linux/drivers/net/wireless/ath/ath5k/base.c
<<
>>
Prefs
   1/*-
   2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
   3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
   4 * Copyright (c) 2006 Devicescape Software, Inc.
   5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
   6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7 *
   8 * All rights reserved.
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 * 1. Redistributions of source code must retain the above copyright
  14 *    notice, this list of conditions and the following disclaimer,
  15 *    without modification.
  16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18 *    redistribution must be conditioned upon including a substantially
  19 *    similar Disclaimer requirement for further binary redistribution.
  20 * 3. Neither the names of the above-listed copyright holders nor the names
  21 *    of any contributors may be used to endorse or promote products derived
  22 *    from this software without specific prior written permission.
  23 *
  24 * Alternatively, this software may be distributed under the terms of the
  25 * GNU General Public License ("GPL") version 2 as published by the Free
  26 * Software Foundation.
  27 *
  28 * NO WARRANTY
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39 * THE POSSIBILITY OF SUCH DAMAGES.
  40 *
  41 */
  42
  43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  44
  45#include <linux/module.h>
  46#include <linux/delay.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/hardirq.h>
  49#include <linux/if.h>
  50#include <linux/io.h>
  51#include <linux/netdevice.h>
  52#include <linux/cache.h>
  53#include <linux/ethtool.h>
  54#include <linux/uaccess.h>
  55#include <linux/slab.h>
  56#include <linux/etherdevice.h>
  57#include <linux/nl80211.h>
  58
  59#include <net/cfg80211.h>
  60#include <net/ieee80211_radiotap.h>
  61
  62#include <asm/unaligned.h>
  63
  64#include <net/mac80211.h>
  65#include "base.h"
  66#include "reg.h"
  67#include "debug.h"
  68#include "ani.h"
  69#include "ath5k.h"
  70#include "../regd.h"
  71
  72#define CREATE_TRACE_POINTS
  73#include "trace.h"
  74
  75bool ath5k_modparam_nohwcrypt;
  76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
  77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  78
  79static bool modparam_fastchanswitch;
  80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
  81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
  82
  83static bool ath5k_modparam_no_hw_rfkill_switch;
  84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
  85                                                                bool, S_IRUGO);
  86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
  87
  88
  89/* Module info */
  90MODULE_AUTHOR("Jiri Slaby");
  91MODULE_AUTHOR("Nick Kossifidis");
  92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
  93MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
  94MODULE_LICENSE("Dual BSD/GPL");
  95
  96static int ath5k_init(struct ieee80211_hw *hw);
  97static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  98                                                                bool skip_pcu);
  99
 100/* Known SREVs */
 101static const struct ath5k_srev_name srev_names[] = {
 102#ifdef CONFIG_ATHEROS_AR231X
 103        { "5312",       AR5K_VERSION_MAC,       AR5K_SREV_AR5312_R2 },
 104        { "5312",       AR5K_VERSION_MAC,       AR5K_SREV_AR5312_R7 },
 105        { "2313",       AR5K_VERSION_MAC,       AR5K_SREV_AR2313_R8 },
 106        { "2315",       AR5K_VERSION_MAC,       AR5K_SREV_AR2315_R6 },
 107        { "2315",       AR5K_VERSION_MAC,       AR5K_SREV_AR2315_R7 },
 108        { "2317",       AR5K_VERSION_MAC,       AR5K_SREV_AR2317_R1 },
 109        { "2317",       AR5K_VERSION_MAC,       AR5K_SREV_AR2317_R2 },
 110#else
 111        { "5210",       AR5K_VERSION_MAC,       AR5K_SREV_AR5210 },
 112        { "5311",       AR5K_VERSION_MAC,       AR5K_SREV_AR5311 },
 113        { "5311A",      AR5K_VERSION_MAC,       AR5K_SREV_AR5311A },
 114        { "5311B",      AR5K_VERSION_MAC,       AR5K_SREV_AR5311B },
 115        { "5211",       AR5K_VERSION_MAC,       AR5K_SREV_AR5211 },
 116        { "5212",       AR5K_VERSION_MAC,       AR5K_SREV_AR5212 },
 117        { "5213",       AR5K_VERSION_MAC,       AR5K_SREV_AR5213 },
 118        { "5213A",      AR5K_VERSION_MAC,       AR5K_SREV_AR5213A },
 119        { "2413",       AR5K_VERSION_MAC,       AR5K_SREV_AR2413 },
 120        { "2414",       AR5K_VERSION_MAC,       AR5K_SREV_AR2414 },
 121        { "5424",       AR5K_VERSION_MAC,       AR5K_SREV_AR5424 },
 122        { "5413",       AR5K_VERSION_MAC,       AR5K_SREV_AR5413 },
 123        { "5414",       AR5K_VERSION_MAC,       AR5K_SREV_AR5414 },
 124        { "2415",       AR5K_VERSION_MAC,       AR5K_SREV_AR2415 },
 125        { "5416",       AR5K_VERSION_MAC,       AR5K_SREV_AR5416 },
 126        { "5418",       AR5K_VERSION_MAC,       AR5K_SREV_AR5418 },
 127        { "2425",       AR5K_VERSION_MAC,       AR5K_SREV_AR2425 },
 128        { "2417",       AR5K_VERSION_MAC,       AR5K_SREV_AR2417 },
 129#endif
 130        { "xxxxx",      AR5K_VERSION_MAC,       AR5K_SREV_UNKNOWN },
 131        { "5110",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5110 },
 132        { "5111",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5111 },
 133        { "5111A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5111A },
 134        { "2111",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2111 },
 135        { "5112",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112 },
 136        { "5112A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112A },
 137        { "5112B",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112B },
 138        { "2112",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112 },
 139        { "2112A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112A },
 140        { "2112B",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112B },
 141        { "2413",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2413 },
 142        { "5413",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5413 },
 143        { "5424",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5424 },
 144        { "5133",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5133 },
 145#ifdef CONFIG_ATHEROS_AR231X
 146        { "2316",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2316 },
 147        { "2317",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2317 },
 148#endif
 149        { "xxxxx",      AR5K_VERSION_RAD,       AR5K_SREV_UNKNOWN },
 150};
 151
 152static const struct ieee80211_rate ath5k_rates[] = {
 153        { .bitrate = 10,
 154          .hw_value = ATH5K_RATE_CODE_1M, },
 155        { .bitrate = 20,
 156          .hw_value = ATH5K_RATE_CODE_2M,
 157          .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
 158          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 159        { .bitrate = 55,
 160          .hw_value = ATH5K_RATE_CODE_5_5M,
 161          .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
 162          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 163        { .bitrate = 110,
 164          .hw_value = ATH5K_RATE_CODE_11M,
 165          .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
 166          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 167        { .bitrate = 60,
 168          .hw_value = ATH5K_RATE_CODE_6M,
 169          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 170                   IEEE80211_RATE_SUPPORTS_10MHZ },
 171        { .bitrate = 90,
 172          .hw_value = ATH5K_RATE_CODE_9M,
 173          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 174                   IEEE80211_RATE_SUPPORTS_10MHZ },
 175        { .bitrate = 120,
 176          .hw_value = ATH5K_RATE_CODE_12M,
 177          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 178                   IEEE80211_RATE_SUPPORTS_10MHZ },
 179        { .bitrate = 180,
 180          .hw_value = ATH5K_RATE_CODE_18M,
 181          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 182                   IEEE80211_RATE_SUPPORTS_10MHZ },
 183        { .bitrate = 240,
 184          .hw_value = ATH5K_RATE_CODE_24M,
 185          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 186                   IEEE80211_RATE_SUPPORTS_10MHZ },
 187        { .bitrate = 360,
 188          .hw_value = ATH5K_RATE_CODE_36M,
 189          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 190                   IEEE80211_RATE_SUPPORTS_10MHZ },
 191        { .bitrate = 480,
 192          .hw_value = ATH5K_RATE_CODE_48M,
 193          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 194                   IEEE80211_RATE_SUPPORTS_10MHZ },
 195        { .bitrate = 540,
 196          .hw_value = ATH5K_RATE_CODE_54M,
 197          .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 198                   IEEE80211_RATE_SUPPORTS_10MHZ },
 199};
 200
 201static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
 202{
 203        u64 tsf = ath5k_hw_get_tsf64(ah);
 204
 205        if ((tsf & 0x7fff) < rstamp)
 206                tsf -= 0x8000;
 207
 208        return (tsf & ~0x7fff) | rstamp;
 209}
 210
 211const char *
 212ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
 213{
 214        const char *name = "xxxxx";
 215        unsigned int i;
 216
 217        for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
 218                if (srev_names[i].sr_type != type)
 219                        continue;
 220
 221                if ((val & 0xf0) == srev_names[i].sr_val)
 222                        name = srev_names[i].sr_name;
 223
 224                if ((val & 0xff) == srev_names[i].sr_val) {
 225                        name = srev_names[i].sr_name;
 226                        break;
 227                }
 228        }
 229
 230        return name;
 231}
 232static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
 233{
 234        struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 235        return ath5k_hw_reg_read(ah, reg_offset);
 236}
 237
 238static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
 239{
 240        struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 241        ath5k_hw_reg_write(ah, val, reg_offset);
 242}
 243
 244static const struct ath_ops ath5k_common_ops = {
 245        .read = ath5k_ioread32,
 246        .write = ath5k_iowrite32,
 247};
 248
 249/***********************\
 250* Driver Initialization *
 251\***********************/
 252
 253static void ath5k_reg_notifier(struct wiphy *wiphy,
 254                               struct regulatory_request *request)
 255{
 256        struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
 257        struct ath5k_hw *ah = hw->priv;
 258        struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
 259
 260        ath_reg_notifier_apply(wiphy, request, regulatory);
 261}
 262
 263/********************\
 264* Channel/mode setup *
 265\********************/
 266
 267/*
 268 * Returns true for the channel numbers used.
 269 */
 270#ifdef CONFIG_ATH5K_TEST_CHANNELS
 271static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
 272{
 273        return true;
 274}
 275
 276#else
 277static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
 278{
 279        if (band == IEEE80211_BAND_2GHZ && chan <= 14)
 280                return true;
 281
 282        return  /* UNII 1,2 */
 283                (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
 284                /* midband */
 285                ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
 286                /* UNII-3 */
 287                ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
 288                /* 802.11j 5.030-5.080 GHz (20MHz) */
 289                (chan == 8 || chan == 12 || chan == 16) ||
 290                /* 802.11j 4.9GHz (20MHz) */
 291                (chan == 184 || chan == 188 || chan == 192 || chan == 196));
 292}
 293#endif
 294
 295static unsigned int
 296ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
 297                unsigned int mode, unsigned int max)
 298{
 299        unsigned int count, size, freq, ch;
 300        enum ieee80211_band band;
 301
 302        switch (mode) {
 303        case AR5K_MODE_11A:
 304                /* 1..220, but 2GHz frequencies are filtered by check_channel */
 305                size = 220;
 306                band = IEEE80211_BAND_5GHZ;
 307                break;
 308        case AR5K_MODE_11B:
 309        case AR5K_MODE_11G:
 310                size = 26;
 311                band = IEEE80211_BAND_2GHZ;
 312                break;
 313        default:
 314                ATH5K_WARN(ah, "bad mode, not copying channels\n");
 315                return 0;
 316        }
 317
 318        count = 0;
 319        for (ch = 1; ch <= size && count < max; ch++) {
 320                freq = ieee80211_channel_to_frequency(ch, band);
 321
 322                if (freq == 0) /* mapping failed - not a standard channel */
 323                        continue;
 324
 325                /* Write channel info, needed for ath5k_channel_ok() */
 326                channels[count].center_freq = freq;
 327                channels[count].band = band;
 328                channels[count].hw_value = mode;
 329
 330                /* Check if channel is supported by the chipset */
 331                if (!ath5k_channel_ok(ah, &channels[count]))
 332                        continue;
 333
 334                if (!ath5k_is_standard_channel(ch, band))
 335                        continue;
 336
 337                count++;
 338        }
 339
 340        return count;
 341}
 342
 343static void
 344ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
 345{
 346        u8 i;
 347
 348        for (i = 0; i < AR5K_MAX_RATES; i++)
 349                ah->rate_idx[b->band][i] = -1;
 350
 351        for (i = 0; i < b->n_bitrates; i++) {
 352                ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
 353                if (b->bitrates[i].hw_value_short)
 354                        ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
 355        }
 356}
 357
 358static int
 359ath5k_setup_bands(struct ieee80211_hw *hw)
 360{
 361        struct ath5k_hw *ah = hw->priv;
 362        struct ieee80211_supported_band *sband;
 363        int max_c, count_c = 0;
 364        int i;
 365
 366        BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
 367        max_c = ARRAY_SIZE(ah->channels);
 368
 369        /* 2GHz band */
 370        sband = &ah->sbands[IEEE80211_BAND_2GHZ];
 371        sband->band = IEEE80211_BAND_2GHZ;
 372        sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
 373
 374        if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
 375                /* G mode */
 376                memcpy(sband->bitrates, &ath5k_rates[0],
 377                       sizeof(struct ieee80211_rate) * 12);
 378                sband->n_bitrates = 12;
 379
 380                sband->channels = ah->channels;
 381                sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 382                                        AR5K_MODE_11G, max_c);
 383
 384                hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 385                count_c = sband->n_channels;
 386                max_c -= count_c;
 387        } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
 388                /* B mode */
 389                memcpy(sband->bitrates, &ath5k_rates[0],
 390                       sizeof(struct ieee80211_rate) * 4);
 391                sband->n_bitrates = 4;
 392
 393                /* 5211 only supports B rates and uses 4bit rate codes
 394                 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
 395                 * fix them up here:
 396                 */
 397                if (ah->ah_version == AR5K_AR5211) {
 398                        for (i = 0; i < 4; i++) {
 399                                sband->bitrates[i].hw_value =
 400                                        sband->bitrates[i].hw_value & 0xF;
 401                                sband->bitrates[i].hw_value_short =
 402                                        sband->bitrates[i].hw_value_short & 0xF;
 403                        }
 404                }
 405
 406                sband->channels = ah->channels;
 407                sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 408                                        AR5K_MODE_11B, max_c);
 409
 410                hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 411                count_c = sband->n_channels;
 412                max_c -= count_c;
 413        }
 414        ath5k_setup_rate_idx(ah, sband);
 415
 416        /* 5GHz band, A mode */
 417        if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
 418                sband = &ah->sbands[IEEE80211_BAND_5GHZ];
 419                sband->band = IEEE80211_BAND_5GHZ;
 420                sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
 421
 422                memcpy(sband->bitrates, &ath5k_rates[4],
 423                       sizeof(struct ieee80211_rate) * 8);
 424                sband->n_bitrates = 8;
 425
 426                sband->channels = &ah->channels[count_c];
 427                sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 428                                        AR5K_MODE_11A, max_c);
 429
 430                hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
 431        }
 432        ath5k_setup_rate_idx(ah, sband);
 433
 434        ath5k_debug_dump_bands(ah);
 435
 436        return 0;
 437}
 438
 439/*
 440 * Set/change channels. We always reset the chip.
