linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/of.h>
  28#include <linux/regmap.h>
  29#include <linux/regulator/of_regulator.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/regulator/driver.h>
  32#include <linux/regulator/machine.h>
  33#include <linux/module.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/regulator.h>
  37
  38#include "dummy.h"
  39#include "internal.h"
  40
  41#define rdev_crit(rdev, fmt, ...)                                       \
  42        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_err(rdev, fmt, ...)                                        \
  44        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_warn(rdev, fmt, ...)                                       \
  46        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47#define rdev_info(rdev, fmt, ...)                                       \
  48        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  49#define rdev_dbg(rdev, fmt, ...)                                        \
  50        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  51
  52static DEFINE_MUTEX(regulator_list_mutex);
  53static LIST_HEAD(regulator_list);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61/*
  62 * struct regulator_map
  63 *
  64 * Used to provide symbolic supply names to devices.
  65 */
  66struct regulator_map {
  67        struct list_head list;
  68        const char *dev_name;   /* The dev_name() for the consumer */
  69        const char *supply;
  70        struct regulator_dev *regulator;
  71};
  72
  73/*
  74 * struct regulator_enable_gpio
  75 *
  76 * Management for shared enable GPIO pin
  77 */
  78struct regulator_enable_gpio {
  79        struct list_head list;
  80        int gpio;
  81        u32 enable_count;       /* a number of enabled shared GPIO */
  82        u32 request_count;      /* a number of requested shared GPIO */
  83        unsigned int ena_gpio_invert:1;
  84};
  85
  86/*
  87 * struct regulator_supply_alias
  88 *
  89 * Used to map lookups for a supply onto an alternative device.
  90 */
  91struct regulator_supply_alias {
  92        struct list_head list;
  93        struct device *src_dev;
  94        const char *src_supply;
  95        struct device *alias_dev;
  96        const char *alias_supply;
  97};
  98
  99static int _regulator_is_enabled(struct regulator_dev *rdev);
 100static int _regulator_disable(struct regulator_dev *rdev);
 101static int _regulator_get_voltage(struct regulator_dev *rdev);
 102static int _regulator_get_current_limit(struct regulator_dev *rdev);
 103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 104static void _notifier_call_chain(struct regulator_dev *rdev,
 105                                  unsigned long event, void *data);
 106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 107                                     int min_uV, int max_uV);
 108static struct regulator *create_regulator(struct regulator_dev *rdev,
 109                                          struct device *dev,
 110                                          const char *supply_name);
 111
 112static const char *rdev_get_name(struct regulator_dev *rdev)
 113{
 114        if (rdev->constraints && rdev->constraints->name)
 115                return rdev->constraints->name;
 116        else if (rdev->desc->name)
 117                return rdev->desc->name;
 118        else
 119                return "";
 120}
 121
 122static bool have_full_constraints(void)
 123{
 124        return has_full_constraints || of_have_populated_dt();
 125}
 126
 127/**
 128 * of_get_regulator - get a regulator device node based on supply name
 129 * @dev: Device pointer for the consumer (of regulator) device
 130 * @supply: regulator supply name
 131 *
 132 * Extract the regulator device node corresponding to the supply name.
 133 * returns the device node corresponding to the regulator if found, else
 134 * returns NULL.
 135 */
 136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 137{
 138        struct device_node *regnode = NULL;
 139        char prop_name[32]; /* 32 is max size of property name */
 140
 141        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 142
 143        snprintf(prop_name, 32, "%s-supply", supply);
 144        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 145
 146        if (!regnode) {
 147                dev_dbg(dev, "Looking up %s property in node %s failed",
 148                                prop_name, dev->of_node->full_name);
 149                return NULL;
 150        }
 151        return regnode;
 152}
 153
 154static int _regulator_can_change_status(struct regulator_dev *rdev)
 155{
 156        if (!rdev->constraints)
 157                return 0;
 158
 159        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 160                return 1;
 161        else
 162                return 0;
 163}
 164
 165/* Platform voltage constraint check */
 166static int regulator_check_voltage(struct regulator_dev *rdev,
 167                                   int *min_uV, int *max_uV)
 168{
 169        BUG_ON(*min_uV > *max_uV);
 170
 171        if (!rdev->constraints) {
 172                rdev_err(rdev, "no constraints\n");
 173                return -ENODEV;
 174        }
 175        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 176                rdev_err(rdev, "operation not allowed\n");
 177                return -EPERM;
 178        }
 179
 180        if (*max_uV > rdev->constraints->max_uV)
 181                *max_uV = rdev->constraints->max_uV;
 182        if (*min_uV < rdev->constraints->min_uV)
 183                *min_uV = rdev->constraints->min_uV;
 184
 185        if (*min_uV > *max_uV) {
 186                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 187                         *min_uV, *max_uV);
 188                return -EINVAL;
 189        }
 190
 191        return 0;
 192}
 193
 194/* Make sure we select a voltage that suits the needs of all
 195 * regulator consumers
 196 */
 197static int regulator_check_consumers(struct regulator_dev *rdev,
 198                                     int *min_uV, int *max_uV)
 199{
 200        struct regulator *regulator;
 201
 202        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 203                /*
 204                 * Assume consumers that didn't say anything are OK
 205                 * with anything in the constraint range.
 206                 */
 207                if (!regulator->min_uV && !regulator->max_uV)
 208                        continue;
 209
 210                if (*max_uV > regulator->max_uV)
 211                        *max_uV = regulator->max_uV;
 212                if (*min_uV < regulator->min_uV)
 213                        *min_uV = regulator->min_uV;
 214        }
 215
 216        if (*min_uV > *max_uV) {
 217                rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 218                        *min_uV, *max_uV);
 219                return -EINVAL;
 220        }
 221
 222        return 0;
 223}
 224
 225/* current constraint check */
 226static int regulator_check_current_limit(struct regulator_dev *rdev,
 227                                        int *min_uA, int *max_uA)
 228{
 229        BUG_ON(*min_uA > *max_uA);
 230
 231        if (!rdev->constraints) {
 232                rdev_err(rdev, "no constraints\n");
 233                return -ENODEV;
 234        }
 235        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 236                rdev_err(rdev, "operation not allowed\n");
 237                return -EPERM;
 238        }
 239
 240        if (*max_uA > rdev->constraints->max_uA)
 241                *max_uA = rdev->constraints->max_uA;
 242        if (*min_uA < rdev->constraints->min_uA)
 243                *min_uA = rdev->constraints->min_uA;
 244
 245        if (*min_uA > *max_uA) {
 246                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 247                         *min_uA, *max_uA);
 248                return -EINVAL;
 249        }
 250
 251        return 0;
 252}
 253
 254/* operating mode constraint check */
 255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 256{
 257        switch (*mode) {
 258        case REGULATOR_MODE_FAST:
 259        case REGULATOR_MODE_NORMAL:
 260        case REGULATOR_MODE_IDLE:
 261        case REGULATOR_MODE_STANDBY:
 262                break;
 263        default:
 264                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 265                return -EINVAL;
 266        }
 267
 268        if (!rdev->constraints) {
 269                rdev_err(rdev, "no constraints\n");
 270                return -ENODEV;
 271        }
 272        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 273                rdev_err(rdev, "operation not allowed\n");
 274                return -EPERM;
 275        }
 276
 277        /* The modes are bitmasks, the most power hungry modes having
 278         * the lowest values. If the requested mode isn't supported
 279         * try higher modes. */
 280        while (*mode) {
 281                if (rdev->constraints->valid_modes_mask & *mode)
 282                        return 0;
 283                *mode /= 2;
 284        }
 285
 286        return -EINVAL;
 287}
 288
 289/* dynamic regulator mode switching constraint check */
 290static int regulator_check_drms(struct regulator_dev *rdev)
 291{
 292        if (!rdev->constraints) {
 293                rdev_err(rdev, "no constraints\n");
 294                return -ENODEV;
 295        }
 296        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 297                rdev_err(rdev, "operation not allowed\n");
 298                return -EPERM;
 299        }
 300        return 0;
 301}
 302
 303static ssize_t regulator_uV_show(struct device *dev,
 304                                struct device_attribute *attr, char *buf)
 305{
 306        struct regulator_dev *rdev = dev_get_drvdata(dev);
 307        ssize_t ret;
 308
 309        mutex_lock(&rdev->mutex);
 310        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 311        mutex_unlock(&rdev->mutex);
 312
 313        return ret;
 314}
 315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 316
 317static ssize_t regulator_uA_show(struct device *dev,
 318                                struct device_attribute *attr, char *buf)
 319{
 320        struct regulator_dev *rdev = dev_get_drvdata(dev);
 321
 322        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 323}
 324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 325
 326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 327                         char *buf)
 328{
 329        struct regulator_dev *rdev = dev_get_drvdata(dev);
 330
 331        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 332}
 333static DEVICE_ATTR_RO(name);
 334
 335static ssize_t regulator_print_opmode(char *buf, int mode)
 336{
 337        switch (mode) {
 338        case REGULATOR_MODE_FAST:
 339                return sprintf(buf, "fast\n");
 340        case REGULATOR_MODE_NORMAL:
 341                return sprintf(buf, "normal\n");
 342        case REGULATOR_MODE_IDLE:
 343                return sprintf(buf, "idle\n");
 344        case REGULATOR_MODE_STANDBY:
 345                return sprintf(buf, "standby\n");
 346        }
 347        return sprintf(buf, "unknown\n");
 348}
 349
 350static ssize_t regulator_opmode_show(struct device *dev,
 351                                    struct device_attribute *attr, char *buf)
 352{
 353        struct regulator_dev *rdev = dev_get_drvdata(dev);
 354
 355        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 356}
 357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 358
 359static ssize_t regulator_print_state(char *buf, int state)
 360{
 361        if (state > 0)
 362                return sprintf(buf, "enabled\n");
 363        else if (state == 0)
 364                return sprintf(buf, "disabled\n");
 365        else
 366                return sprintf(buf, "unknown\n");
 367}
 368
 369static ssize_t regulator_state_show(struct device *dev,
 370                                   struct device_attribute *attr, char *buf)
 371{
 372        struct regulator_dev *rdev = dev_get_drvdata(dev);
 373        ssize_t ret;
 374
 375        mutex_lock(&rdev->mutex);
 376        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 377        mutex_unlock(&rdev->mutex);
 378
 379        return ret;
 380}
 381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 382
 383static ssize_t regulator_status_show(struct device *dev,
 384                                   struct device_attribute *attr, char *buf)
 385{
 386        struct regulator_dev *rdev = dev_get_drvdata(dev);
 387        int status;
 388        char *label;
 389
 390        status = rdev->desc->ops->get_status(rdev);
 391        if (status < 0)
 392                return status;
 393
 394        switch (status) {
 395        case REGULATOR_STATUS_OFF:
 396                label = "off";
 397                break;
 398        case REGULATOR_STATUS_ON:
 399                label = "on";
 400                break;
 401        case REGULATOR_STATUS_ERROR:
 402                label = "error";
 403                break;
 404        case REGULATOR_STATUS_FAST:
 405                label = "fast";
 406                break;
 407        case REGULATOR_STATUS_NORMAL:
 408                label = "normal";
 409                break;
 410        case REGULATOR_STATUS_IDLE:
 411                label = "idle";
 412                break;
 413        case REGULATOR_STATUS_STANDBY:
 414                label = "standby";
 415                break;
 416        case REGULATOR_STATUS_BYPASS:
 417                label = "bypass";
 418                break;
 419        case REGULATOR_STATUS_UNDEFINED:
 420                label = "undefined";
 421                break;
 422        default:
 423                return -ERANGE;
 424        }
 425
 426        return sprintf(buf, "%s\n", label);
 427}
 428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 429
 430static ssize_t regulator_min_uA_show(struct device *dev,
 431                                    struct device_attribute *attr, char *buf)
 432{
 433        struct regulator_dev *rdev = dev_get_drvdata(dev);
 434
 435        if (!rdev->constraints)
 436                return sprintf(buf, "constraint not defined\n");
 437
 438        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 439}
 440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 441
 442static ssize_t regulator_max_uA_show(struct device *dev,
 443                                    struct device_attribute *attr, char *buf)
 444{
 445        struct regulator_dev *rdev = dev_get_drvdata(dev);
 446
 447        if (!rdev->constraints)
 448                return sprintf(buf, "constraint not defined\n");
 449
 450        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 451}
 452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 453
 454static ssize_t regulator_min_uV_show(struct device *dev,
 455                                    struct device_attribute *attr, char *buf)
 456{
 457        struct regulator_dev *rdev = dev_get_drvdata(dev);
 458
 459        if (!rdev->constraints)
 460                return sprintf(buf, "constraint not defined\n");
 461
 462        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 463}
 464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 465
 466static ssize_t regulator_max_uV_show(struct device *dev,
 467                                    struct device_attribute *attr, char *buf)
 468{
 469        struct regulator_dev *rdev = dev_get_drvdata(dev);
 470
 471        if (!rdev->constraints)
 472                return sprintf(buf, "constraint not defined\n");
 473
 474        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 475}
 476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 477
 478static ssize_t regulator_total_uA_show(struct device *dev,
 479                                      struct device_attribute *attr, char *buf)
 480{
 481        struct regulator_dev *rdev = dev_get_drvdata(dev);
 482        struct regulator *regulator;
 483        int uA = 0;
 484
 485        mutex_lock(&rdev->mutex);
 486        list_for_each_entry(regulator, &rdev->consumer_list, list)
 487                uA += regulator->uA_load;
 488        mutex_unlock(&rdev->mutex);
 489        return sprintf(buf, "%d\n", uA);
 490}
 491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 492
 493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 494                              char *buf)
 495{
 496        struct regulator_dev *rdev = dev_get_drvdata(dev);
 497        return sprintf(buf, "%d\n", rdev->use_count);
 498}
 499static DEVICE_ATTR_RO(num_users);
 500
 501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 502                         char *buf)
 503{
 504        struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506        switch (rdev->desc->type) {
 507        case REGULATOR_VOLTAGE:
 508                return sprintf(buf, "voltage\n");
 509        case REGULATOR_CURRENT:
 510                return sprintf(buf, "current\n");
 511        }
 512        return sprintf(buf, "unknown\n");
 513}
 514static DEVICE_ATTR_RO(type);
 515
 516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 517                                struct device_attribute *attr, char *buf)
 518{
 519        struct regulator_dev *rdev = dev_get_drvdata(dev);
 520
 521        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 522}
 523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 524                regulator_suspend_mem_uV_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 527                                struct device_attribute *attr, char *buf)
 528{
 529        struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 532}
 533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 534                regulator_suspend_disk_uV_show, NULL);
 535
 536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 537                                struct device_attribute *attr, char *buf)
 538{
 539        struct regulator_dev *rdev = dev_get_drvdata(dev);
 540
 541        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 542}
 543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 544                regulator_suspend_standby_uV_show, NULL);
 545
 546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 547                                struct device_attribute *attr, char *buf)
 548{
 549        struct regulator_dev *rdev = dev_get_drvdata(dev);
 550
 551        return regulator_print_opmode(buf,
 552                rdev->constraints->state_mem.mode);
 553}
 554static DEVICE_ATTR(suspend_mem_mode, 0444,
 555                regulator_suspend_mem_mode_show, NULL);
 556
 557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 558                                struct device_attribute *attr, char *buf)
 559{
 560        struct regulator_dev *rdev = dev_get_drvdata(dev);
 561
 562        return regulator_print_opmode(buf,
 563                rdev->constraints->state_disk.mode);
 564}
 565static DEVICE_ATTR(suspend_disk_mode, 0444,
 566                regulator_suspend_disk_mode_show, NULL);
 567
 568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 569                                struct device_attribute *attr, char *buf)
 570{
 571        struct regulator_dev *rdev = dev_get_drvdata(dev);
 572
 573        return regulator_print_opmode(buf,
 574                rdev->constraints->state_standby.mode);
 575}
 576static DEVICE_ATTR(suspend_standby_mode, 0444,
 577                regulator_suspend_standby_mode_show, NULL);
 578
 579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 580                                   struct device_attribute *attr, char *buf)
 581{
 582        struct regulator_dev *rdev = dev_get_drvdata(dev);
 583
 584        return regulator_print_state(buf,
 585                        rdev->constraints->state_mem.enabled);
 586}
 587static DEVICE_ATTR(suspend_mem_state, 0444,
 588                regulator_suspend_mem_state_show, NULL);
 589
 590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 591                                   struct device_attribute *attr, char *buf)
 592{
 593        struct regulator_dev *rdev = dev_get_drvdata(dev);
 594
 595        return regulator_print_state(buf,
 596                        rdev->constraints->state_disk.enabled);
 597}
 598static DEVICE_ATTR(suspend_disk_state, 0444,
 599                regulator_suspend_disk_state_show, NULL);
 600
 601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 602                                   struct device_attribute *attr, char *buf)
 603{
 604        struct regulator_dev *rdev = dev_get_drvdata(dev);
 605
 606        return regulator_print_state(buf,
 607                        rdev->constraints->state_standby.enabled);
 608}
 609static DEVICE_ATTR(suspend_standby_state, 0444,
 610                regulator_suspend_standby_state_show, NULL);
 611
 612static ssize_t regulator_bypass_show(struct device *dev,
 613                                     struct device_attribute *attr, char *buf)
 614{
 615        struct regulator_dev *rdev = dev_get_drvdata(dev);
 616        const char *report;
 617        bool bypass;
 618        int ret;
 619
 620        ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 621
 622        if (ret != 0)
 623                report = "unknown";
 624        else if (bypass)
 625                report = "enabled";
 626        else
 627                report = "disabled";
 628
 629        return sprintf(buf, "%s\n", report);
 630}
 631static DEVICE_ATTR(bypass, 0444,
 632                   regulator_bypass_show, NULL);
 633
 634/*
 635 * These are the only attributes are present for all regulators.
