linux/drivers/net/wireless/ath/ath5k/phy.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   6 *
   7 * Permission to use, copy, modify, and distribute this software for any
   8 * purpose with or without fee is hereby granted, provided that the above
   9 * copyright notice and this permission notice appear in all copies.
  10 *
  11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18 *
  19 */
  20
  21/***********************\
  22* PHY related functions *
  23\***********************/
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/delay.h>
  28#include <linux/slab.h>
  29#include <asm/unaligned.h>
  30
  31#include "ath5k.h"
  32#include "reg.h"
  33#include "rfbuffer.h"
  34#include "rfgain.h"
  35#include "../regd.h"
  36
  37
  38/**
  39 * DOC: PHY related functions
  40 *
  41 * Here we handle the low-level functions related to baseband
  42 * and analog frontend (RF) parts. This is by far the most complex
  43 * part of the hw code so make sure you know what you are doing.
  44 *
  45 * Here is a list of what this is all about:
  46 *
  47 * - Channel setting/switching
  48 *
  49 * - Automatic Gain Control (AGC) calibration
  50 *
  51 * - Noise Floor calibration
  52 *
  53 * - I/Q imbalance calibration (QAM correction)
  54 *
  55 * - Calibration due to thermal changes (gain_F)
  56 *
  57 * - Spur noise mitigation
  58 *
  59 * - RF/PHY initialization for the various operating modes and bwmodes
  60 *
  61 * - Antenna control
  62 *
  63 * - TX power control per channel/rate/packet type
  64 *
  65 * Also have in mind we never got documentation for most of these
  66 * functions, what we have comes mostly from Atheros's code, reverse
  67 * engineering and patent docs/presentations etc.
  68 */
  69
  70
  71/******************\
  72* Helper functions *
  73\******************/
  74
  75/**
  76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
  77 * @ah: The &struct ath5k_hw
  78 * @band: One of enum ieee80211_band
  79 *
  80 * Returns the revision number of a 2GHz, 5GHz or single chip
  81 * radio.
  82 */
  83u16
  84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
  85{
  86        unsigned int i;
  87        u32 srev;
  88        u16 ret;
  89
  90        /*
  91         * Set the radio chip access register
  92         */
  93        switch (band) {
  94        case IEEE80211_BAND_2GHZ:
  95                ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  96                break;
  97        case IEEE80211_BAND_5GHZ:
  98                ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  99                break;
 100        default:
 101                return 0;
 102        }
 103
 104        usleep_range(2000, 2500);
 105
 106        /* ...wait until PHY is ready and read the selected radio revision */
 107        ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
 108
 109        for (i = 0; i < 8; i++)
 110                ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
 111
 112        if (ah->ah_version == AR5K_AR5210) {
 113                srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
 114                ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
 115        } else {
 116                srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
 117                ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
 118                                ((srev & 0x0f) << 4), 8);
 119        }
 120
 121        /* Reset to the 5GHz mode */
 122        ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 123
 124        return ret;
 125}
 126
 127/**
 128 * ath5k_channel_ok() - Check if a channel is supported by the hw
 129 * @ah: The &struct ath5k_hw
 130 * @channel: The &struct ieee80211_channel
 131 *
 132 * Note: We don't do any regulatory domain checks here, it's just
 133 * a sanity check.
 134 */
 135bool
 136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 137{
 138        u16 freq = channel->center_freq;
 139
 140        /* Check if the channel is in our supported range */
 141        if (channel->band == IEEE80211_BAND_2GHZ) {
 142                if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
 143                    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
 144                        return true;
 145        } else if (channel->band == IEEE80211_BAND_5GHZ)
 146                if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
 147                    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
 148                        return true;
 149
 150        return false;
 151}
 152
 153/**
 154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
 155 * @ah: The &struct ath5k_hw
 156 * @channel: The &struct ieee80211_channel
 157 */
 158bool
 159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 160                                struct ieee80211_channel *channel)
 161{
 162        u8 refclk_freq;
 163
 164        if ((ah->ah_radio == AR5K_RF5112) ||
 165        (ah->ah_radio == AR5K_RF5413) ||
 166        (ah->ah_radio == AR5K_RF2413) ||
 167        (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 168                refclk_freq = 40;
 169        else
 170                refclk_freq = 32;
 171
 172        if ((channel->center_freq % refclk_freq != 0) &&
 173        ((channel->center_freq % refclk_freq < 10) ||
 174        (channel->center_freq % refclk_freq > 22)))
 175                return true;
 176        else
 177                return false;
 178}
 179
 180/**
 181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
 182 * @ah: The &struct ath5k_hw
 183 * @rf_regs: The struct ath5k_rf_reg
 184 * @val: New value
 185 * @reg_id: RF register ID
 186 * @set: Indicate we need to swap data
 187 *
 188 * This is an internal function used to modify RF Banks before
 189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
 190 * infos.
 191 */
 192static unsigned int
 193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
 194                                        u32 val, u8 reg_id, bool set)
 195{
 196        const struct ath5k_rf_reg *rfreg = NULL;
 197        u8 offset, bank, num_bits, col, position;
 198        u16 entry;
 199        u32 mask, data, last_bit, bits_shifted, first_bit;
 200        u32 *rfb;
 201        s32 bits_left;
 202        int i;
 203
 204        data = 0;
 205        rfb = ah->ah_rf_banks;
 206
 207        for (i = 0; i < ah->ah_rf_regs_count; i++) {
 208                if (rf_regs[i].index == reg_id) {
 209                        rfreg = &rf_regs[i];
 210                        break;
 211                }
 212        }
 213
 214        if (rfb == NULL || rfreg == NULL) {
 215                ATH5K_PRINTF("Rf register not found!\n");
 216                /* should not happen */
 217                return 0;
 218        }
 219
 220        bank = rfreg->bank;
 221        num_bits = rfreg->field.len;
 222        first_bit = rfreg->field.pos;
 223        col = rfreg->field.col;
 224
 225        /* first_bit is an offset from bank's
 226         * start. Since we have all banks on
 227         * the same array, we use this offset
 228         * to mark each bank's start */
 229        offset = ah->ah_offset[bank];
 230
 231        /* Boundary check */
 232        if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 233                ATH5K_PRINTF("invalid values at offset %u\n", offset);
 234                return 0;
 235        }
 236
 237        entry = ((first_bit - 1) / 8) + offset;
 238        position = (first_bit - 1) % 8;
 239
 240        if (set)
 241                data = ath5k_hw_bitswap(val, num_bits);
 242
 243        for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 244             position = 0, entry++) {
 245
 246                last_bit = (position + bits_left > 8) ? 8 :
 247                                        position + bits_left;
 248
 249                mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 250                                                                (col * 8);
 251
 252                if (set) {
 253                        rfb[entry] &= ~mask;
 254                        rfb[entry] |= ((data << position) << (col * 8)) & mask;
 255                        data >>= (8 - position);
 256                } else {
 257                        data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 258                                << bits_shifted;
 259                        bits_shifted += last_bit - position;
 260                }
 261
 262                bits_left -= 8 - position;
 263        }
 264
 265        data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 266
 267        return data;
 268}
 269
 270/**
 271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
 272 * @ah: the &struct ath5k_hw
 273 * @channel: the currently set channel upon reset
 274 *
 275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 277 *
 278 * Since delta slope is floating point we split it on its exponent and
 279 * mantissa and provide these values on hw.
 280 *
 281 * For more infos i think this patent is related
 282 * "http://www.freepatentsonline.com/7184495.html"
 283 */
 284static inline int
 285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 286                                struct ieee80211_channel *channel)
 287{
 288        /* Get exponent and mantissa and set it */
 289        u32 coef_scaled, coef_exp, coef_man,
 290                ds_coef_exp, ds_coef_man, clock;
 291
 292        BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 293                (channel->hw_value == AR5K_MODE_11B));
 294
 295        /* Get coefficient
 296         * ALGO: coef = (5 * clock / carrier_freq) / 2
 297         * we scale coef by shifting clock value by 24 for
 298         * better precision since we use integers */
 299        switch (ah->ah_bwmode) {
 300        case AR5K_BWMODE_40MHZ:
 301                clock = 40 * 2;
 302                break;
 303        case AR5K_BWMODE_10MHZ:
 304                clock = 40 / 2;
 305                break;
 306        case AR5K_BWMODE_5MHZ:
 307                clock = 40 / 4;
 308                break;
 309        default:
 310                clock = 40;
 311                break;
 312        }
 313        coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 314
 315        /* Get exponent
 316         * ALGO: coef_exp = 14 - highest set bit position */
 317        coef_exp = ilog2(coef_scaled);
 318
 319        /* Doesn't make sense if it's zero*/
 320        if (!coef_scaled || !coef_exp)
 321                return -EINVAL;
 322
 323        /* Note: we've shifted coef_scaled by 24 */
 324        coef_exp = 14 - (coef_exp - 24);
 325
 326
 327        /* Get mantissa (significant digits)
 328         * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 329        coef_man = coef_scaled +
 330                (1 << (24 - coef_exp - 1));
 331
 332        /* Calculate delta slope coefficient exponent
 333         * and mantissa (remove scaling) and set them on hw */
 334        ds_coef_man = coef_man >> (24 - coef_exp);
 335        ds_coef_exp = coef_exp - 16;
 336
 337        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 338                AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 339        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 340                AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 341
 342        return 0;
 343}
 344
 345/**
 346 * ath5k_hw_phy_disable() - Disable PHY
 347 * @ah: The &struct ath5k_hw
 348 */
 349int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 350{
 351        /*Just a try M.F.*/
 352        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 353
 354        return 0;
 355}
 356
 357/**
 358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
 359 * @ah: The &struct ath5k_hw
 360 * @channel: The &struct ieee80211_channel
 361 */
 362static void
 363ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 364                        struct ieee80211_channel *channel)
 365{
 366        /*
 367         * On 5211+ read activation -> rx delay
 368         * and use it (100ns steps).
 369         */
 370        if (ah->ah_version != AR5K_AR5210) {
 371                u32 delay;
 372                delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 373                        AR5K_PHY_RX_DELAY_M;
 374                delay = (channel->hw_value == AR5K_MODE_11B) ?
 375                        ((delay << 2) / 22) : (delay / 10);
 376                if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 377                        delay = delay << 1;
 378                if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 379                        delay = delay << 2;
 380                /* XXX: /2 on turbo ? Let's be safe
 381                 * for now */
 382                usleep_range(100 + delay, 100 + (2 * delay));
 383        } else {
 384                usleep_range(1000, 1500);
 385        }
 386}
 387
 388
 389/**********************\
 390* RF Gain optimization *
 391\**********************/
 392
 393/**
 394 * DOC: RF Gain optimization
 395 *
 396 * This code is used to optimize RF gain on different environments
 397 * (temperature mostly) based on feedback from a power detector.
 398 *
 399 * It's only used on RF5111 and RF5112, later RF chips seem to have
 400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 401 * no gain optimization ladder-.
 402 *
 403 * For more infos check out this patent doc
 404 * "http://www.freepatentsonline.com/7400691.html"
 405 *
 406 * This paper describes power drops as seen on the receiver due to
 407 * probe packets
 408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 409 * %20of%20Power%20Control.pdf"
 410 *
 411 * And this is the MadWiFi bug entry related to the above
 412 * "http://madwifi-project.org/ticket/1659"
 413 * with various measurements and diagrams
 414 */
 415
 416/**
 417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
 418 * @ah: The &struct ath5k_hw
 419 */
 420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 421{
 422        /* Initialize the gain optimization values */
 423        switch (ah->ah_radio) {
 424        case AR5K_RF5111:
 425                ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 426                ah->ah_gain.g_low = 20;
 427                ah->ah_gain.g_high = 35;
 428                ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 429                break;
 430        case AR5K_RF5112:
 431                ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 432                ah->ah_gain.g_low = 20;
 433                ah->ah_gain.g_high = 85;
 434                ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 435                break;
 436        default:
 437                return -EINVAL;
 438        }
 439
 440        return 0;
 441}
 442
 443/**
 444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
 445 * @ah: The &struct ath5k_hw
 446 *
 447 * Schedules a gain probe check on the next transmitted packet.
 448 * That means our next packet is going to be sent with lower
 449 * tx power and a Peak to Average Power Detector (PAPD) will try
 450 * to measure the gain.
 451 *
 452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
 453 * just after we enable the probe so that we don't mess with
 454 * standard traffic.
 455 */
 456static void
 457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 458{
 459
 460        /* Skip if gain calibration is inactive or
 461         * we already handle a probe request */
 462        if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 463                return;
 464
 465        /* Send the packet with 2dB below max power as
 466         * patent doc suggest */
 467        ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 468                        AR5K_PHY_PAPD_PROBE_TXPOWER) |
 469                        AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 470
 471        ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 472
 473}
 474
 475/**
 476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
 477 * @ah: The &struct ath5k_hw
 478 *
 479 * Calculate Gain_F measurement correction
 480 * based on the current step for RF5112 rev. 2
 481 */
 482static u32
 483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 484{
 485        u32 mix, step;
 486        u32 *rf;
 487        const struct ath5k_gain_opt *go;
 488        const struct ath5k_gain_opt_step *g_step;
 489        const struct ath5k_rf_reg *rf_regs;
 490
 491        /* Only RF5112 Rev. 2 supports it */
 492        if ((ah->ah_radio != AR5K_RF5112) ||
 493        (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 494                return 0;
 495
 496        go = &rfgain_opt_5112;
 497        rf_regs = rf_regs_5112a;
 498        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 499
 500        g_step = &go->go_step[ah->ah_gain.g_step_idx];
 501
 502        if (ah->ah_rf_banks == NULL)
 503                return 0;
 504
 505        rf = ah->ah_rf_banks;
 506        ah->ah_gain.g_f_corr = 0;
 507
 508        /* No VGA (Variable Gain Amplifier) override, skip */
 509        if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 510                return 0;
 511
 512        /* Mix gain stepping */
 513        step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 514
 515        /* Mix gain override */
 516        mix = g_step->gos_param[0];
 517
 518        switch (mix) {
 519        case 3:
 520                ah->ah_gain.g_f_corr = step * 2;
 521                break;
 522        case 2:
 523                ah->ah_gain.g_f_corr = (step - 5) * 2;
 524                break;
 525        case 1:
 526                ah->ah_gain.g_f_corr = step;
 527                break;
 528        default:
 529                ah->ah_gain.g_f_corr = 0;
 530                break;
 531        }
 532
 533        return ah->ah_gain.g_f_corr;
 534}
 535
 536/**
 537 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
 538 * @ah: The &struct ath5k_hw
 539 *
 540 * Check if current gain_F measurement is in the range of our
 541 * power detector windows. If we get a measurement outside range
 542 * we know it's not accurate (detectors can't measure anything outside
 543 * their detection window) so we must ignore it.