 441 * To accomplish this we must first cleanup any pending DMA,
 442 * then restart stuff after a la  ath5k_init.
 443 *
 444 * Called with ah->lock.
 445 */
 446int
 447ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
 448{
 449        ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
 450                  "channel set, resetting (%u -> %u MHz)\n",
 451                  ah->curchan->center_freq, chandef->chan->center_freq);
 452
 453        switch (chandef->width) {
 454        case NL80211_CHAN_WIDTH_20:
 455        case NL80211_CHAN_WIDTH_20_NOHT:
 456                ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
 457                break;
 458        case NL80211_CHAN_WIDTH_5:
 459                ah->ah_bwmode = AR5K_BWMODE_5MHZ;
 460                break;
 461        case NL80211_CHAN_WIDTH_10:
 462                ah->ah_bwmode = AR5K_BWMODE_10MHZ;
 463                break;
 464        default:
 465                WARN_ON(1);
 466                return -EINVAL;
 467        }
 468
 469        /*
 470         * To switch channels clear any pending DMA operations;
 471         * wait long enough for the RX fifo to drain, reset the
 472         * hardware at the new frequency, and then re-enable
 473         * the relevant bits of the h/w.
 474         */
 475        return ath5k_reset(ah, chandef->chan, true);
 476}
 477
 478void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
 479{
 480        struct ath5k_vif_iter_data *iter_data = data;
 481        int i;
 482        struct ath5k_vif *avf = (void *)vif->drv_priv;
 483
 484        if (iter_data->hw_macaddr)
 485                for (i = 0; i < ETH_ALEN; i++)
 486                        iter_data->mask[i] &=
 487                                ~(iter_data->hw_macaddr[i] ^ mac[i]);
 488
 489        if (!iter_data->found_active) {
 490                iter_data->found_active = true;
 491                memcpy(iter_data->active_mac, mac, ETH_ALEN);
 492        }
 493
 494        if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
 495                if (ether_addr_equal(iter_data->hw_macaddr, mac))
 496                        iter_data->need_set_hw_addr = false;
 497
 498        if (!iter_data->any_assoc) {
 499                if (avf->assoc)
 500                        iter_data->any_assoc = true;
 501        }
 502
 503        /* Calculate combined mode - when APs are active, operate in AP mode.
 504         * Otherwise use the mode of the new interface. This can currently
 505         * only deal with combinations of APs and STAs. Only one ad-hoc
 506         * interfaces is allowed.
 507         */
 508        if (avf->opmode == NL80211_IFTYPE_AP)
 509                iter_data->opmode = NL80211_IFTYPE_AP;
 510        else {
 511                if (avf->opmode == NL80211_IFTYPE_STATION)
 512                        iter_data->n_stas++;
 513                if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
 514                        iter_data->opmode = avf->opmode;
 515        }
 516}
 517
 518void
 519ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
 520                                   struct ieee80211_vif *vif)
 521{
 522        struct ath_common *common = ath5k_hw_common(ah);
 523        struct ath5k_vif_iter_data iter_data;
 524        u32 rfilt;
 525
 526        /*
 527         * Use the hardware MAC address as reference, the hardware uses it
 528         * together with the BSSID mask when matching addresses.
 529         */
 530        iter_data.hw_macaddr = common->macaddr;
 531        memset(&iter_data.mask, 0xff, ETH_ALEN);
 532        iter_data.found_active = false;
 533        iter_data.need_set_hw_addr = true;
 534        iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
 535        iter_data.n_stas = 0;
 536
 537        if (vif)
 538                ath5k_vif_iter(&iter_data, vif->addr, vif);
 539
 540        /* Get list of all active MAC addresses */
 541        ieee80211_iterate_active_interfaces_atomic(
 542                ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 543                ath5k_vif_iter, &iter_data);
 544        memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
 545
 546        ah->opmode = iter_data.opmode;
 547        if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
 548                /* Nothing active, default to station mode */
 549                ah->opmode = NL80211_IFTYPE_STATION;
 550
 551        ath5k_hw_set_opmode(ah, ah->opmode);
 552        ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
 553                  ah->opmode, ath_opmode_to_string(ah->opmode));
 554
 555        if (iter_data.need_set_hw_addr && iter_data.found_active)
 556                ath5k_hw_set_lladdr(ah, iter_data.active_mac);
 557
 558        if (ath5k_hw_hasbssidmask(ah))
 559                ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
 560
 561        /* Set up RX Filter */
 562        if (iter_data.n_stas > 1) {
 563                /* If you have multiple STA interfaces connected to
 564                 * different APs, ARPs are not received (most of the time?)
 565                 * Enabling PROMISC appears to fix that problem.
 566                 */
 567                ah->filter_flags |= AR5K_RX_FILTER_PROM;
 568        }
 569
 570        rfilt = ah->filter_flags;
 571        ath5k_hw_set_rx_filter(ah, rfilt);
 572        ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
 573}
 574
 575static inline int
 576ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
 577{
 578        int rix;
 579
 580        /* return base rate on errors */
 581        if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
 582                        "hw_rix out of bounds: %x\n", hw_rix))
 583                return 0;
 584
 585        rix = ah->rate_idx[ah->curchan->band][hw_rix];
 586        if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
 587                rix = 0;
 588
 589        return rix;
 590}
 591
 592/***************\
 593* Buffers setup *
 594\***************/
 595
 596static
 597struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
 598{
 599        struct ath_common *common = ath5k_hw_common(ah);
 600        struct sk_buff *skb;
 601
 602        /*
 603         * Allocate buffer with headroom_needed space for the
 604         * fake physical layer header at the start.
 605         */
 606        skb = ath_rxbuf_alloc(common,
 607                              common->rx_bufsize,
 608                              GFP_ATOMIC);
 609
 610        if (!skb) {
 611                ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
 612                                common->rx_bufsize);
 613                return NULL;
 614        }
 615
 616        *skb_addr = dma_map_single(ah->dev,
 617                                   skb->data, common->rx_bufsize,
 618                                   DMA_FROM_DEVICE);
 619
 620        if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
 621                ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
 622                dev_kfree_skb(skb);
 623                return NULL;
 624        }
 625        return skb;
 626}
 627
 628static int
 629ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
 630{
 631        struct sk_buff *skb = bf->skb;
 632        struct ath5k_desc *ds;
 633        int ret;
 634
 635        if (!skb) {
 636                skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
 637                if (!skb)
 638                        return -ENOMEM;
 639                bf->skb = skb;
 640        }
 641
 642        /*
 643         * Setup descriptors.  For receive we always terminate
 644         * the descriptor list with a self-linked entry so we'll
 645         * not get overrun under high load (as can happen with a
 646         * 5212 when ANI processing enables PHY error frames).
 647         *
 648         * To ensure the last descriptor is self-linked we create
 649         * each descriptor as self-linked and add it to the end.  As
 650         * each additional descriptor is added the previous self-linked
 651         * entry is "fixed" naturally.  This should be safe even
 652         * if DMA is happening.  When processing RX interrupts we
 653         * never remove/process the last, self-linked, entry on the
 654         * descriptor list.  This ensures the hardware always has
 655         * someplace to write a new frame.