 636 * Other attributes are a function of regulator functionality.
 637 */
 638static struct attribute *regulator_dev_attrs[] = {
 639        &dev_attr_name.attr,
 640        &dev_attr_num_users.attr,
 641        &dev_attr_type.attr,
 642        NULL,
 643};
 644ATTRIBUTE_GROUPS(regulator_dev);
 645
 646static void regulator_dev_release(struct device *dev)
 647{
 648        struct regulator_dev *rdev = dev_get_drvdata(dev);
 649        kfree(rdev);
 650}
 651
 652static struct class regulator_class = {
 653        .name = "regulator",
 654        .dev_release = regulator_dev_release,
 655        .dev_groups = regulator_dev_groups,
 656};
 657
 658/* Calculate the new optimum regulator operating mode based on the new total
 659 * consumer load. All locks held by caller */
 660static void drms_uA_update(struct regulator_dev *rdev)
 661{
 662        struct regulator *sibling;
 663        int current_uA = 0, output_uV, input_uV, err;
 664        unsigned int mode;
 665
 666        err = regulator_check_drms(rdev);
 667        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 668            (!rdev->desc->ops->get_voltage &&
 669             !rdev->desc->ops->get_voltage_sel) ||
 670            !rdev->desc->ops->set_mode)
 671                return;
 672
 673        /* get output voltage */
 674        output_uV = _regulator_get_voltage(rdev);
 675        if (output_uV <= 0)
 676                return;
 677
 678        /* get input voltage */
 679        input_uV = 0;
 680        if (rdev->supply)
 681                input_uV = regulator_get_voltage(rdev->supply);
 682        if (input_uV <= 0)
 683                input_uV = rdev->constraints->input_uV;
 684        if (input_uV <= 0)
 685                return;
 686
 687        /* calc total requested load */
 688        list_for_each_entry(sibling, &rdev->consumer_list, list)
 689                current_uA += sibling->uA_load;
 690
 691        /* now get the optimum mode for our new total regulator load */
 692        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 693                                                  output_uV, current_uA);
 694
 695        /* check the new mode is allowed */
 696        err = regulator_mode_constrain(rdev, &mode);
 697        if (err == 0)
 698                rdev->desc->ops->set_mode(rdev, mode);
 699}
 700
 701static int suspend_set_state(struct regulator_dev *rdev,
 702        struct regulator_state *rstate)
 703{
 704        int ret = 0;
 705
 706        /* If we have no suspend mode configration don't set anything;
 707         * only warn if the driver implements set_suspend_voltage or
 708         * set_suspend_mode callback.
 709         */
 710        if (!rstate->enabled && !rstate->disabled) {
 711                if (rdev->desc->ops->set_suspend_voltage ||
 712                    rdev->desc->ops->set_suspend_mode)
 713                        rdev_warn(rdev, "No configuration\n");
 714                return 0;
 715        }
 716
 717        if (rstate->enabled && rstate->disabled) {
 718                rdev_err(rdev, "invalid configuration\n");
 719                return -EINVAL;
 720        }
 721
 722        if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 723                ret = rdev->desc->ops->set_suspend_enable(rdev);
 724        else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 725                ret = rdev->desc->ops->set_suspend_disable(rdev);
 726        else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 727                ret = 0;
 728
 729        if (ret < 0) {
 730                rdev_err(rdev, "failed to enabled/disable\n");
 731                return ret;
 732        }
 733
 734        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 735                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 736                if (ret < 0) {
 737                        rdev_err(rdev, "failed to set voltage\n");
 738                        return ret;
 739                }
 740        }
 741
 742        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 743                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 744                if (ret < 0) {
 745                        rdev_err(rdev, "failed to set mode\n");
 746                        return ret;
 747                }
 748        }
 749        return ret;
 750}
 751
 752/* locks held by caller */
 753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 754{
 755        if (!rdev->constraints)
 756                return -EINVAL;
 757
 758        switch (state) {
 759        case PM_SUSPEND_STANDBY:
 760                return suspend_set_state(rdev,
 761                        &rdev->constraints->state_standby);
 762        case PM_SUSPEND_MEM:
 763                return suspend_set_state(rdev,
 764                        &rdev->constraints->state_mem);
 765        case PM_SUSPEND_MAX:
 766                return suspend_set_state(rdev,
 767                        &rdev->constraints->state_disk);
 768        default:
 769                return -EINVAL;
 770        }
 771}
 772
 773static void print_constraints(struct regulator_dev *rdev)
 774{
 775        struct regulation_constraints *constraints = rdev->constraints;
 776        char buf[80] = "";
 777        int count = 0;
 778        int ret;
 779
 780        if (constraints->min_uV && constraints->max_uV) {
 781                if (constraints->min_uV == constraints->max_uV)
 782                        count += sprintf(buf + count, "%d mV ",
 783                                         constraints->min_uV / 1000);
 784                else
 785                        count += sprintf(buf + count, "%d <--> %d mV ",
 786                                         constraints->min_uV / 1000,
 787                                         constraints->max_uV / 1000);
 788        }
 789
 790        if (!constraints->min_uV ||
 791            constraints->min_uV != constraints->max_uV) {
 792                ret = _regulator_get_voltage(rdev);
 793                if (ret > 0)
 794                        count += sprintf(buf + count, "at %d mV ", ret / 1000);
 795        }
 796
 797        if (constraints->uV_offset)
 798                count += sprintf(buf, "%dmV offset ",
 799                                 constraints->uV_offset / 1000);
 800
 801        if (constraints->min_uA && constraints->max_uA) {
 802                if (constraints->min_uA == constraints->max_uA)
 803                        count += sprintf(buf + count, "%d mA ",
 804                                         constraints->min_uA / 1000);
 805                else
 806                        count += sprintf(buf + count, "%d <--> %d mA ",
 807                                         constraints->min_uA / 1000,
 808                                         constraints->max_uA / 1000);
 809        }
 810
 811        if (!constraints->min_uA ||
 812            constraints->min_uA != constraints->max_uA) {
 813                ret = _regulator_get_current_limit(rdev);
 814                if (ret > 0)
 815                        count += sprintf(buf + count, "at %d mA ", ret / 1000);
 816        }
 817
 818        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 819                count += sprintf(buf + count, "fast ");
 820        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 821                count += sprintf(buf + count, "normal ");
 822        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 823                count += sprintf(buf + count, "idle ");
 824        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 825                count += sprintf(buf + count, "standby");
 826
 827        if (!count)
 828                sprintf(buf, "no parameters");
 829
 830        rdev_info(rdev, "%s\n", buf);
 831
 832        if ((constraints->min_uV != constraints->max_uV) &&
 833            !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 834                rdev_warn(rdev,
 835                          "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 836}
 837
 838static int machine_constraints_voltage(struct regulator_dev *rdev,
 839        struct regulation_constraints *constraints)
 840{
 841        struct regulator_ops *ops = rdev->desc->ops;
 842        int ret;
 843
 844        /* do we need to apply the constraint voltage */
 845        if (rdev->constraints->apply_uV &&
 846            rdev->constraints->min_uV == rdev->constraints->max_uV) {
 847                ret = _regulator_do_set_voltage(rdev,
 848                                                rdev->constraints->min_uV,
 849                                                rdev->constraints->max_uV);
 850                if (ret < 0) {
 851                        rdev_err(rdev, "failed to apply %duV constraint\n",
 852                                 rdev->constraints->min_uV);
 853                        return ret;
 854                }
 855        }
 856
 857        /* constrain machine-level voltage specs to fit
 858         * the actual range supported by this regulator.
 859         */
 860        if (ops->list_voltage && rdev->desc->n_voltages) {
 861                int     count = rdev->desc->n_voltages;
 862                int     i;
 863                int     min_uV = INT_MAX;
 864                int     max_uV = INT_MIN;
 865                int     cmin = constraints->min_uV;
 866                int     cmax = constraints->max_uV;
 867
 868                /* it's safe to autoconfigure fixed-voltage supplies
 869                   and the constraints are used by list_voltage. */
 870                if (count == 1 && !cmin) {
 871                        cmin = 1;
 872                        cmax = INT_MAX;
 873                        constraints->min_uV = cmin;
 874                        constraints->max_uV = cmax;
 875                }
 876
 877                /* voltage constraints are optional */
 878                if ((cmin == 0) && (cmax == 0))
 879                        return 0;
 880
 881                /* else require explicit machine-level constraints */
 882                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 883                        rdev_err(rdev, "invalid voltage constraints\n");
 884                        return -EINVAL;
 885                }
 886
 887                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 888                for (i = 0; i < count; i++) {
 889                        int     value;
 890
 891                        value = ops->list_voltage(rdev, i);
 892                        if (value <= 0)
 893                                continue;
 894
 895                        /* maybe adjust [min_uV..max_uV] */
 896                        if (value >= cmin && value < min_uV)
 897                                min_uV = value;
 898                        if (value <= cmax && value > max_uV)
 899                                max_uV = value;
 900                }
 901
 902                /* final: [min_uV..max_uV] valid iff constraints valid */
 903                if (max_uV < min_uV) {
 904                        rdev_err(rdev,
 905                                 "unsupportable voltage constraints %u-%uuV\n",
 906                                 min_uV, max_uV);
 907                        return -EINVAL;
 908                }
 909
 910                /* use regulator's subset of machine constraints */
 911                if (constraints->min_uV < min_uV) {
 912                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 913                                 constraints->min_uV, min_uV);
 914                        constraints->min_uV = min_uV;
 915                }
 916                if (constraints->max_uV > max_uV) {
 917                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 918                                 constraints->max_uV, max_uV);
 919                        constraints->max_uV = max_uV;
 920                }
 921        }
 922
 923        return 0;
 924}
 925
 926static int machine_constraints_current(struct regulator_dev *rdev,
 927        struct regulation_constraints *constraints)
 928{
 929        struct regulator_ops *ops = rdev->desc->ops;
 930        int ret;
 931
 932        if (!constraints->min_uA && !constraints->max_uA)
 933                return 0;
 934
 935        if (constraints->min_uA > constraints->max_uA) {
 936                rdev_err(rdev, "Invalid current constraints\n");
 937                return -EINVAL;
 938        }
 939
 940        if (!ops->set_current_limit || !ops->get_current_limit) {
 941                rdev_warn(rdev, "Operation of current configuration missing\n");
 942                return 0;
 943        }
 944
 945        /* Set regulator current in constraints range */
 946        ret = ops->set_current_limit(rdev, constraints->min_uA,
 947                        constraints->max_uA);
 948        if (ret < 0) {
 949                rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
 950                return ret;
 951        }
 952
 953        return 0;
 954}
 955
 956static int _regulator_do_enable(struct regulator_dev *rdev);
 957
 958/**
 959 * set_machine_constraints - sets regulator constraints
 960 * @rdev: regulator source
 961 * @constraints: constraints to apply
 962 *
 963 * Allows platform initialisation code to define and constrain
 964 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 965 * Constraints *must* be set by platform code in order for some
 966 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 967 * set_mode.
 968 */
 969static int set_machine_constraints(struct regulator_dev *rdev,
 970        const struct regulation_constraints *constraints)
 971{
 972        int ret = 0;
 973        struct regulator_ops *ops = rdev->desc->ops;
 974
 975        if (constraints)
 976                rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 977                                            GFP_KERNEL);
 978        else
 979                rdev->constraints = kzalloc(sizeof(*constraints),
 980                                            GFP_KERNEL);
 981        if (!rdev->constraints)
 982                return -ENOMEM;
 983
 984        ret = machine_constraints_voltage(rdev, rdev->constraints);
 985        if (ret != 0)
 986                goto out;
 987
 988        ret = machine_constraints_current(rdev, rdev->constraints);
 989        if (ret != 0)
 990                goto out;
 991
 992        /* do we need to setup our suspend state */
 993        if (rdev->constraints->initial_state) {
 994                ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 995                if (ret < 0) {
 996                        rdev_err(rdev, "failed to set suspend state\n");
 997                        goto out;
 998                }
 999        }
1000
1001        if (rdev->constraints->initial_mode) {
1002                if (!ops->set_mode) {
1003                        rdev_err(rdev, "no set_mode operation\n");
1004                        ret = -EINVAL;
1005                        goto out;
1006                }
1007
1008                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009                if (ret < 0) {
1010                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011                        goto out;
1012                }
1013        }
1014
1015        /* If the constraints say the regulator should be on at this point
1016         * and we have control then make sure it is enabled.