 544 *
 545 * Returns true if readback was O.K. or false on failure
 546 */
 547static bool
 548ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 549{
 550        const struct ath5k_rf_reg *rf_regs;
 551        u32 step, mix_ovr, level[4];
 552        u32 *rf;
 553
 554        if (ah->ah_rf_banks == NULL)
 555                return false;
 556
 557        rf = ah->ah_rf_banks;
 558
 559        if (ah->ah_radio == AR5K_RF5111) {
 560
 561                rf_regs = rf_regs_5111;
 562                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 563
 564                step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 565                        false);
 566
 567                level[0] = 0;
 568                level[1] = (step == 63) ? 50 : step + 4;
 569                level[2] = (step != 63) ? 64 : level[0];
 570                level[3] = level[2] + 50;
 571
 572                ah->ah_gain.g_high = level[3] -
 573                        (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 574                ah->ah_gain.g_low = level[0] +
 575                        (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 576        } else {
 577
 578                rf_regs = rf_regs_5112;
 579                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 580
 581                mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 582                        false);
 583
 584                level[0] = level[2] = 0;
 585
 586                if (mix_ovr == 1) {
 587                        level[1] = level[3] = 83;
 588                } else {
 589                        level[1] = level[3] = 107;
 590                        ah->ah_gain.g_high = 55;
 591                }
 592        }
 593
 594        return (ah->ah_gain.g_current >= level[0] &&
 595                        ah->ah_gain.g_current <= level[1]) ||
 596                (ah->ah_gain.g_current >= level[2] &&
 597                        ah->ah_gain.g_current <= level[3]);
 598}
 599
 600/**
 601 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
 602 * @ah: The &struct ath5k_hw
 603 *
 604 * Choose the right target gain based on current gain
 605 * and RF gain optimization ladder
 606 */
 607static s8
 608ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 609{
 610        const struct ath5k_gain_opt *go;
 611        const struct ath5k_gain_opt_step *g_step;
 612        int ret = 0;
 613
 614        switch (ah->ah_radio) {
 615        case AR5K_RF5111:
 616                go = &rfgain_opt_5111;
 617                break;
 618        case AR5K_RF5112:
 619                go = &rfgain_opt_5112;
 620                break;
 621        default:
 622                return 0;
 623        }
 624
 625        g_step = &go->go_step[ah->ah_gain.g_step_idx];
 626
 627        if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 628
 629                /* Reached maximum */
 630                if (ah->ah_gain.g_step_idx == 0)
 631                        return -1;
 632
 633                for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 634                                ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 635                                ah->ah_gain.g_step_idx > 0;
 636                                g_step = &go->go_step[ah->ah_gain.g_step_idx])
 637                        ah->ah_gain.g_target -= 2 *
 638                            (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 639                            g_step->gos_gain);
 640
 641                ret = 1;
 642                goto done;
 643        }
 644
 645        if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 646
 647                /* Reached minimum */
 648                if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 649                        return -2;
 650
 651                for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 652                                ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 653                                ah->ah_gain.g_step_idx < go->go_steps_count - 1;
 654                                g_step = &go->go_step[ah->ah_gain.g_step_idx])
 655                        ah->ah_gain.g_target -= 2 *
 656                            (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 657                            g_step->gos_gain);
 658
 659                ret = 2;
 660                goto done;
 661        }
 662
 663done:
 664        ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
 665                "ret %d, gain step %u, current gain %u, target gain %u\n",
 666                ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 667                ah->ah_gain.g_target);
 668
 669        return ret;
 670}
 671
 672/**
 673 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
 674 * @ah: The &struct ath5k_hw
 675 *
 676 * Main callback for thermal RF gain calibration engine
 677 * Check for a new gain reading and schedule an adjustment
 678 * if needed.
 679 *
 680 * Returns one of enum ath5k_rfgain codes
 681 */
 682enum ath5k_rfgain
 683ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 684{
 685        u32 data, type;
 686        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 687
 688        if (ah->ah_rf_banks == NULL ||
 689        ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 690                return AR5K_RFGAIN_INACTIVE;
 691
 692        /* No check requested, either engine is inactive
 693         * or an adjustment is already requested */
 694        if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 695                goto done;
 696
 697        /* Read the PAPD (Peak to Average Power Detector)
 698         * register */
 699        data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 700
 701        /* No probe is scheduled, read gain_F measurement */
 702        if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 703                ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 704                type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 705
 706                /* If tx packet is CCK correct the gain_F measurement
 707                 * by cck ofdm gain delta */
 708                if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 709                        if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 710                                ah->ah_gain.g_current +=
 711                                        ee->ee_cck_ofdm_gain_delta;
 712                        else
 713                                ah->ah_gain.g_current +=
 714                                        AR5K_GAIN_CCK_PROBE_CORR;
 715                }
 716
 717                /* Further correct gain_F measurement for
 718                 * RF5112A radios */
 719                if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 720                        ath5k_hw_rf_gainf_corr(ah);
 721                        ah->ah_gain.g_current =
 722                                ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 723                                (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
 724                                0;
 725                }
 726
 727                /* Check if measurement is ok and if we need
 728                 * to adjust gain, schedule a gain adjustment,
 729                 * else switch back to the active state */
 730                if (ath5k_hw_rf_check_gainf_readback(ah) &&
 731                AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 732                ath5k_hw_rf_gainf_adjust(ah)) {
 733                        ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 734                } else {
 735                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 736                }
 737        }
 738
 739done:
 740        return ah->ah_gain.g_state;
 741}
 742
 743/**
 744 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
 745 * @ah: The &struct ath5k_hw
 746 * @band: One of enum ieee80211_band
 747 *
 748 * Write initial RF gain table to set the RF sensitivity.
 749 *
 750 * NOTE: This one works on all RF chips and has nothing to do
 751 * with Gain_F calibration
 752 */
 753static int
 754ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
 755{
 756        const struct ath5k_ini_rfgain *ath5k_rfg;
 757        unsigned int i, size, index;
 758
 759        switch (ah->ah_radio) {
 760        case AR5K_RF5111:
 761                ath5k_rfg = rfgain_5111;
 762                size = ARRAY_SIZE(rfgain_5111);
 763                break;
 764        case AR5K_RF5112:
 765                ath5k_rfg = rfgain_5112;
 766                size = ARRAY_SIZE(rfgain_5112);
 767                break;
 768        case AR5K_RF2413:
 769                ath5k_rfg = rfgain_2413;
 770                size = ARRAY_SIZE(rfgain_2413);
 771                break;
 772        case AR5K_RF2316:
 773                ath5k_rfg = rfgain_2316;
 774                size = ARRAY_SIZE(rfgain_2316);
 775                break;
 776        case AR5K_RF5413:
 777                ath5k_rfg = rfgain_5413;
 778                size = ARRAY_SIZE(rfgain_5413);
 779                break;
 780        case AR5K_RF2317:
 781        case AR5K_RF2425:
 782                ath5k_rfg = rfgain_2425;
 783                size = ARRAY_SIZE(rfgain_2425);
 784                break;
 785        default:
 786                return -EINVAL;
 787        }
 788
 789        index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
 790
 791        for (i = 0; i < size; i++) {
 792                AR5K_REG_WAIT(i);
 793                ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 794                        (u32)ath5k_rfg[i].rfg_register);
 795        }
 796
 797        return 0;
 798}
 799
 800
 801/********************\
 802* RF Registers setup *
 803\********************/
 804
 805/**
 806 * ath5k_hw_rfregs_init() - Initialize RF register settings
 807 * @ah: The &struct ath5k_hw
 808 * @channel: The &struct ieee80211_channel
 809 * @mode: One of enum ath5k_driver_mode
 810 *
 811 * Setup RF registers by writing RF buffer on hw. For
 812 * more infos on this, check out rfbuffer.h
 813 */
 814static int
 815ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 816                        struct ieee80211_channel *channel,
 817                        unsigned int mode)
 818{
 819        const struct ath5k_rf_reg *rf_regs;
 820        const struct ath5k_ini_rfbuffer *ini_rfb;
 821        const struct ath5k_gain_opt *go = NULL;
 822        const struct ath5k_gain_opt_step *g_step;
 823        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 824        u8 ee_mode = 0;
 825        u32 *rfb;
 826        int i, obdb = -1, bank = -1;
 827
 828        switch (ah->ah_radio) {
 829        case AR5K_RF5111:
 830                rf_regs = rf_regs_5111;
 831                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 832                ini_rfb = rfb_5111;
 833                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 834                go = &rfgain_opt_5111;
 835                break;
 836        case AR5K_RF5112:
 837                if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 838                        rf_regs = rf_regs_5112a;
 839                        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 840                        ini_rfb = rfb_5112a;
 841                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 842                } else {
 843                        rf_regs = rf_regs_5112;
 844                        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 845                        ini_rfb = rfb_5112;
 846                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 847                }
 848                go = &rfgain_opt_5112;
 849                break;
 850        case AR5K_RF2413:
 851                rf_regs = rf_regs_2413;
 852                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 853                ini_rfb = rfb_2413;
 854                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 855                break;
 856        case AR5K_RF2316:
 857                rf_regs = rf_regs_2316;
 858                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 859                ini_rfb = rfb_2316;
 860                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 861                break;
 862        case AR5K_RF5413:
 863                rf_regs = rf_regs_5413;
 864                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 865                ini_rfb = rfb_5413;
 866                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 867                break;
 868        case AR5K_RF2317:
 869                rf_regs = rf_regs_2425;
 870                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 871                ini_rfb = rfb_2317;
 872                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 873                break;
 874        case AR5K_RF2425:
 875                rf_regs = rf_regs_2425;
 876                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 877                if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 878                        ini_rfb = rfb_2425;
 879                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 880                } else {
 881                        ini_rfb = rfb_2417;
 882                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 883                }
 884                break;
 885        default:
 886                return -EINVAL;
 887        }
 888
 889        /* If it's the first time we set RF buffer, allocate
 890         * ah->ah_rf_banks based on ah->ah_rf_banks_size
 891         * we set above */
 892        if (ah->ah_rf_banks == NULL) {
 893                ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
 894                                                                GFP_KERNEL);
 895                if (ah->ah_rf_banks == NULL) {
 896                        ATH5K_ERR(ah, "out of memory\n");
 897                        return -ENOMEM;
 898                }
 899        }
 900
 901        /* Copy values to modify them */
 902        rfb = ah->ah_rf_banks;
 903
 904        for (i = 0; i < ah->ah_rf_banks_size; i++) {
 905                if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 906                        ATH5K_ERR(ah, "invalid bank\n");
 907                        return -EINVAL;
 908                }
 909
 910                /* Bank changed, write down the offset */
 911                if (bank != ini_rfb[i].rfb_bank) {
 912                        bank = ini_rfb[i].rfb_bank;
 913                        ah->ah_offset[bank] = i;
 914                }
 915
 916                rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 917        }
 918
 919        /* Set Output and Driver bias current (OB/DB) */
 920        if (channel->band == IEEE80211_BAND_2GHZ) {
 921
 922                if (channel->hw_value == AR5K_MODE_11B)
 923                        ee_mode = AR5K_EEPROM_MODE_11B;
 924                else
 925                        ee_mode = AR5K_EEPROM_MODE_11G;
 926
 927                /* For RF511X/RF211X combination we
 928                 * use b_OB and b_DB parameters stored
 929                 * in eeprom on ee->ee_ob[ee_mode][0]
 930                 *
 931                 * For all other chips we use OB/DB for 2GHz
 932                 * stored in the b/g modal section just like
 933                 * 802.11a on ee->ee_ob[ee_mode][1] */
 934                if ((ah->ah_radio == AR5K_RF5111) ||
 935                (ah->ah_radio == AR5K_RF5112))
 936                        obdb = 0;
 937                else
 938                        obdb = 1;
 939
 940                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 941                                                AR5K_RF_OB_2GHZ, true);
 942
 943                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 944                                                AR5K_RF_DB_2GHZ, true);
 945
 946        /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 947        } else if ((channel->band == IEEE80211_BAND_5GHZ) ||
 948                        (ah->ah_radio == AR5K_RF5111)) {
 949
 950                /* For 11a, Turbo and XR we need to choose
 951                 * OB/DB based on frequency range */
 952                ee_mode = AR5K_EEPROM_MODE_11A;
 953                obdb =   channel->center_freq >= 5725 ? 3 :
 954                        (channel->center_freq >= 5500 ? 2 :
 955                        (channel->center_freq >= 5260 ? 1 :
 956                         (channel->center_freq > 4000 ? 0 : -1)));
 957
 958                if (obdb < 0)
 959                        return -EINVAL;
 960
 961                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 962                                                AR5K_RF_OB_5GHZ, true);
 963
 964                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 965                                                AR5K_RF_DB_5GHZ, true);
 966        }
 967
 968        g_step = &go->go_step[ah->ah_gain.g_step_idx];
 969
 970        /* Set turbo mode (N/A on RF5413) */
 971        if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 972        (ah->ah_radio != AR5K_RF5413))
 973                ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 974
 975        /* Bank Modifications (chip-specific) */
 976        if (ah->ah_radio == AR5K_RF5111) {
 977
 978                /* Set gain_F settings according to current step */
 979                if (channel->hw_value != AR5K_MODE_11B) {
 980
 981                        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 982                                        AR5K_PHY_FRAME_CTL_TX_CLIP,
 983                                        g_step->gos_param[0]);
 984
 985                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 986                                                        AR5K_RF_PWD_90, true);
 987
 988                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 989                                                        AR5K_RF_PWD_84, true);
 990
 991                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 992                                                AR5K_RF_RFGAIN_SEL, true);
 993
 994                        /* We programmed gain_F parameters, switch back
 995                         * to active state */
 996                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 997
 998                }
 999
1000                /* Bank 6/7 setup */
1001
1002                ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1003                                                AR5K_RF_PWD_XPD, true);
1004
1005                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1006                                                AR5K_RF_XPD_GAIN, true);
1007
1008                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1009                                                AR5K_RF_GAIN_I, true);
1010
1011                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1012                                                AR5K_RF_PLO_SEL, true);
1013
1014                /* Tweak power detectors for half/quarter rate support */
1015                if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1016                ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1017                        u8 wait_i;
1018
1019                        ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1020                                                AR5K_RF_WAIT_S, true);
1021
1022                        wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1023                                                        0x1f : 0x10;
