RX_SOFTWARE |
2377                        SOF_TIMESTAMPING_SOFTWARE |
2378                        SOF_TIMESTAMPING_TX_HARDWARE |
2379                        SOF_TIMESTAMPING_RX_HARDWARE |
2380                        SOF_TIMESTAMPING_RAW_HARDWARE;
2381
2382                info->tx_types =
2383                        (1 << HWTSTAMP_TX_OFF) |
2384                        (1 << HWTSTAMP_TX_ON);
2385
2386                info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2387
2388                /* 82576 does not support timestamping all packets. */
2389                if (adapter->hw.mac.type >= e1000_82580)
2390                        info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2391                else
2392                        info->rx_filters |=
2393                                (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2394                                (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2395                                (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2396                                (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2397                                (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2398                                (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2399                                (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2400
2401                return 0;
2402        default:
2403                return -EOPNOTSUPP;
2404        }
2405}
2406
2407static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2408                                 struct ethtool_rxnfc *cmd)
2409{
2410        cmd->data = 0;
2411
2412        /* Report default options for RSS on igb */
2413        switch (cmd->flow_type) {
2414        case TCP_V4_FLOW:
2415                cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2416        case UDP_V4_FLOW:
2417                if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2418                        cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2419        case SCTP_V4_FLOW:
2420        case AH_ESP_V4_FLOW:
2421        case AH_V4_FLOW:
2422        case ESP_V4_FLOW:
2423        case IPV4_FLOW:
2424                cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2425                break;
2426        case TCP_V6_FLOW:
2427                cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2428        case UDP_V6_FLOW:
2429                if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2430                        cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2431        case SCTP_V6_FLOW:
2432        case AH_ESP_V6_FLOW:
2433        case AH_V6_FLOW:
2434        case ESP_V6_FLOW:
2435        case IPV6_FLOW:
2436                cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2437                break;
2438        default:
2439                return -EINVAL;
2440        }
2441
2442        return 0;
2443}
2444
2445static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2446                         u32 *rule_locs)
2447{
2448        struct igb_adapter *adapter = netdev_priv(dev);
2449        int ret = -EOPNOTSUPP;
2450
2451        switch (cmd->cmd) {
2452        case ETHTOOL_GRXRINGS:
2453                cmd->data = adapter->num_rx_queues;
2454                ret = 0;
2455                break;
2456        case ETHTOOL_GRXFH:
2457                ret = igb_get_rss_hash_opts(adapter, cmd);
2458                break;
2459        default:
2460                break;
2461        }
2462
2463        return ret;
2464}
2465
2466#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2467                       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2468static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2469                                struct ethtool_rxnfc *nfc)
2470{
2471        u32 flags = adapter->flags;
2472
2473        /* RSS does not support anything other than hashing
2474         * to queues on src and dst IPs and ports
2475         */
2476        if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2477                          RXH_L4_B_0_1 | RXH_L4_B_2_3))
2478                return -EINVAL;
2479
2480        switch (nfc->flow_type) {
2481        case TCP_V4_FLOW:
2482        case TCP_V6_FLOW:
2483                if (!(nfc->data & RXH_IP_SRC) ||
2484                    !(nfc->data & RXH_IP_DST) ||
2485                    !(nfc->data & RXH_L4_B_0_1) ||
2486                    !(nfc->data & RXH_L4_B_2_3))
2487                        return -EINVAL;
2488                break;
2489        case UDP_V4_FLOW:
2490                if (!(nfc->data & RXH_IP_SRC) ||
2491                    !(nfc->data & RXH_IP_DST))
2492                        return -EINVAL;
2493                switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2494                case 0:
2495                        flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2496                        break;