1017         */
1018        if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019                ret = _regulator_do_enable(rdev);
1020                if (ret < 0 && ret != -EINVAL) {
1021                        rdev_err(rdev, "failed to enable\n");
1022                        goto out;
1023                }
1024        }
1025
1026        if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027                && ops->set_ramp_delay) {
1028                ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029                if (ret < 0) {
1030                        rdev_err(rdev, "failed to set ramp_delay\n");
1031                        goto out;
1032                }
1033        }
1034
1035        print_constraints(rdev);
1036        return 0;
1037out:
1038        kfree(rdev->constraints);
1039        rdev->constraints = NULL;
1040        return ret;
1041}
1042
1043/**
1044 * set_supply - set regulator supply regulator
1045 * @rdev: regulator name
1046 * @supply_rdev: supply regulator name
1047 *
1048 * Called by platform initialisation code to set the supply regulator for this
1049 * regulator. This ensures that a regulators supply will also be enabled by the
1050 * core if it's child is enabled.
1051 */
1052static int set_supply(struct regulator_dev *rdev,
1053                      struct regulator_dev *supply_rdev)
1054{
1055        int err;
1056
1057        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058
1059        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060        if (rdev->supply == NULL) {
1061                err = -ENOMEM;
1062                return err;
1063        }
1064        supply_rdev->open_count++;
1065
1066        return 0;
1067}
1068
1069/**
1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071 * @rdev:         regulator source
1072 * @consumer_dev_name: dev_name() string for device supply applies to
1073 * @supply:       symbolic name for supply
1074 *
1075 * Allows platform initialisation code to map physical regulator
1076 * sources to symbolic names for supplies for use by devices.  Devices
1077 * should use these symbolic names to request regulators, avoiding the
1078 * need to provide board-specific regulator names as platform data.
1079 */
1080static int set_consumer_device_supply(struct regulator_dev *rdev,
1081                                      const char *consumer_dev_name,
1082                                      const char *supply)
1083{
1084        struct regulator_map *node;
1085        int has_dev;
1086
1087        if (supply == NULL)
1088                return -EINVAL;
1089
1090        if (consumer_dev_name != NULL)
1091                has_dev = 1;
1092        else
1093                has_dev = 0;
1094
1095        list_for_each_entry(node, &regulator_map_list, list) {
1096                if (node->dev_name && consumer_dev_name) {
1097                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098                                continue;
1099                } else if (node->dev_name || consumer_dev_name) {
1100                        continue;
1101                }
1102
1103                if (strcmp(node->supply, supply) != 0)
1104                        continue;
1105
1106                pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107                         consumer_dev_name,
1108                         dev_name(&node->regulator->dev),
1109                         node->regulator->desc->name,
1110                         supply,
1111                         dev_name(&rdev->dev), rdev_get_name(rdev));
1112                return -EBUSY;
1113        }
1114
1115        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116        if (node == NULL)
1117                return -ENOMEM;
1118
1119        node->regulator = rdev;
1120        node->supply = supply;
1121
1122        if (has_dev) {
1123                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124                if (node->dev_name == NULL) {
1125                        kfree(node);
1126                        return -ENOMEM;
1127                }
1128        }
1129
1130        list_add(&node->list, &regulator_map_list);
1131        return 0;
1132}
1133
1134static void unset_regulator_supplies(struct regulator_dev *rdev)
1135{
1136        struct regulator_map *node, *n;
1137
1138        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1139                if (rdev == node->regulator) {
1140                        list_del(&node->list);
1141                        kfree(node->dev_name);
1142                        kfree(node);
1143                }
1144        }
1145}
1146
1147#define REG_STR_SIZE    64
1148
1149static struct regulator *create_regulator(struct regulator_dev *rdev,
1150                                          struct device *dev,
1151                                          const char *supply_name)
1152{
1153        struct regulator *regulator;
1154        char buf[REG_STR_SIZE];
1155        int err, size;
1156
1157        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158        if (regulator == NULL)
1159                return NULL;
1160
1161        mutex_lock(&rdev->mutex);
1162        regulator->rdev = rdev;
1163        list_add(&regulator->list, &rdev->consumer_list);
1164
1165        if (dev) {
1166                regulator->dev = dev;
1167
1168                /* Add a link to the device sysfs entry */
1169                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170                                 dev->kobj.name, supply_name);
1171                if (size >= REG_STR_SIZE)
1172                        goto overflow_err;
1173
1174                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175                if (regulator->supply_name == NULL)
1176                        goto overflow_err;
1177
1178                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179                                        buf);
1180                if (err) {
1181                        rdev_warn(rdev, "could not add device link %s err %d\n",
1182                                  dev->kobj.name, err);
1183                        /* non-fatal */
1184                }
1185        } else {
1186                regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187                if (regulator->supply_name == NULL)
1188                        goto overflow_err;
1189        }
1190
1191        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192                                                rdev->debugfs);
1193        if (!regulator->debugfs) {
1194                rdev_warn(rdev, "Failed to create debugfs directory\n");
1195        } else {
1196                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197                                   &regulator->uA_load);
1198                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199                                   &regulator->min_uV);
1200                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201                                   &regulator->max_uV);
1202        }
1203
1204        /*
1205         * Check now if the regulator is an always on regulator - if
1206         * it is then we don't need to do nearly so much work for
1207         * enable/disable calls.
1208         */
1209        if (!_regulator_can_change_status(rdev) &&
1210            _regulator_is_enabled(rdev))
1211                regulator->always_on = true;
1212
1213        mutex_unlock(&rdev->mutex);
1214        return regulator;
1215overflow_err:
1216        list_del(&regulator->list);
1217        kfree(regulator);
1218        mutex_unlock(&rdev->mutex);
1219        return NULL;
1220}
1221
1222static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223{
1224        if (rdev->constraints && rdev->constraints->enable_time)
1225                return rdev->constraints->enable_time;
1226        if (!rdev->desc->ops->enable_time)
1227                return rdev->desc->enable_time;
1228        return rdev->desc->ops->enable_time(rdev);
1229}
1230
1231static struct regulator_supply_alias *regulator_find_supply_alias(
1232                struct device *dev, const char *supply)
1233{
1234        struct regulator_supply_alias *map;
1235
1236        list_for_each_entry(map, &regulator_supply_alias_list, list)
1237                if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238                        return map;
1239
1240        return NULL;
1241}
1242
1243static void regulator_supply_alias(struct device **dev, const char **supply)
1244{
1245        struct regulator_supply_alias *map;
1246
1247        map = regulator_find_supply_alias(*dev, *supply);
1248        if (map) {
1249                dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250                                *supply, map->alias_supply,
1251                                dev_name(map->alias_dev));
1252                *dev = map->alias_dev;
1253                *supply = map->alias_supply;
1254        }
1255}
1256
1257static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258                                                  const char *supply,
1259                                                  int *ret)
1260{
1261        struct regulator_dev *r;
1262        struct device_node *node;
1263        struct regulator_map *map;
1264        const char *devname = NULL;
1265
1266        regulator_supply_alias(&dev, &supply);
1267
1268        /* first do a dt based lookup */
1269        if (dev && dev->of_node) {
1270                node = of_get_regulator(dev, supply);
1271                if (node) {
1272                        list_for_each_entry(r, &regulator_list, list)
1273                                if (r->dev.parent &&
1274                                        node == r->dev.of_node)
1275                                        return r;
1276                        *ret = -EPROBE_DEFER;
1277                        return NULL;
1278                } else {
1279                        /*
1280                         * If we couldn't even get the node then it's
1281                         * not just that the device didn't register
1282                         * yet, there's no node and we'll never
1283                         * succeed.
1284                         */
1285                        *ret = -ENODEV;
1286                }
1287        }
1288
1289        /* if not found, try doing it non-dt way */
1290        if (dev)
1291                devname = dev_name(dev);
1292
1293        list_for_each_entry(r, &regulator_list, list)
1294                if (strcmp(rdev_get_name(r), supply) == 0)
1295                        return r;
1296
1297        list_for_each_entry(map, &regulator_map_list, list) {
1298                /* If the mapping has a device set up it must match */
1299                if (map->dev_name &&
1300                    (!devname || strcmp(map->dev_name, devname)))
1301                        continue;
1302
1303                if (strcmp(map->supply, supply) == 0)
1304                        return map->regulator;
1305        }
1306
1307
1308        return NULL;
1309}
1310
1311/* Internal regulator request function */
1312static struct regulator *_regulator_get(struct device *dev, const char *id,
1313                                        bool exclusive, bool allow_dummy)
1314{
1315        struct regulator_dev *rdev;
1316        struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317        const char *devname = NULL;
1318        int ret;
1319
1320        if (id == NULL) {
1321                pr_err("get() with no identifier\n");
1322                return ERR_PTR(-EINVAL);
1323        }
1324
1325        if (dev)
1326                devname = dev_name(dev);
1327
1328        if (have_full_constraints())
1329                ret = -ENODEV;
1330        else
1331                ret = -EPROBE_DEFER;
1332
1333        mutex_lock(&regulator_list_mutex);
1334
1335        rdev = regulator_dev_lookup(dev, id, &ret);
1336        if (rdev)
1337                goto found;
1338
1339        regulator = ERR_PTR(ret);
1340
1341        /*
1342         * If we have return value from dev_lookup fail, we do not expect to
1343         * succeed, so, quit with appropriate error value
1344         */
1345        if (ret && ret != -ENODEV)
1346                goto out;
1347
1348        if (!devname)
1349                devname = "deviceless";
1350
1351        /*
1352         * Assume that a regulator is physically present and enabled
1353         * even if it isn't hooked up and just provide a dummy.
1354         */
1355        if (have_full_constraints() && allow_dummy) {
1356                pr_warn("%s supply %s not found, using dummy regulator\n",
1357                        devname, id);
1358
1359                rdev = dummy_regulator_rdev;
1360                goto found;
1361        /* Don't log an error when called from regulator_get_optional() */
1362        } else if (!have_full_constraints() || exclusive) {
1363                dev_warn(dev, "dummy supplies not allowed\n");
1364        }
1365
1366        mutex_unlock(&regulator_list_mutex);
1367        return regulator;
1368
1369found:
1370        if (rdev->exclusive) {
1371                regulator = ERR_PTR(-EPERM);
1372                goto out;
1373        }
1374
1375        if (exclusive && rdev->open_count) {
1376                regulator = ERR_PTR(-EBUSY);
1377                goto out;
1378        }
1379
1380        if (!try_module_get(rdev->owner))
1381                goto out;
1382
1383        regulator = create_regulator(rdev, dev, id);
1384        if (regulator == NULL) {
1385                regulator = ERR_PTR(-ENOMEM);
1386                module_put(rdev->owner);
1387                goto out;
1388        }
1389
1390        rdev->open_count++;
1391        if (exclusive) {
1392                rdev->exclusive = 1;
1393
1394                ret = _regulator_is_enabled(rdev);
1395                if (ret > 0)
1396                        rdev->use_count = 1;
1397                else
1398                        rdev->use_count = 0;
1399        }
1400
1401out:
1402        mutex_unlock(&regulator_list_mutex);
1403
1404        return regulator;
1405}
1406
1407/**
1408 * regulator_get - lookup and obtain a reference to a regulator.
1409 * @dev: device for regulator "consumer"
1410 * @id: Supply name or regulator ID.
1411 *
1412 * Returns a struct regulator corresponding to the regulator producer,
1413 * or IS_ERR() condition containing errno.
1414 *
1415 * Use of supply names configured via regulator_set_device_supply() is
1416 * strongly encouraged.  It is recommended that the supply name used
1417 * should match the name used for the supply and/or the relevant
1418 * device pins in the datasheet.
1419 */
1420struct regulator *regulator_get(struct device *dev, const char *id)
1421{
1422        return _regulator_get(dev, id, false, true);
1423}
1424EXPORT_SYMBOL_GPL(regulator_get);
1425
1426/**
1427 * regulator_get_exclusive - obtain exclusive access to a regulator.
1428 * @dev: device for regulator "consumer"
1429 * @id: Supply name or regulator ID.
1430 *
1431 * Returns a struct regulator corresponding to the regulator producer,
1432 * or IS_ERR() condition containing errno.  Other consumers will be
1433 * unable to obtain this reference is held and the use count for the
1434 * regulator will be initialised to reflect the current state of the
1435 * regulator.
1436 *
1437 * This is intended for use by consumers which cannot tolerate shared
1438 * use of the regulator such as those which need to force the
1439 * regulator off for correct operation of the hardware they are
1440 * controlling.
1441 *
1442 * Use of supply names configured via regulator_set_device_supply() is
1443 * strongly encouraged.  It is recommended that the supply name used
1444 * should match the name used for the supply and/or the relevant
1445 * device pins in the datasheet.
1446 */
1447struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448{
1449        return _regulator_get(dev, id, true, false);
1450}
1451EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452
1453/**
1454 * regulator_get_optional - obtain optional access to a regulator.
1455 * @dev: device for regulator "consumer"
1456 * @id: Supply name or regulator ID.
1457 *
1458 * Returns a struct regulator corresponding to the regulator producer,
1459 * or IS_ERR() condition containing errno.  Other consumers will be
1460 * unable to obtain this reference is held and the use count for the
1461 * regulator will be initialised to reflect the current state of the
1462 * regulator.
1463 *
1464 * This is intended for use by consumers for devices which can have
1465 * some supplies unconnected in normal use, such as some MMC devices.
1466 * It can allow the regulator core to provide stub supplies for other
1467 * supplies requested using normal regulator_get() calls without
1468 * disrupting the operation of drivers that can handle absent
1469 * supplies.
1470 *
1471 * Use of supply names configured via regulator_set_device_supply() is
1472 * strongly encouraged.  It is recommended that the supply name used
1473 * should match the name used for the supply and/or the relevant
1474 * device pins in the datasheet.