1024
1025                        ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1026                                                AR5K_RF_WAIT_I, true);
1027                        ath5k_hw_rfb_op(ah, rf_regs, 3,
1028                                                AR5K_RF_MAX_TIME, true);
1029
1030                }
1031        }
1032
1033        if (ah->ah_radio == AR5K_RF5112) {
1034
1035                /* Set gain_F settings according to current step */
1036                if (channel->hw_value != AR5K_MODE_11B) {
1037
1038                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1039                                                AR5K_RF_MIXGAIN_OVR, true);
1040
1041                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1042                                                AR5K_RF_PWD_138, true);
1043
1044                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1045                                                AR5K_RF_PWD_137, true);
1046
1047                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1048                                                AR5K_RF_PWD_136, true);
1049
1050                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1051                                                AR5K_RF_PWD_132, true);
1052
1053                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1054                                                AR5K_RF_PWD_131, true);
1055
1056                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1057                                                AR5K_RF_PWD_130, true);
1058
1059                        /* We programmed gain_F parameters, switch back
1060                         * to active state */
1061                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1062                }
1063
1064                /* Bank 6/7 setup */
1065
1066                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1067                                                AR5K_RF_XPD_SEL, true);
1068
1069                if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1070                        /* Rev. 1 supports only one xpd */
1071                        ath5k_hw_rfb_op(ah, rf_regs,
1072                                                ee->ee_x_gain[ee_mode],
1073                                                AR5K_RF_XPD_GAIN, true);
1074
1075                } else {
1076                        u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1077                        if (ee->ee_pd_gains[ee_mode] > 1) {
1078                                ath5k_hw_rfb_op(ah, rf_regs,
1079                                                pdg_curve_to_idx[0],
1080                                                AR5K_RF_PD_GAIN_LO, true);
1081                                ath5k_hw_rfb_op(ah, rf_regs,
1082                                                pdg_curve_to_idx[1],
1083                                                AR5K_RF_PD_GAIN_HI, true);
1084                        } else {
1085                                ath5k_hw_rfb_op(ah, rf_regs,
1086                                                pdg_curve_to_idx[0],
1087                                                AR5K_RF_PD_GAIN_LO, true);
1088                                ath5k_hw_rfb_op(ah, rf_regs,
1089                                                pdg_curve_to_idx[0],
1090                                                AR5K_RF_PD_GAIN_HI, true);
1091                        }
1092
1093                        /* Lower synth voltage on Rev 2 */
1094                        if (ah->ah_radio == AR5K_RF5112 &&
1095                            (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1096                                ath5k_hw_rfb_op(ah, rf_regs, 2,
1097                                                AR5K_RF_HIGH_VC_CP, true);
1098
1099                                ath5k_hw_rfb_op(ah, rf_regs, 2,
1100                                                AR5K_RF_MID_VC_CP, true);
1101
1102                                ath5k_hw_rfb_op(ah, rf_regs, 2,
1103                                                AR5K_RF_LOW_VC_CP, true);
1104
1105                                ath5k_hw_rfb_op(ah, rf_regs, 2,
1106                                                AR5K_RF_PUSH_UP, true);
1107                        }
1108
1109                        /* Decrease power consumption on 5213+ BaseBand */
1110                        if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1111                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1112                                                AR5K_RF_PAD2GND, true);
1113
1114                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1115                                                AR5K_RF_XB2_LVL, true);
1116
1117                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1118                                                AR5K_RF_XB5_LVL, true);
1119
1120                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1121                                                AR5K_RF_PWD_167, true);
1122
1123                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1124                                                AR5K_RF_PWD_166, true);
1125                        }
1126                }
1127
1128                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1129                                                AR5K_RF_GAIN_I, true);
1130
1131                /* Tweak power detector for half/quarter rates */
1132                if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1133                ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1134                        u8 pd_delay;
1135
1136                        pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1137                                                        0xf : 0x8;
1138
1139                        ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1140                                                AR5K_RF_PD_PERIOD_A, true);
1141                        ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1142                                                AR5K_RF_PD_DELAY_A, true);
1143
1144                }
1145        }
1146
1147        if (ah->ah_radio == AR5K_RF5413 &&
1148        channel->band == IEEE80211_BAND_2GHZ) {
1149
1150                ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1151                                                                        true);
1152
1153                /* Set optimum value for early revisions (on pci-e chips) */
1154                if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1155                ah->ah_mac_srev < AR5K_SREV_AR5413)
1156                        ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1157                                                AR5K_RF_PWD_ICLOBUF_2G, true);
1158
1159        }
1160
1161        /* Write RF banks on hw */
1162        for (i = 0; i < ah->ah_rf_banks_size; i++) {
1163                AR5K_REG_WAIT(i);
1164                ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1165        }
1166
1167        return 0;
1168}
1169
1170
1171/**************************\
1172  PHY/RF channel functions
1173\**************************/
1174
1175/**
1176 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1177 * @channel: The &struct ieee80211_channel
1178 *
1179 * Map channel frequency to IEEE channel number and convert it
1180 * to an internal channel value used by the RF5110 chipset.
1181 */
1182static u32
1183ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1184{
1185        u32 athchan;
1186
1187        athchan = (ath5k_hw_bitswap(
1188                        (ieee80211_frequency_to_channel(
1189                                channel->center_freq) - 24) / 2, 5)
1190                                << 1) | (1 << 6) | 0x1;
1191        return athchan;
1192}
1193
1194/**
1195 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1196 * @ah: The &struct ath5k_hw
1197 * @channel: The &struct ieee80211_channel
1198 */
1199static int
1200ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1201                struct ieee80211_channel *channel)
1202{
1203        u32 data;
1204
1205        /*
1206         * Set the channel and wait
1207         */
1208        data = ath5k_hw_rf5110_chan2athchan(channel);
1209        ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1210        ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1211        usleep_range(1000, 1500);
1212
1213        return 0;
1214}
1215
1216/**
1217 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1218 * @ieee: IEEE channel number
1219 * @athchan: The &struct ath5k_athchan_2ghz
1220 *
1221 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1222 * we need to add some offsets and extra flags to the data values we pass
1223 * on to the PHY. So for every 2GHz channel this function gets called
1224 * to do the conversion.
1225 */
1226static int
1227ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1228                struct ath5k_athchan_2ghz *athchan)
1229{
1230        int channel;
1231
1232        /* Cast this value to catch negative channel numbers (>= -19) */
1233        channel = (int)ieee;
1234
1235        /*
1236         * Map 2GHz IEEE channel to 5GHz Atheros channel
1237         */
1238        if (channel <= 13) {
1239                athchan->a2_athchan = 115 + channel;
1240                athchan->a2_flags = 0x46;
1241        } else if (channel == 14) {
1242                athchan->a2_athchan = 124;
1243                athchan->a2_flags = 0x44;
1244        } else if (channel >= 15 && channel <= 26) {
1245                athchan->a2_athchan = ((channel - 14) * 4) + 132;
1246                athchan->a2_flags = 0x46;
1247        } else
1248                return -EINVAL;
1249
1250        return 0;
1251}
1252
1253/**
1254 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1255 * @ah: The &struct ath5k_hw
1256 * @channel: The &struct ieee80211_channel
1257 */
1258static int
1259ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1260                struct ieee80211_channel *channel)
1261{
1262        struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1263        unsigned int ath5k_channel =
1264                ieee80211_frequency_to_channel(channel->center_freq);
1265        u32 data0, data1, clock;
1266        int ret;
1267
1268        /*
1269         * Set the channel on the RF5111 radio
1270         */
1271        data0 = data1 = 0;
1272
1273        if (channel->band == IEEE80211_BAND_2GHZ) {
1274                /* Map 2GHz channel to 5GHz Atheros channel ID */
1275                ret = ath5k_hw_rf5111_chan2athchan(
1276                        ieee80211_frequency_to_channel(channel->center_freq),
1277                        &ath5k_channel_2ghz);
1278                if (ret)
1279                        return ret;
1280
1281                ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1282                data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1283                    << 5) | (1 << 4);
1284        }
1285
1286        if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1287                clock = 1;
1288                data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1289                        (clock << 1) | (1 << 10) | 1;
1290        } else {
1291                clock = 0;
1292                data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1293                        << 2) | (clock << 1) | (1 << 10) | 1;
1294        }
1295
1296        ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1297                        AR5K_RF_BUFFER);
1298        ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1299                        AR5K_RF_BUFFER_CONTROL_3);
1300
1301        return 0;
1302}
1303
1304/**
1305 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1306 * @ah: The &struct ath5k_hw
1307 * @channel: The &struct ieee80211_channel
1308 *
1309 * On RF5112/2112 and newer we don't need to do any conversion.
1310 * We pass the frequency value after a few modifications to the
1311 * chip directly.
1312 *
1313 * NOTE: Make sure channel frequency given is within our range or else
1314 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1315 */
1316static int
1317ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1318                struct ieee80211_channel *channel)
1319{
1320        u32 data, data0, data1, data2;
1321        u16 c;
1322
1323        data = data0 = data1 = data2 = 0;
1324        c = channel->center_freq;
1325
1326        /* My guess based on code:
1327         * 2GHz RF has 2 synth modes, one with a Local Oscillator
1328         * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1329         * (3040/2). data0 is used to set the PLL divider and data1
1330         * selects synth mode. */
1331        if (c < 4800) {
1332                /* Channel 14 and all frequencies with 2Hz spacing
1333                 * below/above (non-standard channels) */
1334                if (!((c - 2224) % 5)) {
1335                        /* Same as (c - 2224) / 5 */
1336                        data0 = ((2 * (c - 704)) - 3040) / 10;
1337                        data1 = 1;
1338                /* Channel 1 and all frequencies with 5Hz spacing
1339                 * below/above (standard channels without channel 14) */
1340                } else if (!((c - 2192) % 5)) {
1341                        /* Same as (c - 2192) / 5 */
1342                        data0 = ((2 * (c - 672)) - 3040) / 10;
1343                        data1 = 0;
1344                } else
1345                        return -EINVAL;
1346
1347                data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1348        /* This is more complex, we have a single synthesizer with
1349         * 4 reference clock settings (?) based on frequency spacing
1350         * and set using data2. LO is at 4800Hz and data0 is again used
1351         * to set some divider.
1352         *
1353         * NOTE: There is an old atheros presentation at Stanford
1354         * that mentions a method called dual direct conversion
1355         * with 1GHz sliding IF for RF5110. Maybe that's what we
1356         * have here, or an updated version. */
1357        } else if ((c % 5) != 2 || c > 5435) {
1358                if (!(c % 20) && c >= 5120) {
1359                        data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1360                        data2 = ath5k_hw_bitswap(3, 2);
1361                } else if (!(c % 10)) {
1362                        data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1363                        data2 = ath5k_hw_bitswap(2, 2);
1364                } else if (!(c % 5)) {
1365                        data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1366                        data2 = ath5k_hw_bitswap(1, 2);
1367                } else
1368                        return -EINVAL;
1369        } else {
1370                data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1371                data2 = ath5k_hw_bitswap(0, 2);
1372        }
1373
1374        data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1375
1376        ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1377        ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1378
1379        return 0;
1380}
1381
1382/**
1383 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1384 * @ah: The &struct ath5k_hw
1385 * @channel: The &struct ieee80211_channel
1386 *
1387 * AR2425/2417 have a different 2GHz RF so code changes
1388 * a little bit from RF5112.
1389 */
1390static int
1391ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1392                struct ieee80211_channel *channel)
1393{
1394        u32 data, data0, data2;
1395        u16 c;
1396
1397        data = data0 = data2 = 0;
1398        c = channel->center_freq;
1399
1400        if (c < 4800) {
1401                data0 = ath5k_hw_bitswap((c - 2272), 8);
1402                data2 = 0;
1403        /* ? 5GHz ? */
1404        } else if ((c % 5) != 2 || c > 5435) {
1405                if (!(c % 20) && c < 5120)
1406                        data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1407                else if (!(c % 10))
1408                        data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1409                else if (!(c % 5))
1410                        data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1411                else
1412                        return -EINVAL;
1413                data2 = ath5k_hw_bitswap(1, 2);
1414        } else {
1415                data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1416                data2 = ath5k_hw_bitswap(0, 2);
1417        }
1418
1419        data = (data0 << 4) | data2 << 2 | 0x1001;
1420
1421        ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1422        ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1423
1424        return 0;
1425}
1426
1427/**
1428 * ath5k_hw_channel() - Set a channel on the radio chip
1429 * @ah: The &struct ath5k_hw
1430 * @channel: The &struct ieee80211_channel
1431 *
1432 * This is the main function called to set a channel on the
1433 * radio chip based on the radio chip version.
1434 */
1435static int
1436ath5k_hw_channel(struct ath5k_hw *ah,
1437                struct ieee80211_channel *channel)
1438{
1439        int ret;
1440        /*
1441         * Check bounds supported by the PHY (we don't care about regulatory
1442         * restrictions at this point).
1443         */
1444        if (!ath5k_channel_ok(ah, channel)) {
1445                ATH5K_ERR(ah,
1446                        "channel frequency (%u MHz) out of supported "
1447                        "band range\n",
1448                        channel->center_freq);
1449                        return -EINVAL;
1450        }
1451
1452        /*
1453         * Set the channel and wait
1454         */
1455        switch (ah->ah_radio) {
1456        case AR5K_RF5110:
1457                ret = ath5k_hw_rf5110_channel(ah, channel);
1458                break;
1459        case AR5K_RF5111:
1460                ret = ath5k_hw_rf5111_channel(ah, channel);
1461                break;
1462        case AR5K_RF2317:
1463        case AR5K_RF2425:
1464                ret = ath5k_hw_rf2425_channel(ah, channel);
1465                break;
1466        default:
1467                ret = ath5k_hw_rf5112_channel(ah, channel);
1468                break;
1469        }
1470
1471        if (ret)
1472                return ret;
1473
1474        /* Set JAPAN setting for channel 14 */
1475        if (channel->center_freq == 2484) {
1476                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477                                AR5K_PHY_CCKTXCTL_JAPAN);
1478        } else {
1479                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1480                                AR5K_PHY_CCKTXCTL_WORLD);
1481        }
1482
1483        ah->ah_current_channel = channel;
1484
1485        return 0;
1486}
1487
1488
1489/*****************\
1490  PHY calibration
1491\*****************/
1492
1493/**
1494 * DOC: PHY Calibration routines
1495 *
1496 * Noise floor calibration: When we tell the hardware to
1497 * perform a noise floor calibration by setting the
1498 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1499 * sample-and-hold the minimum noise level seen at the antennas.
1500 * This value is then stored in a ring buffer of recently measured
1501 * noise floor values so we have a moving window of the last few
1502 * samples. The median of the values in the history is then loaded
1503 * into the hardware for its own use for RSSI and CCA measurements.
1504 * This type of calibration doesn't interfere with traffic.