2497                case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2498                        flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2499                        break;
2500                default:
2501                        return -EINVAL;
2502                }
2503                break;
2504        case UDP_V6_FLOW:
2505                if (!(nfc->data & RXH_IP_SRC) ||
2506                    !(nfc->data & RXH_IP_DST))
2507                        return -EINVAL;
2508                switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2509                case 0:
2510                        flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2511                        break;
2512                case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2513                        flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2514                        break;
2515                default:
2516                        return -EINVAL;
2517                }
2518                break;
2519        case AH_ESP_V4_FLOW:
2520        case AH_V4_FLOW:
2521        case ESP_V4_FLOW:
2522        case SCTP_V4_FLOW:
2523        case AH_ESP_V6_FLOW:
2524        case AH_V6_FLOW:
2525        case ESP_V6_FLOW:
2526        case SCTP_V6_FLOW:
2527                if (!(nfc->data & RXH_IP_SRC) ||
2528                    !(nfc->data & RXH_IP_DST) ||
2529                    (nfc->data & RXH_L4_B_0_1) ||
2530                    (nfc->data & RXH_L4_B_2_3))
2531                        return -EINVAL;
2532                break;
2533        default:
2534                return -EINVAL;
2535        }
2536
2537        /* if we changed something we need to update flags */
2538        if (flags != adapter->flags) {
2539                struct e1000_hw *hw = &adapter->hw;
2540                u32 mrqc = rd32(E1000_MRQC);
2541
2542                if ((flags & UDP_RSS_FLAGS) &&
2543                    !(adapter->flags & UDP_RSS_FLAGS))
2544                        dev_err(&adapter->pdev->dev,
2545                                "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2546
2547                adapter->flags = flags;
2548
2549                /* Perform hash on these packet types */
2550                mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2551                        E1000_MRQC_RSS_FIELD_IPV4_TCP |
2552                        E1000_MRQC_RSS_FIELD_IPV6 |
2553                        E1000_MRQC_RSS_FIELD_IPV6_TCP;
2554
2555                mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2556                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
2557
2558                if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2559                        mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2560
2561                if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2562                        mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2563
2564                wr32(E1000_MRQC, mrqc);
2565        }
2566
2567        return 0;
2568}
2569
2570static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2571{
2572        struct igb_adapter *adapter = netdev_priv(dev);
2573        int ret = -EOPNOTSUPP;
2574
2575        switch (cmd->cmd) {
2576        case ETHTOOL_SRXFH:
2577                ret = igb_set_rss_hash_opt(adapter, cmd);
2578                break;
2579        default:
2580                break;
2581        }
2582
2583        return ret;
2584}
2585
2586static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2587{
2588        struct igb_adapter *adapter = netdev_priv(netdev);
2589        struct e1000_hw *hw = &adapter->hw;
2590        u32 ret_val;
2591        u16 phy_data;
2592
2593        if ((hw->mac.type < e1000_i350) ||
2594            (hw->phy.media_type != e1000_media_type_copper))
2595                return -EOPNOTSUPP;
2596
2597        edata->supported = (SUPPORTED_1000baseT_Full |
2598                            SUPPORTED_100baseT_Full);
2599        if (!hw->dev_spec._82575.eee_disable)
2600                edata->advertised =
2601                        mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2602
2603        /* The IPCNFG and EEER registers are not supported on I354. */
2604        if (hw->mac.type == e1000_i354) {
2605                igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2606        } else {
2607                u32 eeer;
2608
2609                eeer = rd32(E1000_EEER);
2610
2611                /* EEE status on negotiated link */
2612                if (eeer & E1000_EEER_EEE_NEG)
2613                        edata->eee_active = true;
2614
2615                if (eeer & E1000_EEER_TX_LPI_EN)
2616                        edata->tx_lpi_enabled = true;
2617        }
2618
2619        /* EEE Link Partner Advertised */
2620        switch (hw->mac.type) {
2621        case e1000_i350:
2622                ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2623                                           &phy_data);
2624                if (ret_val)
2625                        return -ENODATA;
2626