1475 */
1476struct regulator *regulator_get_optional(struct device *dev, const char *id)
1477{
1478        return _regulator_get(dev, id, false, false);
1479}
1480EXPORT_SYMBOL_GPL(regulator_get_optional);
1481
1482/* Locks held by regulator_put() */
1483static void _regulator_put(struct regulator *regulator)
1484{
1485        struct regulator_dev *rdev;
1486
1487        if (regulator == NULL || IS_ERR(regulator))
1488                return;
1489
1490        rdev = regulator->rdev;
1491
1492        debugfs_remove_recursive(regulator->debugfs);
1493
1494        /* remove any sysfs entries */
1495        if (regulator->dev)
1496                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1497        kfree(regulator->supply_name);
1498        list_del(&regulator->list);
1499        kfree(regulator);
1500
1501        rdev->open_count--;
1502        rdev->exclusive = 0;
1503
1504        module_put(rdev->owner);
1505}
1506
1507/**
1508 * regulator_put - "free" the regulator source
1509 * @regulator: regulator source
1510 *
1511 * Note: drivers must ensure that all regulator_enable calls made on this
1512 * regulator source are balanced by regulator_disable calls prior to calling
1513 * this function.
1514 */
1515void regulator_put(struct regulator *regulator)
1516{
1517        mutex_lock(&regulator_list_mutex);
1518        _regulator_put(regulator);
1519        mutex_unlock(&regulator_list_mutex);
1520}
1521EXPORT_SYMBOL_GPL(regulator_put);
1522
1523/**
1524 * regulator_register_supply_alias - Provide device alias for supply lookup
1525 *
1526 * @dev: device that will be given as the regulator "consumer"
1527 * @id: Supply name or regulator ID
1528 * @alias_dev: device that should be used to lookup the supply
1529 * @alias_id: Supply name or regulator ID that should be used to lookup the
1530 * supply
1531 *
1532 * All lookups for id on dev will instead be conducted for alias_id on
1533 * alias_dev.
1534 */
1535int regulator_register_supply_alias(struct device *dev, const char *id,
1536                                    struct device *alias_dev,
1537                                    const char *alias_id)
1538{
1539        struct regulator_supply_alias *map;
1540
1541        map = regulator_find_supply_alias(dev, id);
1542        if (map)
1543                return -EEXIST;
1544
1545        map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546        if (!map)
1547                return -ENOMEM;
1548
1549        map->src_dev = dev;
1550        map->src_supply = id;
1551        map->alias_dev = alias_dev;
1552        map->alias_supply = alias_id;
1553
1554        list_add(&map->list, &regulator_supply_alias_list);
1555
1556        pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557                id, dev_name(dev), alias_id, dev_name(alias_dev));
1558
1559        return 0;
1560}
1561EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1562
1563/**
1564 * regulator_unregister_supply_alias - Remove device alias
1565 *
1566 * @dev: device that will be given as the regulator "consumer"
1567 * @id: Supply name or regulator ID
1568 *
1569 * Remove a lookup alias if one exists for id on dev.
1570 */
1571void regulator_unregister_supply_alias(struct device *dev, const char *id)
1572{
1573        struct regulator_supply_alias *map;
1574
1575        map = regulator_find_supply_alias(dev, id);
1576        if (map) {
1577                list_del(&map->list);
1578                kfree(map);
1579        }
1580}
1581EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1582
1583/**
1584 * regulator_bulk_register_supply_alias - register multiple aliases
1585 *
1586 * @dev: device that will be given as the regulator "consumer"
1587 * @id: List of supply names or regulator IDs
1588 * @alias_dev: device that should be used to lookup the supply
1589 * @alias_id: List of supply names or regulator IDs that should be used to
1590 * lookup the supply
1591 * @num_id: Number of aliases to register
1592 *
1593 * @return 0 on success, an errno on failure.
1594 *
1595 * This helper function allows drivers to register several supply
1596 * aliases in one operation.  If any of the aliases cannot be
1597 * registered any aliases that were registered will be removed
1598 * before returning to the caller.
1599 */
1600int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1601                                         struct device *alias_dev,
1602                                         const char **alias_id,
1603                                         int num_id)
1604{
1605        int i;
1606        int ret;
1607
1608        for (i = 0; i < num_id; ++i) {
1609                ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610                                                      alias_id[i]);
1611                if (ret < 0)
1612                        goto err;
1613        }
1614
1615        return 0;
1616
1617err:
1618        dev_err(dev,
1619                "Failed to create supply alias %s,%s -> %s,%s\n",
1620                id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1621
1622        while (--i >= 0)
1623                regulator_unregister_supply_alias(dev, id[i]);
1624
1625        return ret;
1626}
1627EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1628
1629/**
1630 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631 *
1632 * @dev: device that will be given as the regulator "consumer"
1633 * @id: List of supply names or regulator IDs
1634 * @num_id: Number of aliases to unregister
1635 *
1636 * This helper function allows drivers to unregister several supply
1637 * aliases in one operation.
1638 */
1639void regulator_bulk_unregister_supply_alias(struct device *dev,
1640                                            const char **id,
1641                                            int num_id)
1642{
1643        int i;
1644
1645        for (i = 0; i < num_id; ++i)
1646                regulator_unregister_supply_alias(dev, id[i]);
1647}
1648EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1649
1650
1651/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653                                const struct regulator_config *config)
1654{
1655        struct regulator_enable_gpio *pin;
1656        int ret;
1657
1658        list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1659                if (pin->gpio == config->ena_gpio) {
1660                        rdev_dbg(rdev, "GPIO %d is already used\n",
1661                                config->ena_gpio);
1662                        goto update_ena_gpio_to_rdev;
1663                }
1664        }
1665
1666        ret = gpio_request_one(config->ena_gpio,
1667                                GPIOF_DIR_OUT | config->ena_gpio_flags,
1668                                rdev_get_name(rdev));
1669        if (ret)
1670                return ret;
1671
1672        pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673        if (pin == NULL) {
1674                gpio_free(config->ena_gpio);
1675                return -ENOMEM;
1676        }
1677
1678        pin->gpio = config->ena_gpio;
1679        pin->ena_gpio_invert = config->ena_gpio_invert;
1680        list_add(&pin->list, &regulator_ena_gpio_list);
1681
1682update_ena_gpio_to_rdev:
1683        pin->request_count++;
1684        rdev->ena_pin = pin;
1685        return 0;
1686}
1687
1688static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1689{
1690        struct regulator_enable_gpio *pin, *n;
1691
1692        if (!rdev->ena_pin)
1693                return;
1694
1695        /* Free the GPIO only in case of no use */
1696        list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1697                if (pin->gpio == rdev->ena_pin->gpio) {
1698                        if (pin->request_count <= 1) {
1699                                pin->request_count = 0;
1700                                gpio_free(pin->gpio);
1701                                list_del(&pin->list);
1702                                kfree(pin);
1703                        } else {
1704                                pin->request_count--;
1705                        }
1706                }
1707        }
1708}
1709
1710/**
1711 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712 * @rdev: regulator_dev structure
1713 * @enable: enable GPIO at initial use?
1714 *
1715 * GPIO is enabled in case of initial use. (enable_count is 0)
1716 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717 */
1718static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1719{
1720        struct regulator_enable_gpio *pin = rdev->ena_pin;
1721
1722        if (!pin)
1723                return -EINVAL;
1724
1725        if (enable) {
1726                /* Enable GPIO at initial use */
1727                if (pin->enable_count == 0)
1728                        gpio_set_value_cansleep(pin->gpio,
1729                                                !pin->ena_gpio_invert);
1730
1731                pin->enable_count++;
1732        } else {
1733                if (pin->enable_count > 1) {
1734                        pin->enable_count--;
1735                        return 0;
1736                }
1737
1738                /* Disable GPIO if not used */
1739                if (pin->enable_count <= 1) {
1740                        gpio_set_value_cansleep(pin->gpio,
1741                                                pin->ena_gpio_invert);
1742                        pin->enable_count = 0;
1743                }
1744        }
1745
1746        return 0;
1747}
1748
1749static int _regulator_do_enable(struct regulator_dev *rdev)
1750{
1751        int ret, delay;
1752
1753        /* Query before enabling in case configuration dependent.  */
1754        ret = _regulator_get_enable_time(rdev);
1755        if (ret >= 0) {
1756                delay = ret;
1757        } else {
1758                rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759                delay = 0;
1760        }
1761
1762        trace_regulator_enable(rdev_get_name(rdev));
1763
1764        if (rdev->ena_pin) {
1765                ret = regulator_ena_gpio_ctrl(rdev, true);
1766                if (ret < 0)
1767                        return ret;
1768                rdev->ena_gpio_state = 1;
1769        } else if (rdev->desc->ops->enable) {
1770                ret = rdev->desc->ops->enable(rdev);
1771                if (ret < 0)
1772                        return ret;
1773        } else {
1774                return -EINVAL;
1775        }
1776
1777        /* Allow the regulator to ramp; it would be useful to extend
1778         * this for bulk operations so that the regulators can ramp
1779         * together.  */
1780        trace_regulator_enable_delay(rdev_get_name(rdev));
1781
1782        /*
1783         * Delay for the requested amount of time as per the guidelines in:
1784         *
1785         *     Documentation/timers/timers-howto.txt
1786         *
1787         * The assumption here is that regulators will never be enabled in
1788         * atomic context and therefore sleeping functions can be used.
1789         */
1790        if (delay) {
1791                unsigned int ms = delay / 1000;
1792                unsigned int us = delay % 1000;
1793
1794                if (ms > 0) {
1795                        /*
1796                         * For small enough values, handle super-millisecond
1797                         * delays in the usleep_range() call below.
1798                         */
1799                        if (ms < 20)
1800                                us += ms * 1000;
1801                        else
1802                                msleep(ms);
1803                }
1804
1805                /*
1806                 * Give the scheduler some room to coalesce with any other
1807                 * wakeup sources. For delays shorter than 10 us, don't even
1808                 * bother setting up high-resolution timers and just busy-
1809                 * loop.
1810                 */
1811                if (us >= 10)
1812                        usleep_range(us, us + 100);
1813                else
1814                        udelay(us);
1815        }
1816
1817        trace_regulator_enable_complete(rdev_get_name(rdev));
1818
1819        return 0;
1820}
1821
1822/* locks held by regulator_enable() */
1823static int _regulator_enable(struct regulator_dev *rdev)
1824{
1825        int ret;
1826
1827        /* check voltage and requested load before enabling */
1828        if (rdev->constraints &&
1829            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830                drms_uA_update(rdev);
1831
1832        if (rdev->use_count == 0) {
1833                /* The regulator may on if it's not switchable or left on */
1834                ret = _regulator_is_enabled(rdev);
1835                if (ret == -EINVAL || ret == 0) {
1836                        if (!_regulator_can_change_status(rdev))
1837                                return -EPERM;
1838
1839                        ret = _regulator_do_enable(rdev);
1840                        if (ret < 0)
1841                                return ret;
1842
1843                } else if (ret < 0) {
1844                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845                        return ret;
1846                }
1847                /* Fallthrough on positive return values - already enabled */
1848        }
1849
1850        rdev->use_count++;
1851
1852        return 0;
1853}
1854
1855/**
1856 * regulator_enable - enable regulator output
1857 * @regulator: regulator source
1858 *
1859 * Request that the regulator be enabled with the regulator output at
1860 * the predefined voltage or current value.  Calls to regulator_enable()
1861 * must be balanced with calls to regulator_disable().
1862 *
1863 * NOTE: the output value can be set by other drivers, boot loader or may be
1864 * hardwired in the regulator.
1865 */
1866int regulator_enable(struct regulator *regulator)
1867{
1868        struct regulator_dev *rdev = regulator->rdev;
1869        int ret = 0;
1870
1871        if (regulator->always_on)
1872                return 0;
1873
1874        if (rdev->supply) {
1875                ret = regulator_enable(rdev->supply);
1876                if (ret != 0)
1877                        return ret;
1878        }
1879
1880        mutex_lock(&rdev->mutex);
1881        ret = _regulator_enable(rdev);
1882        mutex_unlock(&rdev->mutex);
1883
1884        if (ret != 0 && rdev->supply)
1885                regulator_disable(rdev->supply);
1886
1887        return ret;
1888}
1889EXPORT_SYMBOL_GPL(regulator_enable);
1890
1891static int _regulator_do_disable(struct regulator_dev *rdev)
1892{
1893        int ret;
1894
1895        trace_regulator_disable(rdev_get_name(rdev));
1896
1897        if (rdev->ena_pin) {
1898                ret = regulator_ena_gpio_ctrl(rdev, false);
1899                if (ret < 0)
1900                        return ret;
1901                rdev->ena_gpio_state = 0;
1902
1903        } else if (rdev->desc->ops->disable) {
1904                ret = rdev->desc->ops->disable(rdev);
1905                if (ret != 0)
1906                        return ret;
1907        }
1908
1909        trace_regulator_disable_complete(rdev_get_name(rdev));
1910
1911        return 0;
1912}
1913
1914/* locks held by regulator_disable() */
1915static int _regulator_disable(struct regulator_dev *rdev)
1916{
1917        int ret = 0;
1918
1919        if (WARN(rdev->use_count <= 0,
1920                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921                return -EIO;
1922
1923        /* are we the last user and permitted to disable ? */
1924        if (rdev->use_count == 1 &&
1925            (rdev->constraints && !rdev->constraints->always_on)) {
1926
1927                /* we are last user */
1928                if (_regulator_can_change_status(rdev)) {
1929                        ret = _regulator_do_disable(rdev);
1930                        if (ret < 0) {
1931                                rdev_err(rdev, "failed to disable\n");
1932                                return ret;
1933                        }
1934                        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935                                        NULL);
1936                }
1937
1938                rdev->use_count = 0;
1939        } else if (rdev->use_count > 1) {
1940
1941                if (rdev->constraints &&
1942                        (rdev->constraints->valid_ops_mask &
1943                        REGULATOR_CHANGE_DRMS))
1944                        drms_uA_update(rdev);
1945
1946                rdev->use_count--;
1947        }
1948
1949        return ret;
1950}
1951
1952/**
1953 * regulator_disable - disable regulator output
1954 * @regulator: regulator source
1955 *
1956 * Disable the regulator output voltage or current.  Calls to
1957 * regulator_enable() must be balanced with calls to
1958 * regulator_disable().
1959 *
1960 * NOTE: this will only disable the regulator output if no other consumer
1961 * devices have it enabled, the regulator device supports disabling and
1962 * machine constraints permit this operation.
1963 */
1964int regulator_disable(struct regulator *regulator)
1965{
1966        struct regulator_dev *rdev = regulator->rdev;
1967        int ret = 0;
1968
1969        if (regulator->always_on)
1970                return 0;
1971
1972        mutex_lock(&rdev->mutex);
1973        ret = _regulator_disable(rdev);
1974        mutex_unlock(&rdev->mutex);
1975
1976        if (ret == 0 && rdev->supply)
1977                regulator_disable(rdev->supply);
1978
1979        return ret;
1980}
1981EXPORT_SYMBOL_GPL(regulator_disable);
1982
1983/* locks held by regulator_force_disable() */
1984static int _regulator_force_disable(struct regulator_dev *rdev)
1985{
1986        int ret = 0;
1987
1988        ret = _regulator_do_disable(rdev);
1989        if (ret < 0) {
1990                rdev_err(rdev, "failed to force disable\n");
1991                return ret;
1992        }
1993
1994        _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995                        REGULATOR_EVENT_DISABLE, NULL);
1996
1997        return 0;
1998}
1999
2000/**
2001 * regulator_force_disable - force disable regulator output
2002 * @regulator: regulator source
2003 *
2004 * Forcibly disable the regulator output voltage or current.