1505 *
1506 * AGC calibration: When we tell the hardware to perform
1507 * an AGC (Automatic Gain Control) calibration by setting the
1508 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1509 * a calibration on the DC offsets of ADCs. During this period
1510 * rx/tx gets disabled so we have to deal with it on the driver
1511 * part.
1512 *
1513 * I/Q calibration: When we tell the hardware to perform
1514 * an I/Q calibration, it tries to correct I/Q imbalance and
1515 * fix QAM constellation by sampling data from rxed frames.
1516 * It doesn't interfere with traffic.
1517 *
1518 * For more infos on AGC and I/Q calibration check out patent doc
1519 * #03/094463.
1520 */
1521
1522/**
1523 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1524 * @ah: The &struct ath5k_hw
1525 */
1526static s32
1527ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1528{
1529        s32 val;
1530
1531        val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1532        return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1533}
1534
1535/**
1536 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1537 * @ah: The &struct ath5k_hw
1538 */
1539void
1540ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1541{
1542        int i;
1543
1544        ah->ah_nfcal_hist.index = 0;
1545        for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1546                ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1547}
1548
1549/**
1550 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1551 * @ah: The &struct ath5k_hw
1552 * @noise_floor: The NF we got from hw
1553 */
1554static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1555{
1556        struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1557        hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1558        hist->nfval[hist->index] = noise_floor;
1559}
1560
1561/**
1562 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1563 * @ah: The &struct ath5k_hw
1564 */
1565static s16
1566ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1567{
1568        s16 sort[ATH5K_NF_CAL_HIST_MAX];
1569        s16 tmp;
1570        int i, j;
1571
1572        memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1573        for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1574                for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1575                        if (sort[j] > sort[j - 1]) {
1576                                tmp = sort[j];
1577                                sort[j] = sort[j - 1];
1578                                sort[j - 1] = tmp;
1579                        }
1580                }
1581        }
1582        for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1583                ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1584                        "cal %d:%d\n", i, sort[i]);
1585        }
1586        return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1587}
1588
1589/**
1590 * ath5k_hw_update_noise_floor() - Update NF on hardware
1591 * @ah: The &struct ath5k_hw
1592 *
1593 * This is the main function we call to perform a NF calibration,
1594 * it reads NF from hardware, calculates the median and updates
1595 * NF on hw.
1596 */
1597void
1598ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1599{
1600        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601        u32 val;
1602        s16 nf, threshold;
1603        u8 ee_mode;
1604
1605        /* keep last value if calibration hasn't completed */
1606        if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1607                ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1608                        "NF did not complete in calibration window\n");
1609
1610                return;
1611        }
1612
1613        ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1614
1615        ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1616
1617        /* completed NF calibration, test threshold */
1618        nf = ath5k_hw_read_measured_noise_floor(ah);
1619        threshold = ee->ee_noise_floor_thr[ee_mode];
1620
1621        if (nf > threshold) {
1622                ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1623                        "noise floor failure detected; "
1624                        "read %d, threshold %d\n",
1625                        nf, threshold);
1626
1627                nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1628        }
1629
1630        ath5k_hw_update_nfcal_hist(ah, nf);
1631        nf = ath5k_hw_get_median_noise_floor(ah);
1632
1633        /* load noise floor (in .5 dBm) so the hardware will use it */
1634        val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1635        val |= (nf * 2) & AR5K_PHY_NF_M;
1636        ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1637
1638        AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1639                ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1640
1641        ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1642                0, false);
1643
1644        /*
1645         * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1646         * so that we're not capped by the median we just loaded.
1647         * This will be used as the initial value for the next noise
1648         * floor calibration.
1649         */
1650        val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1651        ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1652        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1653                AR5K_PHY_AGCCTL_NF_EN |
1654                AR5K_PHY_AGCCTL_NF_NOUPDATE |
1655                AR5K_PHY_AGCCTL_NF);
1656
1657        ah->ah_noise_floor = nf;
1658
1659        ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1660
1661        ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1662                "noise floor calibrated: %d\n", nf);
1663}
1664
1665/**
1666 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1667 * @ah: The &struct ath5k_hw
1668 * @channel: The &struct ieee80211_channel
1669 *
1670 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1671 */
1672static int
1673ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1674                struct ieee80211_channel *channel)
1675{
1676        u32 phy_sig, phy_agc, phy_sat, beacon;
1677        int ret;
1678
1679        if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1680                return 0;
1681
1682        /*
1683         * Disable beacons and RX/TX queues, wait
1684         */
1685        AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1686                AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1687        beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1688        ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1689
1690        usleep_range(2000, 2500);
1691
1692        /*
1693         * Set the channel (with AGC turned off)
1694         */
1695        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1696        udelay(10);
1697        ret = ath5k_hw_channel(ah, channel);
1698
1699        /*
1700         * Activate PHY and wait
1701         */
1702        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1703        usleep_range(1000, 1500);
1704
1705        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1706
1707        if (ret)
1708                return ret;
1709
1710        /*
1711         * Calibrate the radio chip
1712         */
1713
1714        /* Remember normal state */
1715        phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1716        phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1717        phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1718
1719        /* Update radio registers */
1720        ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1721                AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1722
1723        ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1724                        AR5K_PHY_AGCCOARSE_LO)) |
1725                AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1726                AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1727
1728        ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1729                        AR5K_PHY_ADCSAT_THR)) |
1730                AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1731                AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1732
1733        udelay(20);
1734
1735        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1736        udelay(10);
1737        ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1738        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1739
1740        usleep_range(1000, 1500);
1741
1742        /*
1743         * Enable calibration and wait until completion
1744         */
1745        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1746
1747        ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1748                        AR5K_PHY_AGCCTL_CAL, 0, false);
1749
1750        /* Reset to normal state */
1751        ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1752        ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1753        ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1754
1755        if (ret) {
1756                ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1757                                channel->center_freq);
1758                return ret;
1759        }
1760
1761        /*
1762         * Re-enable RX/TX and beacons
1763         */
1764        AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1765                AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1766        ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1767
1768        return 0;
1769}
1770
1771/**
1772 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1773 * @ah: The &struct ath5k_hw
1774 */
1775static int
1776ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1777{
1778        u32 i_pwr, q_pwr;
1779        s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1780        int i;
1781
1782        /* Skip if I/Q calibration is not needed or if it's still running */
1783        if (!ah->ah_iq_cal_needed)
1784                return -EINVAL;
1785        else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1786                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1787                                "I/Q calibration still running");
1788                return -EBUSY;
1789        }
1790
1791        /* Calibration has finished, get the results and re-run */
1792
1793        /* Work around for empty results which can apparently happen on 5212:
1794         * Read registers up to 10 times until we get both i_pr and q_pwr */
1795        for (i = 0; i <= 10; i++) {
1796                iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1797                i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1798                q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1799                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1800                        "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1801                if (i_pwr && q_pwr)
1802                        break;
1803        }
1804
1805        i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1806
1807        if (ah->ah_version == AR5K_AR5211)
1808                q_coffd = q_pwr >> 6;
1809        else
1810                q_coffd = q_pwr >> 7;
1811
1812        /* In case i_coffd became zero, cancel calibration
1813         * not only it's too small, it'll also result a divide
1814         * by zero later on. */
1815        if (i_coffd == 0 || q_coffd < 2)
1816                return -ECANCELED;
1817
1818        /* Protect against loss of sign bits */
1819
1820        i_coff = (-iq_corr) / i_coffd;
1821        i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1822
1823        if (ah->ah_version == AR5K_AR5211)
1824                q_coff = (i_pwr / q_coffd) - 64;
1825        else
1826                q_coff = (i_pwr / q_coffd) - 128;
1827        q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1828
1829        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1830                        "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1831                        i_coff, q_coff, i_coffd, q_coffd);
1832
1833        /* Commit new I/Q values (set enable bit last to match HAL sources) */
1834        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1835        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1836        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1837
1838        /* Re-enable calibration -if we don't we'll commit
1839         * the same values again and again */
1840        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1841                        AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1842        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1843
1844        return 0;
1845}
1846
1847/**
1848 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1849 * @ah: The &struct ath5k_hw
1850 * @channel: The &struct ieee80211_channel
1851 *
1852 * The main function we call from above to perform
1853 * a short or full PHY calibration based on RF chip
1854 * and current channel
1855 */
1856int
1857ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1858                struct ieee80211_channel *channel)
1859{
1860        int ret;
1861
1862        if (ah->ah_radio == AR5K_RF5110)
1863                return ath5k_hw_rf5110_calibrate(ah, channel);
1864
1865        ret = ath5k_hw_rf511x_iq_calibrate(ah);
1866        if (ret) {
1867                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1868                        "No I/Q correction performed (%uMHz)\n",
1869                        channel->center_freq);
1870
1871                /* Happens all the time if there is not much
1872                 * traffic, consider it normal behaviour. */
1873                ret = 0;
1874        }
1875
1876        /* On full calibration request a PAPD probe for
1877         * gainf calibration if needed */
1878        if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1879            (ah->ah_radio == AR5K_RF5111 ||
1880             ah->ah_radio == AR5K_RF5112) &&
1881            channel->hw_value != AR5K_MODE_11B)
1882                ath5k_hw_request_rfgain_probe(ah);
1883
1884        /* Update noise floor */
1885        if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1886                ath5k_hw_update_noise_floor(ah);
1887
1888        return ret;
1889}
1890
1891
1892/***************************\
1893* Spur mitigation functions *
1894\***************************/
1895
1896/**
1897 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1898 * @ah: The &struct ath5k_hw
1899 * @channel: The &struct ieee80211_channel
1900 *
1901 * This function gets called during PHY initialization to
1902 * configure the spur filter for the given channel. Spur is noise
1903 * generated due to "reflection" effects, for more information on this
1904 * method check out patent US7643810
1905 */
1906static void
1907ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1908                                struct ieee80211_channel *channel)
1909{
1910        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1911        u32 mag_mask[4] = {0, 0, 0, 0};
1912        u32 pilot_mask[2] = {0, 0};
1913        /* Note: fbin values are scaled up by 2 */
1914        u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1915        s32 spur_delta_phase, spur_freq_sigma_delta;
1916        s32 spur_offset, num_symbols_x16;
1917        u8 num_symbol_offsets, i, freq_band;
1918
1919        /* Convert current frequency to fbin value (the same way channels
1920         * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1921         * up by 2 so we can compare it later */
1922        if (channel->band == IEEE80211_BAND_2GHZ) {
1923                chan_fbin = (channel->center_freq - 2300) * 10;
1924                freq_band = AR5K_EEPROM_BAND_2GHZ;
1925        } else {
1926                chan_fbin = (channel->center_freq - 4900) * 10;
1927                freq_band = AR5K_EEPROM_BAND_5GHZ;
1928        }
1929
1930        /* Check if any spur_chan_fbin from EEPROM is
1931         * within our current channel's spur detection range */
1932        spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1933        spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1934        /* XXX: Half/Quarter channels ?*/
1935        if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1936                spur_detection_window *= 2;
1937
1938        for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1939                spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1940
1941                /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1942                 * so it's zero if we got nothing from EEPROM */
1943                if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1944                        spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1945                        break;
1946                }
1947
1948                if ((chan_fbin - spur_detection_window <=
1949                (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1950                (chan_fbin + spur_detection_window >=
1951                (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1952                        spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1953                        break;
1954                }
1955        }
1956
1957        /* We need to enable spur filter for this channel */
1958        if (spur_chan_fbin) {
1959                spur_offset = spur_chan_fbin - chan_fbin;
1960                /*
1961                 * Calculate deltas:
1962                 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1963                 * spur_delta_phase -> spur_offset / chip_freq << 11
1964                 * Note: Both values have 100Hz resolution
1965                 */
1966                switch (ah->ah_bwmode) {
1967                case AR5K_BWMODE_40MHZ:
1968                        /* Both sample_freq and chip_freq are 80MHz */
1969                        spur_delta_phase = (spur_offset << 16) / 25;
1970                        spur_freq_sigma_delta = (spur_delta_phase >> 10);
1971                        symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1972                        break;
1973                case AR5K_BWMODE_10MHZ:
1974                        /* Both sample_freq and chip_freq are 20MHz (?) */
1975                        spur_delta_phase = (spur_offset << 18) / 25;
1976                        spur_freq_sigma_delta = (spur_delta_phase >> 10);
1977                        symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1978                        break;
1979                case AR5K_BWMODE_5MHZ:
1980                        /* Both sample_freq and chip_freq are 10MHz (?) */
1981                        spur_delta_phase = (spur_offset << 19) / 25;
1982                        spur_freq_sigma_delta = (spur_delta_phase >> 10);
1983                        symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1984                        break;
1985                default:
1986                        if (channel->band == IEEE80211_BAND_5GHZ) {
1987                                /* Both sample_freq and chip_freq are 40MHz */
1988                                spur_delta_phase = (spur_offset << 17) / 25;
1989                                spur_freq_sigma_delta =
1990                                                (spur_delta_phase >> 10);
1991                                symbol_width =
1992                                        AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1993                        } else {
1994                                /* sample_freq -> 40MHz chip_freq -> 44MHz
1995                                 * (for b compatibility) */
1996                                spur_delta_phase = (spur_offset << 17) / 25;
1997                                spur_freq_sigma_delta =
1998                                                (spur_offset << 8) / 55;
1999                                symbol_width =
2000                                        AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2001                        }
2002                        break;
2003                }
2004
2005                /* Calculate pilot and magnitude masks */
2006
2007                /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2008                 * and divide by symbol_width to find how many symbols we have
2009                 * Note: number of symbols is scaled up by 16 */
2010                num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2011
2012                /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2013                if (!(num_symbols_x16 & 0xF))
2014                        /* _X_ */
2015                        num_symbol_offsets = 3;
2016                else
2017                        /* _xx_ */
2018                        num_symbol_offsets = 4;
2019
2020                for (i = 0; i < num_symbol_offsets; i++) {
2021
2022                        /* Calculate pilot mask */
2023                        s32 curr_sym_off =
2024                                (num_symbols_x16 / 16) + i + 25;
2025
2026                        /* Pilot magnitude mask seems to be a way to
2027                         * declare the boundaries for our detection
2028                         * window or something, it's 2 for the middle
2029                         * value(s) where the symbol is expected to be
2030                         * and 1 on the boundary values */
2031                        u8 plt_mag_map =
2032                                (i == 0 || i == (num_symbol_offsets - 1))
2033                                                                ? 1 : 2;
2034
2035                        if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2036                                if (curr_sym_off <= 25)
2037                                        pilot_mask[0] |= 1 << curr_sym_off;
2038                                else if (curr_sym_off >= 27)
2039                                        pilot_mask[0] |= 1 << (curr_sym_off - 1);
2040                        } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2041                                pilot_mask[1] |= 1 << (curr_sym_off - 33);
2042
2043                        /* Calculate magnitude mask (for viterbi decoder) */
2044                        if (curr_sym_off >= -1 && curr_sym_off <= 14)
2045                                mag_mask[0] |=
2046                                        plt_mag_map << (curr_sym_off + 1) * 2;
2047                        else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2048                                mag_mask[1] |=
2049                                        plt_mag_map << (curr_sym_off - 15) * 2;
2050                        else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2051                                mag_mask[2] |=
2052                                        plt_mag_map << (curr_sym_off - 31) * 2;
2053                        else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2054                                mag_mask[3] |=
2055                                        plt_mag_map << (curr_sym_off - 47) * 2;
2056
2057                }
2058
2059                /* Write settings on hw to enable spur filter */
2060                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2061                                        AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2062                /* XXX: Self correlator also ? */
2063                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2064                                        AR5K_PHY_IQ_PILOT_MASK_EN |
2065                                        AR5K_PHY_IQ_CHAN_MASK_EN |
2066                                        AR5K_PHY_IQ_SPUR_FILT_EN);
2067
2068                /* Set delta phase and freq sigma delta */
2069                ath5k_hw_reg_write(ah,
2070                                AR5K_REG_SM(spur_delta_phase,
2071                                        AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2072                                AR5K_REG_SM(spur_freq_sigma_delta,
2073                                AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2074                                AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2075                                AR5K_PHY_TIMING_11);
2076
2077                /* Write pilot masks */
2078                ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2079                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2080                                        AR5K_PHY_TIMING_8_PILOT_MASK_2,
2081                                        pilot_mask[1]);
2082
2083                ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2084                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2085                                        AR5K_PHY_TIMING_10_PILOT_MASK_2,
2086                                        pilot_mask[1]);
2087
2088                /* Write magnitude masks */
2089                ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2090                ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2091                ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2092                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2093                                        AR5K_PHY_BIN_MASK_CTL_MASK_4,
2094                                        mag_mask[3]);
2095
2096                ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2097                ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2098                ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2099                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2100                                        AR5K_PHY_BIN_MASK2_4_MASK_4,
2101                                        mag_mask[3]);
2102
2103        } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2104        AR5K_PHY_IQ_SPUR_FILT_EN) {
2105                /* Clean up spur mitigation settings and disable filter */
2106                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2107                                        AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2108                AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2109                                        AR5K_PHY_IQ_PILOT_MASK_EN |
2110                                        AR5K_PHY_IQ_CHAN_MASK_EN |
2111                                        AR5K_PHY_IQ_SPUR_FILT_EN);
2112                ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2113
2114                /* Clear pilot masks */
2115                ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2116                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2117                                        AR5K_PHY_TIMING_8_PILOT_MASK_2,
2118                                        0);
2119
2120                ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2121                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2122                                        AR5K_PHY_TIMING_10_PILOT_MASK_2,
2123                                        0);
2124
2125                /* Clear magnitude masks */
2126                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2127                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2128                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2129                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2130                                        AR5K_PHY_BIN_MASK_CTL_MASK_4,
2131                                        0);
2132
2133                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2134                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2135                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2136                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2137                                        AR5K_PHY_BIN_MASK2_4_MASK_4,
2138                                        0);
2139        }
2140}
2141
2142
2143/*****************\
2144* Antenna control *
2145\*****************/
2146
2147/**
2148 * DOC: Antenna control
2149 *
2150 * Hw supports up to 14 antennas ! I haven't found any card that implements
2151 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2152 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2153 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2154 *
2155 * We can have a single antenna for RX and multiple antennas for TX.