2627                edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2628                break;
2629        case e1000_i354:
2630        case e1000_i210:
2631        case e1000_i211:
2632                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2633                                             E1000_EEE_LP_ADV_DEV_I210,
2634                                             &phy_data);
2635                if (ret_val)
2636                        return -ENODATA;
2637
2638                edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2639
2640                break;
2641        default:
2642                break;
2643        }
2644
2645        edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2646
2647        if ((hw->mac.type == e1000_i354) &&
2648            (edata->eee_enabled))
2649                edata->tx_lpi_enabled = true;
2650
2651        /* Report correct negotiated EEE status for devices that
2652         * wrongly report EEE at half-duplex
2653         */
2654        if (adapter->link_duplex == HALF_DUPLEX) {
2655                edata->eee_enabled = false;
2656                edata->eee_active = false;
2657                edata->tx_lpi_enabled = false;
2658                edata->advertised &= ~edata->advertised;
2659        }
2660
2661        return 0;
2662}
2663
2664static int igb_set_eee(struct net_device *netdev,
2665                       struct ethtool_eee *edata)
2666{
2667        struct igb_adapter *adapter = netdev_priv(netdev);
2668        struct e1000_hw *hw = &adapter->hw;
2669        struct ethtool_eee eee_curr;
2670        s32 ret_val;
2671
2672        if ((hw->mac.type < e1000_i350) ||
2673            (hw->phy.media_type != e1000_media_type_copper))
2674                return -EOPNOTSUPP;
2675
2676        memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2677
2678        ret_val = igb_get_eee(netdev, &eee_curr);
2679        if (ret_val)
2680                return ret_val;
2681
2682        if (eee_curr.eee_enabled) {
2683                if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2684                        dev_err(&adapter->pdev->dev,
2685                                "Setting EEE tx-lpi is not supported\n");
2686                        return -EINVAL;
2687                }
2688
2689                /* Tx LPI timer is not implemented currently */
2690                if (edata->tx_lpi_timer) {
2691                        dev_err(&adapter->pdev->dev,
2692                                "Setting EEE Tx LPI timer is not supported\n");
2693                        return -EINVAL;
2694                }
2695
2696                if (edata->advertised &
2697                    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2698                        dev_err(&adapter->pdev->dev,
2699                                "EEE Advertisement supports only 100Tx and or 100T full duplex\n");
2700                        return -EINVAL;
2701                }
2702
2703        } else if (!edata->eee_enabled) {
2704                dev_err(&adapter->pdev->dev,
2705                        "Setting EEE options are not supported with EEE disabled\n");
2706                        return -EINVAL;
2707                }
2708
2709        adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2710        if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2711                hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2712                adapter->flags |= IGB_FLAG_EEE;
2713                if (hw->mac.type == e1000_i350)
2714                        igb_set_eee_i350(hw);
2715                else
2716                        igb_set_eee_i354(hw);
2717
2718                /* reset link */
2719                if (netif_running(netdev))
2720                        igb_reinit_locked(adapter);
2721                else
2722                        igb_reset(adapter);
2723        }
2724
2725        return 0;
2726}
2727
2728static int igb_get_module_info(struct net_device *netdev,
2729                               struct ethtool_modinfo *modinfo)
2730{
2731        struct igb_adapter *adapter = netdev_priv(netdev);
2732        struct e1000_hw *hw = &adapter->hw;
2733        u32 status = E1000_SUCCESS;
2734        u16 sff8472_rev, addr_mode;
2735        bool page_swap = false;
2736
2737        if ((hw->phy.media_type == e1000_media_type_copper) ||
2738            (hw->phy.media_type == e1000_media_type_unknown))
2739                return -EOPNOTSUPP;
2740
2741        /* Check whether we support SFF-8472 or not */
2742        status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2743        if (status != E1000_SUCCESS)
2744                return -EIO;
2745
2746        /* addressing mode is not supported */
2747        status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2748        if (status != E1000_SUCCESS)
2749                return -EIO;
2750
2751        /* addressing mode is not supported */
2752        if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2753                hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2754                page_swap = true;