2005 * NOTE: this *will* disable the regulator output even if other consumer
2006 * devices have it enabled. This should be used for situations when device
2007 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2008 */
2009int regulator_force_disable(struct regulator *regulator)
2010{
2011        struct regulator_dev *rdev = regulator->rdev;
2012        int ret;
2013
2014        mutex_lock(&rdev->mutex);
2015        regulator->uA_load = 0;
2016        ret = _regulator_force_disable(regulator->rdev);
2017        mutex_unlock(&rdev->mutex);
2018
2019        if (rdev->supply)
2020                while (rdev->open_count--)
2021                        regulator_disable(rdev->supply);
2022
2023        return ret;
2024}
2025EXPORT_SYMBOL_GPL(regulator_force_disable);
2026
2027static void regulator_disable_work(struct work_struct *work)
2028{
2029        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030                                                  disable_work.work);
2031        int count, i, ret;
2032
2033        mutex_lock(&rdev->mutex);
2034
2035        BUG_ON(!rdev->deferred_disables);
2036
2037        count = rdev->deferred_disables;
2038        rdev->deferred_disables = 0;
2039
2040        for (i = 0; i < count; i++) {
2041                ret = _regulator_disable(rdev);
2042                if (ret != 0)
2043                        rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2044        }
2045
2046        mutex_unlock(&rdev->mutex);
2047
2048        if (rdev->supply) {
2049                for (i = 0; i < count; i++) {
2050                        ret = regulator_disable(rdev->supply);
2051                        if (ret != 0) {
2052                                rdev_err(rdev,
2053                                         "Supply disable failed: %d\n", ret);
2054                        }
2055                }
2056        }
2057}
2058
2059/**
2060 * regulator_disable_deferred - disable regulator output with delay
2061 * @regulator: regulator source
2062 * @ms: miliseconds until the regulator is disabled
2063 *
2064 * Execute regulator_disable() on the regulator after a delay.  This
2065 * is intended for use with devices that require some time to quiesce.
2066 *
2067 * NOTE: this will only disable the regulator output if no other consumer
2068 * devices have it enabled, the regulator device supports disabling and
2069 * machine constraints permit this operation.
2070 */
2071int regulator_disable_deferred(struct regulator *regulator, int ms)
2072{
2073        struct regulator_dev *rdev = regulator->rdev;
2074        int ret;
2075
2076        if (regulator->always_on)
2077                return 0;
2078
2079        if (!ms)
2080                return regulator_disable(regulator);
2081
2082        mutex_lock(&rdev->mutex);
2083        rdev->deferred_disables++;
2084        mutex_unlock(&rdev->mutex);
2085
2086        ret = queue_delayed_work(system_power_efficient_wq,
2087                                 &rdev->disable_work,
2088                                 msecs_to_jiffies(ms));
2089        if (ret < 0)
2090                return ret;
2091        else
2092                return 0;
2093}
2094EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2095
2096static int _regulator_is_enabled(struct regulator_dev *rdev)
2097{
2098        /* A GPIO control always takes precedence */
2099        if (rdev->ena_pin)
2100                return rdev->ena_gpio_state;
2101
2102        /* If we don't know then assume that the regulator is always on */
2103        if (!rdev->desc->ops->is_enabled)
2104                return 1;
2105
2106        return rdev->desc->ops->is_enabled(rdev);
2107}
2108
2109/**
2110 * regulator_is_enabled - is the regulator output enabled
2111 * @regulator: regulator source
2112 *
2113 * Returns positive if the regulator driver backing the source/client
2114 * has requested that the device be enabled, zero if it hasn't, else a
2115 * negative errno code.
2116 *
2117 * Note that the device backing this regulator handle can have multiple
2118 * users, so it might be enabled even if regulator_enable() was never
2119 * called for this particular source.
2120 */
2121int regulator_is_enabled(struct regulator *regulator)
2122{
2123        int ret;
2124
2125        if (regulator->always_on)
2126                return 1;
2127
2128        mutex_lock(&regulator->rdev->mutex);
2129        ret = _regulator_is_enabled(regulator->rdev);
2130        mutex_unlock(&regulator->rdev->mutex);
2131
2132        return ret;
2133}
2134EXPORT_SYMBOL_GPL(regulator_is_enabled);
2135
2136/**
2137 * regulator_can_change_voltage - check if regulator can change voltage
2138 * @regulator: regulator source
2139 *
2140 * Returns positive if the regulator driver backing the source/client
2141 * can change its voltage, false otherwise. Useful for detecting fixed
2142 * or dummy regulators and disabling voltage change logic in the client
2143 * driver.
2144 */
2145int regulator_can_change_voltage(struct regulator *regulator)
2146{
2147        struct regulator_dev    *rdev = regulator->rdev;
2148
2149        if (rdev->constraints &&
2150            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151                if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152                        return 1;
2153
2154                if (rdev->desc->continuous_voltage_range &&
2155                    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156                    rdev->constraints->min_uV != rdev->constraints->max_uV)
2157                        return 1;
2158        }
2159
2160        return 0;
2161}
2162EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2163
2164/**
2165 * regulator_count_voltages - count regulator_list_voltage() selectors
2166 * @regulator: regulator source
2167 *
2168 * Returns number of selectors, or negative errno.  Selectors are
2169 * numbered starting at zero, and typically correspond to bitfields
2170 * in hardware registers.
2171 */
2172int regulator_count_voltages(struct regulator *regulator)
2173{
2174        struct regulator_dev    *rdev = regulator->rdev;
2175
2176        return rdev->desc->n_voltages ? : -EINVAL;
2177}
2178EXPORT_SYMBOL_GPL(regulator_count_voltages);
2179
2180/**
2181 * regulator_list_voltage - enumerate supported voltages
2182 * @regulator: regulator source
2183 * @selector: identify voltage to list
2184 * Context: can sleep
2185 *
2186 * Returns a voltage that can be passed to @regulator_set_voltage(),
2187 * zero if this selector code can't be used on this system, or a
2188 * negative errno.
2189 */
2190int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2191{
2192        struct regulator_dev    *rdev = regulator->rdev;
2193        struct regulator_ops    *ops = rdev->desc->ops;
2194        int                     ret;
2195
2196        if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197                return rdev->desc->fixed_uV;
2198
2199        if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200                return -EINVAL;
2201
2202        mutex_lock(&rdev->mutex);
2203        ret = ops->list_voltage(rdev, selector);
2204        mutex_unlock(&rdev->mutex);
2205
2206        if (ret > 0) {
2207                if (ret < rdev->constraints->min_uV)
2208                        ret = 0;
2209                else if (ret > rdev->constraints->max_uV)
2210                        ret = 0;
2211        }
2212
2213        return ret;
2214}
2215EXPORT_SYMBOL_GPL(regulator_list_voltage);
2216
2217/**
2218 * regulator_get_linear_step - return the voltage step size between VSEL values
2219 * @regulator: regulator source
2220 *
2221 * Returns the voltage step size between VSEL values for linear
2222 * regulators, or return 0 if the regulator isn't a linear regulator.
2223 */
2224unsigned int regulator_get_linear_step(struct regulator *regulator)
2225{
2226        struct regulator_dev *rdev = regulator->rdev;
2227
2228        return rdev->desc->uV_step;
2229}
2230EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2231
2232/**
2233 * regulator_is_supported_voltage - check if a voltage range can be supported
2234 *
2235 * @regulator: Regulator to check.
2236 * @min_uV: Minimum required voltage in uV.
2237 * @max_uV: Maximum required voltage in uV.
2238 *
2239 * Returns a boolean or a negative error code.
2240 */
2241int regulator_is_supported_voltage(struct regulator *regulator,
2242                                   int min_uV, int max_uV)
2243{
2244        struct regulator_dev *rdev = regulator->rdev;
2245        int i, voltages, ret;
2246
2247        /* If we can't change voltage check the current voltage */
2248        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249                ret = regulator_get_voltage(regulator);
2250                if (ret >= 0)
2251                        return min_uV <= ret && ret <= max_uV;
2252                else
2253                        return ret;
2254        }
2255
2256        /* Any voltage within constrains range is fine? */
2257        if (rdev->desc->continuous_voltage_range)
2258                return min_uV >= rdev->constraints->min_uV &&
2259                                max_uV <= rdev->constraints->max_uV;
2260
2261        ret = regulator_count_voltages(regulator);
2262        if (ret < 0)
2263                return ret;
2264        voltages = ret;
2265
2266        for (i = 0; i < voltages; i++) {
2267                ret = regulator_list_voltage(regulator, i);
2268
2269                if (ret >= min_uV && ret <= max_uV)
2270                        return 1;
2271        }
2272
2273        return 0;
2274}
2275EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2276
2277static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278                                     int min_uV, int max_uV)
2279{
2280        int ret;
2281        int delay = 0;
2282        int best_val = 0;
2283        unsigned int selector;
2284        int old_selector = -1;
2285
2286        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2287
2288        min_uV += rdev->constraints->uV_offset;
2289        max_uV += rdev->constraints->uV_offset;
2290
2291        /*
2292         * If we can't obtain the old selector there is not enough
2293         * info to call set_voltage_time_sel().
2294         */
2295        if (_regulator_is_enabled(rdev) &&
2296            rdev->desc->ops->set_voltage_time_sel &&
2297            rdev->desc->ops->get_voltage_sel) {
2298                old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299                if (old_selector < 0)
2300                        return old_selector;
2301        }
2302
2303        if (rdev->desc->ops->set_voltage) {
2304                ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305                                                   &selector);
2306
2307                if (ret >= 0) {
2308                        if (rdev->desc->ops->list_voltage)
2309                                best_val = rdev->desc->ops->list_voltage(rdev,
2310                                                                         selector);
2311                        else
2312                                best_val = _regulator_get_voltage(rdev);
2313                }
2314
2315        } else if (rdev->desc->ops->set_voltage_sel) {
2316                if (rdev->desc->ops->map_voltage) {
2317                        ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318                                                           max_uV);
2319                } else {
2320                        if (rdev->desc->ops->list_voltage ==
2321                            regulator_list_voltage_linear)
2322                                ret = regulator_map_voltage_linear(rdev,
2323                                                                min_uV, max_uV);
2324                        else
2325                                ret = regulator_map_voltage_iterate(rdev,
2326                                                                min_uV, max_uV);
2327                }
2328
2329                if (ret >= 0) {
2330                        best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331                        if (min_uV <= best_val && max_uV >= best_val) {
2332                                selector = ret;
2333                                if (old_selector == selector)
2334                                        ret = 0;
2335                                else
2336                                        ret = rdev->desc->ops->set_voltage_sel(
2337                                                                rdev, ret);
2338                        } else {
2339                                ret = -EINVAL;
2340                        }
2341                }
2342        } else {
2343                ret = -EINVAL;
2344        }
2345
2346        /* Call set_voltage_time_sel if successfully obtained old_selector */
2347        if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348                && old_selector != selector) {
2349
2350                delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2351                                                old_selector, selector);
2352                if (delay < 0) {
2353                        rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354                                  delay);
2355                        delay = 0;
2356                }
2357
2358                /* Insert any necessary delays */
2359                if (delay >= 1000) {
2360                        mdelay(delay / 1000);
2361                        udelay(delay % 1000);
2362                } else if (delay) {
2363                        udelay(delay);
2364                }
2365        }
2366
2367        if (ret == 0 && best_val >= 0) {
2368                unsigned long data = best_val;
2369
2370                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371                                     (void *)data);
2372        }
2373
2374        trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2375
2376        return ret;
2377}
2378
2379/**
2380 * regulator_set_voltage - set regulator output voltage
2381 * @regulator: regulator source
2382 * @min_uV: Minimum required voltage in uV
2383 * @max_uV: Maximum acceptable voltage in uV
2384 *
2385 * Sets a voltage regulator to the desired output voltage. This can be set
2386 * during any regulator state. IOW, regulator can be disabled or enabled.
2387 *
2388 * If the regulator is enabled then the voltage will change to the new value
2389 * immediately otherwise if the regulator is disabled the regulator will
2390 * output at the new voltage when enabled.
2391 *
2392 * NOTE: If the regulator is shared between several devices then the lowest
2393 * request voltage that meets the system constraints will be used.
2394 * Regulator system constraints must be set for this regulator before
2395 * calling this function otherwise this call will fail.
2396 */
2397int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2398{
2399        struct regulator_dev *rdev = regulator->rdev;
2400        int ret = 0;
2401        int old_min_uV, old_max_uV;
2402        int current_uV;
2403
2404        mutex_lock(&rdev->mutex);
2405
2406        /* If we're setting the same range as last time the change
2407         * should be a noop (some cpufreq implementations use the same
2408         * voltage for multiple frequencies, for example).
2409         */
2410        if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2411                goto out;
2412
2413        /* If we're trying to set a range that overlaps the current voltage,
2414         * return succesfully even though the regulator does not support
2415         * changing the voltage.
2416         */
2417        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2418                current_uV = _regulator_get_voltage(rdev);
2419                if (min_uV <= current_uV && current_uV <= max_uV) {
2420                        regulator->min_uV = min_uV;
2421                        regulator->max_uV = max_uV;
2422                        goto out;
2423                }
2424        }
2425
2426        /* sanity check */
2427        if (!rdev->desc->ops->set_voltage &&
2428            !rdev->desc->ops->set_voltage_sel) {
2429                ret = -EINVAL;
2430                goto out;
2431        }
2432
2433        /* constraints check */
2434        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2435        if (ret < 0)
2436                goto out;
2437
2438        /* restore original values in case of error */
2439        old_min_uV = regulator->min_uV;
2440        old_max_uV = regulator->max_uV;
2441        regulator->min_uV = min_uV;
2442        regulator->max_uV = max_uV;
2443
2444        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2445        if (ret < 0)
2446                goto out2;
2447
2448        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2449        if (ret < 0)
2450                goto out2;
2451
2452out:
2453        mutex_unlock(&rdev->mutex);
2454        return ret;
2455out2:
2456        regulator->min_uV = old_min_uV;
2457        regulator->max_uV = old_max_uV;
2458        mutex_unlock(&rdev->mutex);
2459        return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_set_voltage);
2462
2463/**
2464 * regulator_set_voltage_time - get raise/fall time
2465 * @regulator: regulator source
2466 * @old_uV: starting voltage in microvolts
2467 * @new_uV: target voltage in microvolts
2468 *
2469 * Provided with the starting and ending voltage, this function attempts to
2470 * calculate the time in microseconds required to rise or fall to this new
2471 * voltage.