2156 * RX antenna is our "default" antenna (usually antenna 1) set on
2157 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2158 * (0 for automatic selection, 1 - 14 antenna number).
2159 *
2160 * We can let hw do all the work doing fast antenna diversity for both
2161 * tx and rx or we can do things manually. Here are the options we have
2162 * (all are bits of STA_ID1 register):
2163 *
2164 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2165 * control descriptor, use the default antenna to transmit or else use the last
2166 * antenna on which we received an ACK.
2167 *
2168 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2169 * the antenna on which we got the ACK for that frame.
2170 *
2171 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2172 * one on the TX descriptor.
2173 *
2174 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2175 * (ACKs etc), or else use current antenna (the one we just used for TX).
2176 *
2177 * Using the above we support the following scenarios:
2178 *
2179 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2180 *
2181 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2182 *
2183 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2184 *
2185 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2186 *
2187 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2188 *
2189 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2190 *
2191 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2192 *
2193 * Also note that when setting antenna to F on tx descriptor card inverts
2194 * current tx antenna.
2195 */
2196
2197/**
2198 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2199 * @ah: The &struct ath5k_hw
2200 * @ant: Antenna number
2201 */
2202static void
2203ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2204{
2205        if (ah->ah_version != AR5K_AR5210)
2206                ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2207}
2208
2209/**
2210 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2211 * @ah: The &struct ath5k_hw
2212 * @ee_mode: One of enum ath5k_driver_mode
2213 * @enable: True to enable, false to disable
2214 */
2215static void
2216ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2217{
2218        switch (ee_mode) {
2219        case AR5K_EEPROM_MODE_11G:
2220                /* XXX: This is set to
2221                 * disabled on initvals !!! */
2222        case AR5K_EEPROM_MODE_11A:
2223                if (enable)
2224                        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2225                                        AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2226                else
2227                        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228                                        AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229                break;
2230        case AR5K_EEPROM_MODE_11B:
2231                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2232                                        AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2233                break;
2234        default:
2235                return;
2236        }
2237
2238        if (enable) {
2239                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2240                                AR5K_PHY_RESTART_DIV_GC, 4);
2241
2242                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2243                                        AR5K_PHY_FAST_ANT_DIV_EN);
2244        } else {
2245                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2246                                AR5K_PHY_RESTART_DIV_GC, 0);
2247
2248                AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2249                                        AR5K_PHY_FAST_ANT_DIV_EN);
2250        }
2251}
2252
2253/**
2254 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2255 * @ah: The &struct ath5k_hw
2256 * @ee_mode: One of enum ath5k_driver_mode
2257 *
2258 * Switch table comes from EEPROM and includes information on controlling
2259 * the 2 antenna RX attenuators
2260 */
2261void
2262ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2263{
2264        u8 ant0, ant1;
2265
2266        /*
2267         * In case a fixed antenna was set as default
2268         * use the same switch table twice.
2269         */
2270        if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2271                ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2272        else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2273                ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2274        else {
2275                ant0 = AR5K_ANT_SWTABLE_A;
2276                ant1 = AR5K_ANT_SWTABLE_B;
2277        }
2278
2279        /* Set antenna idle switch table */
2280        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2281                        AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2282                        (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2283                        AR5K_PHY_ANT_CTL_TXRX_EN));
2284
2285        /* Set antenna switch tables */
2286        ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2287                AR5K_PHY_ANT_SWITCH_TABLE_0);
2288        ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2289                AR5K_PHY_ANT_SWITCH_TABLE_1);
2290}
2291
2292/**
2293 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2294 * @ah: The &struct ath5k_hw
2295 * @ant_mode: One of enum ath5k_ant_mode
2296 */
2297void
2298ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2299{
2300        struct ieee80211_channel *channel = ah->ah_current_channel;
2301        bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2302        bool use_def_for_sg;
2303        int ee_mode;
2304        u8 def_ant, tx_ant;
2305        u32 sta_id1 = 0;
2306
2307        /* if channel is not initialized yet we can't set the antennas
2308         * so just store the mode. it will be set on the next reset */
2309        if (channel == NULL) {
2310                ah->ah_ant_mode = ant_mode;
2311                return;
2312        }
2313
2314        def_ant = ah->ah_def_ant;
2315
2316        ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2317
2318        switch (ant_mode) {
2319        case AR5K_ANTMODE_DEFAULT:
2320                tx_ant = 0;
2321                use_def_for_tx = false;
2322                update_def_on_tx = false;
2323                use_def_for_rts = false;
2324                use_def_for_sg = false;
2325                fast_div = true;
2326                break;
2327        case AR5K_ANTMODE_FIXED_A:
2328                def_ant = 1;
2329                tx_ant = 1;
2330                use_def_for_tx = true;
2331                update_def_on_tx = false;
2332                use_def_for_rts = true;
2333                use_def_for_sg = true;
2334                fast_div = false;
2335                break;
2336        case AR5K_ANTMODE_FIXED_B:
2337                def_ant = 2;
2338                tx_ant = 2;
2339                use_def_for_tx = true;
2340                update_def_on_tx = false;
2341                use_def_for_rts = true;
2342                use_def_for_sg = true;
2343                fast_div = false;
2344                break;
2345        case AR5K_ANTMODE_SINGLE_AP:
2346                def_ant = 1;    /* updated on tx */
2347                tx_ant = 0;
2348                use_def_for_tx = true;
2349                update_def_on_tx = true;
2350                use_def_for_rts = true;
2351                use_def_for_sg = true;
2352                fast_div = true;
2353                break;
2354        case AR5K_ANTMODE_SECTOR_AP:
2355                tx_ant = 1;     /* variable */
2356                use_def_for_tx = false;
2357                update_def_on_tx = false;
2358                use_def_for_rts = true;
2359                use_def_for_sg = false;
2360                fast_div = false;
2361                break;
2362        case AR5K_ANTMODE_SECTOR_STA:
2363                tx_ant = 1;     /* variable */
2364                use_def_for_tx = true;
2365                update_def_on_tx = false;
2366                use_def_for_rts = true;
2367                use_def_for_sg = false;
2368                fast_div = true;
2369                break;
2370        case AR5K_ANTMODE_DEBUG:
2371                def_ant = 1;
2372                tx_ant = 2;
2373                use_def_for_tx = false;
2374                update_def_on_tx = false;
2375                use_def_for_rts = false;
2376                use_def_for_sg = false;
2377                fast_div = false;
2378                break;
2379        default:
2380                return;
2381        }
2382
2383        ah->ah_tx_ant = tx_ant;
2384        ah->ah_ant_mode = ant_mode;
2385        ah->ah_def_ant = def_ant;
2386
2387        sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2388        sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2389        sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2390        sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2391
2392        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2393
2394        if (sta_id1)
2395                AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2396
2397        ath5k_hw_set_antenna_switch(ah, ee_mode);
2398        /* Note: set diversity before default antenna
2399         * because it won't work correctly */
2400        ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2401        ath5k_hw_set_def_antenna(ah, def_ant);
2402}
2403
2404
2405/****************\
2406* TX power setup *
2407\****************/
2408
2409/*
2410 * Helper functions
2411 */
2412
2413/**
2414 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2415 * @target: X value of the middle point
2416 * @x_left: X value of the left point
2417 * @x_right: X value of the right point
2418 * @y_left: Y value of the left point
2419 * @y_right: Y value of the right point
2420 */
2421static s16
2422ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2423                                        s16 y_left, s16 y_right)
2424{
2425        s16 ratio, result;
2426
2427        /* Avoid divide by zero and skip interpolation
2428         * if we have the same point */
2429        if ((x_left == x_right) || (y_left == y_right))
2430                return y_left;
2431
2432        /*
2433         * Since we use ints and not fps, we need to scale up in
2434         * order to get a sane ratio value (or else we 'll eg. get
2435         * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2436         * to have some accuracy both for 0.5 and 0.25 steps.
2437         */
2438        ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2439
2440        /* Now scale down to be in range */
2441        result = y_left + (ratio * (target - x_left) / 100);
2442
2443        return result;
2444}
2445
2446/**
2447 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2448 * linear PCDAC curve
2449 * @stepL: Left array with y values (pcdac steps)
2450 * @stepR: Right array with y values (pcdac steps)
2451 * @pwrL: Left array with x values (power steps)
2452 * @pwrR: Right array with x values (power steps)
2453 *
2454 * Since we have the top of the curve and we draw the line below
2455 * until we reach 1 (1 pcdac step) we need to know which point
2456 * (x value) that is so that we don't go below x axis and have negative
2457 * pcdac values when creating the curve, or fill the table with zeros.
2458 */
2459static s16
2460ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2461                                const s16 *pwrL, const s16 *pwrR)
2462{
2463        s8 tmp;
2464        s16 min_pwrL, min_pwrR;
2465        s16 pwr_i;
2466
2467        /* Some vendors write the same pcdac value twice !!! */
2468        if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2469                return max(pwrL[0], pwrR[0]);
2470
2471        if (pwrL[0] == pwrL[1])
2472                min_pwrL = pwrL[0];
2473        else {
2474                pwr_i = pwrL[0];
2475                do {
2476                        pwr_i--;
2477                        tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2478                                                        pwrL[0], pwrL[1],
2479                                                        stepL[0], stepL[1]);
2480                } while (tmp > 1);
2481
2482                min_pwrL = pwr_i;
2483        }
2484
2485        if (pwrR[0] == pwrR[1])
2486                min_pwrR = pwrR[0];
2487        else {
2488                pwr_i = pwrR[0];
2489                do {
2490                        pwr_i--;
2491                        tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2492                                                        pwrR[0], pwrR[1],
2493                                                        stepR[0], stepR[1]);
2494                } while (tmp > 1);
2495
2496                min_pwrR = pwr_i;
2497        }
2498
2499        /* Keep the right boundary so that it works for both curves */
2500        return max(min_pwrL, min_pwrR);
2501}
2502
2503/**
2504 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2505 * @pmin: Minimum power value (xmin)
2506 * @pmax: Maximum power value (xmax)
2507 * @pwr: Array of power steps (x values)
2508 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2509 * @num_points: Number of provided points
2510 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2511 * @type: One of enum ath5k_powertable_type (eeprom.h)
2512 *
2513 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2514 * Power to PCDAC curve.
2515 *
2516 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2517 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2518 * PCDAC/PDADC step for each curve is 64 but we can write more than
2519 * one curves on hw so we can go up to 128 (which is the max step we
2520 * can write on the final table).
2521 *
2522 * We write y values (PCDAC/PDADC steps) on hw.