2755        }
2756
2757        if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2758                /* We have an SFP, but it does not support SFF-8472 */
2759                modinfo->type = ETH_MODULE_SFF_8079;
2760                modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2761        } else {
2762                /* We have an SFP which supports a revision of SFF-8472 */
2763                modinfo->type = ETH_MODULE_SFF_8472;
2764                modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2765        }
2766
2767        return 0;
2768}
2769
2770static int igb_get_module_eeprom(struct net_device *netdev,
2771                                 struct ethtool_eeprom *ee, u8 *data)
2772{
2773        struct igb_adapter *adapter = netdev_priv(netdev);
2774        struct e1000_hw *hw = &adapter->hw;
2775        u32 status = E1000_SUCCESS;
2776        u16 *dataword;
2777        u16 first_word, last_word;
2778        int i = 0;
2779
2780        if (ee->len == 0)
2781                return -EINVAL;
2782
2783        first_word = ee->offset >> 1;
2784        last_word = (ee->offset + ee->len - 1) >> 1;
2785
2786        dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2787                           GFP_KERNEL);
2788        if (!dataword)
2789                return -ENOMEM;
2790
2791        /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2792        for (i = 0; i < last_word - first_word + 1; i++) {
2793                status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2794                if (status != E1000_SUCCESS) {
2795                        /* Error occurred while reading module */
2796                        kfree(dataword);
2797                        return -EIO;
2798                }
2799
2800                be16_to_cpus(&dataword[i]);
2801        }
2802
2803        memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2804        kfree(dataword);
2805
2806        return 0;
2807}
2808
2809static int igb_ethtool_begin(struct net_device *netdev)
2810{
2811        struct igb_adapter *adapter = netdev_priv(netdev);
2812        pm_runtime_get_sync(&adapter->pdev->dev);
2813        return 0;
2814}
2815
2816static void igb_ethtool_complete(struct net_device *netdev)
2817{
2818        struct igb_adapter *adapter = netdev_priv(netdev);
2819        pm_runtime_put(&adapter->pdev->dev);
2820}
2821
2822static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2823{
2824        return IGB_RETA_SIZE;
2825}
2826
2827static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2828{
2829        struct igb_adapter *adapter = netdev_priv(netdev);
2830        int i;
2831
2832        for (i = 0; i < IGB_RETA_SIZE; i++)
2833                indir[i] = adapter->rss_indir_tbl[i];
2834
2835        return 0;
2836}
2837
2838void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2839{
2840        struct e1000_hw *hw = &adapter->hw;
2841        u32 reg = E1000_RETA(0);
2842        u32 shift = 0;
2843        int i = 0;
2844
2845        switch (hw->mac.type) {
2846        case e1000_82575:
2847                shift = 6;
2848                break;
2849        case e1000_82576:
2850                /* 82576 supports 2 RSS queues for SR-IOV */
2851                if (adapter->vfs_allocated_count)
2852                        shift = 3;
2853                break;
2854        default:
2855                break;
2856        }
2857
2858        while (i < IGB_RETA_SIZE) {
2859                u32 val = 0;
2860                int j;
2861
2862                for (j = 3; j >= 0; j--) {
2863                        val <<= 8;
2864                        val |= adapter->rss_indir_tbl[i + j];
2865                }
2866
2867                wr32(reg, val << shift);
2868                reg += 4;
2869                i += 4;
2870        }
2871}
2872
2873static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2874{
2875        struct igb_adapter *adapter = netdev_priv(netdev);
2876        struct e1000_hw *hw = &adapter->hw;
2877        int i;
2878        u32 num_queues;
2879
2880        num_queues = adapter->rss_queues;
2881
2882        switch (hw->mac.type) {
2883        case e1000_82576:
2884                /* 82576 supports 2 RSS queues for SR-IOV */
2885                if (adapter->vfs_allocated_count)
2886                        num_queues = 2;
2887                break;
2888        default:
2889                break;
2890        }
2891
2892        /* Verify user input. */
2893        for (i = 0; i < IGB_RETA_SIZE; i++)
2894                if (indir[i] >= num_queues)
2895                        return -EINVAL;
2896
2897
2898        for (i = 0; i < IGB_RETA_SIZE; i++)
2899                adapter->rss_indir_tbl[i] = indir[i];
2900
2901        igb_write_rss_indir_tbl(adapter);
2902
2903        return 0;
2904}
2905
2906static unsigned int igb_max_channels(struct igb_adapter *adapter)
2907{
2908        struct e1000_hw *hw = &adapter->hw;
2909        unsigned int max_combined = 0;
2910