 656         */
 657        ds = bf->desc;
 658        ds->ds_link = bf->daddr;        /* link to self */
 659        ds->ds_data = bf->skbaddr;
 660        ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
 661        if (ret) {
 662                ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
 663                return ret;
 664        }
 665
 666        if (ah->rxlink != NULL)
 667                *ah->rxlink = bf->daddr;
 668        ah->rxlink = &ds->ds_link;
 669        return 0;
 670}
 671
 672static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
 673{
 674        struct ieee80211_hdr *hdr;
 675        enum ath5k_pkt_type htype;
 676        __le16 fc;
 677
 678        hdr = (struct ieee80211_hdr *)skb->data;
 679        fc = hdr->frame_control;
 680
 681        if (ieee80211_is_beacon(fc))
 682                htype = AR5K_PKT_TYPE_BEACON;
 683        else if (ieee80211_is_probe_resp(fc))
 684                htype = AR5K_PKT_TYPE_PROBE_RESP;
 685        else if (ieee80211_is_atim(fc))
 686                htype = AR5K_PKT_TYPE_ATIM;
 687        else if (ieee80211_is_pspoll(fc))
 688                htype = AR5K_PKT_TYPE_PSPOLL;
 689        else
 690                htype = AR5K_PKT_TYPE_NORMAL;
 691
 692        return htype;
 693}
 694
 695static struct ieee80211_rate *
 696ath5k_get_rate(const struct ieee80211_hw *hw,
 697               const struct ieee80211_tx_info *info,
 698               struct ath5k_buf *bf, int idx)
 699{
 700        /*
 701        * convert a ieee80211_tx_rate RC-table entry to
 702        * the respective ieee80211_rate struct
 703        */
 704        if (bf->rates[idx].idx < 0) {
 705                return NULL;
 706        }
 707
 708        return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
 709}
 710
 711static u16
 712ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
 713                        const struct ieee80211_tx_info *info,
 714                        struct ath5k_buf *bf, int idx)
 715{
 716        struct ieee80211_rate *rate;
 717        u16 hw_rate;
 718        u8 rc_flags;
 719
 720        rate = ath5k_get_rate(hw, info, bf, idx);
 721        if (!rate)
 722                return 0;
 723
 724        rc_flags = bf->rates[idx].flags;
 725        hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
 726                   rate->hw_value_short : rate->hw_value;
 727
 728        return hw_rate;
 729}
 730
 731static int
 732ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
 733                  struct ath5k_txq *txq, int padsize,
 734                  struct ieee80211_tx_control *control)
 735{
 736        struct ath5k_desc *ds = bf->desc;
 737        struct sk_buff *skb = bf->skb;
 738        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 739        unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
 740        struct ieee80211_rate *rate;
 741        unsigned int mrr_rate[3], mrr_tries[3];
 742        int i, ret;
 743        u16 hw_rate;
 744        u16 cts_rate = 0;
 745        u16 duration = 0;
 746        u8 rc_flags;
 747
 748        flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
 749
 750        /* XXX endianness */
 751        bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
 752                        DMA_TO_DEVICE);
 753
 754        if (dma_mapping_error(ah->dev, bf->skbaddr))
 755                return -ENOSPC;
 756
 757        ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
 758                               ARRAY_SIZE(bf->rates));
 759
 760        rate = ath5k_get_rate(ah->hw, info, bf, 0);
 761
 762        if (!rate) {
 763                ret = -EINVAL;
 764                goto err_unmap;
 765        }
 766
 767        if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 768                flags |= AR5K_TXDESC_NOACK;
 769
 770        rc_flags = info->control.rates[0].flags;
 771
 772        hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
 773
 774        pktlen = skb->len;
 775
 776        /* FIXME: If we are in g mode and rate is a CCK rate
 777         * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
 778         * from tx power (value is in dB units already) */
 779        if (info->control.hw_key) {
 780                keyidx = info->control.hw_key->hw_key_idx;
 781                pktlen += info->control.hw_key->icv_len;
 782        }
 783        if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 784                flags |= AR5K_TXDESC_RTSENA;
 785                cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 786                duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
 787                        info->control.vif, pktlen, info));
 788        }
 789        if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
 790                flags |= AR5K_TXDESC_CTSENA;
 791                cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 792                duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
 793                        info->control.vif, pktlen, info));
 794        }
 795
 796        ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
 797                ieee80211_get_hdrlen_from_skb(skb), padsize,
 798                get_hw_packet_type(skb),
 799                (ah->ah_txpower.txp_requested * 2),
 800                hw_rate,
 801                bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
 802                cts_rate, duration);
 803        if (ret)
 804                goto err_unmap;
 805
 806        /* Set up MRR descriptor */
 807        if (ah->ah_capabilities.cap_has_mrr_support) {
 808                memset(mrr_rate, 0, sizeof(mrr_rate));
 809                memset(mrr_tries, 0, sizeof(mrr_tries));
 810
 811                for (i = 0; i < 3; i++) {
 812
 813                        rate = ath5k_get_rate(ah->hw, info, bf, i);
 814                        if (!rate)
 815                                break;
 816
 817                        mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
 818                        mrr_tries[i] = bf->rates[i].count;
 819                }
 820
 821                ath5k_hw_setup_mrr_tx_desc(ah, ds,
 822                        mrr_rate[0], mrr_tries[0],
 823                        mrr_rate[1], mrr_tries[1],
 824                        mrr_rate[2], mrr_tries[2]);
 825        }
 826
 827        ds->ds_link = 0;
 828        ds->ds_data = bf->skbaddr;
 829
 830        spin_lock_bh(&txq->lock);
 831        list_add_tail(&bf->list, &txq->q);
 832        txq->txq_len++;
 833        if (txq->link == NULL) /* is this first packet? */
 834                ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
 835        else /* no, so only link it */
 836                *txq->link = bf->daddr;
 837
 838        txq->link = &ds->ds_link;
 839        ath5k_hw_start_tx_dma(ah, txq->qnum);
 840        mmiowb();
 841        spin_unlock_bh(&txq->lock);
 842
 843        return 0;
 844err_unmap:
 845        dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
 846        return ret;
 847}
 848
 849/*******************\
 850* Descriptors setup *
 851\*******************/
 852
 853static int
 854ath5k_desc_alloc(struct ath5k_hw *ah)
 855{
 856        struct ath5k_desc *ds;
 857        struct ath5k_buf *bf;
 858        dma_addr_t da;
 859        unsigned int i;
 860        int ret;
 861
 862        /* allocate descriptors */
 863        ah->desc_len = sizeof(struct ath5k_desc) *
 864                        (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
 865
 866        ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
 867                                &ah->desc_daddr, GFP_KERNEL);
 868        if (ah->desc == NULL) {
 869                ATH5K_ERR(ah, "can't allocate descriptors\n");
 870                ret = -ENOMEM;
 871                goto err;
 872        }
 873        ds = ah->desc;
 874        da = ah->desc_daddr;
 875        ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
 876                ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
 877
 878        bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
 879                        sizeof(struct ath5k_buf), GFP_KERNEL);
 880        if (bf == NULL) {
 881                ATH5K_ERR(ah, "can't allocate bufptr\n");
 882                ret = -ENOMEM;
 883                goto err_free;
 884        }
 885        ah->bufptr = bf;
 886
 887        INIT_LIST_HEAD(&ah->rxbuf);
 888        for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 889                bf->desc = ds;
 890                bf->daddr = da;
 891                list_add_tail(&bf->list, &ah->rxbuf);
 892        }
 893
 894        INIT_LIST_HEAD(&ah->txbuf);
 895        ah->txbuf_len = ATH_TXBUF;
 896        for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 897                bf->desc = ds;
 898                bf->daddr = da;
 899                list_add_tail(&bf->list, &ah->txbuf);
 900        }
 901
 902        /* beacon buffers */
 903        INIT_LIST_HEAD(&ah->bcbuf);
 904        for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 905                bf->desc = ds;
 906                bf->daddr = da;
 907                list_add_tail(&bf->list, &ah->bcbuf);
 908        }
 909
 910        return 0;
 911err_free:
 912        dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 913err:
 914        ah->desc = NULL;
 915        return ret;
 916}
 917
 918void
 919ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 920{
 921        BUG_ON(!bf);
 922        if (!bf->skb)
 923                return;
 924        dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
 925                        DMA_TO_DEVICE);
 926        ieee80211_free_txskb(ah->hw, bf->skb);
 927        bf->skb = NULL;
 928        bf->skbaddr = 0;
 929        bf->desc->ds_data = 0;
 930}
 931
 932void
 933ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 934{
 935        struct ath_common *common = ath5k_hw_common(ah);
 936
 937        BUG_ON(!bf);
 938        if (!bf->skb)
 939                return;
 940        dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
 941                        DMA_FROM_DEVICE);
 942        dev_kfree_skb_any(bf->skb);
 943        bf->skb = NULL;
 944        bf->skbaddr = 0;
 945        bf->desc->ds_data = 0;
 946}
 947
 948static void
 949ath5k_desc_free(struct ath5k_hw *ah)
 950{
 951        struct ath5k_buf *bf;
 952
 953        list_for_each_entry(bf, &ah->txbuf, list)
 954                ath5k_txbuf_free_skb(ah, bf);
 955        list_for_each_entry(bf, &ah->rxbuf, list)
 956                ath5k_rxbuf_free_skb(ah, bf);
 957        list_for_each_entry(bf, &ah->bcbuf, list)
 958                ath5k_txbuf_free_skb(ah, bf);
 959
 960        /* Free memory associated with all descriptors */
 961        dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 962        ah->desc = NULL;
 963        ah->desc_daddr = 0;
 964
 965        kfree(ah->bufptr);
 966        ah->bufptr = NULL;
 967}
 968
 969
 970/**************\
 971* Queues setup *
 972\**************/
 973
 974static struct ath5k_txq *
 975ath5k_txq_setup(struct ath5k_hw *ah,
 976                int qtype, int subtype)
 977{
 978        struct ath5k_txq *txq;
 979        struct ath5k_txq_info qi = {
 980                .tqi_subtype = subtype,
 981                /* XXX: default values not correct for B and XR channels,
 982                 * but who cares? */
 983                .tqi_aifs = AR5K_TUNE_AIFS,
 984                .tqi_cw_min = AR5K_TUNE_CWMIN,
 985                .tqi_cw_max = AR5K_TUNE_CWMAX
 986        };
 987        int qnum;
 988
 989        /*
 990         * Enable interrupts only for EOL and DESC conditions.
 991         * We mark tx descriptors to receive a DESC interrupt
 992         * when a tx queue gets deep; otherwise we wait for the
 993         * EOL to reap descriptors.  Note that this is done to
 994         * reduce interrupt load and this only defers reaping
 995         * descriptors, never transmitting frames.  Aside from
 996         * reducing interrupts this also permits more concurrency.
 997         * The only potential downside is if the tx queue backs
 998         * up in which case the top half of the kernel may backup
 999         * due to a lack of tx descriptors.
1000         */
1001        qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1002                                AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1003        qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1004        if (qnum < 0) {
1005                /*
1006                 * NB: don't print a message, this happens
1007                 * normally on parts with too few tx queues
1008                 */
1009                return ERR_PTR(qnum);
1010        }
1011        txq = &ah->txqs[qnum];
1012        if (!txq->setup) {
1013                txq->qnum = qnum;
1014                txq->link = NULL;
1015                INIT_LIST_HEAD(&txq->q);
1016                spin_lock_init(&txq->lock);
1017                txq->setup = true;
1018                txq->txq_len = 0;
1019                txq->txq_max = ATH5K_TXQ_LEN_MAX;
1020                txq->txq_poll_mark = false;
1021                txq->txq_stuck = 0;
1022        }
1023        return &ah->txqs[qnum];
1024}
1025
1026static int
1027ath5k_beaconq_setup(struct ath5k_hw *ah)
1028{
1029        struct ath5k_txq_info qi = {
1030                /* XXX: default values not correct for B and XR channels,
1031                 * but who cares? */
1032                .tqi_aifs = AR5K_TUNE_AIFS,
1033                .tqi_cw_min = AR5K_TUNE_CWMIN,
1034                .tqi_cw_max = AR5K_TUNE_CWMAX,
1035                /* NB: for dynamic turbo, don't enable any other interrupts */
1036                .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1037        };
1038
1039        return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1040}
1041
1042static int
1043ath5k_beaconq_config(struct ath5k_hw *ah)
1044{
1045        struct ath5k_txq_info qi;
1046        int ret;
1047
1048        ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1049        if (ret)
1050                goto err;
1051
1052        if (ah->opmode == NL80211_IFTYPE_AP ||
1053            ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1054                /*
1055                 * Always burst out beacon and CAB traffic
1056                 * (aifs = cwmin = cwmax = 0)
1057                 */
1058                qi.tqi_aifs = 0;
1059                qi.tqi_cw_min = 0;
1060                qi.tqi_cw_max = 0;
1061        } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1062                /*
1063                 * Adhoc mode; backoff between 0 and (2 * cw_min).
1064                 */
1065                qi.tqi_aifs = 0;
1066                qi.tqi_cw_min = 0;
1067                qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1068        }
1069
1070        ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1071                "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1072                qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1073
1074        ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1075        if (ret) {
1076                ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1077                        "hardware queue!\n", __func__);
1078                goto err;
1079        }
1080        ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1081        if (ret)
1082                goto err;
1083
1084        /* reconfigure cabq with ready time to 80% of beacon_interval */
1085        ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1086        if (ret)
1087                goto err;
1088
1089        qi.tqi_ready_time = (ah->bintval * 80) / 100;
1090        ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1091        if (ret)
1092                goto err;
1093
1094        ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1095err:
1096        return ret;
1097}
1098
1099/**
1100 * ath5k_drain_tx_buffs - Empty tx buffers
1101 *
1102 * @ah The &struct ath5k_hw
1103 *
1104 * Empty tx buffers from all queues in preparation
1105 * of a reset or during shutdown.
1106 *
1107 * NB:  this assumes output has been stopped and
1108 *      we do not need to block ath5k_tx_tasklet
1109 */
1110static void
1111ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1112{
1113        struct ath5k_txq *txq;
1114        struct ath5k_buf *bf, *bf0;
1115        int i;
1116
1117        for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1118                if (ah->txqs[i].setup) {
1119                        txq = &ah->txqs[i];
1120                        spin_lock_bh(&txq->lock);
1121                        list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1122                                ath5k_debug_printtxbuf(ah, bf);
1123
1124                                ath5k_txbuf_free_skb(ah, bf);
1125
1126                                spin_lock(&ah->txbuflock);
1127                                list_move_tail(&bf->list, &ah->txbuf);
1128                                ah->txbuf_len++;
1129                                txq->txq_len--;
1130                                spin_unlock(&ah->txbuflock);
1131                        }
1132                        txq->link = NULL;
1133                        txq->txq_poll_mark = false;
1134                        spin_unlock_bh(&txq->lock);
1135                }
1136        }
1137}
1138
1139static void
1140ath5k_txq_release(struct ath5k_hw *ah)
1141{
1142        struct ath5k_txq *txq = ah->txqs;
1143        unsigned int i;
1144
1145        for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1146                if (txq->setup) {
1147                        ath5k_hw_release_tx_queue(ah, txq->qnum);
1148                        txq->setup = false;
1149                }
1150}
1151
1152
1153/*************\
1154* RX Handling *
1155\*************/
1156
1157/*
1158 * Enable the receive h/w following a reset.