2472 */
2473int regulator_set_voltage_time(struct regulator *regulator,
2474                               int old_uV, int new_uV)
2475{
2476        struct regulator_dev    *rdev = regulator->rdev;
2477        struct regulator_ops    *ops = rdev->desc->ops;
2478        int old_sel = -1;
2479        int new_sel = -1;
2480        int voltage;
2481        int i;
2482
2483        /* Currently requires operations to do this */
2484        if (!ops->list_voltage || !ops->set_voltage_time_sel
2485            || !rdev->desc->n_voltages)
2486                return -EINVAL;
2487
2488        for (i = 0; i < rdev->desc->n_voltages; i++) {
2489                /* We only look for exact voltage matches here */
2490                voltage = regulator_list_voltage(regulator, i);
2491                if (voltage < 0)
2492                        return -EINVAL;
2493                if (voltage == 0)
2494                        continue;
2495                if (voltage == old_uV)
2496                        old_sel = i;
2497                if (voltage == new_uV)
2498                        new_sel = i;
2499        }
2500
2501        if (old_sel < 0 || new_sel < 0)
2502                return -EINVAL;
2503
2504        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2505}
2506EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2507
2508/**
2509 * regulator_set_voltage_time_sel - get raise/fall time
2510 * @rdev: regulator source device
2511 * @old_selector: selector for starting voltage
2512 * @new_selector: selector for target voltage
2513 *
2514 * Provided with the starting and target voltage selectors, this function
2515 * returns time in microseconds required to rise or fall to this new voltage
2516 *
2517 * Drivers providing ramp_delay in regulation_constraints can use this as their
2518 * set_voltage_time_sel() operation.
2519 */
2520int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2521                                   unsigned int old_selector,
2522                                   unsigned int new_selector)
2523{
2524        unsigned int ramp_delay = 0;
2525        int old_volt, new_volt;
2526
2527        if (rdev->constraints->ramp_delay)
2528                ramp_delay = rdev->constraints->ramp_delay;
2529        else if (rdev->desc->ramp_delay)
2530                ramp_delay = rdev->desc->ramp_delay;
2531
2532        if (ramp_delay == 0) {
2533                rdev_warn(rdev, "ramp_delay not set\n");
2534                return 0;
2535        }
2536
2537        /* sanity check */
2538        if (!rdev->desc->ops->list_voltage)
2539                return -EINVAL;
2540
2541        old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2542        new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2543
2544        return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2545}
2546EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2547
2548/**
2549 * regulator_sync_voltage - re-apply last regulator output voltage
2550 * @regulator: regulator source
2551 *
2552 * Re-apply the last configured voltage.  This is intended to be used
2553 * where some external control source the consumer is cooperating with
2554 * has caused the configured voltage to change.
2555 */
2556int regulator_sync_voltage(struct regulator *regulator)
2557{
2558        struct regulator_dev *rdev = regulator->rdev;
2559        int ret, min_uV, max_uV;
2560
2561        mutex_lock(&rdev->mutex);
2562
2563        if (!rdev->desc->ops->set_voltage &&
2564            !rdev->desc->ops->set_voltage_sel) {
2565                ret = -EINVAL;
2566                goto out;
2567        }
2568
2569        /* This is only going to work if we've had a voltage configured. */
2570        if (!regulator->min_uV && !regulator->max_uV) {
2571                ret = -EINVAL;
2572                goto out;
2573        }
2574
2575        min_uV = regulator->min_uV;
2576        max_uV = regulator->max_uV;
2577
2578        /* This should be a paranoia check... */
2579        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2580        if (ret < 0)
2581                goto out;
2582
2583        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2584        if (ret < 0)
2585                goto out;
2586
2587        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2588
2589out:
2590        mutex_unlock(&rdev->mutex);
2591        return ret;
2592}
2593EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2594
2595static int _regulator_get_voltage(struct regulator_dev *rdev)
2596{
2597        int sel, ret;
2598
2599        if (rdev->desc->ops->get_voltage_sel) {
2600                sel = rdev->desc->ops->get_voltage_sel(rdev);
2601                if (sel < 0)
2602                        return sel;
2603                ret = rdev->desc->ops->list_voltage(rdev, sel);
2604        } else if (rdev->desc->ops->get_voltage) {
2605                ret = rdev->desc->ops->get_voltage(rdev);
2606        } else if (rdev->desc->ops->list_voltage) {
2607                ret = rdev->desc->ops->list_voltage(rdev, 0);
2608        } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2609                ret = rdev->desc->fixed_uV;
2610        } else {
2611                return -EINVAL;
2612        }
2613
2614        if (ret < 0)
2615                return ret;
2616        return ret - rdev->constraints->uV_offset;
2617}
2618
2619/**
2620 * regulator_get_voltage - get regulator output voltage
2621 * @regulator: regulator source
2622 *
2623 * This returns the current regulator voltage in uV.
2624 *
2625 * NOTE: If the regulator is disabled it will return the voltage value. This
2626 * function should not be used to determine regulator state.
2627 */
2628int regulator_get_voltage(struct regulator *regulator)
2629{
2630        int ret;
2631
2632        mutex_lock(&regulator->rdev->mutex);
2633
2634        ret = _regulator_get_voltage(regulator->rdev);
2635
2636        mutex_unlock(&regulator->rdev->mutex);
2637
2638        return ret;
2639}
2640EXPORT_SYMBOL_GPL(regulator_get_voltage);
2641
2642/**
2643 * regulator_set_current_limit - set regulator output current limit
2644 * @regulator: regulator source
2645 * @min_uA: Minimum supported current in uA
2646 * @max_uA: Maximum supported current in uA
2647 *
2648 * Sets current sink to the desired output current. This can be set during
2649 * any regulator state. IOW, regulator can be disabled or enabled.
2650 *
2651 * If the regulator is enabled then the current will change to the new value
2652 * immediately otherwise if the regulator is disabled the regulator will
2653 * output at the new current when enabled.
2654 *
2655 * NOTE: Regulator system constraints must be set for this regulator before
2656 * calling this function otherwise this call will fail.
2657 */
2658int regulator_set_current_limit(struct regulator *regulator,
2659                               int min_uA, int max_uA)
2660{
2661        struct regulator_dev *rdev = regulator->rdev;
2662        int ret;
2663
2664        mutex_lock(&rdev->mutex);
2665
2666        /* sanity check */
2667        if (!rdev->desc->ops->set_current_limit) {
2668                ret = -EINVAL;
2669                goto out;
2670        }
2671
2672        /* constraints check */
2673        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2674        if (ret < 0)
2675                goto out;
2676
2677        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2678out:
2679        mutex_unlock(&rdev->mutex);
2680        return ret;
2681}
2682EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2683
2684static int _regulator_get_current_limit(struct regulator_dev *rdev)
2685{
2686        int ret;
2687
2688        mutex_lock(&rdev->mutex);
2689
2690        /* sanity check */
2691        if (!rdev->desc->ops->get_current_limit) {
2692                ret = -EINVAL;
2693                goto out;
2694        }
2695
2696        ret = rdev->desc->ops->get_current_limit(rdev);
2697out:
2698        mutex_unlock(&rdev->mutex);
2699        return ret;
2700}
2701
2702/**
2703 * regulator_get_current_limit - get regulator output current
2704 * @regulator: regulator source
2705 *
2706 * This returns the current supplied by the specified current sink in uA.
2707 *
2708 * NOTE: If the regulator is disabled it will return the current value. This
2709 * function should not be used to determine regulator state.
2710 */
2711int regulator_get_current_limit(struct regulator *regulator)
2712{
2713        return _regulator_get_current_limit(regulator->rdev);
2714}
2715EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2716
2717/**
2718 * regulator_set_mode - set regulator operating mode
2719 * @regulator: regulator source
2720 * @mode: operating mode - one of the REGULATOR_MODE constants
2721 *
2722 * Set regulator operating mode to increase regulator efficiency or improve
2723 * regulation performance.
2724 *
2725 * NOTE: Regulator system constraints must be set for this regulator before
2726 * calling this function otherwise this call will fail.
2727 */
2728int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2729{
2730        struct regulator_dev *rdev = regulator->rdev;
2731        int ret;
2732        int regulator_curr_mode;
2733
2734        mutex_lock(&rdev->mutex);
2735
2736        /* sanity check */
2737        if (!rdev->desc->ops->set_mode) {
2738                ret = -EINVAL;
2739                goto out;
2740        }
2741
2742        /* return if the same mode is requested */
2743        if (rdev->desc->ops->get_mode) {
2744                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2745                if (regulator_curr_mode == mode) {
2746                        ret = 0;
2747                        goto out;
2748                }
2749        }
2750
2751        /* constraints check */
2752        ret = regulator_mode_constrain(rdev, &mode);
2753        if (ret < 0)
2754                goto out;
2755
2756        ret = rdev->desc->ops->set_mode(rdev, mode);
2757out:
2758        mutex_unlock(&rdev->mutex);
2759        return ret;
2760}
2761EXPORT_SYMBOL_GPL(regulator_set_mode);
2762
2763static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2764{
2765        int ret;
2766
2767        mutex_lock(&rdev->mutex);
2768
2769        /* sanity check */
2770        if (!rdev->desc->ops->get_mode) {
2771                ret = -EINVAL;
2772                goto out;
2773        }
2774
2775        ret = rdev->desc->ops->get_mode(rdev);
2776out:
2777        mutex_unlock(&rdev->mutex);
2778        return ret;
2779}
2780
2781/**
2782 * regulator_get_mode - get regulator operating mode
2783 * @regulator: regulator source
2784 *
2785 * Get the current regulator operating mode.
2786 */
2787unsigned int regulator_get_mode(struct regulator *regulator)
2788{
2789        return _regulator_get_mode(regulator->rdev);
2790}
2791EXPORT_SYMBOL_GPL(regulator_get_mode);
2792
2793/**
2794 * regulator_set_optimum_mode - set regulator optimum operating mode
2795 * @regulator: regulator source
2796 * @uA_load: load current
2797 *
2798 * Notifies the regulator core of a new device load. This is then used by
2799 * DRMS (if enabled by constraints) to set the most efficient regulator
2800 * operating mode for the new regulator loading.
2801 *
2802 * Consumer devices notify their supply regulator of the maximum power
2803 * they will require (can be taken from device datasheet in the power
2804 * consumption tables) when they change operational status and hence power
2805 * state. Examples of operational state changes that can affect power
2806 * consumption are :-
2807 *
2808 *    o Device is opened / closed.
2809 *    o Device I/O is about to begin or has just finished.
2810 *    o Device is idling in between work.
2811 *
2812 * This information is also exported via sysfs to userspace.
2813 *
2814 * DRMS will sum the total requested load on the regulator and change
2815 * to the most efficient operating mode if platform constraints allow.
2816 *
2817 * Returns the new regulator mode or error.
2818 */
2819int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2820{
2821        struct regulator_dev *rdev = regulator->rdev;
2822        struct regulator *consumer;
2823        int ret, output_uV, input_uV = 0, total_uA_load = 0;
2824        unsigned int mode;
2825
2826        if (rdev->supply)
2827                input_uV = regulator_get_voltage(rdev->supply);
2828
2829        mutex_lock(&rdev->mutex);
2830
2831        /*
2832         * first check to see if we can set modes at all, otherwise just
2833         * tell the consumer everything is OK.
2834         */
2835        regulator->uA_load = uA_load;
2836        ret = regulator_check_drms(rdev);
2837        if (ret < 0) {
2838                ret = 0;
2839                goto out;
2840        }
2841
2842        if (!rdev->desc->ops->get_optimum_mode)
2843                goto out;
2844
2845        /*
2846         * we can actually do this so any errors are indicators of
2847         * potential real failure.
2848         */
2849        ret = -EINVAL;
2850
2851        if (!rdev->desc->ops->set_mode)
2852                goto out;
2853
2854        /* get output voltage */
2855        output_uV = _regulator_get_voltage(rdev);
2856        if (output_uV <= 0) {
2857                rdev_err(rdev, "invalid output voltage found\n");
2858                goto out;
2859        }
2860
2861        /* No supply? Use constraint voltage */
2862        if (input_uV <= 0)
2863                input_uV = rdev->constraints->input_uV;
2864        if (input_uV <= 0) {
2865                rdev_err(rdev, "invalid input voltage found\n");
2866                goto out;
2867        }
2868
2869        /* calc total requested load for this regulator */
2870        list_for_each_entry(consumer, &rdev->consumer_list, list)
2871                total_uA_load += consumer->uA_load;
2872
2873        mode = rdev->desc->ops->get_optimum_mode(rdev,
2874                                                 input_uV, output_uV,
2875                                                 total_uA_load);
2876        ret = regulator_mode_constrain(rdev, &mode);
2877        if (ret < 0) {
2878                rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2879                         total_uA_load, input_uV, output_uV);
2880                goto out;
2881        }
2882
2883        ret = rdev->desc->ops->set_mode(rdev, mode);
2884        if (ret < 0) {
2885                rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2886                goto out;
2887        }
2888        ret = mode;
2889out:
2890        mutex_unlock(&rdev->mutex);
2891        return ret;
2892}
2893EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2894
2895/**
2896 * regulator_allow_bypass - allow the regulator to go into bypass mode
2897 *
2898 * @regulator: Regulator to configure
2899 * @enable: enable or disable bypass mode
2900 *
2901 * Allow the regulator to go into bypass mode if all other consumers
2902 * for the regulator also enable bypass mode and the machine
2903 * constraints allow this.  Bypass mode means that the regulator is
2904 * simply passing the input directly to the output with no regulation.
2905 */
2906int regulator_allow_bypass(struct regulator *regulator, bool enable)
2907{
2908        struct regulator_dev *rdev = regulator->rdev;
2909        int ret = 0;
2910
2911        if (!rdev->desc->ops->set_bypass)
2912                return 0;
2913
2914        if (rdev->constraints &&
2915            !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2916                return 0;
2917
2918        mutex_lock(&rdev->mutex);
2919
2920        if (enable && !regulator->bypass) {
2921                rdev->bypass_count++;
2922
2923                if (rdev->bypass_count == rdev->open_count) {
2924                        ret = rdev->desc->ops->set_bypass(rdev, enable);
2925                        if (ret != 0)
2926                                rdev->bypass_count--;
2927                }
2928
2929        } else if (!enable && regulator->bypass) {
2930                rdev->bypass_count--;
2931
2932                if (rdev->bypass_count != rdev->open_count) {
2933                        ret = rdev->desc->ops->set_bypass(rdev, enable);
2934                        if (ret != 0)
2935                                rdev->bypass_count++;
2936                }
2937        }
2938
2939        if (ret == 0)
2940                regulator->bypass = enable;
2941
2942        mutex_unlock(&rdev->mutex);
2943
2944        return ret;
2945}
2946EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2947
2948/**
2949 * regulator_register_notifier - register regulator event notifier
2950 * @regulator: regulator source
2951 * @nb: notifier block
2952 *
2953 * Register notifier block to receive regulator events.