2523 */
2524static void
2525ath5k_create_power_curve(s16 pmin, s16 pmax,
2526                        const s16 *pwr, const u8 *vpd,
2527                        u8 num_points,
2528                        u8 *vpd_table, u8 type)
2529{
2530        u8 idx[2] = { 0, 1 };
2531        s16 pwr_i = 2 * pmin;
2532        int i;
2533
2534        if (num_points < 2)
2535                return;
2536
2537        /* We want the whole line, so adjust boundaries
2538         * to cover the entire power range. Note that
2539         * power values are already 0.25dB so no need
2540         * to multiply pwr_i by 2 */
2541        if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2542                pwr_i = pmin;
2543                pmin = 0;
2544                pmax = 63;
2545        }
2546
2547        /* Find surrounding turning points (TPs)
2548         * and interpolate between them */
2549        for (i = 0; (i <= (u16) (pmax - pmin)) &&
2550        (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2551
2552                /* We passed the right TP, move to the next set of TPs
2553                 * if we pass the last TP, extrapolate above using the last
2554                 * two TPs for ratio */
2555                if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2556                        idx[0]++;
2557                        idx[1]++;
2558                }
2559
2560                vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2561                                                pwr[idx[0]], pwr[idx[1]],
2562                                                vpd[idx[0]], vpd[idx[1]]);
2563
2564                /* Increase by 0.5dB
2565                 * (0.25 dB units) */
2566                pwr_i += 2;
2567        }
2568}
2569
2570/**
2571 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2572 * for a given channel.
2573 * @ah: The &struct ath5k_hw
2574 * @channel: The &struct ieee80211_channel
2575 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2576 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2577 *
2578 * Get the surrounding per-channel power calibration piers
2579 * for a given frequency so that we can interpolate between
2580 * them and come up with an appropriate dataset for our current
2581 * channel.
2582 */
2583static void
2584ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2585                        struct ieee80211_channel *channel,
2586                        struct ath5k_chan_pcal_info **pcinfo_l,
2587                        struct ath5k_chan_pcal_info **pcinfo_r)
2588{
2589        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2590        struct ath5k_chan_pcal_info *pcinfo;
2591        u8 idx_l, idx_r;
2592        u8 mode, max, i;
2593        u32 target = channel->center_freq;
2594
2595        idx_l = 0;
2596        idx_r = 0;
2597
2598        switch (channel->hw_value) {
2599        case AR5K_EEPROM_MODE_11A:
2600                pcinfo = ee->ee_pwr_cal_a;
2601                mode = AR5K_EEPROM_MODE_11A;
2602                break;
2603        case AR5K_EEPROM_MODE_11B:
2604                pcinfo = ee->ee_pwr_cal_b;
2605                mode = AR5K_EEPROM_MODE_11B;
2606                break;
2607        case AR5K_EEPROM_MODE_11G:
2608        default:
2609                pcinfo = ee->ee_pwr_cal_g;
2610                mode = AR5K_EEPROM_MODE_11G;
2611                break;
2612        }
2613        max = ee->ee_n_piers[mode] - 1;
2614
2615        /* Frequency is below our calibrated
2616         * range. Use the lowest power curve
2617         * we have */
2618        if (target < pcinfo[0].freq) {
2619                idx_l = idx_r = 0;
2620                goto done;
2621        }
2622
2623        /* Frequency is above our calibrated
2624         * range. Use the highest power curve
2625         * we have */
2626        if (target > pcinfo[max].freq) {
2627                idx_l = idx_r = max;
2628                goto done;
2629        }
2630
2631        /* Frequency is inside our calibrated
2632         * channel range. Pick the surrounding
2633         * calibration piers so that we can
2634         * interpolate */
2635        for (i = 0; i <= max; i++) {
2636
2637                /* Frequency matches one of our calibration
2638                 * piers, no need to interpolate, just use
2639                 * that calibration pier */
2640                if (pcinfo[i].freq == target) {
2641                        idx_l = idx_r = i;
2642                        goto done;
2643                }
2644
2645                /* We found a calibration pier that's above
2646                 * frequency, use this pier and the previous
2647                 * one to interpolate */
2648                if (target < pcinfo[i].freq) {
2649                        idx_r = i;
2650                        idx_l = idx_r - 1;
2651                        goto done;
2652                }
2653        }
2654
2655done:
2656        *pcinfo_l = &pcinfo[idx_l];
2657        *pcinfo_r = &pcinfo[idx_r];
2658}
2659
2660/**
2661 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2662 * calibration data
2663 * @ah: The &struct ath5k_hw *ah,
2664 * @channel: The &struct ieee80211_channel
2665 * @rates: The &struct ath5k_rate_pcal_info to fill
2666 *
2667 * Get the surrounding per-rate power calibration data
2668 * for a given frequency and interpolate between power
2669 * values to set max target power supported by hw for
2670 * each rate on this frequency.
2671 */
2672static void
2673ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2674                        struct ieee80211_channel *channel,
2675                        struct ath5k_rate_pcal_info *rates)
2676{
2677        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2678        struct ath5k_rate_pcal_info *rpinfo;
2679        u8 idx_l, idx_r;
2680        u8 mode, max, i;
2681        u32 target = channel->center_freq;
2682
2683        idx_l = 0;
2684        idx_r = 0;
2685
2686        switch (channel->hw_value) {
2687        case AR5K_MODE_11A:
2688                rpinfo = ee->ee_rate_tpwr_a;
2689                mode = AR5K_EEPROM_MODE_11A;
2690                break;
2691        case AR5K_MODE_11B:
2692                rpinfo = ee->ee_rate_tpwr_b;
2693                mode = AR5K_EEPROM_MODE_11B;
2694                break;
2695        case AR5K_MODE_11G:
2696        default:
2697                rpinfo = ee->ee_rate_tpwr_g;
2698                mode = AR5K_EEPROM_MODE_11G;
2699                break;
2700        }
2701        max = ee->ee_rate_target_pwr_num[mode] - 1;
2702
2703        /* Get the surrounding calibration
2704         * piers - same as above */
2705        if (target < rpinfo[0].freq) {
2706                idx_l = idx_r = 0;
2707                goto done;
2708        }
2709
2710        if (target > rpinfo[max].freq) {
2711                idx_l = idx_r = max;
2712                goto done;
2713        }
2714
2715        for (i = 0; i <= max; i++) {
2716
2717                if (rpinfo[i].freq == target) {
2718                        idx_l = idx_r = i;
2719                        goto done;
2720                }
2721
2722                if (target < rpinfo[i].freq) {
2723                        idx_r = i;
2724                        idx_l = idx_r - 1;
2725                        goto done;
2726                }
2727        }
2728
2729done:
2730        /* Now interpolate power value, based on the frequency */
2731        rates->freq = target;
2732
2733        rates->target_power_6to24 =
2734                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2735                                        rpinfo[idx_r].freq,
2736                                        rpinfo[idx_l].target_power_6to24,
2737                                        rpinfo[idx_r].target_power_6to24);
2738
2739        rates->target_power_36 =
2740                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2741                                        rpinfo[idx_r].freq,
2742                                        rpinfo[idx_l].target_power_36,
2743                                        rpinfo[idx_r].target_power_36);
2744
2745        rates->target_power_48 =
2746                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2747                                        rpinfo[idx_r].freq,
2748                                        rpinfo[idx_l].target_power_48,
2749                                        rpinfo[idx_r].target_power_48);
2750
2751        rates->target_power_54 =
2752                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2753                                        rpinfo[idx_r].freq,
2754                                        rpinfo[idx_l].target_power_54,
2755                                        rpinfo[idx_r].target_power_54);
2756}
2757
2758/**
2759 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2760 * @ah: the &struct ath5k_hw
2761 * @channel: The &struct ieee80211_channel
2762 *
2763 * Get the max edge power for this channel if
2764 * we have such data from EEPROM's Conformance Test
2765 * Limits (CTL), and limit max power if needed.
2766 */
2767static void
2768ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2769                        struct ieee80211_channel *channel)
2770{
2771        struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2772        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2773        struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2774        u8 *ctl_val = ee->ee_ctl;
2775        s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2776        s16 edge_pwr = 0;
2777        u8 rep_idx;
2778        u8 i, ctl_mode;
2779        u8 ctl_idx = 0xFF;
2780        u32 target = channel->center_freq;
2781
2782        ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2783
2784        switch (channel->hw_value) {
2785        case AR5K_MODE_11A:
2786                if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2787                        ctl_mode |= AR5K_CTL_TURBO;
2788                else
2789                        ctl_mode |= AR5K_CTL_11A;
2790                break;
2791        case AR5K_MODE_11G:
2792                if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2793                        ctl_mode |= AR5K_CTL_TURBOG;
2794                else
2795                        ctl_mode |= AR5K_CTL_11G;
2796                break;
2797        case AR5K_MODE_11B:
2798                ctl_mode |= AR5K_CTL_11B;
2799                break;
2800        default:
2801                return;
2802        }
2803
2804        for (i = 0; i < ee->ee_ctls; i++) {
2805                if (ctl_val[i] == ctl_mode) {
2806                        ctl_idx = i;
2807                        break;
2808                }
2809        }
2810
2811        /* If we have a CTL dataset available grab it and find the
2812         * edge power for our frequency */
2813        if (ctl_idx == 0xFF)
2814                return;
2815
2816        /* Edge powers are sorted by frequency from lower
2817         * to higher. Each CTL corresponds to 8 edge power
2818         * measurements. */
2819        rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2820
2821        /* Don't do boundaries check because we
2822         * might have more that one bands defined
2823         * for this mode */
2824
2825        /* Get the edge power that's closer to our
2826         * frequency */
2827        for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2828                rep_idx += i;
2829                if (target <= rep[rep_idx].freq)
2830                        edge_pwr = (s16) rep[rep_idx].edge;
2831        }
2832
2833        if (edge_pwr)
2834                ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2835}
2836
2837
2838/*
2839 * Power to PCDAC table functions
2840 */
2841
2842/**
2843 * DOC: Power to PCDAC table functions
2844 *
2845 * For RF5111 we have an XPD -eXternal Power Detector- curve
2846 * for each calibrated channel. Each curve has 0,5dB Power steps
2847 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2848 * exponential function. To recreate the curve we read 11 points
2849 * from eeprom (eeprom.c) and interpolate here.
2850 *
2851 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2852 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2853 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2854 * power steps on x axis and PCDAC steps on y axis and looks like a
2855 * linear function. To recreate the curve and pass the power values
2856 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2857 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2858 * and interpolate here.
2859 *
2860 * For a given channel we get the calibrated points (piers) for it or
2861 * -if we don't have calibration data for this specific channel- from the
2862 * available surrounding channels we have calibration data for, after we do a
2863 * linear interpolation between them. Then since we have our calibrated points
2864 * for this channel, we do again a linear interpolation between them to get the
2865 * whole curve.
2866 *
2867 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2868 */
2869
2870/**
2871 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2872 * @ah: The &struct ath5k_hw
2873 * @table_min: Minimum power (x min)
2874 * @table_max: Maximum power (x max)
2875 *
2876 * No further processing is needed for RF5111, the only thing we have to
2877 * do is fill the values below and above calibration range since eeprom data
2878 * may not cover the entire PCDAC table.
2879 */
2880static void
2881ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2882                                                        s16 *table_max)
2883{
2884        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2885        u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2886        u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2887        s16     min_pwr, max_pwr;
2888
2889        /* Get table boundaries */
2890        min_pwr = table_min[0];
2891        pcdac_0 = pcdac_tmp[0];
2892
2893        max_pwr = table_max[0];
2894        pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2895
2896        /* Extrapolate below minimum using pcdac_0 */
2897        pcdac_i = 0;
2898        for (i = 0; i < min_pwr; i++)
2899                pcdac_out[pcdac_i++] = pcdac_0;
2900
2901        /* Copy values from pcdac_tmp */
2902        pwr_idx = min_pwr;
2903        for (i = 0; pwr_idx <= max_pwr &&
2904                    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2905                pcdac_out[pcdac_i++] = pcdac_tmp[i];
2906                pwr_idx++;
2907        }
2908
2909        /* Extrapolate above maximum */
2910        while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2911                pcdac_out[pcdac_i++] = pcdac_n;
2912
2913}
2914
2915/**
2916 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2917 * @ah: The &struct ath5k_hw
2918 * @table_min: Minimum power (x min)
2919 * @table_max: Maximum power (x max)
2920 * @pdcurves: Number of pd curves
2921 *
2922 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2923 * RFX112 can have up to 2 curves (one for low txpower range and one for
2924 * higher txpower range). We need to put them both on pcdac_out and place
2925 * them in the correct location. In case we only have one curve available
2926 * just fit it on pcdac_out (it's supposed to cover the entire range of
2927 * available pwr levels since it's always the higher power curve). Extrapolate
2928 * below and above final table if needed.
2929 */
2930static void
2931ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2932                                                s16 *table_max, u8 pdcurves)
2933{
2934        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2935        u8      *pcdac_low_pwr;
2936        u8      *pcdac_high_pwr;
2937        u8      *pcdac_tmp;
2938        u8      pwr;
2939        s16     max_pwr_idx;
2940        s16     min_pwr_idx;
2941        s16     mid_pwr_idx = 0;
2942        /* Edge flag turns on the 7nth bit on the PCDAC
2943         * to declare the higher power curve (force values
2944         * to be greater than 64). If we only have one curve
2945         * we don't need to set this, if we have 2 curves and
2946         * fill the table backwards this can also be used to
2947         * switch from higher power curve to lower power curve */
2948        u8      edge_flag;
2949        int     i;
2950
2951        /* When we have only one curve available
2952         * that's the higher power curve. If we have
2953         * two curves the first is the high power curve
2954         * and the next is the low power curve. */
2955        if (pdcurves > 1) {
2956                pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2957                pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2958                mid_pwr_idx = table_max[1] - table_min[1] - 1;
2959                max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2960
2961                /* If table size goes beyond 31.5dB, keep the
2962                 * upper 31.5dB range when setting tx power.
2963                 * Note: 126 = 31.5 dB in quarter dB steps */
2964                if (table_max[0] - table_min[1] > 126)
2965                        min_pwr_idx = table_max[0] - 126;
2966                else
2967                        min_pwr_idx = table_min[1];
2968
2969                /* Since we fill table backwards
2970                 * start from high power curve */
2971                pcdac_tmp = pcdac_high_pwr;
2972
2973                edge_flag = 0x40;
2974        } else {
2975                pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2976                pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2977                min_pwr_idx = table_min[0];
2978                max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2979                pcdac_tmp = pcdac_high_pwr;
2980                edge_flag = 0;
2981        }
2982
2983        /* This is used when setting tx power*/
2984        ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2985
2986        /* Fill Power to PCDAC table backwards */
2987        pwr = max_pwr_idx;
2988        for (i = 63; i >= 0; i--) {
2989                /* Entering lower power range, reset
2990                 * edge flag and set pcdac_tmp to lower
2991                 * power curve.*/
2992                if (edge_flag == 0x40 &&
2993                (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2994                        edge_flag = 0x00;
2995                        pcdac_tmp = pcdac_low_pwr;
2996                        pwr = mid_pwr_idx / 2;
2997                }
2998
2999                /* Don't go below 1, extrapolate below if we have
3000                 * already switched to the lower power curve -or
3001                 * we only have one curve and edge_flag is zero
3002                 * anyway */
3003                if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3004                        while (i >= 0) {
3005                                pcdac_out[i] = pcdac_out[i + 1];
3006                                i--;
3007                        }
3008                        break;
3009                }
3010
3011                pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3012
3013                /* Extrapolate above if pcdac is greater than
3014                 * 126 -this can happen because we OR pcdac_out
3015                 * value with edge_flag on high power curve */
3016                if (pcdac_out[i] > 126)
3017                        pcdac_out[i] = 126;
3018
3019                /* Decrease by a 0.5dB step */
3020                pwr--;
3021        }
3022}
3023
3024/**
3025 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3026 * @ah: The &struct ath5k_hw
3027 */
3028static void
3029ath5k_write_pcdac_table(struct ath5k_hw *ah)
3030{
3031        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
3032        int     i;
3033
3034        /*
3035         * Write TX power values
3036         */
3037        for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3038                ath5k_hw_reg_write(ah,
3039                        (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3040                        (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3041                        AR5K_PHY_PCDAC_TXPOWER(i));
3042        }
3043}
3044
3045
3046/*
3047 * Power to PDADC table functions
3048 */
3049
3050/**
3051 * DOC: Power to PDADC table functions
3052 *
3053 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3054 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3055 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3056 * PDADC steps on y axis and looks like an exponential function like the
3057 * RF5111 curve.