1159 */
1160static int
1161ath5k_rx_start(struct ath5k_hw *ah)
1162{
1163        struct ath_common *common = ath5k_hw_common(ah);
1164        struct ath5k_buf *bf;
1165        int ret;
1166
1167        common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1168
1169        ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1170                  common->cachelsz, common->rx_bufsize);
1171
1172        spin_lock_bh(&ah->rxbuflock);
1173        ah->rxlink = NULL;
1174        list_for_each_entry(bf, &ah->rxbuf, list) {
1175                ret = ath5k_rxbuf_setup(ah, bf);
1176                if (ret != 0) {
1177                        spin_unlock_bh(&ah->rxbuflock);
1178                        goto err;
1179                }
1180        }
1181        bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1182        ath5k_hw_set_rxdp(ah, bf->daddr);
1183        spin_unlock_bh(&ah->rxbuflock);
1184
1185        ath5k_hw_start_rx_dma(ah);      /* enable recv descriptors */
1186        ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1187        ath5k_hw_start_rx_pcu(ah);      /* re-enable PCU/DMA engine */
1188
1189        return 0;
1190err:
1191        return ret;
1192}
1193
1194/*
1195 * Disable the receive logic on PCU (DRU)
1196 * In preparation for a shutdown.
1197 *
1198 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1199 * does.
1200 */
1201static void
1202ath5k_rx_stop(struct ath5k_hw *ah)
1203{
1204
1205        ath5k_hw_set_rx_filter(ah, 0);  /* clear recv filter */
1206        ath5k_hw_stop_rx_pcu(ah);       /* disable PCU */
1207
1208        ath5k_debug_printrxbuffs(ah);
1209}
1210
1211static unsigned int
1212ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1213                   struct ath5k_rx_status *rs)
1214{
1215        struct ath_common *common = ath5k_hw_common(ah);
1216        struct ieee80211_hdr *hdr = (void *)skb->data;
1217        unsigned int keyix, hlen;
1218
1219        if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1220                        rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1221                return RX_FLAG_DECRYPTED;
1222
1223        /* Apparently when a default key is used to decrypt the packet
1224           the hw does not set the index used to decrypt.  In such cases
1225           get the index from the packet. */
1226        hlen = ieee80211_hdrlen(hdr->frame_control);
1227        if (ieee80211_has_protected(hdr->frame_control) &&
1228            !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1229            skb->len >= hlen + 4) {
1230                keyix = skb->data[hlen + 3] >> 6;
1231
1232                if (test_bit(keyix, common->keymap))
1233                        return RX_FLAG_DECRYPTED;
1234        }
1235
1236        return 0;
1237}
1238
1239
1240static void
1241ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1242                     struct ieee80211_rx_status *rxs)
1243{
1244        u64 tsf, bc_tstamp;
1245        u32 hw_tu;
1246        struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1247
1248        if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1249                /*
1250                 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251                 * have updated the local TSF. We have to work around various
1252                 * hardware bugs, though...
1253                 */
1254                tsf = ath5k_hw_get_tsf64(ah);
1255                bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256                hw_tu = TSF_TO_TU(tsf);
1257
1258                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1259                        "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260                        (unsigned long long)bc_tstamp,
1261                        (unsigned long long)rxs->mactime,
1262                        (unsigned long long)(rxs->mactime - bc_tstamp),
1263                        (unsigned long long)tsf);
1264
1265                /*
1266                 * Sometimes the HW will give us a wrong tstamp in the rx
1267                 * status, causing the timestamp extension to go wrong.
1268                 * (This seems to happen especially with beacon frames bigger
1269                 * than 78 byte (incl. FCS))
1270                 * But we know that the receive timestamp must be later than the
1271                 * timestamp of the beacon since HW must have synced to that.
1272                 *
1273                 * NOTE: here we assume mactime to be after the frame was
1274                 * received, not like mac80211 which defines it at the start.
1275                 */
1276                if (bc_tstamp > rxs->mactime) {
1277                        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1278                                "fixing mactime from %llx to %llx\n",
1279                                (unsigned long long)rxs->mactime,
1280                                (unsigned long long)tsf);
1281                        rxs->mactime = tsf;
1282                }
1283
1284                /*
1285                 * Local TSF might have moved higher than our beacon timers,
1286                 * in that case we have to update them to continue sending
1287                 * beacons. This also takes care of synchronizing beacon sending
1288                 * times with other stations.
1289                 */
1290                if (hw_tu >= ah->nexttbtt)
1291                        ath5k_beacon_update_timers(ah, bc_tstamp);
1292
1293                /* Check if the beacon timers are still correct, because a TSF
1294                 * update might have created a window between them - for a
1295                 * longer description see the comment of this function: */
1296                if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297                        ath5k_beacon_update_timers(ah, bc_tstamp);
1298                        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1299                                "fixed beacon timers after beacon receive\n");
1300                }
1301        }
1302}
1303
1304/*
1305 * Compute padding position. skb must contain an IEEE 802.11 frame
1306 */
1307static int ath5k_common_padpos(struct sk_buff *skb)
1308{
1309        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1310        __le16 frame_control = hdr->frame_control;
1311        int padpos = 24;
1312
1313        if (ieee80211_has_a4(frame_control))
1314                padpos += ETH_ALEN;
1315
1316        if (ieee80211_is_data_qos(frame_control))
1317                padpos += IEEE80211_QOS_CTL_LEN;
1318
1319        return padpos;
1320}
1321
1322/*
1323 * This function expects an 802.11 frame and returns the number of
1324 * bytes added, or -1 if we don't have enough header room.
1325 */
1326static int ath5k_add_padding(struct sk_buff *skb)
1327{
1328        int padpos = ath5k_common_padpos(skb);
1329        int padsize = padpos & 3;
1330
1331        if (padsize && skb->len > padpos) {
1332
1333                if (skb_headroom(skb) < padsize)
1334                        return -1;
1335
1336                skb_push(skb, padsize);
1337                memmove(skb->data, skb->data + padsize, padpos);
1338                return padsize;
1339        }
1340
1341        return 0;
1342}
1343
1344/*
1345 * The MAC header is padded to have 32-bit boundary if the
1346 * packet payload is non-zero. The general calculation for
1347 * padsize would take into account odd header lengths:
1348 * padsize = 4 - (hdrlen & 3); however, since only
1349 * even-length headers are used, padding can only be 0 or 2
1350 * bytes and we can optimize this a bit.  We must not try to
1351 * remove padding from short control frames that do not have a
1352 * payload.
1353 *
1354 * This function expects an 802.11 frame and returns the number of
1355 * bytes removed.
1356 */
1357static int ath5k_remove_padding(struct sk_buff *skb)
1358{
1359        int padpos = ath5k_common_padpos(skb);
1360        int padsize = padpos & 3;
1361
1362        if (padsize && skb->len >= padpos + padsize) {
1363                memmove(skb->data + padsize, skb->data, padpos);
1364                skb_pull(skb, padsize);
1365                return padsize;
1366        }
1367
1368        return 0;
1369}
1370
1371static void
1372ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1373                    struct ath5k_rx_status *rs)
1374{
1375        struct ieee80211_rx_status *rxs;
1376        struct ath_common *common = ath5k_hw_common(ah);
1377
1378        ath5k_remove_padding(skb);
1379
1380        rxs = IEEE80211_SKB_RXCB(skb);
1381
1382        rxs->flag = 0;
1383        if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1384                rxs->flag |= RX_FLAG_MMIC_ERROR;
1385
1386        /*
1387         * always extend the mac timestamp, since this information is
1388         * also needed for proper IBSS merging.
1389         *
1390         * XXX: it might be too late to do it here, since rs_tstamp is
1391         * 15bit only. that means TSF extension has to be done within
1392         * 32768usec (about 32ms). it might be necessary to move this to
1393         * the interrupt handler, like it is done in madwifi.
1394         */
1395        rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1396        rxs->flag |= RX_FLAG_MACTIME_END;
1397
1398        rxs->freq = ah->curchan->center_freq;
1399        rxs->band = ah->curchan->band;
1400
1401        rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1402
1403        rxs->antenna = rs->rs_antenna;
1404
1405        if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1406                ah->stats.antenna_rx[rs->rs_antenna]++;
1407        else
1408                ah->stats.antenna_rx[0]++; /* invalid */
1409
1410        rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1411        rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1412        switch (ah->ah_bwmode) {
1413        case AR5K_BWMODE_5MHZ:
1414                rxs->flag |= RX_FLAG_5MHZ;
1415                break;
1416        case AR5K_BWMODE_10MHZ:
1417                rxs->flag |= RX_FLAG_10MHZ;
1418                break;
1419        default:
1420                break;
1421        }
1422
1423        if (rxs->rate_idx >= 0 && rs->rs_rate ==
1424            ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1425                rxs->flag |= RX_FLAG_SHORTPRE;
1426
1427        trace_ath5k_rx(ah, skb);
1428
1429        if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1430                ewma_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1431
1432                /* check beacons in IBSS mode */
1433                if (ah->opmode == NL80211_IFTYPE_ADHOC)
1434                        ath5k_check_ibss_tsf(ah, skb, rxs);
1435        }
1436
1437        ieee80211_rx(ah->hw, skb);
1438}
1439
1440/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1441 *
1442 * Check if we want to further process this frame or not. Also update
1443 * statistics. Return true if we want this frame, false if not.
1444 */
1445static bool
1446ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1447{
1448        ah->stats.rx_all_count++;
1449        ah->stats.rx_bytes_count += rs->rs_datalen;
1450
1451        if (unlikely(rs->rs_status)) {
1452                if (rs->rs_status & AR5K_RXERR_CRC)
1453                        ah->stats.rxerr_crc++;
1454                if (rs->rs_status & AR5K_RXERR_FIFO)
1455                        ah->stats.rxerr_fifo++;
1456                if (rs->rs_status & AR5K_RXERR_PHY) {
1457                        ah->stats.rxerr_phy++;
1458                        if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1459                                ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1460                        return false;
1461                }
1462                if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1463                        /*
1464                         * Decrypt error.  If the error occurred
1465                         * because there was no hardware key, then
1466                         * let the frame through so the upper layers
1467                         * can process it.  This is necessary for 5210
1468                         * parts which have no way to setup a ``clear''
1469                         * key cache entry.
1470                         *
1471                         * XXX do key cache faulting
1472                         */
1473                        ah->stats.rxerr_decrypt++;
1474                        if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1475                            !(rs->rs_status & AR5K_RXERR_CRC))
1476                                return true;
1477                }
1478                if (rs->rs_status & AR5K_RXERR_MIC) {
1479                        ah->stats.rxerr_mic++;
1480                        return true;
1481                }
1482
1483                /* reject any frames with non-crypto errors */
1484                if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1485                        return false;
1486        }
1487
1488        if (unlikely(rs->rs_more)) {
1489                ah->stats.rxerr_jumbo++;
1490                return false;
1491        }
1492        return true;
1493}
1494
1495static void
1496ath5k_set_current_imask(struct ath5k_hw *ah)
1497{
1498        enum ath5k_int imask;
1499        unsigned long flags;
1500
1501        spin_lock_irqsave(&ah->irqlock, flags);
1502        imask = ah->imask;
1503        if (ah->rx_pending)
1504                imask &= ~AR5K_INT_RX_ALL;
1505        if (ah->tx_pending)
1506                imask &= ~AR5K_INT_TX_ALL;
1507        ath5k_hw_set_imr(ah, imask);
1508        spin_unlock_irqrestore(&ah->irqlock, flags);
1509}
1510
1511static void
1512ath5k_tasklet_rx(unsigned long data)
1513{
1514        struct ath5k_rx_status rs = {};
1515        struct sk_buff *skb, *next_skb;
1516        dma_addr_t next_skb_addr;
1517        struct ath5k_hw *ah = (void *)data;
1518        struct ath_common *common = ath5k_hw_common(ah);
1519        struct ath5k_buf *bf;
1520        struct ath5k_desc *ds;
1521        int ret;
1522
1523        spin_lock(&ah->rxbuflock);
1524        if (list_empty(&ah->rxbuf)) {
1525                ATH5K_WARN(ah, "empty rx buf pool\n");
1526                goto unlock;
1527        }
1528        do {
1529                bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1530                BUG_ON(bf->skb == NULL);
1531                skb = bf->skb;
1532                ds = bf->desc;
1533
1534                /* bail if HW is still using self-linked descriptor */
1535                if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1536                        break;
1537
1538                ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1539                if (unlikely(ret == -EINPROGRESS))
1540                        break;
1541                else if (unlikely(ret)) {
1542                        ATH5K_ERR(ah, "error in processing rx descriptor\n");
1543                        ah->stats.rxerr_proc++;
1544                        break;
1545                }
1546
1547                if (ath5k_receive_frame_ok(ah, &rs)) {
1548                        next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1549
1550                        /*
1551                         * If we can't replace bf->skb with a new skb under
1552                         * memory pressure, just skip this packet
1553                         */
1554                        if (!next_skb)
1555                                goto next;
1556
1557                        dma_unmap_single(ah->dev, bf->skbaddr,
1558                                         common->rx_bufsize,
1559                                         DMA_FROM_DEVICE);
1560
1561                        skb_put(skb, rs.rs_datalen);
1562
1563                        ath5k_receive_frame(ah, skb, &rs);
1564
1565                        bf->skb = next_skb;
1566                        bf->skbaddr = next_skb_addr;
1567                }
1568next:
1569                list_move_tail(&bf->list, &ah->rxbuf);
1570        } while (ath5k_rxbuf_setup(ah, bf) == 0);
1571unlock:
1572        spin_unlock(&ah->rxbuflock);
1573        ah->rx_pending = false;
1574        ath5k_set_current_imask(ah);
1575}
1576
1577
1578/*************\
1579* TX Handling *
1580\*************/
1581
1582void
1583ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1584               struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1585{
1586        struct ath5k_hw *ah = hw->priv;
1587        struct ath5k_buf *bf;
1588        unsigned long flags;
1589        int padsize;
1590
1591        trace_ath5k_tx(ah, skb, txq);
1592
1593        /*
1594         * The hardware expects the header padded to 4 byte boundaries.