2954 */
2955int regulator_register_notifier(struct regulator *regulator,
2956                              struct notifier_block *nb)
2957{
2958        return blocking_notifier_chain_register(&regulator->rdev->notifier,
2959                                                nb);
2960}
2961EXPORT_SYMBOL_GPL(regulator_register_notifier);
2962
2963/**
2964 * regulator_unregister_notifier - unregister regulator event notifier
2965 * @regulator: regulator source
2966 * @nb: notifier block
2967 *
2968 * Unregister regulator event notifier block.
2969 */
2970int regulator_unregister_notifier(struct regulator *regulator,
2971                                struct notifier_block *nb)
2972{
2973        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2974                                                  nb);
2975}
2976EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2977
2978/* notify regulator consumers and downstream regulator consumers.
2979 * Note mutex must be held by caller.
2980 */
2981static void _notifier_call_chain(struct regulator_dev *rdev,
2982                                  unsigned long event, void *data)
2983{
2984        /* call rdev chain first */
2985        blocking_notifier_call_chain(&rdev->notifier, event, data);
2986}
2987
2988/**
2989 * regulator_bulk_get - get multiple regulator consumers
2990 *
2991 * @dev:           Device to supply
2992 * @num_consumers: Number of consumers to register
2993 * @consumers:     Configuration of consumers; clients are stored here.
2994 *
2995 * @return 0 on success, an errno on failure.
2996 *
2997 * This helper function allows drivers to get several regulator
2998 * consumers in one operation.  If any of the regulators cannot be
2999 * acquired then any regulators that were allocated will be freed
3000 * before returning to the caller.
3001 */
3002int regulator_bulk_get(struct device *dev, int num_consumers,
3003                       struct regulator_bulk_data *consumers)
3004{
3005        int i;
3006        int ret;
3007
3008        for (i = 0; i < num_consumers; i++)
3009                consumers[i].consumer = NULL;
3010
3011        for (i = 0; i < num_consumers; i++) {
3012                consumers[i].consumer = regulator_get(dev,
3013                                                      consumers[i].supply);
3014                if (IS_ERR(consumers[i].consumer)) {
3015                        ret = PTR_ERR(consumers[i].consumer);
3016                        dev_err(dev, "Failed to get supply '%s': %d\n",
3017                                consumers[i].supply, ret);
3018                        consumers[i].consumer = NULL;
3019                        goto err;
3020                }
3021        }
3022
3023        return 0;
3024
3025err:
3026        while (--i >= 0)
3027                regulator_put(consumers[i].consumer);
3028
3029        return ret;
3030}
3031EXPORT_SYMBOL_GPL(regulator_bulk_get);
3032
3033static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3034{
3035        struct regulator_bulk_data *bulk = data;
3036
3037        bulk->ret = regulator_enable(bulk->consumer);
3038}
3039
3040/**
3041 * regulator_bulk_enable - enable multiple regulator consumers
3042 *
3043 * @num_consumers: Number of consumers
3044 * @consumers:     Consumer data; clients are stored here.
3045 * @return         0 on success, an errno on failure
3046 *
3047 * This convenience API allows consumers to enable multiple regulator
3048 * clients in a single API call.  If any consumers cannot be enabled
3049 * then any others that were enabled will be disabled again prior to
3050 * return.
3051 */
3052int regulator_bulk_enable(int num_consumers,
3053                          struct regulator_bulk_data *consumers)
3054{
3055        ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3056        int i;
3057        int ret = 0;
3058
3059        for (i = 0; i < num_consumers; i++) {
3060                if (consumers[i].consumer->always_on)
3061                        consumers[i].ret = 0;
3062                else
3063                        async_schedule_domain(regulator_bulk_enable_async,
3064                                              &consumers[i], &async_domain);
3065        }
3066
3067        async_synchronize_full_domain(&async_domain);
3068
3069        /* If any consumer failed we need to unwind any that succeeded */
3070        for (i = 0; i < num_consumers; i++) {
3071                if (consumers[i].ret != 0) {
3072                        ret = consumers[i].ret;
3073                        goto err;
3074                }
3075        }
3076
3077        return 0;
3078
3079err:
3080        for (i = 0; i < num_consumers; i++) {
3081                if (consumers[i].ret < 0)
3082                        pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3083                               consumers[i].ret);
3084                else
3085                        regulator_disable(consumers[i].consumer);
3086        }
3087
3088        return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3091
3092/**
3093 * regulator_bulk_disable - disable multiple regulator consumers
3094 *
3095 * @num_consumers: Number of consumers
3096 * @consumers:     Consumer data; clients are stored here.
3097 * @return         0 on success, an errno on failure
3098 *
3099 * This convenience API allows consumers to disable multiple regulator
3100 * clients in a single API call.  If any consumers cannot be disabled
3101 * then any others that were disabled will be enabled again prior to
3102 * return.
3103 */
3104int regulator_bulk_disable(int num_consumers,
3105                           struct regulator_bulk_data *consumers)
3106{
3107        int i;
3108        int ret, r;
3109
3110        for (i = num_consumers - 1; i >= 0; --i) {
3111                ret = regulator_disable(consumers[i].consumer);
3112                if (ret != 0)
3113                        goto err;
3114        }
3115
3116        return 0;
3117
3118err:
3119        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3120        for (++i; i < num_consumers; ++i) {
3121                r = regulator_enable(consumers[i].consumer);
3122                if (r != 0)
3123                        pr_err("Failed to reename %s: %d\n",
3124                               consumers[i].supply, r);
3125        }
3126
3127        return ret;
3128}
3129EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3130
3131/**
3132 * regulator_bulk_force_disable - force disable multiple regulator consumers
3133 *
3134 * @num_consumers: Number of consumers
3135 * @consumers:     Consumer data; clients are stored here.
3136 * @return         0 on success, an errno on failure
3137 *
3138 * This convenience API allows consumers to forcibly disable multiple regulator
3139 * clients in a single API call.
3140 * NOTE: This should be used for situations when device damage will
3141 * likely occur if the regulators are not disabled (e.g. over temp).
3142 * Although regulator_force_disable function call for some consumers can
3143 * return error numbers, the function is called for all consumers.
3144 */
3145int regulator_bulk_force_disable(int num_consumers,
3146                           struct regulator_bulk_data *consumers)
3147{
3148        int i;
3149        int ret;
3150
3151        for (i = 0; i < num_consumers; i++)
3152                consumers[i].ret =
3153                            regulator_force_disable(consumers[i].consumer);
3154
3155        for (i = 0; i < num_consumers; i++) {
3156                if (consumers[i].ret != 0) {
3157                        ret = consumers[i].ret;
3158                        goto out;
3159                }
3160        }
3161
3162        return 0;
3163out:
3164        return ret;
3165}
3166EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3167
3168/**
3169 * regulator_bulk_free - free multiple regulator consumers
3170 *
3171 * @num_consumers: Number of consumers
3172 * @consumers:     Consumer data; clients are stored here.
3173 *
3174 * This convenience API allows consumers to free multiple regulator
3175 * clients in a single API call.
3176 */
3177void regulator_bulk_free(int num_consumers,
3178                         struct regulator_bulk_data *consumers)
3179{
3180        int i;
3181
3182        for (i = 0; i < num_consumers; i++) {
3183                regulator_put(consumers[i].consumer);
3184                consumers[i].consumer = NULL;
3185        }
3186}
3187EXPORT_SYMBOL_GPL(regulator_bulk_free);
3188
3189/**
3190 * regulator_notifier_call_chain - call regulator event notifier
3191 * @rdev: regulator source
3192 * @event: notifier block
3193 * @data: callback-specific data.
3194 *
3195 * Called by regulator drivers to notify clients a regulator event has
3196 * occurred. We also notify regulator clients downstream.
3197 * Note lock must be held by caller.
3198 */
3199int regulator_notifier_call_chain(struct regulator_dev *rdev,
3200                                  unsigned long event, void *data)
3201{
3202        _notifier_call_chain(rdev, event, data);
3203        return NOTIFY_DONE;
3204
3205}
3206EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3207
3208/**
3209 * regulator_mode_to_status - convert a regulator mode into a status
3210 *
3211 * @mode: Mode to convert
3212 *
3213 * Convert a regulator mode into a status.
3214 */
3215int regulator_mode_to_status(unsigned int mode)
3216{
3217        switch (mode) {
3218        case REGULATOR_MODE_FAST:
3219                return REGULATOR_STATUS_FAST;
3220        case REGULATOR_MODE_NORMAL:
3221                return REGULATOR_STATUS_NORMAL;
3222        case REGULATOR_MODE_IDLE:
3223                return REGULATOR_STATUS_IDLE;
3224        case REGULATOR_MODE_STANDBY:
3225                return REGULATOR_STATUS_STANDBY;
3226        default:
3227                return REGULATOR_STATUS_UNDEFINED;
3228        }
3229}
3230EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3231
3232/*
3233 * To avoid cluttering sysfs (and memory) with useless state, only
3234 * create attributes that can be meaningfully displayed.
3235 */
3236static int add_regulator_attributes(struct regulator_dev *rdev)
3237{
3238        struct device           *dev = &rdev->dev;
3239        struct regulator_ops    *ops = rdev->desc->ops;
3240        int                     status = 0;
3241
3242        /* some attributes need specific methods to be displayed */
3243        if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3244            (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3245            (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3246                (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3247                status = device_create_file(dev, &dev_attr_microvolts);
3248                if (status < 0)
3249                        return status;
3250        }
3251        if (ops->get_current_limit) {
3252                status = device_create_file(dev, &dev_attr_microamps);
3253                if (status < 0)
3254                        return status;
3255        }
3256        if (ops->get_mode) {
3257                status = device_create_file(dev, &dev_attr_opmode);
3258                if (status < 0)
3259                        return status;
3260        }
3261        if (rdev->ena_pin || ops->is_enabled) {
3262                status = device_create_file(dev, &dev_attr_state);
3263                if (status < 0)
3264                        return status;
3265        }
3266        if (ops->get_status) {
3267                status = device_create_file(dev, &dev_attr_status);
3268                if (status < 0)
3269                        return status;
3270        }
3271        if (ops->get_bypass) {
3272                status = device_create_file(dev, &dev_attr_bypass);
3273                if (status < 0)
3274                        return status;
3275        }
3276
3277        /* some attributes are type-specific */
3278        if (rdev->desc->type == REGULATOR_CURRENT) {
3279                status = device_create_file(dev, &dev_attr_requested_microamps);
3280                if (status < 0)
3281                        return status;
3282        }
3283
3284        /* all the other attributes exist to support constraints;
3285         * don't show them if there are no constraints, or if the
3286         * relevant supporting methods are missing.
3287         */
3288        if (!rdev->constraints)
3289                return status;
3290
3291        /* constraints need specific supporting methods */
3292        if (ops->set_voltage || ops->set_voltage_sel) {
3293                status = device_create_file(dev, &dev_attr_min_microvolts);
3294                if (status < 0)
3295                        return status;
3296                status = device_create_file(dev, &dev_attr_max_microvolts);
3297                if (status < 0)
3298                        return status;
3299        }
3300        if (ops->set_current_limit) {
3301                status = device_create_file(dev, &dev_attr_min_microamps);
3302                if (status < 0)
3303                        return status;
3304                status = device_create_file(dev, &dev_attr_max_microamps);
3305                if (status < 0)
3306                        return status;
3307        }
3308
3309        status = device_create_file(dev, &dev_attr_suspend_standby_state);
3310        if (status < 0)
3311                return status;
3312        status = device_create_file(dev, &dev_attr_suspend_mem_state);
3313        if (status < 0)
3314                return status;
3315        status = device_create_file(dev, &dev_attr_suspend_disk_state);
3316        if (status < 0)
3317                return status;
3318
3319        if (ops->set_suspend_voltage) {
3320                status = device_create_file(dev,
3321                                &dev_attr_suspend_standby_microvolts);
3322                if (status < 0)
3323                        return status;
3324                status = device_create_file(dev,
3325                                &dev_attr_suspend_mem_microvolts);
3326                if (status < 0)
3327                        return status;
3328                status = device_create_file(dev,
3329                                &dev_attr_suspend_disk_microvolts);
3330                if (status < 0)
3331                        return status;
3332        }
3333
3334        if (ops->set_suspend_mode) {
3335                status = device_create_file(dev,
3336                                &dev_attr_suspend_standby_mode);
3337                if (status < 0)
3338                        return status;
3339                status = device_create_file(dev,
3340                                &dev_attr_suspend_mem_mode);
3341                if (status < 0)
3342                        return status;
3343                status = device_create_file(dev,
3344                                &dev_attr_suspend_disk_mode);
3345                if (status < 0)
3346                        return status;
3347        }
3348
3349        return status;
3350}
3351
3352static void rdev_init_debugfs(struct regulator_dev *rdev)
3353{
3354        rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3355        if (!rdev->debugfs) {
3356                rdev_warn(rdev, "Failed to create debugfs directory\n");
3357                return;
3358        }
3359
3360        debugfs_create_u32("use_count", 0444, rdev->debugfs,
3361                           &rdev->use_count);
3362        debugfs_create_u32("open_count", 0444, rdev->debugfs,
3363                           &rdev->open_count);
3364        debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3365                           &rdev->bypass_count);
3366}
3367
3368/**
3369 * regulator_register - register regulator
3370 * @regulator_desc: regulator to register
3371 * @config: runtime configuration for regulator
3372 *
3373 * Called by regulator drivers to register a regulator.
3374 * Returns a valid pointer to struct regulator_dev on success
3375 * or an ERR_PTR() on error.