3058 *
3059 * To recreate the curves we read the points from eeprom (eeprom.c)
3060 * and interpolate here. Note that in most cases only 2 (higher and lower)
3061 * curves are used (like RF5112) but vendors have the opportunity to include
3062 * all 4 curves on eeprom. The final curve (higher power) has an extra
3063 * point for better accuracy like RF5112.
3064 *
3065 * The process is similar to what we do above for RF5111/5112
3066 */
3067
3068/**
3069 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3070 * @ah: The &struct ath5k_hw
3071 * @pwr_min: Minimum power (x min)
3072 * @pwr_max: Maximum power (x max)
3073 * @pdcurves: Number of available curves
3074 *
3075 * Combine the various pd curves and create the final Power to PDADC table
3076 * We can have up to 4 pd curves, we need to do a similar process
3077 * as we do for RF5112. This time we don't have an edge_flag but we
3078 * set the gain boundaries on a separate register.
3079 */
3080static void
3081ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3082                        s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3083{
3084        u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3085        u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3086        u8 *pdadc_tmp;
3087        s16 pdadc_0;
3088        u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3089        u8 pd_gain_overlap;
3090
3091        /* Note: Register value is initialized on initvals
3092         * there is no feedback from hw.
3093         * XXX: What about pd_gain_overlap from EEPROM ? */
3094        pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3095                AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3096
3097        /* Create final PDADC table */
3098        for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3099                pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3100
3101                if (pdg == pdcurves - 1)
3102                        /* 2 dB boundary stretch for last
3103                         * (higher power) curve */
3104                        gain_boundaries[pdg] = pwr_max[pdg] + 4;
3105                else
3106                        /* Set gain boundary in the middle
3107                         * between this curve and the next one */
3108                        gain_boundaries[pdg] =
3109                                (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3110
3111                /* Sanity check in case our 2 db stretch got out of
3112                 * range. */
3113                if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3114                        gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3115
3116                /* For the first curve (lower power)
3117                 * start from 0 dB */
3118                if (pdg == 0)
3119                        pdadc_0 = 0;
3120                else
3121                        /* For the other curves use the gain overlap */
3122                        pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3123                                                        pd_gain_overlap;
3124
3125                /* Force each power step to be at least 0.5 dB */
3126                if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3127                        pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3128                else
3129                        pwr_step = 1;
3130
3131                /* If pdadc_0 is negative, we need to extrapolate
3132                 * below this pdgain by a number of pwr_steps */
3133                while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3134                        s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3135                        pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3136                        pdadc_0++;
3137                }
3138
3139                /* Set last pwr level, using gain boundaries */
3140                pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3141                /* Limit it to be inside pwr range */
3142                table_size = pwr_max[pdg] - pwr_min[pdg];
3143                max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3144
3145                /* Fill pdadc_out table */
3146                while (pdadc_0 < max_idx && pdadc_i < 128)
3147                        pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3148
3149                /* Need to extrapolate above this pdgain? */
3150                if (pdadc_n <= max_idx)
3151                        continue;
3152
3153                /* Force each power step to be at least 0.5 dB */
3154                if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3155                        pwr_step = pdadc_tmp[table_size - 1] -
3156                                                pdadc_tmp[table_size - 2];
3157                else
3158                        pwr_step = 1;
3159
3160                /* Extrapolate above */
3161                while ((pdadc_0 < (s16) pdadc_n) &&
3162                (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3163                        s16 tmp = pdadc_tmp[table_size - 1] +
3164                                        (pdadc_0 - max_idx) * pwr_step;
3165                        pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3166                        pdadc_0++;
3167                }
3168        }
3169
3170        while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3171                gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3172                pdg++;
3173        }
3174
3175        while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3176                pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3177                pdadc_i++;
3178        }
3179
3180        /* Set gain boundaries */
3181        ath5k_hw_reg_write(ah,
3182                AR5K_REG_SM(pd_gain_overlap,
3183                        AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3184                AR5K_REG_SM(gain_boundaries[0],
3185                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3186                AR5K_REG_SM(gain_boundaries[1],
3187                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3188                AR5K_REG_SM(gain_boundaries[2],
3189                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3190                AR5K_REG_SM(gain_boundaries[3],
3191                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3192                AR5K_PHY_TPC_RG5);
3193
3194        /* Used for setting rate power table */
3195        ah->ah_txpower.txp_min_idx = pwr_min[0];
3196
3197}
3198
3199/**
3200 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3201 * @ah: The &struct ath5k_hw
3202 * @ee_mode: One of enum ath5k_driver_mode
3203 */
3204static void
3205ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3206{
3207        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3208        u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3209        u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3210        u8 pdcurves = ee->ee_pd_gains[ee_mode];
3211        u32 reg;
3212        u8 i;
3213
3214        /* Select the right pdgain curves */
3215
3216        /* Clear current settings */
3217        reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3218        reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3219                AR5K_PHY_TPC_RG1_PDGAIN_2 |
3220                AR5K_PHY_TPC_RG1_PDGAIN_3 |
3221                AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3222
3223        /*
3224         * Use pd_gains curve from eeprom
3225         *
3226         * This overrides the default setting from initvals
3227         * in case some vendors (e.g. Zcomax) don't use the default
3228         * curves. If we don't honor their settings we 'll get a
3229         * 5dB (1 * gain overlap ?) drop.
3230         */
3231        reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3232
3233        switch (pdcurves) {
3234        case 3:
3235                reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3236                /* Fall through */
3237        case 2:
3238                reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3239                /* Fall through */
3240        case 1:
3241                reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3242                break;
3243        }
3244        ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3245
3246        /*
3247         * Write TX power values
3248         */
3249        for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3250                u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3251                ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3252        }
3253}
3254
3255
3256/*
3257 * Common code for PCDAC/PDADC tables
3258 */
3259
3260/**
3261 * ath5k_setup_channel_powertable() - Set up power table for this channel
3262 * @ah: The &struct ath5k_hw
3263 * @channel: The &struct ieee80211_channel
3264 * @ee_mode: One of enum ath5k_driver_mode
3265 * @type: One of enum ath5k_powertable_type (eeprom.h)
3266 *
3267 * This is the main function that uses all of the above
3268 * to set PCDAC/PDADC table on hw for the current channel.
3269 * This table is used for tx power calibration on the baseband,
3270 * without it we get weird tx power levels and in some cases
3271 * distorted spectral mask
3272 */
3273static int
3274ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3275                        struct ieee80211_channel *channel,
3276                        u8 ee_mode, u8 type)
3277{
3278        struct ath5k_pdgain_info *pdg_L, *pdg_R;
3279        struct ath5k_chan_pcal_info *pcinfo_L;
3280        struct ath5k_chan_pcal_info *pcinfo_R;
3281        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3282        u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3283        s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3284        s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3285        u8 *tmpL;
3286        u8 *tmpR;
3287        u32 target = channel->center_freq;
3288        int pdg, i;
3289
3290        /* Get surrounding freq piers for this channel */
3291        ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3292                                                &pcinfo_L,
3293                                                &pcinfo_R);
3294
3295        /* Loop over pd gain curves on
3296         * surrounding freq piers by index */
3297        for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3298
3299                /* Fill curves in reverse order
3300                 * from lower power (max gain)
3301                 * to higher power. Use curve -> idx
3302                 * backmapping we did on eeprom init */
3303                u8 idx = pdg_curve_to_idx[pdg];
3304
3305                /* Grab the needed curves by index */
3306                pdg_L = &pcinfo_L->pd_curves[idx];
3307                pdg_R = &pcinfo_R->pd_curves[idx];
3308
3309                /* Initialize the temp tables */
3310                tmpL = ah->ah_txpower.tmpL[pdg];
3311                tmpR = ah->ah_txpower.tmpR[pdg];
3312
3313                /* Set curve's x boundaries and create
3314                 * curves so that they cover the same
3315                 * range (if we don't do that one table
3316                 * will have values on some range and the
3317                 * other one won't have any so interpolation
3318                 * will fail) */
3319                table_min[pdg] = min(pdg_L->pd_pwr[0],
3320                                        pdg_R->pd_pwr[0]) / 2;
3321
3322                table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3323                                pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3324
3325                /* Now create the curves on surrounding channels
3326                 * and interpolate if needed to get the final
3327                 * curve for this gain on this channel */
3328                switch (type) {
3329                case AR5K_PWRTABLE_LINEAR_PCDAC:
3330                        /* Override min/max so that we don't loose
3331                         * accuracy (don't divide by 2) */
3332                        table_min[pdg] = min(pdg_L->pd_pwr[0],
3333                                                pdg_R->pd_pwr[0]);
3334
3335                        table_max[pdg] =
3336                                max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3337                                        pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3338
3339                        /* Override minimum so that we don't get
3340                         * out of bounds while extrapolating
3341                         * below. Don't do this when we have 2
3342                         * curves and we are on the high power curve
3343                         * because table_min is ok in this case */
3344                        if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3345
3346                                table_min[pdg] =
3347                                        ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3348                                                                pdg_R->pd_step,
3349                                                                pdg_L->pd_pwr,
3350                                                                pdg_R->pd_pwr);
3351
3352                                /* Don't go too low because we will
3353                                 * miss the upper part of the curve.
3354                                 * Note: 126 = 31.5dB (max power supported)
3355                                 * in 0.25dB units */
3356                                if (table_max[pdg] - table_min[pdg] > 126)
3357                                        table_min[pdg] = table_max[pdg] - 126;
3358                        }
3359
3360                        /* Fall through */
3361                case AR5K_PWRTABLE_PWR_TO_PCDAC:
3362                case AR5K_PWRTABLE_PWR_TO_PDADC:
3363
3364                        ath5k_create_power_curve(table_min[pdg],
3365                                                table_max[pdg],
3366                                                pdg_L->pd_pwr,
3367                                                pdg_L->pd_step,
3368                                                pdg_L->pd_points, tmpL, type);
3369
3370                        /* We are in a calibration
3371                         * pier, no need to interpolate
3372                         * between freq piers */
3373                        if (pcinfo_L == pcinfo_R)
3374                                continue;
3375
3376                        ath5k_create_power_curve(table_min[pdg],
3377                                                table_max[pdg],
3378                                                pdg_R->pd_pwr,
3379                                                pdg_R->pd_step,
3380                                                pdg_R->pd_points, tmpR, type);
3381                        break;
3382                default:
3383                        return -EINVAL;
3384                }
3385
3386                /* Interpolate between curves
3387                 * of surrounding freq piers to
3388                 * get the final curve for this
3389                 * pd gain. Re-use tmpL for interpolation
3390                 * output */
3391                for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3392                (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3393                        tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3394                                                        (s16) pcinfo_L->freq,
3395                                                        (s16) pcinfo_R->freq,
3396                                                        (s16) tmpL[i],
3397                                                        (s16) tmpR[i]);
3398                }
3399        }
3400
3401        /* Now we have a set of curves for this
3402         * channel on tmpL (x range is table_max - table_min
3403         * and y values are tmpL[pdg][]) sorted in the same
3404         * order as EEPROM (because we've used the backmapping).
3405         * So for RF5112 it's from higher power to lower power
3406         * and for RF2413 it's from lower power to higher power.
3407         * For RF5111 we only have one curve. */
3408
3409        /* Fill min and max power levels for this
3410         * channel by interpolating the values on
3411         * surrounding channels to complete the dataset */
3412        ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3413                                        (s16) pcinfo_L->freq,
3414                                        (s16) pcinfo_R->freq,
3415                                        pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3416
3417        ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3418                                        (s16) pcinfo_L->freq,
3419                                        (s16) pcinfo_R->freq,
3420                                        pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3421
3422        /* Fill PCDAC/PDADC table */
3423        switch (type) {
3424        case AR5K_PWRTABLE_LINEAR_PCDAC:
3425                /* For RF5112 we can have one or two curves
3426                 * and each curve covers a certain power lvl
3427                 * range so we need to do some more processing */
3428                ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3429                                                ee->ee_pd_gains[ee_mode]);
3430
3431                /* Set txp.offset so that we can
3432                 * match max power value with max
3433                 * table index */
3434                ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3435                break;
3436        case AR5K_PWRTABLE_PWR_TO_PCDAC:
3437                /* We are done for RF5111 since it has only
3438                 * one curve, just fit the curve on the table */
3439                ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3440
3441                /* No rate powertable adjustment for RF5111 */
3442                ah->ah_txpower.txp_min_idx = 0;
3443                ah->ah_txpower.txp_offset = 0;
3444                break;
3445        case AR5K_PWRTABLE_PWR_TO_PDADC:
3446                /* Set PDADC boundaries and fill
3447                 * final PDADC table */
3448                ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3449                                                ee->ee_pd_gains[ee_mode]);
3450
3451                /* Set txp.offset, note that table_min
3452                 * can be negative */
3453                ah->ah_txpower.txp_offset = table_min[0];
3454                break;
3455        default:
3456                return -EINVAL;
3457        }
3458
3459        ah->ah_txpower.txp_setup = true;
3460
3461        return 0;
3462}
3463
3464/**
3465 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3466 * @ah: The &struct ath5k_hw
3467 * @ee_mode: One of enum ath5k_driver_mode
3468 * @type: One of enum ath5k_powertable_type (eeprom.h)
3469 */
3470static void
3471ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3472{
3473        if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3474                ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3475        else
3476                ath5k_write_pcdac_table(ah);
3477}
3478
3479
3480/**
3481 * DOC: Per-rate tx power setting
3482 *
3483 * This is the code that sets the desired tx power limit (below
3484 * maximum) on hw for each rate (we also have TPC that sets
3485 * power per packet type). We do that by providing an index on the
3486 * PCDAC/PDADC table we set up above, for each rate.