1595         * If this is not the case, we add the padding after the header.
1596         */
1597        padsize = ath5k_add_padding(skb);
1598        if (padsize < 0) {
1599                ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1600                          " headroom to pad");
1601                goto drop_packet;
1602        }
1603
1604        if (txq->txq_len >= txq->txq_max &&
1605            txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1606                ieee80211_stop_queue(hw, txq->qnum);
1607
1608        spin_lock_irqsave(&ah->txbuflock, flags);
1609        if (list_empty(&ah->txbuf)) {
1610                ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1611                spin_unlock_irqrestore(&ah->txbuflock, flags);
1612                ieee80211_stop_queues(hw);
1613                goto drop_packet;
1614        }
1615        bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1616        list_del(&bf->list);
1617        ah->txbuf_len--;
1618        if (list_empty(&ah->txbuf))
1619                ieee80211_stop_queues(hw);
1620        spin_unlock_irqrestore(&ah->txbuflock, flags);
1621
1622        bf->skb = skb;
1623
1624        if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1625                bf->skb = NULL;
1626                spin_lock_irqsave(&ah->txbuflock, flags);
1627                list_add_tail(&bf->list, &ah->txbuf);
1628                ah->txbuf_len++;
1629                spin_unlock_irqrestore(&ah->txbuflock, flags);
1630                goto drop_packet;
1631        }
1632        return;
1633
1634drop_packet:
1635        ieee80211_free_txskb(hw, skb);
1636}
1637
1638static void
1639ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1640                         struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1641                         struct ath5k_buf *bf)
1642{
1643        struct ieee80211_tx_info *info;
1644        u8 tries[3];
1645        int i;
1646        int size = 0;
1647
1648        ah->stats.tx_all_count++;
1649        ah->stats.tx_bytes_count += skb->len;
1650        info = IEEE80211_SKB_CB(skb);
1651
1652        size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1653        memcpy(info->status.rates, bf->rates, size);
1654
1655        tries[0] = info->status.rates[0].count;
1656        tries[1] = info->status.rates[1].count;
1657        tries[2] = info->status.rates[2].count;
1658
1659        ieee80211_tx_info_clear_status(info);
1660
1661        for (i = 0; i < ts->ts_final_idx; i++) {
1662                struct ieee80211_tx_rate *r =
1663                        &info->status.rates[i];
1664
1665                r->count = tries[i];
1666        }
1667
1668        info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1669        info->status.rates[ts->ts_final_idx + 1].idx = -1;
1670
1671        if (unlikely(ts->ts_status)) {
1672                ah->stats.ack_fail++;
1673                if (ts->ts_status & AR5K_TXERR_FILT) {
1674                        info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1675                        ah->stats.txerr_filt++;
1676                }
1677                if (ts->ts_status & AR5K_TXERR_XRETRY)
1678                        ah->stats.txerr_retry++;
1679                if (ts->ts_status & AR5K_TXERR_FIFO)
1680                        ah->stats.txerr_fifo++;
1681        } else {
1682                info->flags |= IEEE80211_TX_STAT_ACK;
1683                info->status.ack_signal = ts->ts_rssi;
1684
1685                /* count the successful attempt as well */
1686                info->status.rates[ts->ts_final_idx].count++;
1687        }
1688
1689        /*
1690        * Remove MAC header padding before giving the frame
1691        * back to mac80211.
1692        */
1693        ath5k_remove_padding(skb);
1694
1695        if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1696                ah->stats.antenna_tx[ts->ts_antenna]++;
1697        else
1698                ah->stats.antenna_tx[0]++; /* invalid */
1699
1700        trace_ath5k_tx_complete(ah, skb, txq, ts);
1701        ieee80211_tx_status(ah->hw, skb);
1702}
1703
1704static void
1705ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1706{
1707        struct ath5k_tx_status ts = {};
1708        struct ath5k_buf *bf, *bf0;
1709        struct ath5k_desc *ds;
1710        struct sk_buff *skb;
1711        int ret;
1712
1713        spin_lock(&txq->lock);
1714        list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1715
1716                txq->txq_poll_mark = false;
1717
1718                /* skb might already have been processed last time. */
1719                if (bf->skb != NULL) {
1720                        ds = bf->desc;
1721
1722                        ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1723                        if (unlikely(ret == -EINPROGRESS))
1724                                break;
1725                        else if (unlikely(ret)) {
1726                                ATH5K_ERR(ah,
1727                                        "error %d while processing "
1728                                        "queue %u\n", ret, txq->qnum);
1729                                break;
1730                        }
1731
1732                        skb = bf->skb;
1733                        bf->skb = NULL;
1734
1735                        dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1736                                        DMA_TO_DEVICE);
1737                        ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1738                }
1739
1740                /*
1741                 * It's possible that the hardware can say the buffer is
1742                 * completed when it hasn't yet loaded the ds_link from
1743                 * host memory and moved on.
1744                 * Always keep the last descriptor to avoid HW races...
1745                 */
1746                if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1747                        spin_lock(&ah->txbuflock);
1748                        list_move_tail(&bf->list, &ah->txbuf);
1749                        ah->txbuf_len++;
1750                        txq->txq_len--;
1751                        spin_unlock(&ah->txbuflock);
1752                }
1753        }
1754        spin_unlock(&txq->lock);
1755        if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1756                ieee80211_wake_queue(ah->hw, txq->qnum);
1757}
1758
1759static void
1760ath5k_tasklet_tx(unsigned long data)
1761{
1762        int i;
1763        struct ath5k_hw *ah = (void *)data;
1764
1765        for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1766                if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1767                        ath5k_tx_processq(ah, &ah->txqs[i]);
1768
1769        ah->tx_pending = false;
1770        ath5k_set_current_imask(ah);
1771}
1772
1773
1774/*****************\
1775* Beacon handling *
1776\*****************/
1777
1778/*
1779 * Setup the beacon frame for transmit.
1780 */
1781static int
1782ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1783{
1784        struct sk_buff *skb = bf->skb;
1785        struct  ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1786        struct ath5k_desc *ds;
1787        int ret = 0;
1788        u8 antenna;
1789        u32 flags;
1790        const int padsize = 0;
1791
1792        bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1793                        DMA_TO_DEVICE);
1794        ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1795                        "skbaddr %llx\n", skb, skb->data, skb->len,
1796                        (unsigned long long)bf->skbaddr);
1797
1798        if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1799                ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1800                dev_kfree_skb_any(skb);
1801                bf->skb = NULL;
1802                return -EIO;
1803        }
1804
1805        ds = bf->desc;
1806        antenna = ah->ah_tx_ant;
1807
1808        flags = AR5K_TXDESC_NOACK;
1809        if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1810                ds->ds_link = bf->daddr;        /* self-linked */
1811                flags |= AR5K_TXDESC_VEOL;
1812        } else
1813                ds->ds_link = 0;
1814
1815        /*
1816         * If we use multiple antennas on AP and use
1817         * the Sectored AP scenario, switch antenna every
1818         * 4 beacons to make sure everybody hears our AP.
1819         * When a client tries to associate, hw will keep
1820         * track of the tx antenna to be used for this client
1821         * automatically, based on ACKed packets.
1822         *
1823         * Note: AP still listens and transmits RTS on the
1824         * default antenna which is supposed to be an omni.
1825         *
1826         * Note2: On sectored scenarios it's possible to have
1827         * multiple antennas (1 omni -- the default -- and 14
1828         * sectors), so if we choose to actually support this
1829         * mode, we need to allow the user to set how many antennas
1830         * we have and tweak the code below to send beacons
1831         * on all of them.
1832         */
1833        if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1834                antenna = ah->bsent & 4 ? 2 : 1;
1835
1836
1837        /* FIXME: If we are in g mode and rate is a CCK rate
1838         * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1839         * from tx power (value is in dB units already) */
1840        ds->ds_data = bf->skbaddr;
1841        ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1842                        ieee80211_get_hdrlen_from_skb(skb), padsize,
1843                        AR5K_PKT_TYPE_BEACON,
1844                        (ah->ah_txpower.txp_requested * 2),
1845                        ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1846                        1, AR5K_TXKEYIX_INVALID,
1847                        antenna, flags, 0, 0);
1848        if (ret)
1849                goto err_unmap;
1850
1851        return 0;
1852err_unmap:
1853        dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1854        return ret;
1855}
1856
1857/*
1858 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1859 * this is called only once at config_bss time, for AP we do it every
1860 * SWBA interrupt so that the TIM will reflect buffered frames.
1861 *
1862 * Called with the beacon lock.
1863 */
1864int
1865ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1866{
1867        int ret;
1868        struct ath5k_hw *ah = hw->priv;
1869        struct ath5k_vif *avf;
1870        struct sk_buff *skb;
1871
1872        if (WARN_ON(!vif)) {
1873                ret = -EINVAL;
1874                goto out;
1875        }
1876
1877        skb = ieee80211_beacon_get(hw, vif);
1878
1879        if (!skb) {
1880                ret = -ENOMEM;
1881                goto out;
1882        }
1883
1884        avf = (void *)vif->drv_priv;
1885        ath5k_txbuf_free_skb(ah, avf->bbuf);
1886        avf->bbuf->skb = skb;
1887        ret = ath5k_beacon_setup(ah, avf->bbuf);
1888out:
1889        return ret;
1890}
1891
1892/*
1893 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1894 * frame contents are done as needed and the slot time is
1895 * also adjusted based on current state.
1896 *
1897 * This is called from software irq context (beacontq tasklets)
1898 * or user context from ath5k_beacon_config.
1899 */
1900static void
1901ath5k_beacon_send(struct ath5k_hw *ah)
1902{
1903        struct ieee80211_vif *vif;
1904        struct ath5k_vif *avf;
1905        struct ath5k_buf *bf;
1906        struct sk_buff *skb;
1907        int err;
1908
1909        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1910
1911        /*
1912         * Check if the previous beacon has gone out.  If
1913         * not, don't don't try to post another: skip this
1914         * period and wait for the next.  Missed beacons
1915         * indicate a problem and should not occur.  If we
1916         * miss too many consecutive beacons reset the device.
1917         */
1918        if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1919                ah->bmisscount++;
1920                ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1921                        "missed %u consecutive beacons\n", ah->bmisscount);
1922                if (ah->bmisscount > 10) {      /* NB: 10 is a guess */
1923                        ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1924                                "stuck beacon time (%u missed)\n",
1925                                ah->bmisscount);
1926                        ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1927                                  "stuck beacon, resetting\n");
1928                        ieee80211_queue_work(ah->hw, &ah->reset_work);
1929                }
1930                return;
1931        }
1932        if (unlikely(ah->bmisscount != 0)) {
1933                ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1934                        "resume beacon xmit after %u misses\n",
1935                        ah->bmisscount);
1936                ah->bmisscount = 0;
1937        }
1938
1939        if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1940                        ah->num_mesh_vifs > 1) ||
1941                        ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1942                u64 tsf = ath5k_hw_get_tsf64(ah);
1943                u32 tsftu = TSF_TO_TU(tsf);
1944                int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1945                vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1946                ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1947                        "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1948                        (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1949        } else /* only one interface */
1950                vif = ah->bslot[0];
1951
1952        if (!vif)
1953                return;
1954
1955        avf = (void *)vif->drv_priv;
1956        bf = avf->bbuf;
1957
1958        /*
1959         * Stop any current dma and put the new frame on the queue.