3376 */
3377struct regulator_dev *
3378regulator_register(const struct regulator_desc *regulator_desc,
3379                   const struct regulator_config *config)
3380{
3381        const struct regulation_constraints *constraints = NULL;
3382        const struct regulator_init_data *init_data;
3383        static atomic_t regulator_no = ATOMIC_INIT(0);
3384        struct regulator_dev *rdev;
3385        struct device *dev;
3386        int ret, i;
3387        const char *supply = NULL;
3388
3389        if (regulator_desc == NULL || config == NULL)
3390                return ERR_PTR(-EINVAL);
3391
3392        dev = config->dev;
3393        WARN_ON(!dev);
3394
3395        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3396                return ERR_PTR(-EINVAL);
3397
3398        if (regulator_desc->type != REGULATOR_VOLTAGE &&
3399            regulator_desc->type != REGULATOR_CURRENT)
3400                return ERR_PTR(-EINVAL);
3401
3402        /* Only one of each should be implemented */
3403        WARN_ON(regulator_desc->ops->get_voltage &&
3404                regulator_desc->ops->get_voltage_sel);
3405        WARN_ON(regulator_desc->ops->set_voltage &&
3406                regulator_desc->ops->set_voltage_sel);
3407
3408        /* If we're using selectors we must implement list_voltage. */
3409        if (regulator_desc->ops->get_voltage_sel &&
3410            !regulator_desc->ops->list_voltage) {
3411                return ERR_PTR(-EINVAL);
3412        }
3413        if (regulator_desc->ops->set_voltage_sel &&
3414            !regulator_desc->ops->list_voltage) {
3415                return ERR_PTR(-EINVAL);
3416        }
3417
3418        init_data = config->init_data;
3419
3420        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3421        if (rdev == NULL)
3422                return ERR_PTR(-ENOMEM);
3423
3424        mutex_lock(&regulator_list_mutex);
3425
3426        mutex_init(&rdev->mutex);
3427        rdev->reg_data = config->driver_data;
3428        rdev->owner = regulator_desc->owner;
3429        rdev->desc = regulator_desc;
3430        if (config->regmap)
3431                rdev->regmap = config->regmap;
3432        else if (dev_get_regmap(dev, NULL))
3433                rdev->regmap = dev_get_regmap(dev, NULL);
3434        else if (dev->parent)
3435                rdev->regmap = dev_get_regmap(dev->parent, NULL);
3436        INIT_LIST_HEAD(&rdev->consumer_list);
3437        INIT_LIST_HEAD(&rdev->list);
3438        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3439        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3440
3441        /* preform any regulator specific init */
3442        if (init_data && init_data->regulator_init) {
3443                ret = init_data->regulator_init(rdev->reg_data);
3444                if (ret < 0)
3445                        goto clean;
3446        }
3447
3448        /* register with sysfs */
3449        rdev->dev.class = &regulator_class;
3450        rdev->dev.of_node = config->of_node;
3451        rdev->dev.parent = dev;
3452        dev_set_name(&rdev->dev, "regulator.%d",
3453                     atomic_inc_return(&regulator_no) - 1);
3454        ret = device_register(&rdev->dev);
3455        if (ret != 0) {
3456                put_device(&rdev->dev);
3457                goto clean;
3458        }
3459
3460        dev_set_drvdata(&rdev->dev, rdev);
3461
3462        if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3463                ret = regulator_ena_gpio_request(rdev, config);
3464                if (ret != 0) {
3465                        rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3466                                 config->ena_gpio, ret);
3467                        goto wash;
3468                }
3469
3470                if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3471                        rdev->ena_gpio_state = 1;
3472
3473                if (config->ena_gpio_invert)
3474                        rdev->ena_gpio_state = !rdev->ena_gpio_state;
3475        }
3476
3477        /* set regulator constraints */
3478        if (init_data)
3479                constraints = &init_data->constraints;
3480
3481        ret = set_machine_constraints(rdev, constraints);
3482        if (ret < 0)
3483                goto scrub;
3484
3485        /* add attributes supported by this regulator */
3486        ret = add_regulator_attributes(rdev);
3487        if (ret < 0)
3488                goto scrub;
3489
3490        if (init_data && init_data->supply_regulator)
3491                supply = init_data->supply_regulator;
3492        else if (regulator_desc->supply_name)
3493                supply = regulator_desc->supply_name;
3494
3495        if (supply) {
3496                struct regulator_dev *r;
3497
3498                r = regulator_dev_lookup(dev, supply, &ret);
3499
3500                if (ret == -ENODEV) {
3501                        /*
3502                         * No supply was specified for this regulator and
3503                         * there will never be one.
3504                         */
3505                        ret = 0;
3506                        goto add_dev;
3507                } else if (!r) {
3508                        dev_err(dev, "Failed to find supply %s\n", supply);
3509                        ret = -EPROBE_DEFER;
3510                        goto scrub;
3511                }
3512
3513                ret = set_supply(rdev, r);
3514                if (ret < 0)
3515                        goto scrub;
3516
3517                /* Enable supply if rail is enabled */
3518                if (_regulator_is_enabled(rdev)) {
3519                        ret = regulator_enable(rdev->supply);
3520                        if (ret < 0)
3521                                goto scrub;
3522                }
3523        }
3524
3525add_dev:
3526        /* add consumers devices */
3527        if (init_data) {
3528                for (i = 0; i < init_data->num_consumer_supplies; i++) {
3529                        ret = set_consumer_device_supply(rdev,
3530                                init_data->consumer_supplies[i].dev_name,
3531                                init_data->consumer_supplies[i].supply);
3532                        if (ret < 0) {
3533                                dev_err(dev, "Failed to set supply %s\n",
3534                                        init_data->consumer_supplies[i].supply);
3535                                goto unset_supplies;
3536                        }
3537                }
3538        }
3539
3540        list_add(&rdev->list, &regulator_list);
3541
3542        rdev_init_debugfs(rdev);
3543out:
3544        mutex_unlock(&regulator_list_mutex);
3545        return rdev;
3546
3547unset_supplies:
3548        unset_regulator_supplies(rdev);
3549
3550scrub:
3551        if (rdev->supply)
3552                _regulator_put(rdev->supply);
3553        regulator_ena_gpio_free(rdev);
3554        kfree(rdev->constraints);
3555wash:
3556        device_unregister(&rdev->dev);
3557        /* device core frees rdev */
3558        rdev = ERR_PTR(ret);
3559        goto out;
3560
3561clean:
3562        kfree(rdev);
3563        rdev = ERR_PTR(ret);
3564        goto out;
3565}
3566EXPORT_SYMBOL_GPL(regulator_register);
3567
3568/**
3569 * regulator_unregister - unregister regulator
3570 * @rdev: regulator to unregister
3571 *
3572 * Called by regulator drivers to unregister a regulator.
3573 */
3574void regulator_unregister(struct regulator_dev *rdev)
3575{
3576        if (rdev == NULL)
3577                return;
3578
3579        if (rdev->supply) {
3580                while (rdev->use_count--)
3581                        regulator_disable(rdev->supply);
3582                regulator_put(rdev->supply);
3583        }
3584        mutex_lock(&regulator_list_mutex);
3585        debugfs_remove_recursive(rdev->debugfs);
3586        flush_work(&rdev->disable_work.work);
3587        WARN_ON(rdev->open_count);
3588        unset_regulator_supplies(rdev);
3589        list_del(&rdev->list);
3590        kfree(rdev->constraints);
3591        regulator_ena_gpio_free(rdev);
3592        device_unregister(&rdev->dev);
3593        mutex_unlock(&regulator_list_mutex);
3594}
3595EXPORT_SYMBOL_GPL(regulator_unregister);
3596
3597/**
3598 * regulator_suspend_prepare - prepare regulators for system wide suspend
3599 * @state: system suspend state
3600 *
3601 * Configure each regulator with it's suspend operating parameters for state.
3602 * This will usually be called by machine suspend code prior to supending.
3603 */
3604int regulator_suspend_prepare(suspend_state_t state)
3605{
3606        struct regulator_dev *rdev;
3607        int ret = 0;
3608
3609        /* ON is handled by regulator active state */
3610        if (state == PM_SUSPEND_ON)
3611                return -EINVAL;
3612
3613        mutex_lock(&regulator_list_mutex);
3614        list_for_each_entry(rdev, &regulator_list, list) {
3615
3616                mutex_lock(&rdev->mutex);
3617                ret = suspend_prepare(rdev, state);
3618                mutex_unlock(&rdev->mutex);
3619
3620                if (ret < 0) {
3621                        rdev_err(rdev, "failed to prepare\n");
3622                        goto out;
3623                }
3624        }
3625out:
3626        mutex_unlock(&regulator_list_mutex);
3627        return ret;
3628}
3629EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3630
3631/**
3632 * regulator_suspend_finish - resume regulators from system wide suspend
3633 *
3634 * Turn on regulators that might be turned off by regulator_suspend_prepare
3635 * and that should be turned on according to the regulators properties.
3636 */
3637int regulator_suspend_finish(void)
3638{
3639        struct regulator_dev *rdev;
3640        int ret = 0, error;
3641
3642        mutex_lock(&regulator_list_mutex);
3643        list_for_each_entry(rdev, &regulator_list, list) {
3644                mutex_lock(&rdev->mutex);
3645                if (rdev->use_count > 0  || rdev->constraints->always_on) {
3646                        error = _regulator_do_enable(rdev);
3647                        if (error)
3648                                ret = error;
3649                } else {
3650                        if (!have_full_constraints())
3651                                goto unlock;
3652                        if (!_regulator_is_enabled(rdev))
3653                                goto unlock;
3654
3655                        error = _regulator_do_disable(rdev);
3656                        if (error)
3657                                ret = error;
3658                }
3659unlock:
3660                mutex_unlock(&rdev->mutex);
3661        }
3662        mutex_unlock(&regulator_list_mutex);
3663        return ret;
3664}
3665EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3666
3667/**
3668 * regulator_has_full_constraints - the system has fully specified constraints
3669 *
3670 * Calling this function will cause the regulator API to disable all
3671 * regulators which have a zero use count and don't have an always_on
3672 * constraint in a late_initcall.
3673 *
3674 * The intention is that this will become the default behaviour in a
3675 * future kernel release so users are encouraged to use this facility
3676 * now.
3677 */
3678void regulator_has_full_constraints(void)
3679{
3680        has_full_constraints = 1;
3681}
3682EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3683
3684/**
3685 * rdev_get_drvdata - get rdev regulator driver data
3686 * @rdev: regulator
3687 *
3688 * Get rdev regulator driver private data. This call can be used in the
3689 * regulator driver context.
3690 */
3691void *rdev_get_drvdata(struct regulator_dev *rdev)
3692{
3693        return rdev->reg_data;
3694}
3695EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3696
3697/**
3698 * regulator_get_drvdata - get regulator driver data
3699 * @regulator: regulator
3700 *
3701 * Get regulator driver private data. This call can be used in the consumer
3702 * driver context when non API regulator specific functions need to be called.
3703 */
3704void *regulator_get_drvdata(struct regulator *regulator)
3705{
3706        return regulator->rdev->reg_data;
3707}
3708EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3709
3710/**
3711 * regulator_set_drvdata - set regulator driver data
3712 * @regulator: regulator
3713 * @data: data
3714 */
3715void regulator_set_drvdata(struct regulator *regulator, void *data)
3716{
3717        regulator->rdev->reg_data = data;
3718}
3719EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3720
3721/**
3722 * regulator_get_id - get regulator ID
3723 * @rdev: regulator
3724 */
3725int rdev_get_id(struct regulator_dev *rdev)
3726{
3727        return rdev->desc->id;
3728}
3729EXPORT_SYMBOL_GPL(rdev_get_id);
3730
3731struct device *rdev_get_dev(struct regulator_dev *rdev)
3732{
3733        return &rdev->dev;
3734}
3735EXPORT_SYMBOL_GPL(rdev_get_dev);
3736
3737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3738{
3739        return reg_init_data->driver_data;
3740}
3741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3742
3743#ifdef CONFIG_DEBUG_FS
3744static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3745                                    size_t count, loff_t *ppos)
3746{
3747        char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3748        ssize_t len, ret = 0;
3749        struct regulator_map *map;
3750
3751        if (!buf)
3752                return -ENOMEM;
3753
3754        list_for_each_entry(map, &regulator_map_list, list) {
3755                len = snprintf(buf + ret, PAGE_SIZE - ret,
3756                               "%s -> %s.%s\n",
3757                               rdev_get_name(map->regulator), map->dev_name,
3758                               map->supply);
3759                if (len >= 0)
3760                        ret += len;
3761                if (ret > PAGE_SIZE) {
3762                        ret = PAGE_SIZE;
3763                        break;
3764                }
3765        }
3766
3767        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3768
3769        kfree(buf);
3770
3771        return ret;
3772}
3773#endif
3774
3775static const struct file_operations supply_map_fops = {
3776#ifdef CONFIG_DEBUG_FS
3777        .read = supply_map_read_file,
3778        .llseek = default_llseek,
3779#endif
3780};
3781
3782static int __init regulator_init(void)
3783{
3784        int ret;
3785
3786        ret = class_register(&regulator_class);
3787
3788        debugfs_root = debugfs_create_dir("regulator", NULL);
3789        if (!debugfs_root)
3790                pr_warn("regulator: Failed to create debugfs directory\n");
3791
3792        debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3793                            &supply_map_fops);
3794
3795        regulator_dummy_init();
3796
3797        return ret;
3798}
3799
3800/* init early to allow our consumers to complete system booting */
3801core_initcall(regulator_init);
3802
3803static int __init regulator_init_complete(void)
3804{
3805        struct regulator_dev *rdev;
3806        struct regulator_ops *ops;
3807        struct regulation_constraints *c;
3808        int enabled, ret;
3809
3810        /*
3811         * Since DT doesn't provide an idiomatic mechanism for
3812         * enabling full constraints and since it's much more natural
3813         * with DT to provide them just assume that a DT enabled
3814         * system has full constraints.
3815         */
3816        if (of_have_populated_dt())
3817                has_full_constraints = true;
3818
3819        mutex_lock(&regulator_list_mutex);
3820
3821        /* If we have a full configuration then disable any regulators
3822         * which are not in use or always_on.  This will become the
3823         * default behaviour in the future.
3824         */
3825        list_for_each_entry(rdev, &regulator_list, list) {
3826                ops = rdev->desc->ops;
3827                c = rdev->constraints;
3828
3829                if (c && c->always_on)
3830                        continue;
3831
3832                mutex_lock(&rdev->mutex);
3833
3834                if (rdev->use_count)
3835                        goto unlock;
3836
3837                /* If we can't read the status assume it's on. */
3838                if (ops->is_enabled)
3839                        enabled = ops->is_enabled(rdev);
3840                else
3841                        enabled = 1;
3842
3843                if (!enabled)
3844                        goto unlock;
3845
3846                if (have_full_constraints()) {
3847                        /* We log since this may kill the system if it
3848                         * goes wrong. */
3849                        rdev_info(rdev, "disabling\n");
3850                        ret = _regulator_do_disable(rdev);
3851                        if (ret != 0)
3852                                rdev_err(rdev, "couldn't disable: %d\n", ret);
3853                } else {
3854                        /* The intention is that in future we will
3855                         * assume that full constraints are provided
3856                         * so warn even if we aren't going to do
3857                         * anything here.
3858                         */
3859                        rdev_warn(rdev, "incomplete constraints, leaving on\n");
3860                }
3861
3862unlock:
3863                mutex_unlock(&rdev->mutex);
3864        }
3865
3866        mutex_unlock(&regulator_list_mutex);
3867
3868        return 0;
3869}
3870late_initcall(regulator_init_complete);
3871