3487 *
3488 * For now we only limit txpower based on maximum tx power
3489 * supported by hw (what's inside rate_info) + conformance test
3490 * limits. We need to limit this even more, based on regulatory domain
3491 * etc to be safe. Normally this is done from above so we don't care
3492 * here, all we care is that the tx power we set will be O.K.
3493 * for the hw (e.g. won't create noise on PA etc).
3494 *
3495 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3496 * x values) and is indexed as follows:
3497 * rates[0] - rates[7] -> OFDM rates
3498 * rates[8] - rates[14] -> CCK rates
3499 * rates[15] -> XR rates (they all have the same power)
3500 */
3501
3502/**
3503 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3504 * @ah: The &struct ath5k_hw
3505 * @max_pwr: The maximum tx power requested in 0.5dB steps
3506 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3507 * @ee_mode: One of enum ath5k_driver_mode
3508 */
3509static void
3510ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3511                        struct ath5k_rate_pcal_info *rate_info,
3512                        u8 ee_mode)
3513{
3514        unsigned int i;
3515        u16 *rates;
3516        s16 rate_idx_scaled = 0;
3517
3518        /* max_pwr is power level we got from driver/user in 0.5dB
3519         * units, switch to 0.25dB units so we can compare */
3520        max_pwr *= 2;
3521        max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3522
3523        /* apply rate limits */
3524        rates = ah->ah_txpower.txp_rates_power_table;
3525
3526        /* OFDM rates 6 to 24Mb/s */
3527        for (i = 0; i < 5; i++)
3528                rates[i] = min(max_pwr, rate_info->target_power_6to24);
3529
3530        /* Rest OFDM rates */
3531        rates[5] = min(rates[0], rate_info->target_power_36);
3532        rates[6] = min(rates[0], rate_info->target_power_48);
3533        rates[7] = min(rates[0], rate_info->target_power_54);
3534
3535        /* CCK rates */
3536        /* 1L */
3537        rates[8] = min(rates[0], rate_info->target_power_6to24);
3538        /* 2L */
3539        rates[9] = min(rates[0], rate_info->target_power_36);
3540        /* 2S */
3541        rates[10] = min(rates[0], rate_info->target_power_36);
3542        /* 5L */
3543        rates[11] = min(rates[0], rate_info->target_power_48);
3544        /* 5S */
3545        rates[12] = min(rates[0], rate_info->target_power_48);
3546        /* 11L */
3547        rates[13] = min(rates[0], rate_info->target_power_54);
3548        /* 11S */
3549        rates[14] = min(rates[0], rate_info->target_power_54);
3550
3551        /* XR rates */
3552        rates[15] = min(rates[0], rate_info->target_power_6to24);
3553
3554        /* CCK rates have different peak to average ratio
3555         * so we have to tweak their power so that gainf
3556         * correction works ok. For this we use OFDM to
3557         * CCK delta from eeprom */
3558        if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3559        (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3560                for (i = 8; i <= 15; i++)
3561                        rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3562
3563        /* Save min/max and current tx power for this channel
3564         * in 0.25dB units.
3565         *
3566         * Note: We use rates[0] for current tx power because
3567         * it covers most of the rates, in most cases. It's our
3568         * tx power limit and what the user expects to see. */
3569        ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3570        ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3571
3572        /* Set max txpower for correct OFDM operation on all rates
3573         * -that is the txpower for 54Mbit-, it's used for the PAPD
3574         * gain probe and it's in 0.5dB units */
3575        ah->ah_txpower.txp_ofdm = rates[7];
3576
3577        /* Now that we have all rates setup use table offset to
3578         * match the power range set by user with the power indices
3579         * on PCDAC/PDADC table */
3580        for (i = 0; i < 16; i++) {
3581                rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3582                /* Don't get out of bounds */
3583                if (rate_idx_scaled > 63)
3584                        rate_idx_scaled = 63;
3585                if (rate_idx_scaled < 0)
3586                        rate_idx_scaled = 0;
3587                rates[i] = rate_idx_scaled;
3588        }
3589}
3590
3591
3592/**
3593 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3594 * @ah: The &struct ath5k_hw
3595 * @channel: The &struct ieee80211_channel
3596 * @txpower: Requested tx power in 0.5dB steps
3597 *
3598 * Combines all of the above to set the requested tx power limit
3599 * on hw.
3600 */
3601static int
3602ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3603                 u8 txpower)
3604{
3605        struct ath5k_rate_pcal_info rate_info;
3606        struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3607        int ee_mode;
3608        u8 type;
3609        int ret;
3610
3611        if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3612                ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3613                return -EINVAL;
3614        }
3615
3616        ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3617
3618        /* Initialize TX power table */
3619        switch (ah->ah_radio) {
3620        case AR5K_RF5110:
3621                /* TODO */
3622                return 0;
3623        case AR5K_RF5111:
3624                type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3625                break;
3626        case AR5K_RF5112:
3627                type = AR5K_PWRTABLE_LINEAR_PCDAC;
3628                break;
3629        case AR5K_RF2413:
3630        case AR5K_RF5413:
3631        case AR5K_RF2316:
3632        case AR5K_RF2317:
3633        case AR5K_RF2425:
3634                type = AR5K_PWRTABLE_PWR_TO_PDADC;
3635                break;
3636        default:
3637                return -EINVAL;
3638        }
3639
3640        /*
3641         * If we don't change channel/mode skip tx powertable calculation
3642         * and use the cached one.
3643         */
3644        if (!ah->ah_txpower.txp_setup ||
3645            (channel->hw_value != curr_channel->hw_value) ||
3646            (channel->center_freq != curr_channel->center_freq)) {
3647                /* Reset TX power values but preserve requested
3648                 * tx power from above */
3649                int requested_txpower = ah->ah_txpower.txp_requested;
3650
3651                memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3652
3653                /* Restore TPC setting and requested tx power */
3654                ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3655
3656                ah->ah_txpower.txp_requested = requested_txpower;
3657
3658                /* Calculate the powertable */
3659                ret = ath5k_setup_channel_powertable(ah, channel,
3660                                                        ee_mode, type);
3661                if (ret)
3662                        return ret;
3663        }
3664
3665        /* Write table on hw */
3666        ath5k_write_channel_powertable(ah, ee_mode, type);
3667
3668        /* Limit max power if we have a CTL available */
3669        ath5k_get_max_ctl_power(ah, channel);
3670
3671        /* FIXME: Antenna reduction stuff */
3672
3673        /* FIXME: Limit power on turbo modes */
3674
3675        /* FIXME: TPC scale reduction */
3676
3677        /* Get surrounding channels for per-rate power table
3678         * calibration */
3679        ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3680
3681        /* Setup rate power table */
3682        ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3683
3684        /* Write rate power table on hw */
3685        ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3686                AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3687                AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3688
3689        ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3690                AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3691                AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3692
3693        ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3694                AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3695                AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3696
3697        ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3698                AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3699                AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3700
3701        /* FIXME: TPC support */
3702        if (ah->ah_txpower.txp_tpc) {
3703                ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3704                        AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3705
3706                ath5k_hw_reg_write(ah,
3707                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3708                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3709                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3710                        AR5K_TPC);
3711        } else {
3712                ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3713                        AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3714        }
3715
3716        return 0;
3717}
3718
3719/**
3720 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3721 * @ah: The &struct ath5k_hw
3722 * @txpower: The requested tx power limit in 0.5dB steps
3723 *
3724 * This function provides access to ath5k_hw_txpower to the driver in
3725 * case user or an application changes it while PHY is running.
3726 */
3727int
3728ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3729{
3730        ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3731                "changing txpower to %d\n", txpower);
3732
3733        return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3734}
3735
3736
3737/*************\
3738 Init function
3739\*************/
3740
3741/**
3742 * ath5k_hw_phy_init() - Initialize PHY
3743 * @ah: The &struct ath5k_hw
3744 * @channel: The @struct ieee80211_channel
3745 * @mode: One of enum ath5k_driver_mode
3746 * @fast: Try a fast channel switch instead
3747 *
3748 * This is the main function used during reset to initialize PHY
3749 * or do a fast channel change if possible.
3750 *
3751 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3752 * warm reset state !
3753 */
3754int
3755ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3756                      u8 mode, bool fast)
3757{
3758        struct ieee80211_channel *curr_channel;
3759        int ret, i;
3760        u32 phy_tst1;
3761        ret = 0;
3762
3763        /*
3764         * Sanity check for fast flag
3765         * Don't try fast channel change when changing modulation
3766         * mode/band. We check for chip compatibility on
3767         * ath5k_hw_reset.
3768         */
3769        curr_channel = ah->ah_current_channel;
3770        if (fast && (channel->hw_value != curr_channel->hw_value))
3771                return -EINVAL;
3772
3773        /*
3774         * On fast channel change we only set the synth parameters
3775         * while PHY is running, enable calibration and skip the rest.
3776         */
3777        if (fast) {
3778                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3779                                    AR5K_PHY_RFBUS_REQ_REQUEST);
3780                for (i = 0; i < 100; i++) {
3781                        if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3782                                break;
3783                        udelay(5);
3784                }
3785                /* Failed */
3786                if (i >= 100)
3787                        return -EIO;
3788
3789                /* Set channel and wait for synth */
3790                ret = ath5k_hw_channel(ah, channel);
3791                if (ret)
3792                        return ret;
3793
3794                ath5k_hw_wait_for_synth(ah, channel);
3795        }
3796
3797        /*
3798         * Set TX power
3799         *
3800         * Note: We need to do that before we set
3801         * RF buffer settings on 5211/5212+ so that we
3802         * properly set curve indices.
3803         */
3804        ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3805                                        ah->ah_txpower.txp_requested * 2 :
3806                                        AR5K_TUNE_MAX_TXPOWER);
3807        if (ret)
3808                return ret;
3809
3810        /* Write OFDM timings on 5212*/
3811        if (ah->ah_version == AR5K_AR5212 &&
3812                channel->hw_value != AR5K_MODE_11B) {
3813
3814                ret = ath5k_hw_write_ofdm_timings(ah, channel);
3815                if (ret)
3816                        return ret;
3817
3818                /* Spur info is available only from EEPROM versions
3819                 * greater than 5.3, but the EEPROM routines will use
3820                 * static values for older versions */
3821                if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3822                        ath5k_hw_set_spur_mitigation_filter(ah,
3823                                                            channel);
3824        }
3825
3826        /* If we used fast channel switching
3827         * we are done, release RF bus and
3828         * fire up NF calibration.
3829         *
3830         * Note: Only NF calibration due to
3831         * channel change, not AGC calibration
3832         * since AGC is still running !
3833         */
3834        if (fast) {
3835                /*
3836                 * Release RF Bus grant
3837                 */
3838                AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3839                                    AR5K_PHY_RFBUS_REQ_REQUEST);
3840
3841                /*
3842                 * Start NF calibration
3843                 */
3844                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3845                                        AR5K_PHY_AGCCTL_NF);
3846
3847                return ret;
3848        }
3849
3850        /*
3851         * For 5210 we do all initialization using
3852         * initvals, so we don't have to modify
3853         * any settings (5210 also only supports
3854         * a/aturbo modes)
3855         */
3856        if (ah->ah_version != AR5K_AR5210) {
3857
3858                /*
3859                 * Write initial RF gain settings
3860                 * This should work for both 5111/5112
3861                 */
3862                ret = ath5k_hw_rfgain_init(ah, channel->band);
3863                if (ret)
3864                        return ret;
3865
3866                usleep_range(1000, 1500);
3867
3868                /*
3869                 * Write RF buffer
3870                 */
3871                ret = ath5k_hw_rfregs_init(ah, channel, mode);
3872                if (ret)
3873                        return ret;
3874
3875                /*Enable/disable 802.11b mode on 5111
3876                (enable 2111 frequency converter + CCK)*/
3877                if (ah->ah_radio == AR5K_RF5111) {
3878                        if (mode == AR5K_MODE_11B)
3879                                AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3880                                    AR5K_TXCFG_B_MODE);
3881                        else
3882                                AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3883                                    AR5K_TXCFG_B_MODE);
3884                }
3885
3886        } else if (ah->ah_version == AR5K_AR5210) {
3887                usleep_range(1000, 1500);
3888                /* Disable phy and wait */
3889                ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3890                usleep_range(1000, 1500);
3891        }
3892
3893        /* Set channel on PHY */
3894        ret = ath5k_hw_channel(ah, channel);
3895        if (ret)
3896                return ret;
3897
3898        /*
3899         * Enable the PHY and wait until completion
3900         * This includes BaseBand and Synthesizer
3901         * activation.
3902         */
3903        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3904
3905        ath5k_hw_wait_for_synth(ah, channel);
3906
3907        /*
3908         * Perform ADC test to see if baseband is ready
3909         * Set tx hold and check adc test register
3910         */
3911        phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3912        ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3913        for (i = 0; i <= 20; i++) {
3914                if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3915                        break;
3916                usleep_range(200, 250);
3917        }
3918        ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3919
3920        /*
3921         * Start automatic gain control calibration
3922         *
3923         * During AGC calibration RX path is re-routed to
3924         * a power detector so we don't receive anything.
3925         *
3926         * This method is used to calibrate some static offsets
3927         * used together with on-the fly I/Q calibration (the
3928         * one performed via ath5k_hw_phy_calibrate), which doesn't
3929         * interrupt rx path.
3930         *
3931         * While rx path is re-routed to the power detector we also
3932         * start a noise floor calibration to measure the
3933         * card's noise floor (the noise we measure when we are not
3934         * transmitting or receiving anything).
3935         *
3936         * If we are in a noisy environment, AGC calibration may time
3937         * out and/or noise floor calibration might timeout.
3938         */
3939        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3940                                AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3941
3942        /* At the same time start I/Q calibration for QAM constellation
3943         * -no need for CCK- */
3944        ah->ah_iq_cal_needed = false;
3945        if (!(mode == AR5K_MODE_11B)) {
3946                ah->ah_iq_cal_needed = true;
3947                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3948                                AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3949                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3950                                AR5K_PHY_IQ_RUN);
3951        }
3952
3953        /* Wait for gain calibration to finish (we check for I/Q calibration
3954         * during ath5k_phy_calibrate) */
3955        if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3956                        AR5K_PHY_AGCCTL_CAL, 0, false)) {
3957                ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3958                        channel->center_freq);
3959        }
3960
3961        /* Restore antenna mode */
3962        ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3963
3964        return ret;
3965}
3966