1960         * This should never fail since we check above that no frames
1961         * are still pending on the queue.
1962         */
1963        if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1964                ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1965                /* NB: hw still stops DMA, so proceed */
1966        }
1967
1968        /* refresh the beacon for AP or MESH mode */
1969        if (ah->opmode == NL80211_IFTYPE_AP ||
1970            ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1971                err = ath5k_beacon_update(ah->hw, vif);
1972                if (err)
1973                        return;
1974        }
1975
1976        if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1977                     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1978                ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1979                return;
1980        }
1981
1982        trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1983
1984        ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1985        ath5k_hw_start_tx_dma(ah, ah->bhalq);
1986        ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1987                ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1988
1989        skb = ieee80211_get_buffered_bc(ah->hw, vif);
1990        while (skb) {
1991                ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
1992
1993                if (ah->cabq->txq_len >= ah->cabq->txq_max)
1994                        break;
1995
1996                skb = ieee80211_get_buffered_bc(ah->hw, vif);
1997        }
1998
1999        ah->bsent++;
2000}
2001
2002/**
2003 * ath5k_beacon_update_timers - update beacon timers
2004 *
2005 * @ah: struct ath5k_hw pointer we are operating on
2006 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2007 *          beacon timer update based on the current HW TSF.
2008 *
2009 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2010 * of a received beacon or the current local hardware TSF and write it to the
2011 * beacon timer registers.
2012 *
2013 * This is called in a variety of situations, e.g. when a beacon is received,
2014 * when a TSF update has been detected, but also when an new IBSS is created or
2015 * when we otherwise know we have to update the timers, but we keep it in this
2016 * function to have it all together in one place.
2017 */
2018void
2019ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2020{
2021        u32 nexttbtt, intval, hw_tu, bc_tu;
2022        u64 hw_tsf;
2023
2024        intval = ah->bintval & AR5K_BEACON_PERIOD;
2025        if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2026                + ah->num_mesh_vifs > 1) {
2027                intval /= ATH_BCBUF;    /* staggered multi-bss beacons */
2028                if (intval < 15)
2029                        ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2030                                   intval);
2031        }
2032        if (WARN_ON(!intval))
2033                return;
2034
2035        /* beacon TSF converted to TU */
2036        bc_tu = TSF_TO_TU(bc_tsf);
2037
2038        /* current TSF converted to TU */
2039        hw_tsf = ath5k_hw_get_tsf64(ah);
2040        hw_tu = TSF_TO_TU(hw_tsf);
2041
2042#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2043        /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2044         * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2045         * configuration we need to make sure it is bigger than that. */
2046
2047        if (bc_tsf == -1) {
2048                /*
2049                 * no beacons received, called internally.
2050                 * just need to refresh timers based on HW TSF.
2051                 */
2052                nexttbtt = roundup(hw_tu + FUDGE, intval);
2053        } else if (bc_tsf == 0) {
2054                /*
2055                 * no beacon received, probably called by ath5k_reset_tsf().
2056                 * reset TSF to start with 0.
2057                 */
2058                nexttbtt = intval;
2059                intval |= AR5K_BEACON_RESET_TSF;
2060        } else if (bc_tsf > hw_tsf) {
2061                /*
2062                 * beacon received, SW merge happened but HW TSF not yet updated.
2063                 * not possible to reconfigure timers yet, but next time we
2064                 * receive a beacon with the same BSSID, the hardware will
2065                 * automatically update the TSF and then we need to reconfigure
2066                 * the timers.
2067                 */
2068                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2069                        "need to wait for HW TSF sync\n");
2070                return;
2071        } else {
2072                /*
2073                 * most important case for beacon synchronization between STA.
2074                 *
2075                 * beacon received and HW TSF has been already updated by HW.
2076                 * update next TBTT based on the TSF of the beacon, but make
2077                 * sure it is ahead of our local TSF timer.
2078                 */
2079                nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2080        }
2081#undef FUDGE
2082
2083        ah->nexttbtt = nexttbtt;
2084
2085        intval |= AR5K_BEACON_ENA;
2086        ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2087
2088        /*
2089         * debugging output last in order to preserve the time critical aspect
2090         * of this function
2091         */
2092        if (bc_tsf == -1)
2093                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2094                        "reconfigured timers based on HW TSF\n");
2095        else if (bc_tsf == 0)
2096                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2097                        "reset HW TSF and timers\n");
2098        else
2099                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2100                        "updated timers based on beacon TSF\n");
2101
2102        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2103                          "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2104                          (unsigned long long) bc_tsf,
2105                          (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2106        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2107                intval & AR5K_BEACON_PERIOD,
2108                intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2109                intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2110}
2111
2112/**
2113 * ath5k_beacon_config - Configure the beacon queues and interrupts
2114 *
2115 * @ah: struct ath5k_hw pointer we are operating on
2116 *
2117 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2118 * interrupts to detect TSF updates only.
2119 */
2120void
2121ath5k_beacon_config(struct ath5k_hw *ah)
2122{
2123        spin_lock_bh(&ah->block);
2124        ah->bmisscount = 0;
2125        ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2126
2127        if (ah->enable_beacon) {
2128                /*
2129                 * In IBSS mode we use a self-linked tx descriptor and let the
2130                 * hardware send the beacons automatically. We have to load it
2131                 * only once here.
2132                 * We use the SWBA interrupt only to keep track of the beacon
2133                 * timers in order to detect automatic TSF updates.
2134                 */
2135                ath5k_beaconq_config(ah);
2136
2137                ah->imask |= AR5K_INT_SWBA;
2138
2139                if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2140                        if (ath5k_hw_hasveol(ah))
2141                                ath5k_beacon_send(ah);
2142                } else
2143                        ath5k_beacon_update_timers(ah, -1);
2144        } else {
2145                ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2146        }
2147
2148        ath5k_hw_set_imr(ah, ah->imask);
2149        mmiowb();
2150        spin_unlock_bh(&ah->block);
2151}
2152
2153static void ath5k_tasklet_beacon(unsigned long data)
2154{
2155        struct ath5k_hw *ah = (struct ath5k_hw *) data;
2156
2157        /*
2158         * Software beacon alert--time to send a beacon.
2159         *
2160         * In IBSS mode we use this interrupt just to
2161         * keep track of the next TBTT (target beacon
2162         * transmission time) in order to detect whether
2163         * automatic TSF updates happened.
2164         */
2165        if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2166                /* XXX: only if VEOL supported */
2167                u64 tsf = ath5k_hw_get_tsf64(ah);
2168                ah->nexttbtt += ah->bintval;
2169                ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2170                                "SWBA nexttbtt: %x hw_tu: %x "
2171                                "TSF: %llx\n",
2172                                ah->nexttbtt,
2173                                TSF_TO_TU(tsf),
2174                                (unsigned long long) tsf);
2175        } else {
2176                spin_lock(&ah->block);
2177                ath5k_beacon_send(ah);
2178                spin_unlock(&ah->block);
2179        }
2180}
2181
2182
2183/********************\
2184* Interrupt handling *
2185\********************/
2186
2187static void
2188ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2189{
2190        if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2191           !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2192           !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2193
2194                /* Run ANI only when calibration is not active */
2195
2196                ah->ah_cal_next_ani = jiffies +
2197                        msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2198                tasklet_schedule(&ah->ani_tasklet);
2199
2200        } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2201                !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2202                !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2203
2204                /* Run calibration only when another calibration
2205                 * is not running.
2206                 *
2207                 * Note: This is for both full/short calibration,
2208                 * if it's time for a full one, ath5k_calibrate_work will deal
2209                 * with it. */
2210
2211                ah->ah_cal_next_short = jiffies +
2212                        msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2213                ieee80211_queue_work(ah->hw, &ah->calib_work);
2214        }
2215        /* we could use SWI to generate enough interrupts to meet our
2216         * calibration interval requirements, if necessary:
2217         * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2218}
2219
2220static void
2221ath5k_schedule_rx(struct ath5k_hw *ah)
2222{
2223        ah->rx_pending = true;
2224        tasklet_schedule(&ah->rxtq);
2225}
2226
2227static void
2228ath5k_schedule_tx(struct ath5k_hw *ah)
2229{
2230        ah->tx_pending = true;
2231        tasklet_schedule(&ah->txtq);
2232}
2233
2234static irqreturn_t
2235ath5k_intr(int irq, void *dev_id)
2236{
2237        struct ath5k_hw *ah = dev_id;
2238        enum ath5k_int status;
2239        unsigned int counter = 1000;
2240
2241
2242        /*
2243         * If hw is not ready (or detached) and we get an
2244         * interrupt, or if we have no interrupts pending
2245         * (that means it's not for us) skip it.
2246         *
2247         * NOTE: Group 0/1 PCI interface registers are not
2248         * supported on WiSOCs, so we can't check for pending
2249         * interrupts (ISR belongs to another register group
2250         * so we are ok).
2251         */
2252        if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2253                        ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2254                        !ath5k_hw_is_intr_pending(ah))))
2255                return IRQ_NONE;
2256
2257        /** Main loop **/
2258        do {
2259                ath5k_hw_get_isr(ah, &status);  /* NB: clears IRQ too */
2260
2261                ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2262                                status, ah->imask);
2263
2264                /*
2265                 * Fatal hw error -> Log and reset
2266                 *
2267                 * Fatal errors are unrecoverable so we have to
2268                 * reset the card. These errors include bus and
2269                 * dma errors.
2270                 */
2271                if (unlikely(status & AR5K_INT_FATAL)) {
2272
2273                        ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2274                                  "fatal int, resetting\n");
2275                        ieee80211_queue_work(ah->hw, &ah->reset_work);
2276
2277                /*
2278                 * RX Overrun -> Count and reset if needed
2279                 *
2280                 * Receive buffers are full. Either the bus is busy or
2281                 * the CPU is not fast enough to process all received
2282                 * frames.
2283                 */
2284                } else if (unlikely(status & AR5K_INT_RXORN)) {
2285
2286                        /*
2287                         * Older chipsets need a reset to come out of this
2288                         * condition, but we treat it as RX for newer chips.
2289                         * We don't know exactly which versions need a reset
2290                         * this guess is copied from the HAL.
2291                         */
2292                        ah->stats.rxorn_intr++;
2293
2294                        if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2295                                ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2296                                          "rx overrun, resetting\n");
2297                                ieee80211_queue_work(ah->hw, &ah->reset_work);
2298                        } else
2299                                ath5k_schedule_rx(ah);
2300
2301                } else {
2302
2303                        /* Software Beacon Alert -> Schedule beacon tasklet */
2304                        if (status & AR5K_INT_SWBA)
2305                                tasklet_hi_schedule(&ah->beacontq);
2306
2307                        /*
2308                         * No more RX descriptors -> Just count
2309                         *
2310                         * NB: the hardware should re-read the link when
2311                         *     RXE bit is written, but it doesn't work at
2312                         *     least on older hardware revs.
2313                         */
2314                        if (status & AR5K_INT_RXEOL)
2315                                ah->stats.rxeol_intr++;
2316
2317
2318                        /* TX Underrun -> Bump tx trigger level */
2319                        if (status & AR5K_INT_TXURN)
2320                                ath5k_hw_update_tx_triglevel(ah, true);
2321
2322                        /* RX -> Schedule rx tasklet */
2323                        if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2324                                ath5k_schedule_rx(ah);
2325
2326                        /* TX -> Schedule tx tasklet */
2327                        if (status & (AR5K_INT_TXOK
2328                                        | AR5K_INT_TXDESC
2329                                        | AR5K_INT_TXERR
2330                                        | AR5K_INT_TXEOL))
2331                                ath5k_schedule_tx(ah);
2332
2333                        /* Missed beacon -> TODO
2334                        if (status & AR5K_INT_BMISS)
2335                        */
2336
2337                        /* MIB event -> Update counters and notify ANI */
2338                        if (status & AR5K_INT_MIB) {
2339                                ah->stats.mib_intr++;
2340                                ath5k_hw_update_mib_counters(ah);
2341                                ath5k_ani_mib_intr(ah);
2342                        }
2343
2344                        /* GPIO -> Notify RFKill layer */
2345                        if (status & AR5K_INT_GPIO)
2346                                tasklet_schedule(&ah->rf_kill.toggleq);
2347
2348                }
2349
2350                if (ath5k_get_bus_type(ah) == ATH_AHB)
2351                        break;
2352
2353        } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2354
2355        /*
2356         * Until we handle rx/tx interrupts mask them on IMR
2357         *
2358         * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2359         * and unset after we 've handled the interrupts.