2911        switch (hw->mac.type) {
2912        case e1000_i211:
2913                max_combined = IGB_MAX_RX_QUEUES_I211;
2914                break;
2915        case e1000_82575:
2916        case e1000_i210:
2917                max_combined = IGB_MAX_RX_QUEUES_82575;
2918                break;
2919        case e1000_i350:
2920                if (!!adapter->vfs_allocated_count) {
2921                        max_combined = 1;
2922                        break;
2923                }
2924                /* fall through */
2925        case e1000_82576:
2926                if (!!adapter->vfs_allocated_count) {
2927                        max_combined = 2;
2928                        break;
2929                }
2930                /* fall through */
2931        case e1000_82580:
2932        case e1000_i354:
2933        default:
2934                max_combined = IGB_MAX_RX_QUEUES;
2935                break;
2936        }
2937
2938        return max_combined;
2939}
2940
2941static void igb_get_channels(struct net_device *netdev,
2942                             struct ethtool_channels *ch)
2943{
2944        struct igb_adapter *adapter = netdev_priv(netdev);
2945
2946        /* Report maximum channels */
2947        ch->max_combined = igb_max_channels(adapter);
2948
2949        /* Report info for other vector */
2950        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2951                ch->max_other = NON_Q_VECTORS;
2952                ch->other_count = NON_Q_VECTORS;
2953        }
2954
2955        ch->combined_count = adapter->rss_queues;
2956}
2957
2958static int igb_set_channels(struct net_device *netdev,
2959                            struct ethtool_channels *ch)
2960{
2961        struct igb_adapter *adapter = netdev_priv(netdev);
2962        unsigned int count = ch->combined_count;
2963
2964        /* Verify they are not requesting separate vectors */
2965        if (!count || ch->rx_count || ch->tx_count)
2966                return -EINVAL;
2967
2968        /* Verify other_count is valid and has not been changed */
2969        if (ch->other_count != NON_Q_VECTORS)
2970                return -EINVAL;
2971
2972        /* Verify the number of channels doesn't exceed hw limits */
2973        if (count > igb_max_channels(adapter))
2974                return -EINVAL;
2975
2976        if (count != adapter->rss_queues) {
2977                adapter->rss_queues = count;
2978
2979                /* Hardware has to reinitialize queues and interrupts to
2980                 * match the new configuration.
2981                 */
2982                return igb_reinit_queues(adapter);
2983        }
2984
2985        return 0;
2986}
2987
2988static const struct ethtool_ops igb_ethtool_ops = {
2989        .get_settings           = igb_get_settings,
2990        .set_settings           = igb_set_settings,
2991        .get_drvinfo            = igb_get_drvinfo,
2992        .get_regs_len           = igb_get_regs_len,
2993        .get_regs               = igb_get_regs,
2994        .get_wol                = igb_get_wol,
2995        .set_wol                = igb_set_wol,
2996        .get_msglevel           = igb_get_msglevel,
2997        .set_msglevel           = igb_set_msglevel,
2998        .nway_reset             = igb_nway_reset,
2999        .get_link               = igb_get_link,
3000        .get_eeprom_len         = igb_get_eeprom_len,
3001        .get_eeprom             = igb_get_eeprom,
3002        .set_eeprom             = igb_set_eeprom,
3003        .get_ringparam          = igb_get_ringparam,
3004        .set_ringparam          = igb_set_ringparam,
3005        .get_pauseparam         = igb_get_pauseparam,
3006        .set_pauseparam         = igb_set_pauseparam,
3007        .self_test              = igb_diag_test,
3008        .get_strings            = igb_get_strings,
3009        .set_phys_id            = igb_set_phys_id,
3010        .get_sset_count         = igb_get_sset_count,
3011        .get_ethtool_stats      = igb_get_ethtool_stats,
3012        .get_coalesce           = igb_get_coalesce,
3013        .set_coalesce           = igb_set_coalesce,
3014        .get_ts_info            = igb_get_ts_info,
3015        .get_rxnfc              = igb_get_rxnfc,
3016        .set_rxnfc              = igb_set_rxnfc,
3017        .get_eee                = igb_get_eee,
3018        .set_eee                = igb_set_eee,
3019        .get_module_info        = igb_get_module_info,
3020        .get_module_eeprom      = igb_get_module_eeprom,
3021        .get_rxfh_indir_size    = igb_get_rxfh_indir_size,
3022        .get_rxfh_indir         = igb_get_rxfh_indir,
3023        .set_rxfh_indir         = igb_set_rxfh_indir,
3024        .get_channels           = igb_get_channels,
3025        .set_channels           = igb_set_channels,
3026        .begin                  = igb_ethtool_begin,
3027        .complete               = igb_ethtool_complete,
3028};
3029
3030void igb_set_ethtool_ops(struct net_device *netdev)
3031{
3032        SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
3033}
3034