2360         */
2361        if (ah->rx_pending || ah->tx_pending)
2362                ath5k_set_current_imask(ah);
2363
2364        if (unlikely(!counter))
2365                ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2366
2367        /* Fire up calibration poll */
2368        ath5k_intr_calibration_poll(ah);
2369
2370        return IRQ_HANDLED;
2371}
2372
2373/*
2374 * Periodically recalibrate the PHY to account
2375 * for temperature/environment changes.
2376 */
2377static void
2378ath5k_calibrate_work(struct work_struct *work)
2379{
2380        struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2381                calib_work);
2382
2383        /* Should we run a full calibration ? */
2384        if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2385
2386                ah->ah_cal_next_full = jiffies +
2387                        msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2388                ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2389
2390                ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2391                                "running full calibration\n");
2392
2393                if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2394                        /*
2395                         * Rfgain is out of bounds, reset the chip
2396                         * to load new gain values.
2397                         */
2398                        ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2399                                        "got new rfgain, resetting\n");
2400                        ieee80211_queue_work(ah->hw, &ah->reset_work);
2401                }
2402        } else
2403                ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2404
2405
2406        ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2407                ieee80211_frequency_to_channel(ah->curchan->center_freq),
2408                ah->curchan->hw_value);
2409
2410        if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2411                ATH5K_ERR(ah, "calibration of channel %u failed\n",
2412                        ieee80211_frequency_to_channel(
2413                                ah->curchan->center_freq));
2414
2415        /* Clear calibration flags */
2416        if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2417                ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2418        else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2419                ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2420}
2421
2422
2423static void
2424ath5k_tasklet_ani(unsigned long data)
2425{
2426        struct ath5k_hw *ah = (void *)data;
2427
2428        ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2429        ath5k_ani_calibration(ah);
2430        ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2431}
2432
2433
2434static void
2435ath5k_tx_complete_poll_work(struct work_struct *work)
2436{
2437        struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2438                        tx_complete_work.work);
2439        struct ath5k_txq *txq;
2440        int i;
2441        bool needreset = false;
2442
2443        if (!test_bit(ATH_STAT_STARTED, ah->status))
2444                return;
2445
2446        mutex_lock(&ah->lock);
2447
2448        for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2449                if (ah->txqs[i].setup) {
2450                        txq = &ah->txqs[i];
2451                        spin_lock_bh(&txq->lock);
2452                        if (txq->txq_len > 1) {
2453                                if (txq->txq_poll_mark) {
2454                                        ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2455                                                  "TX queue stuck %d\n",
2456                                                  txq->qnum);
2457                                        needreset = true;
2458                                        txq->txq_stuck++;
2459                                        spin_unlock_bh(&txq->lock);
2460                                        break;
2461                                } else {
2462                                        txq->txq_poll_mark = true;
2463                                }
2464                        }
2465                        spin_unlock_bh(&txq->lock);
2466                }
2467        }
2468
2469        if (needreset) {
2470                ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2471                          "TX queues stuck, resetting\n");
2472                ath5k_reset(ah, NULL, true);
2473        }
2474
2475        mutex_unlock(&ah->lock);
2476
2477        ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2478                msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2479}
2480
2481
2482/*************************\
2483* Initialization routines *
2484\*************************/
2485
2486static const struct ieee80211_iface_limit if_limits[] = {
2487        { .max = 2048,  .types = BIT(NL80211_IFTYPE_STATION) },
2488        { .max = 4,     .types =
2489#ifdef CONFIG_MAC80211_MESH
2490                                 BIT(NL80211_IFTYPE_MESH_POINT) |
2491#endif
2492                                 BIT(NL80211_IFTYPE_AP) },
2493};
2494
2495static const struct ieee80211_iface_combination if_comb = {
2496        .limits = if_limits,
2497        .n_limits = ARRAY_SIZE(if_limits),
2498        .max_interfaces = 2048,
2499        .num_different_channels = 1,
2500};
2501
2502int
2503ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2504{
2505        struct ieee80211_hw *hw = ah->hw;
2506        struct ath_common *common;
2507        int ret;
2508        int csz;
2509
2510        /* Initialize driver private data */
2511        SET_IEEE80211_DEV(hw, ah->dev);
2512        hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2513                        IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2514                        IEEE80211_HW_SIGNAL_DBM |
2515                        IEEE80211_HW_MFP_CAPABLE |
2516                        IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2517                        IEEE80211_HW_SUPPORTS_RC_TABLE;
2518
2519        hw->wiphy->interface_modes =
2520                BIT(NL80211_IFTYPE_AP) |
2521                BIT(NL80211_IFTYPE_STATION) |
2522                BIT(NL80211_IFTYPE_ADHOC) |
2523                BIT(NL80211_IFTYPE_MESH_POINT);
2524
2525        hw->wiphy->iface_combinations = &if_comb;
2526        hw->wiphy->n_iface_combinations = 1;
2527
2528        /* SW support for IBSS_RSN is provided by mac80211 */
2529        hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2530
2531        hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2532
2533        /* both antennas can be configured as RX or TX */
2534        hw->wiphy->available_antennas_tx = 0x3;
2535        hw->wiphy->available_antennas_rx = 0x3;
2536
2537        hw->extra_tx_headroom = 2;
2538
2539        /*
2540         * Mark the device as detached to avoid processing
2541         * interrupts until setup is complete.
2542         */
2543        __set_bit(ATH_STAT_INVALID, ah->status);
2544
2545        ah->opmode = NL80211_IFTYPE_STATION;
2546        ah->bintval = 1000;
2547        mutex_init(&ah->lock);
2548        spin_lock_init(&ah->rxbuflock);
2549        spin_lock_init(&ah->txbuflock);
2550        spin_lock_init(&ah->block);
2551        spin_lock_init(&ah->irqlock);
2552
2553        /* Setup interrupt handler */
2554        ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2555        if (ret) {
2556                ATH5K_ERR(ah, "request_irq failed\n");
2557                goto err;
2558        }
2559
2560        common = ath5k_hw_common(ah);
2561        common->ops = &ath5k_common_ops;
2562        common->bus_ops = bus_ops;
2563        common->ah = ah;
2564        common->hw = hw;
2565        common->priv = ah;
2566        common->clockrate = 40;
2567
2568        /*
2569         * Cache line size is used to size and align various
2570         * structures used to communicate with the hardware.
2571         */
2572        ath5k_read_cachesize(common, &csz);
2573        common->cachelsz = csz << 2; /* convert to bytes */
2574
2575        spin_lock_init(&common->cc_lock);
2576
2577        /* Initialize device */
2578        ret = ath5k_hw_init(ah);
2579        if (ret)
2580                goto err_irq;
2581
2582        /* Set up multi-rate retry capabilities */
2583        if (ah->ah_capabilities.cap_has_mrr_support) {
2584                hw->max_rates = 4;
2585                hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2586                                         AR5K_INIT_RETRY_LONG);
2587        }
2588
2589        hw->vif_data_size = sizeof(struct ath5k_vif);
2590
2591        /* Finish private driver data initialization */
2592        ret = ath5k_init(hw);
2593        if (ret)
2594                goto err_ah;
2595
2596        ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2597                        ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2598                                        ah->ah_mac_srev,
2599                                        ah->ah_phy_revision);
2600
2601        if (!ah->ah_single_chip) {
2602                /* Single chip radio (!RF5111) */
2603                if (ah->ah_radio_5ghz_revision &&
2604                        !ah->ah_radio_2ghz_revision) {
2605                        /* No 5GHz support -> report 2GHz radio */
2606                        if (!test_bit(AR5K_MODE_11A,
2607                                ah->ah_capabilities.cap_mode)) {
2608                                ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2609                                        ath5k_chip_name(AR5K_VERSION_RAD,
2610                                                ah->ah_radio_5ghz_revision),
2611                                                ah->ah_radio_5ghz_revision);
2612                        /* No 2GHz support (5110 and some
2613                         * 5GHz only cards) -> report 5GHz radio */
2614                        } else if (!test_bit(AR5K_MODE_11B,
2615                                ah->ah_capabilities.cap_mode)) {
2616                                ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2617                                        ath5k_chip_name(AR5K_VERSION_RAD,
2618                                                ah->ah_radio_5ghz_revision),
2619                                                ah->ah_radio_5ghz_revision);
2620                        /* Multiband radio */
2621                        } else {
2622                                ATH5K_INFO(ah, "RF%s multiband radio found"
2623                                        " (0x%x)\n",
2624                                        ath5k_chip_name(AR5K_VERSION_RAD,
2625                                                ah->ah_radio_5ghz_revision),
2626                                                ah->ah_radio_5ghz_revision);
2627                        }
2628                }
2629                /* Multi chip radio (RF5111 - RF2111) ->
2630                 * report both 2GHz/5GHz radios */
2631                else if (ah->ah_radio_5ghz_revision &&
2632                                ah->ah_radio_2ghz_revision) {
2633                        ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2634                                ath5k_chip_name(AR5K_VERSION_RAD,
2635                                        ah->ah_radio_5ghz_revision),
2636                                        ah->ah_radio_5ghz_revision);
2637                        ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2638                                ath5k_chip_name(AR5K_VERSION_RAD,
2639                                        ah->ah_radio_2ghz_revision),
2640                                        ah->ah_radio_2ghz_revision);
2641                }
2642        }
2643
2644        ath5k_debug_init_device(ah);
2645
2646        /* ready to process interrupts */
2647        __clear_bit(ATH_STAT_INVALID, ah->status);
2648
2649        return 0;
2650err_ah:
2651        ath5k_hw_deinit(ah);
2652err_irq:
2653        free_irq(ah->irq, ah);
2654err:
2655        return ret;
2656}
2657
2658static int
2659ath5k_stop_locked(struct ath5k_hw *ah)
2660{
2661
2662        ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2663                        test_bit(ATH_STAT_INVALID, ah->status));
2664
2665        /*
2666         * Shutdown the hardware and driver:
2667         *    stop output from above
2668         *    disable interrupts
2669         *    turn off timers
2670         *    turn off the radio
2671         *    clear transmit machinery
2672         *    clear receive machinery
2673         *    drain and release tx queues
2674         *    reclaim beacon resources
2675         *    power down hardware
2676         *
2677         * Note that some of this work is not possible if the
2678         * hardware is gone (invalid).
2679         */
2680        ieee80211_stop_queues(ah->hw);
2681
2682        if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2683                ath5k_led_off(ah);
2684                ath5k_hw_set_imr(ah, 0);
2685                synchronize_irq(ah->irq);
2686                ath5k_rx_stop(ah);
2687                ath5k_hw_dma_stop(ah);
2688                ath5k_drain_tx_buffs(ah);
2689                ath5k_hw_phy_disable(ah);
2690        }
2691
2692        return 0;
2693}
2694
2695int ath5k_start(struct ieee80211_hw *hw)
2696{
2697        struct ath5k_hw *ah = hw->priv;
2698        struct ath_common *common = ath5k_hw_common(ah);
2699        int ret, i;
2700
2701        mutex_lock(&ah->lock);
2702
2703        ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2704
2705        /*
2706         * Stop anything previously setup.  This is safe
2707         * no matter this is the first time through or not.
2708         */
2709        ath5k_stop_locked(ah);
2710
2711        /*
2712         * The basic interface to setting the hardware in a good
2713         * state is ``reset''.  On return the hardware is known to
2714         * be powered up and with interrupts disabled.  This must
2715         * be followed by initialization of the appropriate bits
2716         * and then setup of the interrupt mask.
2717         */
2718        ah->curchan = ah->hw->conf.chandef.chan;
2719        ah->imask = AR5K_INT_RXOK
2720                | AR5K_INT_RXERR
2721                | AR5K_INT_RXEOL
2722                | AR5K_INT_RXORN
2723                | AR5K_INT_TXDESC
2724                | AR5K_INT_TXEOL
2725                | AR5K_INT_FATAL
2726                | AR5K_INT_GLOBAL
2727                | AR5K_INT_MIB;
2728
2729        ret = ath5k_reset(ah, NULL, false);
2730        if (ret)
2731                goto done;
2732
2733        if (!ath5k_modparam_no_hw_rfkill_switch)
2734                ath5k_rfkill_hw_start(ah);
2735
2736        /*
2737         * Reset the key cache since some parts do not reset the
2738         * contents on initial power up or resume from suspend.
2739         */
2740        for (i = 0; i < common->keymax; i++)
2741                ath_hw_keyreset(common, (u16) i);
2742
2743        /* Use higher rates for acks instead of base
2744         * rate */
2745        ah->ah_ack_bitrate_high = true;
2746
2747        for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2748                ah->bslot[i] = NULL;
2749
2750        ret = 0;
2751done:
2752        mmiowb();
2753        mutex_unlock(&ah->lock);
2754
2755        set_bit(ATH_STAT_STARTED, ah->status);
2756        ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2757                        msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2758
2759        return ret;
2760}
2761
2762static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2763{
2764        ah->rx_pending = false;
2765        ah->tx_pending = false;
2766        tasklet_kill(&ah->rxtq);
2767        tasklet_kill(&ah->txtq);
2768        tasklet_kill(&ah->beacontq);
2769        tasklet_kill(&ah->ani_tasklet);
2770}
2771
2772/*
2773 * Stop the device, grabbing the top-level lock to protect
2774 * against concurrent entry through ath5k_init (which can happen
2775 * if another thread does a system call and the thread doing the
2776 * stop is preempted).
2777 */
2778void ath5k_stop(struct ieee80211_hw *hw)
2779{
2780        struct ath5k_hw *ah = hw->priv;
2781        int ret;
2782
2783        mutex_lock(&ah->lock);
2784        ret = ath5k_stop_locked(ah);
2785        if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2786                /*
2787                 * Don't set the card in full sleep mode!
2788                 *
2789                 * a) When the device is in this state it must be carefully
2790                 * woken up or references to registers in the PCI clock
2791                 * domain may freeze the bus (and system).  This varies
2792                 * by chip and is mostly an issue with newer parts
2793                 * (madwifi sources mentioned srev >= 0x78) that go to
2794                 * sleep more quickly.
2795                 *
2796                 * b) On older chips full sleep results a weird behaviour
2797                 * during wakeup. I tested various cards with srev < 0x78
2798                 * and they don't wake up after module reload, a second
2799                 * module reload is needed to bring the card up again.
2800                 *
2801                 * Until we figure out what's going on don't enable
2802                 * full chip reset on any chip (this is what Legacy HAL
2803                 * and Sam's HAL do anyway). Instead Perform a full reset
2804                 * on the device (same as initial state after attach) and
2805                 * leave it idle (keep MAC/BB on warm reset) */
2806                ret = ath5k_hw_on_hold(ah);
2807
2808                ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2809                                "putting device to sleep\n");
2810        }
2811
2812        mmiowb();
2813        mutex_unlock(&ah->lock);
2814
2815        ath5k_stop_tasklets(ah);
2816
2817        clear_bit(ATH_STAT_STARTED, ah->status);
2818        cancel_delayed_work_sync(&ah->tx_complete_work);
2819
2820        if (!ath5k_modparam_no_hw_rfkill_switch)
2821                ath5k_rfkill_hw_stop(ah);
2822}
2823
2824/*
2825 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2826 * and change to the given channel.
2827 *
2828 * This should be called with ah->lock.
2829 */
2830static int
2831ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2832                                                        bool skip_pcu)
2833{
2834        struct ath_common *common = ath5k_hw_common(ah);
2835        int ret, ani_mode;
2836        bool fast;
2837
2838        ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2839
2840        ath5k_hw_set_imr(ah, 0);
2841        synchronize_irq(ah->irq);
2842        ath5k_stop_tasklets(ah);
2843
2844        /* Save ani mode and disable ANI during
2845         * reset. If we don't we might get false
2846         * PHY error interrupts. */
2847        ani_mode = ah->ani_state.ani_mode;
2848        ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2849
2850        /* We are going to empty hw queues
2851         * so we should also free any remaining
2852         * tx buffers */
2853        ath5k_drain_tx_buffs(ah);
2854        if (chan)
2855                ah->curchan = chan;
2856
2857        fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2858
2859        ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2860        if (ret) {
2861                ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2862                goto err;
2863        }
2864
2865        ret = ath5k_rx_start(ah);
2866        if (ret) {
2867                ATH5K_ERR(ah, "can't start recv logic\n");
2868                goto err;
2869        }
2870
2871        ath5k_ani_init(ah, ani_mode);
2872
2873        /*
2874         * Set calibration intervals
2875         *
2876         * Note: We don't need to run calibration imediately
2877         * since some initial calibration is done on reset
2878         * even for fast channel switching. Also on scanning
2879         * this will get set again and again and it won't get
2880         * executed unless we connect somewhere and spend some
2881         * time on the channel (that's what calibration needs
2882         * anyway to be accurate).
2883         */
2884        ah->ah_cal_next_full = jiffies +
2885                msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2886        ah->ah_cal_next_ani = jiffies +
2887                msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2888        ah->ah_cal_next_short = jiffies +
2889                msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2890
2891        ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2892
2893        /* clear survey data and cycle counters */
2894        memset(&ah->survey, 0, sizeof(ah->survey));
2895        spin_lock_bh(&common->cc_lock);
2896        ath_hw_cycle_counters_update(common);
2897        memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2898        memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2899        spin_unlock_bh(&common->cc_lock);
2900
2901        /*
2902         * Change channels and update the h/w rate map if we're switching;
2903         * e.g. 11a to 11b/g.
2904         *
2905         * We may be doing a reset in response to an ioctl that changes the
2906         * channel so update any state that might change as a result.
2907         *
2908         * XXX needed?
2909         */
2910/*      ath5k_chan_change(ah, c); */
2911
2912        ath5k_beacon_config(ah);
2913        /* intrs are enabled by ath5k_beacon_config */
2914
2915        ieee80211_wake_queues(ah->hw);
2916
2917        return 0;
2918err:
2919        return ret;
2920}
2921
2922static void ath5k_reset_work(struct work_struct *work)
2923{
2924        struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2925                reset_work);
2926
2927        mutex_lock(&ah->lock);
2928        ath5k_reset(ah, NULL, true);
2929        mutex_unlock(&ah->lock);
2930}
2931
2932static int
2933ath5k_init(struct ieee80211_hw *hw)
2934{
2935
2936        struct ath5k_hw *ah = hw->priv;
2937        struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2938        struct ath5k_txq *txq;
2939        u8 mac[ETH_ALEN] = {};
2940        int ret;
2941
2942
2943        /*
2944         * Collect the channel list.  The 802.11 layer
2945         * is responsible for filtering this list based
2946         * on settings like the phy mode and regulatory
2947         * domain restrictions.
2948         */
2949        ret = ath5k_setup_bands(hw);
2950        if (ret) {
2951                ATH5K_ERR(ah, "can't get channels\n");
2952                goto err;
2953        }
2954
2955        /*
2956         * Allocate tx+rx descriptors and populate the lists.
2957         */
2958        ret = ath5k_desc_alloc(ah);
2959        if (ret) {
2960                ATH5K_ERR(ah, "can't allocate descriptors\n");
2961                goto err;
2962        }
2963
2964        /*
2965         * Allocate hardware transmit queues: one queue for
2966         * beacon frames and one data queue for each QoS
2967         * priority.  Note that hw functions handle resetting
2968         * these queues at the needed time.
2969         */
2970        ret = ath5k_beaconq_setup(ah);
2971        if (ret < 0) {
2972                ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2973                goto err_desc;
2974        }
2975        ah->bhalq = ret;
2976        ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2977        if (IS_ERR(ah->cabq)) {
2978                ATH5K_ERR(ah, "can't setup cab queue\n");
2979                ret = PTR_ERR(ah->cabq);
2980                goto err_bhal;
2981        }
2982
2983        /* 5211 and 5212 usually support 10 queues but we better rely on the
2984         * capability information */
2985        if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2986                /* This order matches mac80211's queue priority, so we can
2987                * directly use the mac80211 queue number without any mapping */
2988                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2989                if (IS_ERR(txq)) {
2990                        ATH5K_ERR(ah, "can't setup xmit queue\n");
2991                        ret = PTR_ERR(txq);
2992                        goto err_queues;
2993                }
2994                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2995                if (IS_ERR(txq)) {
2996                        ATH5K_ERR(ah, "can't setup xmit queue\n");
2997                        ret = PTR_ERR(txq);
2998                        goto err_queues;
2999                }
3000                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3001                if (IS_ERR(txq)) {
3002                        ATH5K_ERR(ah, "can't setup xmit queue\n");
3003                        ret = PTR_ERR(txq);
3004                        goto err_queues;
3005                }
3006                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3007                if (IS_ERR(txq)) {
3008                        ATH5K_ERR(ah, "can't setup xmit queue\n");
3009                        ret = PTR_ERR(txq);
3010                        goto err_queues;
3011                }
3012                hw->queues = 4;
3013        } else {
3014                /* older hardware (5210) can only support one data queue */
3015                txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3016                if (IS_ERR(txq)) {
3017                        ATH5K_ERR(ah, "can't setup xmit queue\n");
3018                        ret = PTR_ERR(txq);
3019                        goto err_queues;
3020                }
3021                hw->queues = 1;
3022        }
3023
3024        tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3025        tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3026        tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3027        tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3028
3029        INIT_WORK(&ah->reset_work, ath5k_reset_work);
3030        INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3031        INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3032
3033        ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3034        if (ret) {
3035                ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3036                goto err_queues;
3037        }
3038
3039        SET_IEEE80211_PERM_ADDR(hw, mac);
3040        /* All MAC address bits matter for ACKs */
3041        ath5k_update_bssid_mask_and_opmode(ah, NULL);
3042
3043        regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3044        ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3045        if (ret) {
3046                ATH5K_ERR(ah, "can't initialize regulatory system\n");
3047                goto err_queues;
3048        }
3049
3050        ret = ieee80211_register_hw(hw);
3051        if (ret) {
3052                ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3053                goto err_queues;
3054        }
3055
3056        if (!ath_is_world_regd(regulatory))
3057                regulatory_hint(hw->wiphy, regulatory->alpha2);
3058
3059        ath5k_init_leds(ah);
3060
3061        ath5k_sysfs_register(ah);
3062
3063        return 0;
3064err_queues:
3065        ath5k_txq_release(ah);
3066err_bhal:
3067        ath5k_hw_release_tx_queue(ah, ah->bhalq);
3068err_desc:
3069        ath5k_desc_free(ah);
3070err:
3071        return ret;
3072}
3073
3074void
3075ath5k_deinit_ah(struct ath5k_hw *ah)
3076{
3077        struct ieee80211_hw *hw = ah->hw;
3078
3079        /*
3080         * NB: the order of these is important:
3081         * o call the 802.11 layer before detaching ath5k_hw to
3082         *   ensure callbacks into the driver to delete global
3083         *   key cache entries can be handled
3084         * o reclaim the tx queue data structures after calling
3085         *   the 802.11 layer as we'll get called back to reclaim
3086         *   node state and potentially want to use them
3087         * o to cleanup the tx queues the hal is called, so detach
3088         *   it last
3089         * XXX: ??? detach ath5k_hw ???
3090         * Other than that, it's straightforward...
3091         */
3092        ieee80211_unregister_hw(hw);
3093        ath5k_desc_free(ah);
3094        ath5k_txq_release(ah);
3095        ath5k_hw_release_tx_queue(ah, ah->bhalq);
3096        ath5k_unregister_leds(ah);
3097
3098        ath5k_sysfs_unregister(ah);
3099        /*
3100         * NB: can't reclaim these until after ieee80211_ifdetach
3101         * returns because we'll get called back to reclaim node
3102         * state and potentially want to use them.
3103         */
3104        ath5k_hw_deinit(ah);
3105        free_irq(ah->irq, ah);
3106}
3107
3108bool
3109ath5k_any_vif_assoc(struct ath5k_hw *ah)
3110{
3111        struct ath5k_vif_iter_data iter_data;
3112        iter_data.hw_macaddr = NULL;
3113        iter_data.any_assoc = false;
3114        iter_data.need_set_hw_addr = false;
3115        iter_data.found_active = true;
3116
3117        ieee80211_iterate_active_interfaces_atomic(
3118                ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3119                ath5k_vif_iter, &iter_data);
3120        return iter_data.any_assoc;
3121}
3122
3123void
3124ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3125{
3126        struct ath5k_hw *ah = hw->priv;
3127        u32 rfilt;
3128        rfilt = ath5k_hw_get_rx_filter(ah);
3129        if (enable)
3130                rfilt |= AR5K_RX_FILTER_BEACON;
3131        else
3132                rfilt &= ~AR5K_RX_FILTER_BEACON;
3133        ath5k_hw_set_rx_filter(ah, rfilt);
3134        ah->filter_flags = rfilt;
3135}
3136
3137void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3138                   const char *fmt, ...)
3139{
3140        struct va_format vaf;
3141        va_list args;
3142
3143        va_start(args, fmt);
3144
3145        vaf.fmt = fmt;
3146        vaf.va = &args;
3147
3148        if (ah && ah->hw)
3149                printk("%s" pr_fmt("%s: %pV"),
3150                       level, wiphy_name(ah->hw->wiphy), &vaf);
3151        else
3152                printk("%s" pr_fmt("%pV"), level, &vaf);
3153
3154        va_end(args);
3155}
3156